GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper >

Geometrical and percolative properties of spatially correlated models


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/63419

Files in This Item:

File Description SizeFormat
gupea_2077_63419_1.pdfThesis frame för en sammanläggningsavhandling12916KbAdobe PDF
View/Open
gupea_2077_63419_2.pdfspikblad153KbAdobe PDF
View/Open
Title: Geometrical and percolative properties of spatially correlated models
Authors: Hallqvist Elias, Karl Olof
E-mail: olofel@chalmers.se
Issue Date: 10-Mar-2020
University: Göteborgs universitet. Naturvetenskapliga fakulteten
Institution: Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Parts of work: Visibility in the vacant set of the Brownian interlacements and the Brownian excursion process.
VIEW ARTICLE


Percolation of the vacant set of the Brownian excursions process. Manuscript

The fractal cylinder process: existence and connectivity phase transitio. Submitted

Properties of a random ellipsoid model. Submitted
Date of Defence: 2020-04-17
Disputation: 10:15 Hörsal Pascal, Matematiska vetenskaper, Chalmers Tvärgata 3, Göteborg. https://chalmers.zoom.us/j/631607089
Degree: Doctor of Philosophy
Publication type: Doctoral thesis
Keywords: continuum percolation,
brownian excursions
brownian interlacements
poisson cylinder model
fractal percolation
Abstract: This thesis consists of four papers dealing with phase transitions in various models of continuum percolation. These models exhibit complicated dependencies and are generated by different Poisson processes. For each such process there is a parameter, known as the intensity, governing its behavior. By varying the value of this parameter, the geometrical and topological properties of these models may undergo dramatic and rapid changes. This phenomenon is called a phase transition and the val... more
ISBN: 978-91-7833-872-6
978-91-7833-873-3
URI: http://hdl.handle.net/2077/63419
Appears in Collections:Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper

 

 

© Göteborgs universitet 2011