GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Biological and Environmental Sciences / Institutionen för biologi och miljövetenskap (2012-) >
Doctoral Theses / Doktorsavhandlingar Institutionen för biologi och miljövetenskap >

Advancing Evolutionary Biology: Genomics, Bayesian Statistics, and Machine Learning


Använd denna länk för att citera eller länka till detta dokument: http://hdl.handle.net/2077/66848

Bifogade filer i denna post:

Fil Beskrivning StorlekFormat
gupea_2077_66848_1.pdfThesis frame1912KbAdobe PDF
Visa/Öppna
gupea_2077_66848_2.pdfAbstract221KbAdobe PDF
Visa/Öppna
gupea_2077_66848_3.pdfCover2612KbAdobe PDF
Visa/Öppna
Titel: Advancing Evolutionary Biology: Genomics, Bayesian Statistics, and Machine Learning
Författare: Andermann, Tobias
E-post: tobias.andermann@bioenv.gu.se
Utgivningsdatum: 20-nov-2020
Universitet: University of Gothenburg. Faculty of Science
Institution: Department of Biological and Environmental Sciences ; Institutionen för biologi och miljövetenskap
Delarbeten: Andermann, Tobias, Alexandre M. Fernandes, Urban Olsson, Mats Töpel, Bernard Pfeil, Bengt Oxelman, Alexandre Aleixo, Brant C. Faircloth, and Alexandre Antonelli. 2019. “Allele Phasing Greatly Improves the Phylogenetic Utility of Ultraconserved Elements.” Systematic Biology 68 (1): 32–46.
VISA ARTIKEL


Andermann, Tobias, Ángela Cano, Alexander Zizka, Christine D. Bacon, and Alexandre Antonelli. 2018. “SECAPR—a Bioinformatics Pipeline for the Rapid and User-Friendly Processing of Targeted Enriched Illumina Sequences, from Raw Reads to Alignments.” PeerJ 6 (July): e5175.
VISA ARTIKEL


Andermann, Tobias, Maria Fernanda Torres Jiménez, Pável Matos- Maraví, Romina Batista, José L. Blanco-Pastor, A. Lovisa S. Gustafsson, Logan Kistler, Isabel M. Liberal, Bengt Oxelman, Christine D. Bacon, and Alexandre Antonelli. 2020. “A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project.” Frontiers in Genetics 10.
VISA ARTIKEL


Andermann, Tobias, Søren Faurby, Robert Cooke, Daniele Silvestro, and Alexandre Antonelli. 2020. “iucn_sim: A New Program to Simulate Future Extinctions Based on IUCN Threat Status.” Ecography (in print).
VISA ARTIKEL


Andermann, Tobias, Søren Faurby, Samuel T. Turvey, Alexandre Antonelli, and Daniele Silvestro. 2020. “The Past and Future Human Impact on Mammalian Diversity.” Science Advances 6 (36): eabb2313.
VISA ARTIKEL


Silvestro, Daniele, and Tobias Andermann. 2020. “Prior Choice Affects Ability of Bayesian Neural Networks to Identify Unknowns.” ArXiv Preprint arXiv:2005.04987. http://arxiv.org/abs/2005.04987.
Datum för disputation: 2020-12-18
Disputation: Fredagen den 18 december 2020, kl. 14.00, Hörsalen, Botanhuset, Institutionen för Biologi och Miljövetenskap, Carl Skottsbergs gata 22B, Göteborg
Examinationsnivå: Doctor of Philosophy
Publikationstyp: Doctoral thesis
Nyckelord: computational biology
bioinformatics
phylogenetics
neural networks
NGS
target capture
Illumina sequencing
fossils
IUCN conservation status
extinction rates
Sammanfattning: During the recent decades the field of evolutionary biology has entered the era of big data, which has transformed the field into an increasingly computational discipline. In this thesis I present novel computational method developments, including their application in empirical case studies. The presented chapters are divided into three fields of computational biology: genomics, Bayesian statistics, and machine learning. While these are not mutually exclusive categories, they do represent differ... mer
ISBN: 978-91-8009-136-7
978-91-8009-137-4
URI: http://hdl.handle.net/2077/66848
Samling:Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Doctoral Theses / Doktorsavhandlingar Institutionen för biologi och miljövetenskap

 

 

© Göteborgs universitet 2011