GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper >

Resampling in network modeling of high-dimensional genomic data


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/52101

Files in This Item:

File Description SizeFormat
gupea_2077_52101_1.pdfLicentiate thesis2783KbAdobe PDF
View/Open
Title: Resampling in network modeling of high-dimensional genomic data
Authors: Kallus, Jonatan
Issue Date: 2017
Extent: 30 s.
Publication type: licentiate thesis
Publisher: University of Gothenburg and Chalmers University of Technology
Organization: Department of Mathematical Sciences
Keywords: high-dimensional data
sparsity
model selection
bootstrap
genomics
graphical modeling
Abstract: Network modeling is an effective approach for the interpretation of high-dimensional data sets for which a sparse dependence structure can be assumed. Genomic data is a challenging and important example. In genomics, network modeling aids the discovery of biological mechanistic relationships and therapeutic targets. The usefulness of methods for network modeling is improved when they produce networks that are accompanied by a reliability estimate. Furthermore, for methods to produc... more
URI: http://hdl.handle.net/2077/52101
Appears in Collections:Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper

 

 

© Göteborgs universitet 2011