Att årslagra solvärme vid låg temperatur

Förstudie av småltvärmelager av vatten och is

Ernst Morawetz
ATT ARSLAGRA SOLVÄRME VID LAG TEMPERATUR
Förstudie av smältvärmelager av vatten och is
Ernst Morawetz

Denna rapport hänför sig till forskningsanslag 790516-1 från Statens råd för byggnadsforskning till BEMO Projektservice, Staffanstorp.
I Byggforskningsrådets rapportserie redovisar forskaren sitt anslagsprojekt. Publiceringen innebär inte att rådet tagit ställning till åsikter, slutsatser och resultat.
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Förteckning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INLEDNING</td>
</tr>
<tr>
<td>2.</td>
<td>HYBRIDVÄRMELAGRET</td>
</tr>
<tr>
<td>2.1</td>
<td>Principiellt lagerutförande</td>
</tr>
<tr>
<td>2.2</td>
<td>Naturliga lager</td>
</tr>
<tr>
<td>2.3</td>
<td>Cirkulärt marklager mindre lämplig</td>
</tr>
<tr>
<td>2.4</td>
<td>Aktiva solväxtrade överflödige</td>
</tr>
<tr>
<td>2.5</td>
<td>Toppisolering onödig</td>
</tr>
<tr>
<td>2.6</td>
<td>Lagergeometrin</td>
</tr>
<tr>
<td>3.</td>
<td>SMÅLTVÄRMEVÄXLARE</td>
</tr>
<tr>
<td>3.1</td>
<td>Allmänt</td>
</tr>
<tr>
<td>3.2</td>
<td>Tekniska problem</td>
</tr>
<tr>
<td>3.3</td>
<td>Problemlösning</td>
</tr>
<tr>
<td>3.4</td>
<td>Idétestning</td>
</tr>
<tr>
<td>3.5</td>
<td>Smältvärmевäxclarens utformning</td>
</tr>
<tr>
<td>3.6</td>
<td>Deformerings och islossing</td>
</tr>
<tr>
<td>3.7</td>
<td>Materialutmattnign</td>
</tr>
<tr>
<td>3.8</td>
<td>Tryckförluster</td>
</tr>
<tr>
<td>3.9</td>
<td>Bottenförankring</td>
</tr>
<tr>
<td>4.</td>
<td>SYSTEMKOPPLING</td>
</tr>
<tr>
<td>5.</td>
<td>PARAMETERSTUDIE</td>
</tr>
<tr>
<td>5.1</td>
<td>Arssimulering</td>
</tr>
<tr>
<td>5.2</td>
<td>Standardsystem med elvärmepump</td>
</tr>
<tr>
<td>5.3</td>
<td>Värmefaktorns storleksberoende</td>
</tr>
<tr>
<td>5.4</td>
<td>Standardsystem med absorptions- och dieselvärmepump</td>
</tr>
<tr>
<td>5.5</td>
<td>Inverkan av jordvärmme</td>
</tr>
</tbody>
</table>
5.6 Inverkan av modulplacering 34
5.7 Inverkan av skuggning 34
5.8 Inverkan av belastning 35
5.9 Inverkan av isflisssiktets vattenhalt 35

6. LAGRINGSEKONOMI ... 37
6.1 EVP-hybridsystem ... 37
6.1.1 Investeringsbehov 37
6.1.2 Specifika investeringskostnader 40
6.1.3 Energikostnader ... 42
6.2 Energikostnader för AVP- och DVP-system ... 43

BILAGA 1. Dimensionering av småtvärmeväxlar 47
BILAGA 2. Värmeflöden mellan lager och omgivande mark 63
BILAGA 3. Värme- och köldfaktorer 73

FIGURBILAGA .. 77

LITTERATUR .. 93
SAMMANFATTNING

Denna förstudie redogör för dels praktiska, dels teoretiska undersökningar som avser en typ av årsvärmelager som här betecknas hybridvärmelager och består av ett eller flera vattenmagasin och underliggande mark.

Hybridvärmelagret är ett smältvärmelager i vilket vatten frysas till is med hjälp av en central värmepump och en ny typ av smältvärmeväxlare. Dessa placeras på botten av ett prismatiskt utformat groplager. Eftersom temperaturen i lagret inte överstiger ca 20-22°C under en års cykel och håller sig under isbildningstiden vid frys punkten behövs ingen värmeisolering. Lagret är ett så kallat lågtemperaturlager.

Urladdningsperioden är den period under vilken ca 75% vatten frysas till is. I Stockholmstrakten - som använts som referensområde vid simuleringar - sträcker sig denna isperiod från december till maj/juni. Under ett år uttages ca 73 kWh/m^2 värme. Till ca 13% utgörs denna värmemängd av jordvärme från omgivande mark. Resterande värmemängd utgörs till ca 67% av vattnets frys värme och till ca 20% av vattnets sensibla värmen innehåll. Under uppladdningstiden smälter isen och vattnet värms till ca 20°C. Issmältnings- och vattenuppvärmning åstadkommes av direkt och indirekt solenergi. Uppladdningsperioden varar från april till november. Under våren pågår samtidigt urladdning genom isbildning ovanför lagrets botten och uppladdning vid lagrets yta genom ismältning. Direkt solenergi tillförs lagret genom passiv absorption av strålningenergi. Solenergiabsorbatorn utgörs härvid av hybridvärmelagrets kontaktyta med atmosfären. Kontaktytan består under isperioden av is, resp ytsmältvatten och underliggande is, men under sommar och höst av vattenytan. Indirekt solvärme tillförs genom värmeväxling från de båda naturliga solvärme lagren - luft och mark - som omger lagret.

Under uppladdningstiden "förlorar" värme till den utkylda marken. Denna värme förlust är i själva verket en del av laddningsprocessen eftersom den i marken lagrade värmemängden återvinns vid urladdning under is perioden. Den utkylda markens återuppvärmning säkerställs under sommaren genom vindpåverkad konvektion (s k entrainment) i det icke överväckta lagret. I motsats till andra års lagringstyper är därför temperaturskiktning här oönskad.
När vattentemperaturen i lagret är högre än luftens daggpunkt så är värme förluster genom vatten avdunstning ofrånkomliga i ett icke-övertäckt lager. Å andra sidan görs värmevinster genom kondensation av fukt och genom värmeväxling med varm luft då hybridlagrets yttemperaturen är lägre än daggpunkten, t ex under smältperioden.

Den passiva solvärmeabsorbatorn (kontaktytan med atmosfären) och jordvärmeabsorbatorn (kontaktytan med marken) tillför hybridlagret per år ca 220 kWh/m², resp 30 kWh/m² utnyttjningsbar solenergi.

Hybridvärmevärmesystem skiljer sig från andra årsvärmelager genom att den totala lagringsvolyomen, som är nödvändig för värme försörjning av ett givet antal bostäder, delas upp på ett flertal identiska hybridlagermoduler. Varje modul rymmer ca 1900 m³ vatten. Solabsorbatorytan är ca 575 m² och jordvärmeabsorbatorns yta är ca 450 m². Antalet anslutna standardbostäder (med förlustfaktor 100 W/°C) är 15 stycken/modul.

Moduliseringen ger bl a följande fördelar:
- lättare anpassning till omgivningens topografi och miljö
- rationellt byggnings och färdigställande av enskilda moduler
- enkelt att i framtiden komplettera med ytterligare moduler
- serie tillverkning av formanpassade tätningsmembran
- placering av färdiga membran underlättas av ringa storlek och vikt
- vid eventuell skada drabbar sannolikt endast en enda modul.

Lagringsekonomi är jämförbar med ekonomin för de i Sverige utvecklade lågtemperatur årslagringstyper för vilka de lägsta kända specifika investeringskostnaderna företeres. Dessa årslager är kända under beteckningen Sunclay, resp Sunstore. För dessa uppges följande specifika kostnader för helas sysystemet: ca 2,2 resp 1,8 - 3,0 kr/kWh/år. Motsvarande kostnader för hybridvärmevärmesystem är:
- vid monovalent elvärmepumpsdrift 4,2 till 1,8 kr/(MWh/år) för 15 till 600 anslutna standardbostäder
- vid bivalent elvärmepumpsdrift 3,8 till 1,7 kr/(KWh/år) för 15 till 600 anslutna standardbostäder
- vid bivalent drift med dieseltvärmepump 2,5 kr/(MWh/år) för 600 anslutna standardbostäder
- vid bivalent drift med absorptionsvärmepump 2,6 kr/(MWh/år) för 600 anslutna standardbostäder.
1. INLEDNING

De förstnämnda typerna kräver förhållandevis dyra medel- eller lågtemperatur solfängare och stora uppställningsarealer om inte lagerlocket eller byggnadstak kan användas. Solfängare för lågtemperatur lagrar kan vara av enklare konstruktion och är därför billigare. Flertalet av dessa lager karakteriseras också av att den specifika lagervolymen (volym/bostad) är stor därför att den aktiva temperaturdifferensen vid urladdning är liten. Flera av dessa projekt synes ha det särdraget gemensamt att den specifika investeringskostnaden (kostnad/bostad) är mycket hög. Den tycks ligga i intervallet 60 000 - 120 000 SEK.

Ett sätt att minska systemkostnaderna är att minska kravet på hög täckningsgrad, dvs andelen solenergibidrag, och komplettera anläggningen med t ex en konventionell panncentral så som man för övrigt gör i Ingelstad-systemet. Av kostnads- och klimatsskäl förefaller det riktigt att minska förväntningarna på hög täckningsgrad vid solvärme lagring från önskvärda 100 % till realistiska 30-60 % solenergibidrag. En värme pump är här till fördel, isynnerhet om den kan drivas med annan drivenergi än el, som t ex dieselvärme pump eller absorptionsvärmepump vilka eventuellt kan drivas med inhemska bränslen.

Bidragande orsaker till stora specifika lagringsvolymer, solfängarsare och systemkostnader har belysts tidigare. (Morawetz, 1979a, 1979b). Sam-
manfattningvis kan man urskilja följande orsaker som drabbar olika gängse idéer för säsonglagring i mer eller mindre stor utsträckning:

- Orealistiskt höga krav på täckningsgrad med följd att den specifika lagringsvolymen blir mycket stor (>200 m³/lägenhetsenhet) och därmed också solfängararealen (ca 50 m²/lägenhetsenhet).
- För höga krav på hög temperaturnivå i lagret med följd att, för att reducera värmeförluster, lagret måste dimensioneras för ett mycket stort antal lägenhetsenheter (för att optimera lagrets yt/volymförhållande) samt att lagret måste extremt väl värmeisoleras. Dessutom krävs här dyrbara högtemperatursolfängare.
- Förslag avs medel- och lågtemperaturlager med beräknad täckningsgrad > 50 % kännetecknas av tekniska suboptimeringar av olika slag, t ex suboptimeras komponenternas prestanda vilket kan leda till felaktig komponentval, i synnerhet map solfängare i värmepumpsystem.

Så länge säsonglagringstekniken inte är tillräckligt väl utarbetad är det emellertid svårt att helt frigöra sig från suboptimeringar.

Som ett alternativ till de ovannämnda lagertyperna undersöks i denna förstudie ett vatten-is-jord hybrid(värme)lager för årslagring av solvärme vid låg temperatur (0-20°C).

En mera begränsad undersökning avs ett naturligt hybridvärmelager har tidigare utförts vid högskolan i Luleå (Häggkvist, 1978).
2. HYBRIDVÄRMELAGRET

2.1 Principiellt lagerutförande

Med begreppet "hybrid(värme)lager" avses värmelager i vilka en kombination av två eller flera värmeelagringmaterial används eller samma material i två aggregattillstånd förekommer:

Vatten (material 1), is (material 2) och under behållaren (grop eller dike) liggande mark (material 3).

Ett hybridlager består av ett eller flera prismatiska gropar eller intill varandra liggande parallella diken som tätats med gummiduk och separater från varandra genom mellanliggande jordvallar som bildas vid grävningen. Groparnas begränsningsytor utmed jordvallarna och underliggande mark är inte värmeisolerade. På bottnen förankras småtvärmeväxlar via vilka vattnets latentvärmé utvinnes när lagrets sensibla värmémätehåll har tömts. Härvid bildas is, som genom en patentsökt metod fås att släppa från värmeväxlarens yta. På grund av isens lägre densitet flyter den upp och bildar ett växande skikt under det vid naturligt isläggning bildade isskiktet i vattenytan. Isen bildas alltså på ort och ställe (in situ) och borttranport behöver inte tillgripas. För att inte värmeväxlarna slutligen skall frysas in begränsas isbildningen till ca 75 % av vattenvolymen. Metoden för isläppning är utprovad i mindre skala och undersöks vidare med anslag från STU i en separat förstudie för funktionsförbättring, uppskalning och tillverkning.

På artificiellt och naturligt sätt bildad is småtes under våren och försommaren genom tillförsel av direkt och indirekt solvärme. Sålange som is finns i lagret är lagertemperaturen lägre än medeltemperaturen i omgivande mark. I marken lagrad solenergi kommer därför att tillföras lagret som en avg värmestrom. Istället för en värmeförlust görs en värmevinnet. Motsvarande förhållanden får man i andra typer av oisolerade lågtemperatur årsvärmelager (Hansen, 1979).

Under sommaren värmst vattnet upp till omkring 20°C. Under denna uppladdningstid tillförs även den under- och kringliggande utkylda marken värme (fiktiv värmeförlust). Efter några årsucleler minskar värmevinsten

Uppstyckningen av en stor grop i ett flertal mindre gropar eller diken i form av enhetliga moduler har vissa fördelar:

- vid behov kan lagrets kapacitet lätt ökas genom att bygga fler gropar
- en mera rationell arbetsföljd kan tillämpas: groparna kan färdigställas i tur och ordning medan ett nytt grop grävs.
- det är mindre arbetskrävande att hantera och utplacera ett flertal mindre vattentätande gummidukar.
- den totalt anspråktagna arean för magasinet kan ges en mera rationell och estetisk utformning.
- om någon skada inträffar drabbas sannolikt endast en grop, t ex pga läckage
- installations- och underhållsarbeten är lättare att utföra i en liten grop än i en stor grop.

Att tillverka, hantera och utplacera en stor tätningsduk har visat sig vara en dyrbar och besvärlig procedur (BFR-seminarium, 1979).

Hybridlagret kombineras med en central värmepump för att höja temperaturen till lämplig nivå för uppvärmning eller förvärmning av returvatten (max 50-60°C).

Denna förstudie förmedlade på ett mycket tidigt stadium insikten att vissa av de ursprungliga idéerna (Morawetz, BFR-ansökan 1979c) fick revideras till förmån för en enklare och billigare systemlösning. En vidare bearbetning av dessa idéer slopades därför.
2.2 Naturliga hybridlager

Det är värt att notera att hybridlagret har en naturlig släkting i insjöar med större djup än ca 2 m. Den mest väsentliga skillnaden mellan dessa är graden av tillåtbart ekologiskt ingrepp när upptill 75 % av vattnet artificiellt fryses till is.

2.3 Cirkulära marklager mindre lämpligt

I en samtidigt bedriven STU-förstudie av småtvärmeväxlantern framkom att den mest rationella och tätaste placeringen av dessa erhålls på en rektangulärt utformad botten. Dessutom behöver en i cirkulära markgropar uppstyckad lagervolym betydligt större markarea. Därför valdes att utforma hybridlagermodulen som en prismatic grop med kvadratisk botten (groplager) eller eventuellt rektangulär botten (dikeslager).

2.4 Aktiva solväxlare överflödiga

Den ursprungliga uppfattningen var att man behöver ca 20-30 m² enkla solväxlare/bostad dels för att smälta isen, dels för att höja vattentemperaturen till ca 25-30°C. I själva verket visade redan de första värmebalansberäkningarna för hybridlagret att den energimängd som kan tillföras lagret genom naturlig växelverkan mellan lagrets isläcke och omgivande atmosfär kan göras tillräckligt stor för issmältningen genom att välja en tillräckligt stor kontaktyta utan att behöva väsentligen ändra gropmodulens geometri och dimensioner.

Den maximala vattentemperaturen som kan uppnås under sommaren utan aktiva solväxlare är, som beräkningar visar ca 20°C. Det framkom att en marginell ökning till 25-30°C medelst solväxlare är praktiskt taget betydelselös för ett oisolerat hybridlager, eftersom det extra värmetillskottet under hösten till större delen mycket snabbt förloras till omgivningen.
2.5 Toppisolering onödig

I och med att aktiva solväxliare kan slopas blir en toppisolering samt perifär markisolering överflödig, ja, rent av meningslös. Lika meninglöst blir det att försöka reducera evaporativa och konvektiva energiförluster i vattentan genom att täcka den med en plastfolie. Under vintern när folien är helt inbakad i is och snö eller ligger fuktig i ytsmältvatten, är den helt verkningslös. På sommaren får en kraftigare uppvärmning av ytvattenskiktet, men detta energitillskott kan man - som ovan sagts - knappast ackumulera. Folien är snarare av nackdel: den tillåter inte s.k. entrainment (Norin, m fl, 1980), dvs vindframkallad konvektion som leder till vattenblandning och därigenom till nödvändig värmetillförsel till den underliggande utkyllda marken.

2.6 Lagergeometrin

Hybridlagermodulen utformas som en kvadratisk eller rektangulär prismaiskt grop med ett djup omkring 4 m och sluttningsvinkel 35-45°. I praktiken bestäms sluttningsvinkeln närmast av skaktnassornas naturliga rasvinkel.

Djupet, ca 4 m, bestäms av följande krav
- kvoten ytvattenarea/vattenvolym bör vara ≥ 0,3 för att säkerställa is/vattentans passiva solväxliarfunktion.
- för bottenförankrade smältvärmeväxliare måste h = 1 m höjd reserveras
- för att minimera specifik lagringsvolym (m³ vatten/bostad) samt lanspräktigen markarea/modul bör djupet inte väljas <3 m.

Den modul som här används för simuleringssberäkningar har följande standarddimensioner enligt figur 2.1:

För denna standardiserade form beräknas

- luft-kontaktyta \(Y_L = B^2 = 576 \, \text{m}^2 \)
- jord-kontaktyta \(Y_j = 2 \times \sqrt{2} \times H \times (B + (B - 2 \times H)) + (B - 2 \times H)^2 = 452,5 \, \text{m}^2 \)
- modulvolym \(V_L = B \times H \times (B - H) = 1920 \, \text{m}^3 \)
- max volymprocent kross- och kompaktis

\[
p_{\text{is}} = 100 \times \frac{(H - h) \times (B - (H - h))}{H \times (B - H)} = 79 \, \%\]
Två eller flera standardmoduler kan placeras bredvid varandra. Vid beräkningarna har avståndet dem emellan valts till 2 m, figur 2.2. I verkligheten bestäms avståndet av krav för framkomlighet av grävmaskiner, topografin, markbeskaffenheten m m.
3. SMÄLTVÄRMEVÄXLAREN

3.1 Allmänt

En värmeväxlare från vilkens yta bildad is periodiskt kan avlägsnas på ett enkelt sätt skulle göra det möjligt att placera den på botten av en artificiell värmelagringstank, en insjö eller en havsvik, möjlig i en å, för att där, på ort och ställe (in situ), under värmeupptagning bildas is som efter att den lossnats flyter upp till vattenytan på grund av sin lägre densitet. En betydande fördel med en dylik smältvärmeväxlare är att den bildade isen inte behöver transporteras bort, såsom är fallet vid användning av en konventionell ismaskin. (Morawetz, 1979:d, Green, 1954). Används en sjö som värmelager så är det ytterligare en fördel att is som bildats inte fixeras till bottensedimentet där den kan påverka sjöns ekologi. Kan man följa naturens sätt att förmå is som bildas vid värmeuttagning att flyta upp mot ytan, så hålls vattnet ovanför sedimentet isfritt, på samma sätt som när en sjö fryser igen på vintertid.

3.2 Tekniska problem

I en annan metod (Fischer, 1979), som har provats i USA placeras plana förängare vertikalt över vattenytan av ett artificiellt lager. På förängarna sprayas vatten som fryser till is. Bildad is avlägsnas genom hetgasavfrostning varvid iskakorna faller ned i lagringstanken i vilken finns rörslingor för smältning sommartid. Här kan man tala om att is bildas in situ, men man metoden är begränsad till antingen mycket små lagringsvolymer eller till rörligt vatten, t ex en å, så att isen kan bortföras på ett enkelt sätt.

Liknande och andra metoder omnämnades i facklitteraturen (Jönsson, 1980).

3.3 Problemlösning

Is är ett ganska sprött material som har relativt god vidhäftningsförmåga på metalliska ytor. Vidhäftningen på t ex icke-metalliska material, såsom gummipolymerer, är däremot sämre, men utan yttre påverkan ändå för god. En näraliggande tanke är då att utnyttja gummits elastiska egenskaper, dvs deformriberbarhet, för att avlägsna det isskikt som bildas på dess yttre yta. Detta kan ske genom att kontinuerligt eller diskontinuerligt, dvs periodiskt, expandera och/eller kontrahera värmeväxlaror av gummi material så att den sprödare isen som utkristalliseras på rörens utsida spricker, lossnar och sedan flyter uppåt mot vattenytan. Den kompromiss man är tvingad att godta ligger i gummipolymerers sämre värmemedningsegenskaper.

3.4 Idétestning

I en enkel anordning i laboratoriemässig skala testades idén att använda en flexibel värmeväxlar för uttagning av latentvärme och efterföljande islossning. En 20-liters cylindrisk glasbehållare fylldes med en vattenisblandning och en i ena änden sluten gummislang (längd 30 cm, diameter 42/40 mm) placerades vertikalt i blandningen. Slangen fylldes med utspädd glykol (40% glykol, 60% vatten, fryspunkt ca -20°C). Medelat en pump utesattes den i förväg nedkylda glykolblandningen (temperaturer mellan -5°C och -15°C) för överturk resp undertryck så snart ett ca 1-2 mm tjockt isskikt bildats.
Det visade sig att det var betydligt lättare att lossna isen då slangen genom undertryck, dvs utpumpning av kylvätska, tillplattades än om övertryck tillämpades varvid slangen expanderade något. Slangytans deformering som förorekar islossningen är större vid slangens kontraktion än vid dess expansion. Vid slangens expansion vid måttligt övertryck uppnår man en relativt begränsad radieal en-dimensionell rörelse utåt, vid undertryck däremot en kraftig två-dimensionell rörelse inåt, varvid slangen mer eller mindre tillplattas till ellipsoid tvärsnittsyta.

Med anslag från STU har motsvarande försök upprepats i ett större kontinuerligt testsystem med ca 9 m gummislang (35/31) som i stort sett bekräftade islossningen. Vid dessa försök framkom också att mekanism för krossning av det bildade isröret måste förbättras. Här krävs ytterligare utveckling.

3.5 Smältvärmeväxlarens utformning

En flexibel smältvärmeväxlar som skall placeras på bottnen av ett artificiellt eller naturligt vattenmagasin kan utformas på många olika sätt. Men eftersom en grundförutsättning för god funktion är att lossnad is måste (utan att stöta på hinder som utgörs av växlarens konstruktion) fritt kunna flyta uppåt mot vattenytan, så har till en början endast plana radiatorliknande samt slangformade smältvärmeväxlar betraktats. Plana växlar har fördelen att vid vertikal uppställning kunna placeras ganska tätt ihop, dvs värmeväxlararealen är stor i förhållande till ianspråktagen uppställningsarea i hybridlagret eller bottensrealen i en insjö medan den är mindre för en slang. nackdelen är att det behövs många anslutningar till fram- och returledning, vilket inte är nödvändigt för en slang.

Vid närmare granskning har framkommit att den bästa kompromissen synes vara att utforma smältvärmeväxlar som en slang som lindas till en cylindrisk spiral. Dylika spiraler kan modultillverkas på fabrik med sådana dimensioner att modulen vikt- och volymmässigt lätt kan hanteras, transporteras och utplaceras på bottnen av ett vattenmagasin. Vid förläggnings placeras spiralen horisontalt på bottnen, så att cylinderaxeln löper parallellt med underlaget och att cylinderslingorna står vertikalt upprätta på ett visst avstånd från varandra, fig 3.1.
En småltvärmeväxlare i form av en spiral-modul kan t ex ha följande dimensioner:

Total slanglängd 200 m, diameter 30/36 mm. Spiraldiameter 1,0 m vilket ger 64 slingor med en sammanlagd max höjd ca 64 x 0,036 = 2,3 m och tomvikt vid densitet 1100 kg/m³ ca 68 kg. Värmeöverföringsyta ca 23 m².

Anslutningar: 2 st.

Dimensioner efter utläggning på sjöbotten:

Höjd av liggande dubbelspiral = yttterspiralens diameter, ca 1,0 m. Spiralens horisontala längd vid utsträckning i förhållande 1:3,5 blir ca 8 m. Ianspråktagen bottenarea ca 8 m², vilket motsvarar ett specifikt bottenareabehov av ca 0,4 m²/m² växlareyta. Markareabehovet blir ca 2,5 gånger större, ca 1,0 m²/m² växlaryta. Som jämförelse kan anföras markareabehovet för en typisk jordvärmeanläggning: 8-10 m²/m² växlareyta.

3.6 Defomerning och islossning

Slangens defomerning för att igångsätta och genomföra islossning från slangytan samt krossning av det bildade isröret åstadkommes genom att en ventil i slangens (eller i samlingsröret för flera paralell-kopplade slänger) ena ända stängs och kölbäraren medelst cirkulationspumpen i slangens andra ände pumpas ur slangen och samlas i ett expansionskärl. Jämfört med en sedimentförlagd slang blir deformationsrörelsen i de upprättstående dubbelspiralingarna tre-dimensionell vilket i och för sig främjar islossningen och iskrossningen samt isens bortflytande mot vattenytan: utöver den ovan beskrivna två-dimensionella rörelsen vid slangens kontraktion tillkommer rörelsen av de tömda och specifikt tyngre gummislingorna mot botten under tömningsperioden som bedöms kunna vara mellan 60 och 180 sekunder. Slingorna lägger sig kortfristigt så att säga "på sidan".

Det är emellertid viktigare att slingorna står upprätta under frysperioden (perioden under vilken latentvärme uttages och is bildas). Detta förutsättar att småltvärmeväxlarens skrymdensitet är något lägre än vattnets densitet eller att spiralslingorna genom materialval, armering och vulkanisering har erhållit tillräcklig egenstyvhet.
Uppflytna isbiter bildar en vatten-isblandning i vattenytan som genom naturlig frysning uppifrån delsvis fryser till ett kompakt isskikt. Isbitarna har en flisaktig form. Vatten- isflisblandningen inklusive det kompakta isskiktet betecknas i fortsättningen "isflisskikt".

Lägre skrymdensitet kan erhållas genom att välja en köldbärare med låg densitet (t.ex. etanol/vattenblandning) eller genom att utrusta spiralen med lämpligt utformade flytkroppar (t.ex. en luftfyld slang som löper parallellt med förankringskäteningen, figur 3.1).

Slangtömningens periodicitet, dvs. frysperiodens längd ("frystiden"), bestäms av den maximalt tillåtna istjockleken. Beräkningar visar att det rör sig om 1 till 2 timmar vid 2-3 mm istjocklek. Under en eldningsperiod får man räkna med 2000 till 4000 tömnings.

Av ekologiska och värometekniska skäl får isbildningen inte drivas så långt att den leder till fullständig igenfrysning av vattenmagasinet. Atminstone så mycket vatten som motsvarar dubbelisismens ytterdiameter räknat som höjd från bottnen bör inte frysas till is.

Den värometekniska dimensioneringen av småltvärmeverkaren behandlas i bil 1.

3.7 Materialutmattning

Under en antagen livslängd av 20 år och vid 6 månaders isproduktion per år utsätts småltvärmeverkaren för ca 40 000 kontraktioner vid frystiden 2 timmar.

Enligt en preliminär bedömning av gummiproducenten Trelleborgs AB behöver man inte förvänta sig en utmattnings för gummislanger av det här ifrågavarande materialet vid den i hybridlagret rådande låga temperaturen.

3.8 Tryckförluster

Att avlägsna is från värmeverkarytan kostar energi i någon form. Vid småltvärmeverkarens drift upprader två olika typer av tryckfall som
inverkar på slangens och cirkulationspumpens dimensionering, varav den ena typen är hänförlig till flödesfrictionen och den andra till islossningen.

Under frysperioden då latentvärme uttages uppträder friktionstryckföruster som beräknas på vedertaget sätt. Beroende av val av slangdimension, slangytans råhet mm och val av köldbärare kan man inom det aktuella temperatur- och massflödesområdet räkna med ett tryckfallsintervall mellan 40 och 300 Pa/m slang.

Den andra typen av tryckförlust uppträder endast vid start av ny frysperiod efter islossning. Vid slutet av föregående frysperiod åstadkoms islossning från slangytan utan "energikostnad" genom att med hjälp av vattenmassans hydrostatiska tryck tömma köldbäraren ur den flexibla slang. Därvid kollapsar slangen och tillplattas mer eller mindre. Denna rörelse leder till att isen spräcks och lossnar. Hur långt man behöver driva slangtömningen för att få isen att lossna fullständigt och samtidigt krossa det bildade isröret måste bestämmas experimentellt. Tömningsgraden har emellertid dimensionerande betydelse eftersom slangtömningen tar en viss tid.

Vid helt tömd slang måste pumpen vid start av nästa frysperiod övervinna summan av vattnets hela hydrostatiska tryck (som är direkt proportionellt mot värmeverktygets förläggningssjö) och ökade friktionsförluster i en tillplattad slang med minskad flödesarea.

De praktiska försök med prototyper som bedrivits hitintills har inte varit inriktade på att ge information om tömningsgraden för fullständig islossning och iskrossning. Köldbärarpumpen måste dimensioneras med hänsyn tagen till vilket tryck som måste övervinnas efter slangtömningen.

Det är energin för denna andra typ av tryckfall man måste uppbringa för att kunna använda den här beskrivna metoden för att upprepade gånger avlägna is från en flexibel värmeverktyg.

3.9 **Bottenförankring**

For att garantera en klanderfri funktion av småtvärmeverktygen vid islossning efter frysperiodens slut krävs att spiralslingorna står upprätt.
Samtidigt krävs att slangspiralen är säkert förankrad till värmelagerbott-
nen så att den inte flyter upp mot ytan vid oavbruten och okontrollerad
isbildning varigenom dess skrymdensitet blir mindre än vattnets densitet.
Detta kan uppnås med hjälp av till exempel a kätting med lämplig längd och
sydd vars ändar fästas i förankringstyper av till exempel betong (fig 3.1).

Det förra kravet kan infrias på följande sätt:

a. Köldäraren väljs så att den fyllda slangens skrymdensitet vid frys-
temperaturen är lika med eller något mindre än vattnets densitet. Vid
isbildning under frysperioden minskar skrymdensiteten ytterligare.
Vid högre vattentemperatur behöver spiralslingorna inte nödvändigt-
vis stå upprätta.

b. Om ett dylikt val ej kan göras av tekniska eller andra skäl så bör
slangcylindern förses med en lämplig flytkropp som inte utgör hinder
vid islossning, t ex en luftfyld sluten och utsträckt slang för varje
spiral som lägges parallell med spiralaxeln och förankringskättingen.

Det kan emellertid visa sig att den mest optimala lösningen består i att
både en bottenförankring och en flytkropp bör användas, såsom indikeras i
fig. 3.1.

För att en småtvärmeverväxlare med längd L, ytterdiameder Dy och tillåten
medelstjocklek s samt utrustad med förankring med massa M och flytkropp
med vattenförträngningsvolym V inte skall okontrollerat flyta upp, så krävs
att dens krymdensitet d har ett dimensionerande börvärde <d_2, dvs
>1000 kg/m^3. Följande approximation kan användas för dimensionering av
förankringsmassa och/eller flytkroppsvolym (här har flytkroppens massa
och förankringens volym försummat):

\[
d = \frac{4 \times M + \pi \times L \times ((d_3 - d_4) \times \frac{D_1}{2} + d_4 \times \frac{D_2}{2} + 4 \times s \times d_1 \times (D_y + s) \times 4 \times V + \pi \times L \times (d_y + 2 \times s)^2}{d_2} (krav)
\]

Här är d_1, d_2, d_3 och d_4 densiteten för resp is, vatten, köldärare och
slangmaterial. Vid beräkning av flytkroppsvolymen sätts M = 0 och s = 0.
Då förankringsmassan skall beräknas måste en säkerhetsmarginal inkludes
ras vilket lämpligen görs genom att ge $k = s_t$ ett maximalt tillåtet värde. Om en flytkropp inte skall användas (sättet a. ovan) så beräknas nödvändig densitet för köldbäraren genom att sätta $d = 1000 \text{ kg/m}^3$, $V = 0$, $M = 0$ och eventuellt $s = 0$. Därefter beräknas åter M med $V = 0$. Hur den beräknade föranklingsmassan fördelas på kätting och förankringstygder är en teknisk-ekonomisk optimeringsfråga.

Det är emellertid inte uteslutet att både kätting och flytkropp kan ersättas av syntetiskt tågvirke som fästes till förankringstygden, resp bojlinorna.
4. SYSTEMKOPPLING

Med hjälp av fyra ventiler V1-V4 ombesörjs systemets funktion för värmeuttagning och slangtömning/islossning.

Om hybridvärmelagret är stort och består av många lagermoduler så delas hela lagersystemet upp i flera delsystem enligt ovan som parallellkopplas och ansluts till den centrala värmepumpens förångare. Tömningsperioderna
lägges i sekvens. Värme pumpen behöver då inte stannas när ett delsystem töms.
5. PARAMETERSTUDIE

5.1 Årssimulering

För att få grepp om olika fysikaliska storheters inverkan på dimensioneringen av ett hybridlager har simuleringsberäkningar gjorts för ett valt standardlager med geometriska dimensioner enligt ovan. Som kritisk parameter har valts isflisskiktets totala djup räknat från den atmosfäriska begränsningsytan. Vid lagerdjup 4 m och småtvärmväxlarhöjd 1 m blir maximalt tillåtet djup ca 3 m. Om detta djup vid energiuttagningen överskrids så är hybridmodulen underdimensionerad, resp överbelastad.

De klimatdata som använts gäller Stockholmstrakten 1971. För dylika beräkningar har detta år av SMHI rekommenderats som standardår för vilket alla nödvändiga klimatdata finns tillgängliga i form av ett databand med data timme för timme samt publicerade månadsöversikter över väderlek och vattendrag med data dag för dag (SMHI, 1972). Från databandet som är utformat för användning i större datorer har endast hämtats uppgifter om dygnets medeldaggstemperatur, dygnets medelvindhastighet och diffusstrålningsenergi på horisontal yta (Collin, 1979). Övriga klimatdata som använts är:

- dygnets medeltemperatur
- global strålningsenergi på horisontal yta
- nederbörd i form av snö

Massaändringar som försakats av nederbörd och avdunstning från hybridlagret har försummats, men energiflöden på grund av avdunstning och kondensering har beräknats.
De energiflöden som påverkar hybridlagrets värmebalans och som beräknats framgår av figur 5.1.

Beträffande värmeflöden mellan hybridlagermodulen och omgivande mark se bilaga 2.

5.2 Standardsystem med elvärmepump

För standardbostaden har följande värden antagits:

<table>
<thead>
<tr>
<th>Förlostsfaktor</th>
<th>100 W/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUT</td>
<td>-20°C</td>
</tr>
<tr>
<td>DIT</td>
<td>17°C</td>
</tr>
<tr>
<td>Radiatorsystem</td>
<td>52°/40°</td>
</tr>
</tbody>
</table>

Ingen uppvärmning vid utetemperatur >11°C

<table>
<thead>
<tr>
<th>Månad</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>116</td>
</tr>
</tbody>
</table>

Som standardvärmepump har valts en eldriven typ (EVP) med R22 som koldmedium med följande dimensionerande data:
Kondenseringstemperatur
54°C

Log medeltemperaturdifferens

kondensor
5,6°C

förrångare
4,0°C

Drivenergiförluster (Glas, 1978)
15 %

Med 0,7 kg/s brine (40%-ig vatten-glykolblandning, -4°C) och maximalt tillåten istjocklek 3 mm, har för standardsmältvärmeväxlaren (36/30 gummiislang) följande dimensionerande data beräknats:
Slanglängd/bostad (i nollgradigt vatten) 175 m
Frystid
75 min

För standardvärmepumpen har beräknats (för en enstaka hybridmodul):

Kondensoreffekt
65 kW

Kyleffekt
46 kW

Motoreffekt
22 kW

Värmefaktor
2,9

Förråningstemperatur
-7,4°C

Som visas längre fram ökar värmefaktorn med antalet hybridmoduler (dvs med anläggningens storlek) varvid de moduspezifika effekterna ändras. För standard-hybridmodulen med 33 % vattenandel i is-vattenblandningen har beräknats:

Antal anslutna bostäder
15

Max isflisskikt
3 m

Max kompaktisskikt
0,8 m

Producerad ismängd/bostad
117 m³

Den totala energiförbrukningen per standardbostad har beräknats till 14100 kWh/år.

Den nyttiggjorda solenergin utgör i detta fall 9240 kWh/år vilket betyder att solenergiproduktionen är 240 kWh/m² vattenyta och lagringsdensiteten 72 kWh/m³ vatten.

I figur 5.2 visas för standardmodulen temperaturförloppet i hybridlagret, isflisskiktets och kompaktisskiktets djup (temperaturförloppet i det senare
visas inte). Vattnets temperatur under isen har antagits hålla frystemperatur.

5.3 Värmefaktorns storleksberoende

Tabell 5.2

<table>
<thead>
<tr>
<th>Antal bostäder</th>
<th>Hybridmoduler</th>
<th>Värmefaktor</th>
<th>Köldfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2,4</td>
<td>1,5</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2,9</td>
<td>2,1</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>3,1</td>
<td>2,2</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
<td>3,2</td>
<td>2,3</td>
</tr>
<tr>
<td>150</td>
<td>10</td>
<td>3,3</td>
<td>2,4</td>
</tr>
<tr>
<td>450</td>
<td>30</td>
<td>3,4</td>
<td>2,5</td>
</tr>
</tbody>
</table>

5.4 Standardsystem med absorptions- och dieselvärmepump

En intressant fråga är hur många bostadsenheter man kan ansluta till en hybridlagermodul om ett standard mono­valent EVP-system byts ut mot ett annat standardsystem, dvs ett DVP- eller AVP-system.

För att få denna fråga belyst kan man beräkna omräkningsfaktorer på basis av värmepumpens köldfaktor (KF) och det rimliga antagandet att värmepumpen i ett bivalent-parallellt system svarar för $a = 80\%$ av årsenergiebehovet.

Dessa omräkningsfaktorer för en hybridlagermodul återfinns i tabell 5.3. För bivalenta system har antagits att värmepumpens dimensionerande kondenserings­temperatur är 50°C. Värmepumparnas dimensionerande vär­mefaktorer har uppskattats enligt bil 3.

Omräkningsfaktorn beräknas ur kvoten

$$\text{KF (EVP) x 100}{\text{KF (alt)}}^{a}$$

Tabell 5.3

<table>
<thead>
<tr>
<th>VP-typ</th>
<th>Köldfaktor</th>
<th>Omräkn.-faktor</th>
<th>Anslutna bostäder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-valent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVP</td>
<td>2.08</td>
<td>1.00</td>
<td>15</td>
</tr>
<tr>
<td>DVP</td>
<td>0.68</td>
<td>3.06</td>
<td>46</td>
</tr>
<tr>
<td>AVP</td>
<td>0.55</td>
<td>3.78</td>
<td>57</td>
</tr>
<tr>
<td>$a = 100%$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-valent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVP</td>
<td>2.18</td>
<td>1.19</td>
<td>18</td>
</tr>
<tr>
<td>DVP</td>
<td>0.76</td>
<td>3.47</td>
<td>51</td>
</tr>
<tr>
<td>AVP</td>
<td>0.59</td>
<td>4.41</td>
<td>66</td>
</tr>
<tr>
<td>$a = 80%$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Skillnaden mellan de olika värmepumpsystemen är drastisk men relativt liten mellan det monovalenta och bivalenta driftsättet.

Man kan också vända på frågan: hur många hybridmoduler behövs för t ex 200 standardbostäder i ett bivalent system? Svaret återges i tabell 5.4 där även anförs specifik volym, specifik passiv solväxlareyta samt årsmedelvärmefaktor (pumpenergin har försummats).

För att göra jämförelsen med avseende på årsmedelvärmefaktorn (COP) rättvis har den för EVP-systemet, liksom för de andra systemen, baserats på primärenergibehovet. Motsvarande värde på basis av el som sekundärensöneri -såsom den står förbrukaren till förfogande - uppges i parantes. Medelproduktionsverkningsgraden för elkraft i Sverige har antagits vara ca 60%.

Tabell 5.4

<table>
<thead>
<tr>
<th>System</th>
<th>Antal moduler</th>
<th>Spec volym m³</th>
<th>Spec yta m²</th>
<th>Värme­faktor</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVP</td>
<td>11</td>
<td>106</td>
<td>32</td>
<td>2.03</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.75)</td>
</tr>
<tr>
<td>DVP</td>
<td>4</td>
<td>38</td>
<td>12</td>
<td>1.61</td>
<td>1.36</td>
</tr>
<tr>
<td>AVP</td>
<td>3</td>
<td>29</td>
<td>9</td>
<td>1.44</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Approximativ årsmedelverkningsgrad beräknas enligt

\[
\text{COP} = (\frac{a}{VF} + (1-a) b \times KF)^{-1}
\]

Här är a värmepumpens andel av energiförsörjningen (a = 0,8) och b är kvoten (förlorad pumpningsenergi)/(pumpad energi ur värmekälla + islossningsenergi)= förlustfaktor. Här har antagits att b=0.05. På grund av EVP-systemets större kyleffekt (synonynt med största antal hybridmoduler) är detta system känsligare för storleken av förlustfaktorn b (Fig 5.3).
5.5 Inverkan av jordvärme

Beräkningsunderlaget för inverkan av jordvärme behandlas i bil 2. I Fig 5.4 visas isflisskiktets tjocklek under en isläggningsperiod för standardhybridmodulen.

graf A. hybridmodulen med perfekt markisolering
graf B. utan markisolering

Skillnaden i maximal istjocklek är ca 0,75 m. Detta motsvarar ungefär ökningen för en bostad i EVP-systemet, dvs till det markisolerade lagret kan endast 14 bostäder anslutas istället för 15.

I figur 5.5 och 5.6 har maximal isflisstjocklek för standardmodulen (placerad i mo) plottats mot det relativa värmeflödet från marken Q/Q\textsubscript{MO}. Figur 5.5 gäller för 15 bostäder med förlustfaktorn 100 W/°C och fig. 5.6 avser 10 bostäder med förlustfaktorn 150 W/°C.

I båda har ritats in värden för lagerplacering i granit istället för i mo. Det visar sig att jordvärmeflödet till och från lagret ökar ca 50 %.

Det procentuella bidraget av markvärme till det totala värmebehovet/dygn under ett år visas i figur 5.7 (lager i mo).

Om hybridlagret i stället placeras i mo med grundvattennivån 5 m under markytan så blir värmeförlusterna alltid större än värmevinsterna om grundvattnet har stor rörlighet och hybridlagrets maximala vattentemperatur överstiger ca 16.6°C, vilket det normalt gör.
5.6 Inverkan av modulplacering

I och med att en totalt nödvändig lagringsvolym för ett givet objekt delas upp i ett flertal identiska, mindre hybridlagermoduler så har man möjlighet att placera modulerna på olika sätt. En faktor som kan inverka här är den tillgängliga terrängens topografi.

Om topografin tillåter kommer man att föredra en symmetrisk anordning av modulerna. Storleken av markvärmeflöden ändras beroende på hur många grannar en given modul har. Som visas i figur 5.8 finns det för en kvadratisk modul fem olika placeringskombinationer, A-E. I placering A finns bara en modul, i placering E är en central modul omgiven av fyra andra.

Figur 5.9 visar att den centrala modulens maximala isflisskikt praktiskt taget inte påverkas alls vid ett 2-meters avstånd dem emellan. Den maximala vattentemperaturen beräknades till ca 21°C, oberoende av omgivande grannmoduler.

5.7 Inverkan av skuggning

Verkningsgraden av glasade modul- och högtemperatursoffängare påverkas negativt av skugga. Detta beror på att dessa konstruktioner är avsedda för energiomvandling av endast direkt solstrålning (t ex koncentreringsoffängare) eller av både direkt och diffus solstrålning (t ex plana soffängare). För en oglasad solväxlare vars medeltemperatur hålls under omgivningstemperaturen är skuggans inverkan mindre utpräglad.

uppställda utmed en hybridlagermoduls söderkant har skuggningens inverkan beräknats. I figur 5.10 och 5.11 har de marginella ändringarna av max istjocklek resp max vattentemperatur plottats mot skärmnarnas höjd. Som framgår är deras inverkan ganska måttlig. Totala isläggningstiden förlängs bara med 1-2 dygn.

5.8 Inverkan av belastningen

Belastas standardmodulen med endast en standardbostads värmebehov så påverkas inte det naturliga isskiktets tjocklek vilket beräknats till 0,2 m (enligt (SMHI, 1971) har i stockholmsstrakten uppmätts ca 0.25 m tjocklek i sötvatten). Detta betyder att tillräcklig värme kan hämtas ur vattnets sensibla värmeinnehåll, ur underliggande mark och genom solinstrålning utan att is bildas. Sista isdygn är dag 87 (28 mars).

Vid större belastning ändrar sig isförhållandena: istjockleken ökar och isperioden blir längre.

Detta visas i figur 5.12 resp 5.13 för standardbostäder (förlustfaktor 100 W/°C) och för bostäder med sämre isoleringsstandard (förlustfaktor 150 W/°C).

Som framgår ökar isperiodens längd från den 28 mars (dag 87) till den 30 maj (dag 150) vid tillåten maximal isflissstjock <3 m. Isperiodens totala längd är ca 185-190 dygn - gott och väl ett halvt år vid maximal belastning.

5.9 Inverkan av isflisskiktets vattenhalt

Den mest osäkra parametern i de här gjorda simuleringsberäkningarna är isflisskiktets skrymdensitet, resp vattenhalt. Detta beror på att experimen tiellt underlag för en noggran bestämning av denna viktiga parameter ännu saknas. Ju mera kompakt upfluten isflis kan packas ihop under det kompakta ytisskiktet, desto större kan belastningen väljas och desto mindre blir det specifika volymbehovet (m³ lagervolym/bostad).

För standardberäkningarna har valts en vattenhalt 33 volym% vilket kan synas rimligt. Men redan vid en vattenhalt 40 % blir standardlagret med 15
anslutna bostäder fyllt med isflis. Belastningen måste reduceras med minst en standardbostad.

Figur 5.14 visar hur det maximala isflisskiktet och dess andel av kompaktis (i ytan) ändras i standardhybridlagermodulen med 15 standardbostäder som belastning.
6. LAGRINGSEKONOMI

6.1 EVP-hybridsystem

6.1.1 Investeringsbehov

Förutsättningarna för investeringskalkylen är följande uppgifter (alla siffror är avrundade uppåt).
Kostnadsläge: dec 1981

Modulvolym 2000 m3
Grävning i rel lättgrävd jord, 20-30 kr/m3
Tätningsmembran, Area 450 m$^2 + 100$ m2 (vid krönet) Material: butylgummi, 1 mm. Pris för på fabrik formsvetsad membran: 54 kr/m2.
Installationskostnad ca 2100/-/modul.
Smältvärmeväxlare 2700 m/modul, inkl kopplingar, förankring och installation, kostnad ca 15 kr/m.
Vattenvolym 1900 m3, kostnad 2 kr/m3. Projektkostnader inkl VVS-kostnader 10 kr/m3.
Arslagrad solenergi ca 140 MWh/modul.
I bivalenta system ingår befintlig spetslastvärmeanläggning. Drifttid 4800 h/år för värmepumpen.

Relaterat till modulvolymen erhålls följande specifika kostnader.

<table>
<thead>
<tr>
<th></th>
<th>kr/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grävning</td>
<td>25 ±5</td>
</tr>
<tr>
<td>Dränering</td>
<td>2</td>
</tr>
<tr>
<td>Isolering</td>
<td>0</td>
</tr>
<tr>
<td>Tätning</td>
<td>16</td>
</tr>
<tr>
<td>Vatten</td>
<td>2</td>
</tr>
<tr>
<td>Smältvärmeväxlare</td>
<td>20</td>
</tr>
<tr>
<td>Värmefförluster</td>
<td>0</td>
</tr>
<tr>
<td>Projektkostnader</td>
<td>10</td>
</tr>
<tr>
<td>Totalt</td>
<td>75 ±5</td>
</tr>
</tbody>
</table>
För att kunna tillföra förbrukaren den lagrade solenergin installeras en värmepump och övriga systemkomponenter (kulvetar, pumpar, expansionskärl, VVS-armatur, styr- och reglerutrustning m.m). Skalfaktornas betydelse belyses genom att fyra anläggningsstorlekar undersöks, dels för monovalent drift, dels för bivalent drift i kombination med en befintlig värmecentral (tabell 6.2).

Tabell 6.2

<table>
<thead>
<tr>
<th>Anläggs-Bo-städer</th>
<th>Effekt kW</th>
<th>Drift-tid</th>
<th>Värme-faktor</th>
<th>Hybrid-moduler</th>
<th>Elvärmepump</th>
<th>Kostnader</th>
<th>Övrigt b</th>
<th>Kostnader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-valent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>70</td>
<td>3000</td>
<td>2,9</td>
<td>1</td>
<td>1400</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>500</td>
<td>3000</td>
<td>3,1</td>
<td>7</td>
<td>700</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>1360</td>
<td>3000</td>
<td>3,2</td>
<td>20</td>
<td>600</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>2700</td>
<td>3000</td>
<td>3,3</td>
<td>40</td>
<td>900</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Bi-valent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>44</td>
<td>4800</td>
<td>2,9</td>
<td>1</td>
<td>1450</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>270</td>
<td>4800</td>
<td>3,0</td>
<td>6</td>
<td>1000</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>700</td>
<td>4800</td>
<td>3,1</td>
<td>16</td>
<td>650</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>1360</td>
<td>4800</td>
<td>3,2</td>
<td>32</td>
<td>600</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

a) interpolerade budgetpriser
b) uppskattade kostnader (Jansson, 1978). Antaget medelavstånd lager-värme-central bostäder: 250, 500, 750 rsp 1000 m för system 1, 2, 3 resp 4.

Hänförs dessa kostnader till lagervolymen så erhålls följande specifika kostnader för grundinvesteringen:
Tabell 6.3
Monovalenta EVP-system

<table>
<thead>
<tr>
<th>Anläggning</th>
<th>1 kr/m³</th>
<th>2 kr/m³</th>
<th>3 kr/m³</th>
<th>4 kr/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lager</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Värmepump</td>
<td>49</td>
<td>25</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Övrigt</td>
<td>164</td>
<td>67</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Totalt</td>
<td>293</td>
<td>167</td>
<td>126</td>
<td>126</td>
</tr>
</tbody>
</table>

Tabell 6.4
Bivalenta EVP-system

<table>
<thead>
<tr>
<th>Anläggning</th>
<th>1 kr/m³</th>
<th>2 kr/m³</th>
<th>3 kr/m³</th>
<th>4 kr/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lager</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Värmepump</td>
<td>32</td>
<td>22</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Övrigt</td>
<td>156</td>
<td>66</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>Totalt</td>
<td>268</td>
<td>163</td>
<td>130</td>
<td>121</td>
</tr>
</tbody>
</table>

Investeringsbehovet per bostad kan nu beräknas och återges i tabell 6.5.

