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Figure 5: Insulin-Driven PI3K-AKT Signaling in the hepatocyte is mediated by redundant 
PI3Ka and PI3Kb activities and is promoted by Ras. (A) Mice lacking PI3Ka specifically in 
hepatocytes (PI3KaHep) were injected with TGX221, selective inhibitor of PI3Kb, showing 
severe hyperglycemia. On the contrary, in WT mice or PI3KaHep or WT mice injective with 
TGX221, where only one isoform was lacking either PI3Ka or PI3Kb, we could not observe any 
changes in glucose levels in the bloodstream. (B) This observation together with our data on 
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primary hepatocytes where the blockage of Ras reduced Akt phosphorylation and blunted ERK 
signaling, led us to define a new and improved model of insulin signaling in the hepatocyte 
where the insulin-driven Akt signaling is mediated by redundant activities of both PI3Ka and 
PI3Kb, and PI3Ka is Ras dependent. 

 

4.2.2 DISCUSSION PAPER II 
Our findings from PAPER II suggest a paradigm shift from a current model 
of insulin signaling where PI3Ka is the only responsible PI3K isoform to drive 
the insulin pathway [90, 91, 122-125], to a new and improved mechanism 
where insulin-driven PI3K-AKT pathway in hepatocyte is mediated by a 
redundant activity of both PI3Ka and PI3Kb. Furthermore, PI3Ka activity in 
the insulin signaling has been considered to be Ras independent [64, 121, 126-
128]. However, Ras is required to fully activate PI3Ka at the plasma 
membrane. Our results show that the blockage of Ras through an adenovirus 
infection blunted ERK and only at higher concentration of the adenovirus also 
reduced the AKT phosphorylation levels in murine hepatocytes but not in the 
functional downstream pathway. This observation indicates that Ras action on 
AKT phosphorylation is PI3Ka dependent and that the residual PI3Ka and 
PI3Kb activities were sufficient to induce the insulin-induced AKT 
downstream pathway in hepatocytes.  

Our model for insulin signaling is consistent with the results from a recent 
study showing improvement in the conditions of patients with PI3KCA-related 
overgrowth syndrome (PROS) treated with a low dose of the PI3Ka isoform-
specific inhibitor, BYL719, without causing any alteration of glycemia [107]. 
On May 24th 2019, the Food and Drug Administration (FAD) approved 
BYL719 also known as Apelisib in combination with fulvestrant (a selective 
estrogen receptor degrader) to treat postmenopausal women, and men, with 
hormone receptor (HR) positive, or human epidermal growth factor receptor 2 
(HER2)-negative, or PIK3CA-mutated, or advanced, or metastatic breast 
cancer [129]. Indeed, it has been reported a significant prolonged progression-
free survival and a great response in breast cancer patients treated with 
Alpelisib-fulvestrant [130]. 

This recent finding cannot be justified by the current insulin signaling model 
where PI3Ka is the main PI3Ks isoform involved in the insulin pathway. Our 
new model for insulin signaling, that considers the redundant activity of PI3Ka 
and PI3Kb, proposes that BYL719 can cause hyperglycemia only at a high 
dose where it is no longer selective for PI3Ka. In fact, the hyperglycemia 
threshold of BYL719 is at twenty-thirty times higher concentration than the 
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IC50 of BYL719 for PI3Kb. BYL719 has a higher hyperglycemia threshold 
than pan-PI3Ks inhibitors, which can be a possible explanation for the limited 
effects of the pan-inhibitors used as cancer therapies [131]. Indeed, our new 
model for insulin signaling suggests that isoform-specific PI3K inhibitors 
discriminating between PI3Ka and PI3Kb in order to preserve their isoform 
selectivity should be used at doses below their hyperglycemic threshold.  
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4.3 PAPER III 

4.3.1 MAIN RESULTS PAPER III 
To better understand hepatic metabolism both in a physiological state and in 
obesity is essential to define a solid cell culture model to study insulin 
signaling, glucose metabolism and disease progression. Primary hepatocyte 
preparation requires the sacrifice of mice and it is a very delicate technique, 
while immortalized cell lines are easily available. However, the insulin action 
in hepatoma cell lines still remains largely unexplored. Here we compared 
three hepatoma cell lines from three different species: HepG2, human 
hepatoma, Hepa 1-6, murine hepatoma and McARH7777, rat hepatoma to 
primary hepatocytes for insulin signaling, glucose production and protein 
expression profile.  

We have found that the dominant negative Ras mutant, HRAS17N, blunted the 
ERK signal and reduced the AKT phosphorylation in primary hepatocytes but 
not in the hepatoma cell lines. The hepatoma cell lines instead showed a 
constitutive activated RAS-MAPK signaling, and elevated basal levels of AKT 
phosphorylation on Thr 308, both resistant to the presence of the adenovirus 
HRAS17N. Insulin-driven AKT phosphorylation on Ser 473 was also not 
affected by the blockage of Ras. However, the phosphorylation of the insulin 
receptor triggered by insulin was not impaired in all the hepatoma cell lines, 
suggesting that HepG2, Hepa 1-6 and McARH7777 displayed post receptor 
aberrant insulin signaling (Fig. 6). 

The observations of aberrant insulin signaling in different hepatoma cell lines 
led us to further investigate the effects of such aberrant insulin signaling on 
gluconeogenic genes expression and glucose production. Whereas we could 
measure an increase of both glucose 6 phosphatase (G6P) and 
phosphoenolpyruvate carboxykinase (PEPCK) in primary hepatocytes in 
presence of cAMP analog dbcAMP and reduction to basal levels in presence 
of insulin, in all the hepatoma cell lines we could not measure any significant 
changes of gene expression for both G6P and PEPCK. Due to the same origin, 
we directly compared Hepa 1-6 to primary hepatocytes and the Hepa 1-6 cells 
displayed undetectable levels of gene expression of gluconeogenic genes and 
absence of insulin-driven GSK phosphorylation compared to primary 
hepatocytes. Furthermore, HepG2, Hepa 1-6 and McARH7777 displayed 
dramatically reduced glucose production rates compared to primary 
hepatocytes (Fig. 6).  



Investigating the role of Class-1 Phosphoinositide 3 Kinases (PI3Ks) in insulin signaling and 
obesity 

34 

To evaluate if the hepatoma cell lines use intracellular glucose for de novo 
lipogenesis, we measured the lipogenic enzyme fatty acid synthase (FAS) 
protein levels and we observed that all the hepatoma cell lines showed a 
significant reduction of FAS compared to primary hepatocytes. All our 
observations showed not only remarkable differences between the hepatoma 
cell lines and primary hepatocytes, but also some similarities between different 
cell lines derived from different species. Therefore, we analyzed the 
electrophoretic protein profile of extracts from a human donor, from three 
independent primary hepatocyte preparation from mice and three different 
passages in plate of HepG2, Hepa 1-6, McARH7777. Our results showed that 
all murine hepatocyte preparation possess a similar electrophoretic protein 
profile compared to human hepatocytes. On the other hand, all the hepatoma 
cell lines displayed a distinct protein pattern compared to primary hepatocytes 
but similar among them, revealing a convergent aberrant phenotype between 
different species (Fig. 6). 
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Figure 6: Insulin Signaling and Glucose Metabolism in Different Hepatoma Cell Lines Deviate 
from Hepatocyte Physiology Toward a Convergent Aberrant Phenotype. The hepatoma cell 
lines: Hepa 1-6, murine hepatoma, McARH7777, rat hepatoma and Hepg2, human hepatoma, 
were compared to primary hepatocytes to validate them as cell model for metabolic studies. The 
hepatoma cell lines displayed aberrant insulin signaling, aberrant gluconeogenic genes 
expression, marginal glucose production and distinct electrophoretic protein profiles. The 
hepatoma cell lines appeared to have a convergent aberrant phenotype between the different 
species which makes them a cell model for hepatocellular carcinoma (HCC), but not of 
hepatocyte insulin signaling or action. 
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4.3.2 DISCUSSION PAPER III 
Our data showed that the hepatoma cell lines HepG2, Hepa 1-6, McARH7777 
displayed aberrant insulin signaling, altered expression of gluconeogenic 
genes, GSK unresponsiveness to insulin, and reduced glucose production. The 
hepatoma cell lines also displayed low FAS protein levels and dramatically 
different electrophoretic profiles compared to primary hepatocytes but similar 
between them. This aberrant phenotype can be considered as a hallmark of 
hepatocellular carcinoma. Indeed, it was reported that gene expression profile 
of several hepatoma cell lines is similar to primary tumors ones [132]. It was 
also shown that G6P and PEPCK expression levels were dampened in murine 
and human HCC compared to healthy liver [133]. From our research of 100 
random articles on insulin-driven AKT phosphorylation, only seven studies 
reported AKT phosphorylation on Thr 308 and the others showed only AKT 
phosphorylation on Ser 473 or not specified phosphorylation site, suggesting 
that most likely also others before us observed a similar pattern on AKT Thr 
308 in hepatoma cell lines. The aberrant phenotype that these hepatoma cell 
lines revealed might be related to the mutations present in the genome of these 
cell lines. The hepatoma cell line that was characterized by the Broad Institute 
Cancer Cell Line Encyclopedia is HepG2, which presents 386 mutations in 
their genome. Between these mutations, we found a well-known NRAS 
activating mutation Q61L, which could explain the constitutively active ERK 
and the resistance to HRAS17N phosphorylation; S265R missense mutation 
on MAPK4, a kinase that directly phosphorylates AKT on Thr 308; G573S, a 
nonsense mutation on PI3KR2; D69N mutation for FOXO1 which might affect 
gluconeogenic gene expression. 

These results reveal the need of a new and more careful interpretation of the 
thousands of metabolic studies published on the hepatoma cell lines 
considering the new emerged evidence. In addition, it is important to point out 
that all the cell lines used in this study derive from different clones from 
different species. This information leads us to another observation regarding 
our findings that all of the hepatoma cell lines derangements appear to be 
conserved between different species. Therefore, it is possible to conclude that 
these cell lines could be considered as a valuable tool to study the 
derangements in insulin signaling and the metabolic transformation occurring 
in HCC and especially at proteomic level.  
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5 CONCLUSIONS AND FUTURE 
PRESPECTIVES 

This thesis aimed at improving our understanding of the role of the different 
PI3Ks isoforms in obesity and insulin signaling.  

In PAPER I, we examined the role of PI3Kg in obesity and metabolic 
inflammation. We have found that most of the beneficial effects of PI3Kg 
ablation in obesity are due to its role on adiposity. However, we have also 
found that the PI3Kg activity promotes adipose tissue inflammation and insulin 
resistance during obesity. These results clarify the role of PI3Kg in obesity and 
insulin resistance and challenge the dogma that in PI3Kg is a major inhibitor 
of classical macrophages activation. 

In PAPER II, we investigated the role PI3Ks isoforms in insulin signaling. 
Our results lead to a new improved model for insulin signaling, where the 
insulin pathway is driven by both PI3Ka and PI3Kb activities and for PI3Ka 
in Ras dependent manner. Our data suggest that selective-PI3K isoform 
inhibitors, which can discriminate between PI3Ka and PI3Kb, might 
dissociate the beneficial effect of PI3K inhibition on cancer therapy from the 
deleterious effects on glucose homeostasis.  

In PAPER III, we described that compared to primary hepatocytes, three 
commonly used hepatoma cell lines showed aberrant insulin signaling, 
aberrant gluconeogenic gene expression, marginal glucose production and 
distinct protein expression profile. We conclude that insulin signaling and 
metabolism in these hepatoma cell lines is representative of HCC but not of 
the hepatocyte.  

Altogether the data in this thesis indicate that PI3K isoform-selective 
inhibitors, discriminating between PI3Ka and PI3Kb, could display optimal 
therapeutic index by minimizing the effects of PI3K inhibition on insulin 
action leading to hyperglycemia.  
 
In the future, it would be important to identify which PI3Ks isoforms are 
involved in adiposity to exploit PI3K inhibition as anti-obesogenic therapy, 
and in the progression of specific tumors to achieve optimal therapeutic index 
in cancer therapies targeting selected PI3Ks isoforms. Finally, the use of PI3K 
inhibitors in the treatment of cancer in the obese might be promising but it 
requires a better understanding on the role of specific PI3Ks isoforms in 
obesity-mediated tumor promotion.  
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