GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper >

Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/52285

Files in This Item:

File Description SizeFormat
gupea_2077_52285_1.pdfThesis frame631KbAdobe PDF
View/Open
gupea_2077_52285_2.pdfAbstract103KbAdobe PDF
View/Open
Title: Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem
Authors: Malmberg, John Bondestam
E-mail: bondesta@chalmers.se
Issue Date: 8-Jun-2017
University: Göteborgs universitet. Naturvetenskapliga fakulteten
Institution: Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Parts of work: Larisa Beilina, Nguyen Trung Thành, Michael V. Klibanov and John Bondestam Malmberg. Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity. Inverse problems 30:105007, 2014.
VIEW ARTICLE


Larisa Beilina, Nguyen Trung Thành, Michael V. Klibanov and John Bondestam Malmberg. Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements. Journal of Computational and Applied Mathematics 289:371--391, 2015.
VIEW ARTICLE


John Bondestam Malmberg. A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system, volume 120 of Springer Proceedings in Mathematics and Statistics, pages 42--53, Springer, 2015.
VIEW ARTICLE


John Bondestam Malmberg, and Larisa Beilina. An Adaptive Finite Element Method in Quantitative Reconstruction of Small Inclusions from Limited Observations. Manuscript submitted to Applied Mathematics & Information Sciences.

John Bondestam Malmberg, and Larisa Beilina. Iterative Regularization and Adaptivity for an Electromagnetic Coefficient Inverse Problem. Manuscript to appear in the Proceedings of the 14th International Conference of Numerical Analysis and Applied Mathematics.
Date of Defence: 2017-09-01
Disputation: Fredagen den 1 september 2017, kl 13.15, Pascal, Matematiska vetenskaper, Chalmers tvärgata3, Göteborg.
Degree: Doctor of Philosophy
Publication type: Doctoral thesis
Keywords: coefficient inverse problem
inverse scattering
Maxwell’s equations
approximate global convergence
finite element method
adaptivity,
a posteriori error analysis
Abstract: This thesis comprises five scientific papers, all of which are focusing on the inverse problem of reconstructing a dielectric permittivity which may vary in space inside a given domain. The data for the reconstruction consist of time-domain observations of the electric field, resulting from a single incident wave, on a part of the boundary of the domain under consideration. The medium is assumed to be isotropic, non-magnetic, and non-conductive. We model the permittivity as a continuous function... more
ISBN: 978-91-629-0203-2
URI: http://hdl.handle.net/2077/52285
Appears in Collections:Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper

 

 

© Göteborgs universitet 2011