• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Institutionen för fysik / Department of Physics
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Institutionen för fysik / Department of Physics
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decoding the surface code using graph neural networks

Abstract
Quantum error correction is essential to achieve fault-tolerant quantum computation in the presence of noisy qubits. Among the most promising approaches to quantum error correction is the surface code, thanks to a scalable two-dimensional architecture, only nearest-neighbor interactions, and a high error threshold. Decoding the surface code, i.e. finding the most likely error chain given a syndrome measurement outcome is a computationally complex task. Traditional decoders rely on classical algorithms, which, especially for larger systems, can be slow and may not always converge to the optimal solution. This thesis presents a novel approach to decoding the surface code using graph neural networks. By mapping the syndrome measurements to a graph and performing graph classification, we find that the graph neural networks can predict the most likely error configuration with high accuracy. Our results show that the GNN-based decoder outperforms the classic minimum weight perfect matching (MWPM) decoder in terms of accuracy. With a phenomenological noise model with depolarizing noise and perfect syndrome measurements, our networks beat MWPM up to code-size 15 across all relevant error rates. Furthermore, the GNN is capable of surpassing MWPM under circuit-level noise up to code size 7. We also show that training the network on repetition code data from a recent experiment [Google Quantum AI, Nature 614, 676 (2023)] produces per-step error rates comparable to those achieved with a matching decoder specifically adapted to the error rates of the physical qubits. This indicates that graph neural network decoders are capable of learning the underlying error distribution on the qubits. Our findings advance the field of quantum error correction and provide a promising new direction for the development of efficient decoding algorithms.
Degree
student essay
URI
https://hdl.handle.net/2077/78810
Collections
  • Masteruppsatser
View/Open
Master_Thesis_Lange.pdf (1.635Mb)
Date
2023-10-17
Author
Lange, Moritz
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV