GUPEA >

Faculty of Science / Naturvetenskapliga fakulteten >

Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >

Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper >

Please use this identifier to cite or link to this item:
`http://hdl.handle.net/2077/32484` |

**Files in This Item:**

File | Description | Size | Format | |
---|---|---|---|---|

gupea_2077_32484_1.pdf | Thesis frame | 5266Kb | Adobe PDF | View/Open |

gupea_2077_32484_2.pdf | Spikblad | 89Kb | Adobe PDF | View/Open |

Title: | Exercising Mathematical Competence: Practising Representation Theory and Representing Mathematical Practice |

Authors: | Säfström, Anna Ida |

E-mail: | anna.ida.safstrom@bredband.net safstrom@chalmers.se |

Issue Date: | 5-Apr-2013 |

University: | Göteborgs universitet. Naturvetenskapliga fakulteten |

Institution: | Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper |

Parts of work: | Säfström, A.I. (2013). Skew symmetric matrix equations A+B+C=0. Unpublished manuscript. Säfström, A.I. (2013). Unitary highest weight representations of $\mathfrak{gl}_\mathbb{C}(n+1)$. Unpublished manuscript. Säfström, A.I. (2013). Developing a framework for competencies exercised. Unpublished manuscript. Säfström, A.I. & Pettersson, K. (2013). Competencies exercised in the process of proving. Unpublished manuscript. |

Date of Defence: | 2013-04-26 |

Disputation: | Fredagen den 26 april 2013, kl. 13.15, Sal KA, Kemigården 4 |

Degree: | Doctor of Philosophy |

Publication type: | Doctoral thesis |

Keywords: | Mathematical competence exercising competencies young children whole number arithmetic tertiary level proving highest weight representation tensor product decomposition skew-symmetric matrix moment map infinite dimensional unitary representation |

Abstract: | This thesis assembles two papers in mathematics and two papers in mathematics education. In the mathematics part, representation theory is practised. Two Clebsch-Gordan type problems are addressed. The original problem concerns the decomposition of the tensor product of two finite dimensional, irreducible highest way representations of $GL_{\mathbb{C}}(n)$. This problem is known to be equivalent with the characterisation of the eigenvalues of the sum of two Hermitian matrices. In this thesis, th... more |

ISBN: | 978-91-628-8662-2 |

URI: | http://hdl.handle.net/2077/32484 |

Appears in Collections: | Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper |