GUPEA >
Faculty of Arts / Humanistiska fakulteten >
Department of Philosophy, Linguistics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori >
Doctoral Theses / Doktorsavhandlingar Institutionen för filosofi, lingvistik och vetenskapsteori >

Concept Formation in Mathematics


Please use this identifier to cite or link to this item: http://hdl.handle.net/2077/25299

Files in This Item:

File Description SizeFormat
gupea_2077_25299_1.pdfThesis330KbAdobe PDF
View/Open
gupea_2077_25299_2.pdfAbstract47KbAdobe PDF
View/Open

Print version of this publication can be ordered.
Price:
 189. Costs for postage and packing, and in some cases MOMS (VAT), will be added.

Order this publication

Title: Concept Formation in Mathematics
Authors: Sjögren, Jörgen
E-mail: jorgen.sjogren@his.se
Issue Date: 19-May-2011
University: Göteborgs universitet. Humanistiska fakulteten
University of Gothenburg. Faculty of Arts
Institution: Department of Philosophy, Linguistics and Theory of Science ; Institutionen för filosofi, lingvistik och vetenskapsteori
Parts of work: I. Sjögren, J. (2004). Measuring the Power of Arithmetical Theories. Dept. of Philosophy, University of Göteborg, Philosophical Communications, Red Series number 39, ISSN: 0347-5794.

II. Sjögren, J. (2008). On Explicating the Concept the Power of an Arithmetical Theory. Journal of Philosophical Logic, 37, 183-202
VIEW ARTICLE


III. Sjögren, J. (2010). A Note on the Relation Between Formal and Informal Proof. Acta Analytica, 25, 447-458
VIEW ARTICLE


IV. Sjögren, J. (2011). Indispensability, The Testing of Mathematical Theories, and Provisional Realism. Unpublished manuscript.

V. Bennet, C., & Sjögren, J. (2011). Mathematical Concepts as Unique Explications. Unpublished manuscript.
Date of Defence: 2011-06-08
Disputation: Onsdagen den 8 juni 2011, kl 10.00, Sal T 302, Institutionen för filosofi, lingvistik och vetenskapsteori, Olof Wijksgatan 6.
Degree: Doctor of Philosophy
Publication type: Doctoral thesis
Series/Report no.: Acta Philosophica Gothoburgensia
27
Keywords: Explication, Power of arithmetical theories, Formal Proof, Informal proof, Indispensability, Mathematical Realism
Abstract: This thesis consists of three overlapping parts, where the first one centers around the possibility of defining a measure of the power of arithmetical theories. In this part a partial measure of the power of arithmetical theories is constructed, where ''power'' is understood as capability to prove theorems. It is also shown that other suggestions in the literature for such a measure do not satisfy natural conditions on a measure. In the second part a theory of concept formation in mathematics is... more
ISBN: 978-91-7346-705-6
ISSN: 0283-2380
URI: http://hdl.handle.net/2077/25299
Appears in Collections:Doctoral Theses / Doktorsavhandlingar Institutionen för filosofi, lingvistik och vetenskapsteori
Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Acta Philosophica Gothoburgensia

This item has been viewed 541 times.

 

 

© Göteborgs universitet 2011