GUPEA >
Faculty of Science / Naturvetenskapliga fakulteten >
Department of Mathematical Sciences / Institutionen för matematiska vetenskaper >
Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper >

Asymptotics and dynamics in first-passage and continuum percolation


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/26666

Files in This Item:

File Description SizeFormat
gupea_2077_26666_1.pdfThesis1426KbAdobe PDF
View/Open
gupea_2077_26666_2.pdfAbstract150KbAdobe PDF
View/Open
Title: Asymptotics and dynamics in first-passage and continuum percolation
Authors: Ahlberg, Daniel
E-mail: ahlberg.daniel@gmail.com
Issue Date: 6-Sep-2011
University: Göteborgs universitet. Naturvetenskapliga fakulteten
Institution: Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Parts of work: Paper I. D. Ahlberg. Asymptotics of first-passage percolation on 1-dimensional graphs.

Paper II. D. Ahlberg. The asymptotic shape, large deviations and dynamical stability in first-passage percolation on cones.

Paper III. D. Ahlberg, E. Broman, S. Griffiths, and R. Morris. Noise sensitivity in continuum percolation.
Date of Defence: 2011-09-30
Disputation: Fredagen den 30 september 2011, kl. 13:15, Sal Pascal, Matematiska Vetenskaper, Chalmers tvärgata 3
Degree: Doctor of Philosophy
Publication type: Doctoral thesis
Keywords: first-passage percolation
noise sensitivity
continuum percolation
Gilbert model
limit theorems
shape theorem
stopped random walks
large deviations
dynamical percolation
Abstract: This thesis combines the study of asymptotic properties of percolation processes with various dynamical concepts. First-passage percolation is a model for the spatial propagation of a fluid on a discrete structure; the Shape Theorem describes its almost sure convergence towards an asymptotic shape, when considered on the square (or cubic) lattice. Asking how percolation structures are affected by simple dynamics or small perturbations presents a dynamical aspect. Such questions were previously s... more
ISBN: 978-91-628-8331-7
URI: http://hdl.handle.net/2077/26666
Appears in Collections:Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet

This item has been viewed 288 times.

 

 

© Göteborgs universitet 2011