GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/2077/26666
|
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
gupea_2077_26666_1.pdf | Thesis | 1426Kb | Adobe PDF | ![]() View/Open |
gupea_2077_26666_2.pdf | Abstract | 150Kb | Adobe PDF | ![]() View/Open |
Title: | Asymptotics and dynamics in first-passage and continuum percolation |
Authors: | Ahlberg, Daniel |
E-mail: | ahlberg.daniel@gmail.com |
Issue Date: | 6-Sep-2011 |
University: | Göteborgs universitet. Naturvetenskapliga fakulteten |
Institution: | Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper |
Parts of work: | Paper I.
D. Ahlberg. Asymptotics of first-passage percolation on 1-dimensional graphs. Paper II. D. Ahlberg. The asymptotic shape, large deviations and dynamical stability in first-passage percolation on cones. Paper III. D. Ahlberg, E. Broman, S. Griffiths, and R. Morris. Noise sensitivity in continuum percolation. |
Date of Defence: | 2011-09-30 |
Disputation: | Fredagen den 30 september 2011, kl. 13:15, Sal Pascal, Matematiska Vetenskaper, Chalmers tvärgata 3 |
Degree: | Doctor of Philosophy |
Publication type: | Doctoral thesis |
Keywords: | first-passage percolation noise sensitivity continuum percolation Gilbert model limit theorems shape theorem stopped random walks large deviations dynamical percolation |
Abstract: | This thesis combines the study of asymptotic properties of percolation processes with various dynamical concepts. First-passage percolation is a model for the spatial propagation of a fluid on a discrete structure; the Shape Theorem describes its almost sure convergence towards an asymptotic shape, when considered on the square (or cubic) lattice. Asking how percolation structures are affected by simple dynamics or small perturbations presents a dynamical aspect. Such questions were previously s... more |
ISBN: | 978-91-628-8331-7 |
URI: | http://hdl.handle.net/2077/26666 |
Appears in Collections: | Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet |