GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Biological and Environmental Sciences / Institutionen för biologi och miljövetenskap (2012-) >
Doctoral Theses / Doktorsavhandlingar Institutionen för biologi och miljövetenskap >

Strong light-matter interaction and its consequences on molecular photophysics


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/66473

Files in This Item:

File Description SizeFormat
gupea_2077_66473_1.pdfAbstract229KbAdobe PDF
View/Open
gupea_2077_66473_2.pdfThesis frame2166KbAdobe PDF
View/Open
Title: Strong light-matter interaction and its consequences on molecular photophysics
Authors: Hertzog, Manuel
E-mail: manuel.hertzog@chem.gu.se
Issue Date: 15-Sep-2020
University: University of Gothenburg. Faculty of Science
Institution: Department of Chemistry and Molecular Biology ; Institutionen för kemi och molekylärbiologi
Parts of work: Voltage-controlled switching of strong light-matter interactions using liquid crystals Manuel Hertzog , Per Rudquist, James A. Hutchison, Jino George, Tomas W. Ebbesen, Karl Börjesson, Chem. Eur. J. 2017, 23, 18166–18170.
VIEW ARTICLE


Selective manipulation of electronically excited states through strong light-matter interactions Kati Stranius, Manuel Hertzog, Karl Börjesson, Nat. Comm. 2018, 9, 2273.
VIEW ARTICLE


The effect of coupling mode in the vibrational strong coupling regime Manuel Hertzog, Karl Börjesson, ChemPhotoChem, 2020, 4, 612–617.
VIEW ARTICLE


Enhancing light-matter coupling strength beyond the molecular concentration limit Manuel Hertzog , Battulga Munkhbat, Denis G. Baranov, Timur O. Shegai, Karl Börjesson, Submitted to Nano Letters 2020.
Date of Defence: 2020-10-09
Disputation: Fredagen den 9 oktober 2020 kl. 9:30 i sal KA, campus Johanneberg, Kemihuset, Kemigården 4, Göteborg
Degree: Doctor of Philosophy
Publication type: Doctoral thesis
Keywords: Strong coupling
Vibropolariton
Polaritonic Chemistry
Abstract: Strong light-matter interaction offers the possibility to modify chemical and physical properties of molecules by modifying their photonic environment, resulting in the creation of hybrid light-matter states, known as polaritons. The field of polaritonic chemistry using microfluidic cavities is in its infancy, and developing methods to increase the coupling strength are necessary to maximise the effects of polaritonic states. Moreover, exploring the effect of strong coupling on photo... more
ISBN: 978-91-8009-034-6
978-91-8009-035-3
URI: http://hdl.handle.net/2077/66473
Appears in Collections:Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Doctoral Theses / Doktorsavhandlingar Institutionen för biologi och miljövetenskap

 

 

© Göteborgs universitet 2011