Tabell 6.5

<table>
<thead>
<tr>
<th>Anläggning</th>
<th>Antal bostäder</th>
<th>Kostnad kr/bostad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>valent</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>system</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>Bi-</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>valent</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>system</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>600</td>
</tr>
</tbody>
</table>
Dessa kostnader är förhållandevis låga. Bidragande orsaker här för är:

- De bostäder som avses här är energisnåla (förlustfaktor 100 W/°C). Bostäder av äldre standard kan ha förlustfaktorer uppmot det dubbla värdet. De kräver därför en större installerad effekt och fler hybridmoduler. Investeringskostnadern per bostad ökar - grovt räknat - proportionellt med förlustfaktorn.

- I bivalenta system står hybridvärmesystemet för grundlasten, vilket innebär längre gångtider för värmepumpen vid konstant förångningstemperatur. Hybridvärmesystemet kan därför dimensioneras för betydligt lägre effekt (se tabell 6.2).

- De uppskattade specifika kostnaderna för det "övriga systemet" (periferikostnader) är ganska osäkra och kan skifta kraftigt från objekt till objekt, i synnerhet vid andra avstånd mellan lager och bostäder, resp spetslastcentralen.

- Grävningskostnaderna avser skaktning i relativt lättgrävd mark. Vid grävning i besvärligare mark kan dessa kostnader öka betydligt.

6.1.2 Specifika investeringskostnader

Ett accepterat värderingsmått är den specifika investeringskostnaden som avser investeringen per levererad kWh solenergi från lagret och uttrycks i kWh/(kr/år).

Den årligen lagrade och tillvaratagna solenergimängden uppskattas enligt

\[E = P_{vp} \times t \times (1 - 1/VF) \]
\[= \text{antal moduler} \times 140\,000 \text{ (kWh)} \]

Här är \(E \) = lagrad solenergi (kWh/år), \(P_{vp} \) = installerad värmepumpseffekt (kW), \(t \) = effektiv drifttid (h/år), \(VF \) = processvärmefaktor.

De beräknade specifika kostnaderna har sammanställts i tabell 6.6.

Tabell 6.6

<table>
<thead>
<tr>
<th>Anläggning</th>
<th>Monovalent system kr/(kWh/år)</th>
<th>Bivalent system kr/(kWh/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,2</td>
<td>3,8</td>
</tr>
<tr>
<td>2</td>
<td>2,4</td>
<td>2,3</td>
</tr>
<tr>
<td>3</td>
<td>2,0</td>
<td>1,8</td>
</tr>
<tr>
<td>4</td>
<td>1,8</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Tabell 6.7

<table>
<thead>
<tr>
<th>Anläggning</th>
<th>Investeringskostnad kr//kWh/år)</th>
<th>Anmärkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjärrvärme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Större värmecentral 3.6</td>
<td>2.1-2.7</td>
<td>ca 500 kW</td>
</tr>
<tr>
<td>Villasystem</td>
<td>5.2-5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepidus</td>
<td>8,0</td>
<td>System</td>
</tr>
<tr>
<td>Sunclay</td>
<td>2,4</td>
<td>byggda</td>
</tr>
<tr>
<td>Sunstore</td>
<td>3,1-3.3</td>
<td>med</td>
</tr>
<tr>
<td>Södertuna</td>
<td>5,6</td>
<td>dagens</td>
</tr>
<tr>
<td>Lyckebo</td>
<td>9,4</td>
<td>teknik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunstore</td>
<td>2,0-2.2</td>
<td>Utvecklings-</td>
</tr>
<tr>
<td>Linköping</td>
<td>4,5</td>
<td>objekt</td>
</tr>
<tr>
<td>Kungsbacka</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>Linghem</td>
<td>5,0</td>
<td></td>
</tr>
</tbody>
</table>

6.1.3 Energikostnader

För beräkning av energikostnader används samma kalkylmetod och kalkylränta som i DFE-rapporten (Solvärme forskning 1981). Detta innebär att för den tekniska livslängden av anläggningen (avser samtliga komponenter) antas 20 år och för realräntan 4 %. För värmepumpens drivenergi antas kostnaden 0,25 kr/kWh. Underhållskostnader har antagits utgöra 2 % av grundinvesteringen.

Dessutom har motsvarande beräkningar gjorts för 10 och 15 års avskrivning. Resultaten återges i tabell 6.8.

Tabell 6.8

<table>
<thead>
<tr>
<th>Anläggning</th>
<th>Avskrivningstid</th>
<th>10 år</th>
<th>15 år</th>
<th>20 år</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kr/kWh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>1</td>
<td>0,73</td>
<td>0,59</td>
<td>0,52</td>
</tr>
<tr>
<td>valent 2</td>
<td></td>
<td>0,46</td>
<td>0,38</td>
<td>0,34</td>
</tr>
<tr>
<td>system 3</td>
<td></td>
<td>0,40</td>
<td>0,33</td>
<td>0,30</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0,37</td>
<td>0,30</td>
<td>0,28</td>
</tr>
<tr>
<td>Bi-</td>
<td></td>
<td>0,68</td>
<td>0,55</td>
<td>0,49</td>
</tr>
<tr>
<td>valent 2</td>
<td></td>
<td>0,45</td>
<td>0,38</td>
<td>0,34</td>
</tr>
<tr>
<td>system 3</td>
<td></td>
<td>0,38</td>
<td>0,32</td>
<td>0,29</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0,36</td>
<td>0,30</td>
<td>0,27</td>
</tr>
</tbody>
</table>
Om underhållskostnaderna ändras 50% så ändras energikostnaderna med ca 5-7%.

Energikostnaden ökar ca 1% per 0,01 kr/kWh kostnadsökning av drivenergin för värme pumpen.

En ändring av värmefaktorn med 0,1 enhet ger en energikostnadsändring motsvarande ca -2%.

I DFE-rapporten (Solvärme forskning, 1981) finns följande uppgifter för totala energikostnader i oljebaserade värmesystem (avskrivning 20 år, realränta 4%, uppräknade med 10%):

Tabell 6.9

<table>
<thead>
<tr>
<th>System</th>
<th>Olja</th>
<th>kr/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjärrvärme</td>
<td>Eo5</td>
<td>16,5-21,5</td>
</tr>
<tr>
<td>Större panncentral</td>
<td>Eo1</td>
<td>27</td>
</tr>
<tr>
<td>Villapanna</td>
<td>Eo1</td>
<td>38,5-43</td>
</tr>
</tbody>
</table>

6.2 Energikostnader för AVP- och DVP-hybridsystem

Ett hybridvärmesystem med en absorptionsvärmepump (AVP) istället för en eldriven värmepump (EVP) är tv endast intressant för större anläggningar. Därför görs en kostnads kalkyl endast för en bivalent anläggning med 600 standardbostäder. Absorptionsvärmepumpen antas vara en direkt naturgaseldad typ inklusive avgaspanna. Systemet kännetecknas av följande data:
AVP-märkeffekt: 1500 kW
Processvärmeffektor: 1,46
Effektiv värmeffektor: 1,34
Kyleffekt: 470 kW
Lösningspump: 40 kW
Antal hybridmoduler: 16
Drifttid: 4800 h/år
Kulvertlängd: 750 m

Kostnader:
Hybridlager: 70 kr/m³
AVP: 1200 kr/kW
Övrigt system: 58 kr/m³
Gaspris: 170 kr/MWh

Till lagervolymen relaterad specifik kostnad blir:
Hybridlager: 70 kr/m³
AVP: 56 kr/m³
Övrigt system: 59 kr/m³

Totalt: 185 kr/m³

Per bostad beräknas grundinvesteringen till 174 x 16 x 2000/600 = 9900 kr, vilket är ett ganska lågt värde.

Den specifika investeringskostnaden beräknas till 2.6 kr/(kWh/år).

Energikostnaden beräknas som ovan men underhållskostnaderna sättes här lika med 1% av investeringskostnaden (VDI-Berichte 427, 1981). Vid 20 års avskrivning och 4% realränta erhålls som energikostnad 0,59 kr/kWh.

Det visar sig alltså att för AVP-systemet blir både den specifika investeringskostnaden och energikostnaden betydligt högre än för hybridvärmesystem med elvärme pump.

