GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper >

Percolation: Inference and Applications in Hydrology


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/27883

Files in This Item:

File Description SizeFormat
gupea_2077_27883_1.pdfKappan176KbAdobe PDF
View/Open
gupea_2077_27883_2.pdftitelsidan55KbAdobe PDF
View/Open
Title: Percolation: Inference and Applications in Hydrology
Authors: Hammar, Oscar
E-mail: oscham@chalmers.se
Issue Date: 25-Nov-2011
University: Göteborgs universitet. Naturvetenskapliga fakulteten
Institution: Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Parts of work: 1. Oscar Hammar. Inference in a Partially Observed Percolation Process. Submitted to Latin American Journal of Probability and Mathematical Statistics.

2. Oscar Hammar. Bayesian Consistency in a Partially Observed Percolation Process on the Infinite Square Lattice.

3. Oscar Hammar. Bayesian Consistency in a Partially Observed Continuum Percolation Process.

4. Oscar Hammar, Lisa Hernqvist, Gunnar Gustafson, Åsa Fransson. Relating the Hydraulic Aperture and the Median Physical Aperture for Rock Fracture with Large Aperture Variance using Percolation Theory. Submitted to International Journal of Rock Mechanics and Mining Sciences.
Date of Defence: 2011-12-16
Disputation: Fredagen den 16 december 2011, kl. 10.15, Sal Pascal, Matematiska vetenskaper, Chalmers Tvärgata 3
Degree: Doctor of Philosophy
Publication type: Doctoral thesis
Keywords: percolation
inference
consistency
Markov chain Monte Carlo
hydrology
Abstract: Percolation theory is a branch of probability theory describing connectedness in a stochastic network. The connectedness of a percolation process is governed by a few, typically one or two, parameters. A central theme in this thesis is to draw inference about the parameters of a percolation process based on information whether particular points are connected or not. Special attention is paid to issues of consistency as the number of points whose connectedness is revealed tends to infinity. A... more
ISBN: 978-91-628-8395-9
URI: http://hdl.handle.net/2077/27883
Appears in Collections:Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet

This item has been viewed 97 times.

 

 

© Göteborgs universitet 2011