GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Physics / Institutionen för fysik >
Doctoral Theses / Doktorsavhandlingar Institutionen för fysik >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/2077/32919
|
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
gupea_2077_32919_1.pdf | Thesis | 4118Kb | Adobe PDF | ![]() View/Open |
gupea_2077_32919_2.pdf | Abstract | 161Kb | Adobe PDF | ![]() View/Open |
Title: | Periodized Thermal Greens Functions and Applications |
Authors: | Sabashvili, Andro |
E-mail: | andro.sabashvili@physics.gu.se |
Issue Date: | 30-Aug-2013 |
University: | Göteborgs universitet. Naturvetenskapliga fakulteten |
Institution: | Department of Physics ; Institutionen för fysik |
Parts of work: | 1. Hugo U. R. Strand, Andro Sabashvili, Mats Granath, Bo Hellsing, and Stellan Östlund, Dynamical mean field theory phase-space extension and critical properties of the finite temperature Mott transition, Phys. Rev. B 83, 205136 (2011) VIEW ARTICLE 2. Mats Granath, Andro Sabashvili, Hugo U. R. Strand, and Stellan Östlund, Discretized thermal Green’s functions, Ann. Phys. 524, No. 3–4, 147–152 (2012) VIEW ARTICLE 3. Andro Sabashvili, Stellan Östlund, and Mats Granath, Bilayer graphene spectral function in the random phase approximation and self-consistent GW approximation, To be published in Phys. Rev. B. |
Date of Defence: | 2013-09-23 |
Disputation: | Tid: 10:00AM, Plats: KB, Chalmers Campus Johanneberg, Kemig ̊arden 4. |
Degree: | Doctor of Philosophy |
Publication type: | Doctoral thesis |
Keywords: | condensed matter physics Greens function graphene DMFT RPA GW |
Abstract: | This work describes a new formalism for Fermionic thermal Greens functions that are discretized in imaginary time. The discretization makes the thermal Greens function periodic in imaginary (Matsubara) frequency space and requires a generalisation of the Dyson equation and Luttinger-Ward-Baym-Kadanoff functional. A Pade method is used to perform an analytic continuation of the periodized Matsubara Greens function to real frequencies which conserves the spectral weight and thus the discontinuity ... more |
ISBN: | 978-91-628-8766-7 |
URI: | http://hdl.handle.net/2077/32919 |
Appears in Collections: | Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet Doctoral Theses / Doktorsavhandlingar Institutionen för fysik |