• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Earth Sciences / Institutionen för geovetenskaper
  • Master thesis
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Earth Sciences / Institutionen för geovetenskaper
  • Master thesis
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring Urban Land Cover Changes and the Effect on Nocturnal Air Temperature Dynamics in Helsingborg - A temperature modeling made with TAPM

Sammanfattning
In light of increasing global temperatures, urban areas face growing challenges related to heat stress. Alterations in land cover (LC) within cities contribute to changes in the intra-urban climate, predominantly driven by the replacement of vegetated surfaces with impermeable materials. These changes affect the thermal properties of urban environments, exacerbating the Urban Heat Island effect. Understanding the impact of land cover changes (LCC) on urban climate necessitates the use of remote sensing, pre-trained deep learning models, and temperature modeling techniques. This study focuses on assessing land cover changes in the Helsingborg urban area from 2004 to 2020 through image classification utilizing a pre-trained deep learning model. Furthermore, it investigates the influence of LCC on nocturnal air temperature using the three-dimensional prognostic air pollution and meteorological model, The Air Pollution Model (TAPM). Specifically, the analysis centers around the 2018 heatwave in Sweden, aiming to evaluate TAPM's ability to differentiate between various land cover types and identify temperature patterns within the Intra-Urban Heat Islands. The deep learning model achieved an overall accuracy exceeding 90%, revealing a decline in grass surfaces and an increase in areas covered by buildings and trees. TAPM's temperature modeling, based on the land cover classifications, demonstrated distinct temperature variations at a 100 x 100-meter local scale. Additionally, it indicated a higher proportion of areas with elevated nighttime temperatures (>18°C), posing potential health risks during heatwave events akin to the summer of 2018
Examinationsnivå
Student essay
URL:
https://hdl.handle.net/2077/78706
Samlingar
  • Master thesis
Fil(er)
B1272.pdf (8.866Mb)
Datum
2023-10-09
Författare
Bäck, Amanda
Nyckelord
Nocturnal Air Temperature
Intra-Urban Heat Island
Land Cover Classification
Deep learning
The Air Pollution Model (TAPM)
Land Cover Change
Serie/rapportnr.
B1272
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV