GUPEA >
Student essays / Studentuppsatser >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Masteruppsatser >

The noncommutative Shilov boundary


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/49978

Files in This Item:

File Description SizeFormat
gupea_2077_49978_1.pdf558KbAdobe PDF
View/Open
Title: The noncommutative Shilov boundary
Authors: Johansson, Jimmy
Issue Date: 6-Dec-2016
Degree: Student essay
Abstract: We introduce Arveson's generalization of the Shilov boundary to the noncommutative case and give a proof based on the work of Hamana of the existence of the Shilov boundary ideal. Moreover, we describe the Shilov boundary for a noncommutative analog of the algebra of holomorphic functions on the unit polydisk Dn and for a q-analog of the algebra of holomorphic functions on the unit ball in the space of symmetric complex 2 x 2 matrices.
URI: http://hdl.handle.net/2077/49978
Appears in Collections:Masteruppsatser

 

 

© Göteborgs universitet 2011