A Dual Approach to the Derivation of Feedback Demand Functions for Capital-Accumulating Agents
Abstract
An optimal control model of a consumer is developed that accounts for the consumption of many
goods and services, the accumulation of wealth, a state variable that affects instantaneous preferences
and wealth accumulation, and contains several canonical models as special cases. Formulas
are provided for the feedback consumption functions in terms of certain partial derivatives of a
consumer’s lifetime indirect utility function, thereby obviating the need to solve the necessary
conditions of Pontryagin or the Hamilton-Jacobi-Bellman equation. The intrinsic qualitative properties
of the optimal control model in differential form are derived, and an example of how to
implement the results for econometric purposes is provided as well.
Publisher
University of Gothenburg
Other description
JEL Codes: D15; I12; I18
Collections
View/ Open
Date
2024-05Author
Bolin, Kristian
Caputo, Michael R.
Keywords
capital stock
feedback solutions
HJB equation
optimal control
Publication type
report
ISSN
1403-2465
Series/Report no.
Working Papers in Economics
843
Language
eng