Sahlgrenska Academy / Sahlgrenska akademin >
Institute of Clinical Sciences / Institutionen för kliniska vetenskaper >
Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper >

Integrative genomic and survival analysis of breast tumors

Please use this identifier to cite or link to this item:

Files in This Item:

File Description SizeFormat
gupea_2077_30566_1.pdfThesis frame828KbAdobe PDF
gupea_2077_30566_2.pdfAbstract189KbAdobe PDF
Title: Integrative genomic and survival analysis of breast tumors
Authors: Nemes, Szilard
Issue Date: 14-Nov-2012
University: University of Gothenburg. Sahlgrenska Academy
Institution: Institute of Clincial Sciences. Department of Oncology
Parts of work: I. Nemes Sz., Parris T, Danielsson A, Kannius‐Janson M, Jonasson JM, Steineck G, Helou K. Segmented regression, a versatile tool to analyze mRNA levels in relation to DNA copy number aberrations. Genes, Chromosomes and Cancer. 2012, 51(1): 77-82.

II. Nemes Sz, Parris TP, Danielsson A, Einbeigi Z, Steineck G, Jonasson JM, and Helou K. Integrative genomics with mediation analysis in a survival context. (Submitted)

III. Nemes Sz, Parris TP, Danielsson A, Jonasson JM, Genell A, Karlsson P, Steineck G and Helou K. A novel 12-gene panel predicting clinical outcome of breast cancer. (Submitted)

IV. Nemes Sz, Danielsson A, Parris TP, Jonasson JM, Karlsson P, Steineck G and Helou K. Permutation test for the clonal origins of multiple tumors. (Manuscript)
Date of Defence: 2012-12-05
Disputation: Onsdag den 5 december 2012, kl 9.00; Hörsal Arvid Carlsson, Academicum, Medicinaregatan 3, Göteborg
Degree: Doctor of Philosophy (Medicine)
Publication type: Doctoral thesis
Keywords: biostatistics
survival analysis
DNA copy number aberrations
messenger RNA
Abstract: With the continued accumulation of genomic data at ever increasing resolution the challenge ahead lies in reading out meaningful clinical/biological information form the data that can contribute to a better understanding of the cancerous process. The need for novel approaches, new statistical methods is therefore strong. The present thesis aims to contribute to the field with three problem specific applications that that expectantly will aid researchers in a better understanding of genomic dat... more
ISBN: 978-91-628-8538-0
Appears in Collections:Doctoral Theses from Sahlgrenska Academy
Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper



© Göteborgs universitet 2011