Utförs motsvarande beräkningar för ett DVP-system så erhåller man följande kostnader (processvärmeffektor 1,6, kyleffekt 560 kW, 19 hybrid
moduler, specifik kostnad 1100 kr/kWh underhållskostnader 2 % av investeringen:
- specifik kostnad 171 kr/m³
- specifik investeringskostnad 2.5 kr/(kWh/år)
- energipris 0,52 kr/kWh

Man får alltså något gynnsammare kostnadsrelationer än för absorptionsvärmepumpen. Enligt tyska undersökningar får man emellertid räkna med att bättre ekonomi erhålls för AVP-system när anläggningsstorleken ökar.
Dimensionering av småtvärmeväxlare

Arbetet enligt denne bilaga har delvis utförts med anslag från STU.
INNEHÅLL
1. Beteckningar
2. Inledning
3. Teori för värmeöverföring
 3.1 Värmeövergångskoefficienter
 3.2 Ingen isbildning
 3.3 Isbildning i nollgradigt vatten
 3.4 Isbildning i varmt vatten
4. Dimensionering av slanglängd
 4.1 Sommartillstånd
 4.2 Vintertillstånd
 4.3 Övergångstillstånd
 4.3.1 Överkritisk temperatur
 4.3.2 Underkritisk temperatur
 4.4 Dimensionering vid kritisk temperatur
5. Inverkan av smuts
1. **Beteckningar**

- **a** Värmeövergångskoefficient (W/m²K), index:
 - i = innervägg, y = yttervägg
- **c** Värmekapacitet (J/kg K), index i: 1 = is, 2 = (smält)vatten, 3 = köldbärare (brine), 4 = slangmaterial
- **d** Densitet (kg/m³), index som ovan
- **D** Slangens diameter (m) index: i = innerdiameter y = ytterdiameter.
- **f (s)** Funktion för isbildning
- **Gr** Grasshofftal
- **h** Höjd (m)
- **H** Smältvärme, för is (333 kJ/kg)
- **k** Värmenegenomgångstal (W/m²K)
- **K** Värmedelingstal (W/m K), index som ovan
- **L** Slanglängd (m)
- **m** Värmeutmatning (m K/W)
- **m** massflöde (kg/s)
- **Nu** Nusselttal
- **P** (Medel)effekt (W)
- **Pr** Prandtltal
- **Re** Reynolds tal
- **s** (Medel)istjocklek (m)
- **S** Diameter av spiralslinga (m)
- **t** Tid (s),
 - index f = "frystid", period under vilken isbildning tillåts
 - index t = slangtömningstid
 - index p = pumpningstid per frys- och tömningsperiod
- **T₀** Vattentemperatur (°C)
- **T₁,T₂** Köldbärartemperatur (°C) vid inlopp, resp utlopp
- **T_{b₁}** Köldbäraren medeltemperatur (°C)
- **T_c** Kritisk vattentemperatur (°C)
- **T_{f₁}** Fasändringstemperatur (= 0°C)
- **T_{log}** Logaritmisk medeltemperatur-differens (°C)
- **V** Korrektionsfaktor för volymexpansion,
 \[v = \frac{d₁²}{d₂²} \]
- **z** Smältskiktets tjocklek (m)
2. INLEDNING

En bottenförankrad småltvärmeväxlar kommer under en års cykel att användas för värmeupptagning ur vatten vid tre olika tillstånd som kännetecknas av det omgivande vattnets temperatur:

1. Sommartillstånd: \(T_0 > 0 \degree C \), temperaturen är så hög att ingen isbildning kan ske. Teorin för värmeväxling för denna situation är konventionell.

2. Vintertillstånd \(T_0 = 0 \degree C \). Is bildas på slangytan i helt stillstående vatten och värmetransporten från vatten till fasomvandlingsytan är rent konduktiv.

3. Övergångstillstånd: \(0 \degree C < T_0 < ca 1 \degree C \). Is bildas samtidigt som is i fasomvandlingsytan smältes. Detta är den teoretiskt besvärligaste situationen.

Värmetransporten vid isbildningen är tredimensionell men kan utan större fel behandlas som tvådimensionell eftersom den axiala utsträckningen är mångfaldigt mycket större än den radiala. Om issiktets tjocklek är liten i förhållande till slangdiametern - såsom här är fallet - så kan värmetransporten uppfattas som endimensionell. För denna situation finns approximativa lösningar för värmeekvationen.

3. TEORI FÖR VÄRMEÖVERFÖRING

3.1 Värmeövergångskoefficienter

Värmeövergång på den inre slangväggen sker vid aktuella massflöden \((0.3 < m < 1.0 \text{ kg/s})\) i ett övergångsområde mellan laminärt och turbulent flöde, dvs vid Reynoldstal \(3000 < Re < 10\,000\).

Nusselttal beräknas med följande uttryck enligt (Hausen, 1976), som har anpassats till slang lindad som en cylindrisk spiral (Perry m fl 1973)

\[
Nu = 0.0235 \times (Re^{0.8} - 230) \times (1.8 \times Pr^{0.3} - 0.8) \times (1 + (D_t/S)^{0.33}) \times (\eta_a/\eta_v)^{0.14}
\]
För det här aktuella temperaturområdet kan antas att \(\eta_b = \eta_v \) (dynamisk viskositet vid brine-, resp väggtemperatur).

Värmeövergångstalet \(a_i = \text{Nu} \times \frac{K_y}{D_i} \) (2)

På den yttre slangytan är värmeövergångskoefficienten endast definierad för vattentemperaturer \(T_0 > 0^\circ C \), i vilka fall hänsyn måste tagas till konvektionen. Här räknas endast med egenkonvektion.

Vid egenkonvektion kan varje spiralslinga pga spiraldelningen (avstånd mellan två grannalingor) betraktas som oberoende av andra slinger. I facklitteraturen har uttryck inte hittats för beräkning av Nusselttalet för detta fall. Därför har följande approximation tillgripits.

Enligt Fig B1.1 approximeras en cirkulär slinga med en symmetrisk slinga bestående av åtta likformade raka slangsegment. På dessa appliceras uttrycket (Nagendra m fl, 1969)

\[
\text{Nu} = 0.57 \times (\text{Pr} \times \text{Gr} \times \frac{D_y}{h})^{1/4}
\] (3)

Ett medelvärde för \(a_y \) beräknas sedan enligt:

\[
a_y = \frac{(2 \times a_H + 2 \times a_V + 4 \times a_L)}{8}
\] (4)
da där indiceringen betyder H = horisontalt, V = vertikalt, L = lutande.

Den enda parametern i (4) som är variabel är höjden H. Den beräknas enligt:

\[
h_H = \frac{D_y}{8}
\] (5)

\[
h_V = \frac{\pi \times S}{8}
\] (6)

\[
h_L = D_y \times \sin 67.5^\circ / \sin 45^\circ = 1.305 \times D_y
\] (7)

Efter insättning i (3) och (4), med beaktande att \(a = \text{Nu} \times K/karakteristisk dimension erhålls efter jämkning:

\[
a_y = 0.142 \times \sqrt[4]{K_1} \times (\text{Gr} \times \text{Pr})^{1/4} \times \left(2.432 / D_y^{5/4} + 3.216 / S^{5/4} \right)
\] (8)

Om \(S >> D_y \), som här är fallet, så förenklas detta uttryck till:

\[
a_y = 0.347 \times \sqrt[4]{K_1} \times (\text{Gr} \times \text{Pr})^{1/4} / D_y^{5/4}
\] (9)

I temperaturområdet 0-10\(^0\)C är för vatten
Pr \times Gr = 2.4 \times 10^9 \times Dy^3 \times (T_0 - T_{vägg}) \tag{10}

Vid insättning i (8) erhålls slutligen:

\[a_y = 76.8 \times K_1 \times (T_0 - T_{vägg})^{1/4} / Dy^{1/2} \tag{11} \]

3.2 Ingen isbildning

Vid vattentemperaturer väl över 0°C sker endast överföring av sensibel värmé varvid vattnet avkyls och kylmediet (brine) i slangen uppvarms (Fig B1.2).

För den uttagna effekten (kyleffekten) gäller för cylindriskt rör

\[P = \rho \times c_3 \times (T_2 - T_1) \tag{12} \]

\[P = k \times \pi \times D_i \times L \times T \log \tag{13} \]

Den logaritmiska medeltemperaturdifferensen för värmeväxlingen är

\[T \log = \frac{(T_0 - T_1) - T_0 - T_2}{\ln(T_0 - T_1) - \ln(T_0 - T_2)} \tag{14} \]

Efter insättning av (11) i (12) erhålls:

\[P = \rho \times c_3 \times (T_0 - T_1) \times (1 - \exp(-\frac{k \times \pi \times D_i \times L}{\rho \times c_3})) \tag{15} \]

Antas som värmeöverförande yta slangs innervägg med arean \(\pi \times D_i \times L \) så blir värmegenomgångstalena:

\[k = 1/(m_1 + m_g + m_y) \tag{16} \]

Här är värmemotståndena

\[m_1 = 1/a_i \quad \text{(konvektivt motstånd vid inre slangvägg)} \]

\[m_g = (D_i/2K_4) \times \ln(Dy/Di) \quad \text{(slangväggens konduktiva motstånd)} \]

\[m_y = 1/2 a_y \times D_i / Dy \quad \text{(konvektivt motstånd vid yttre)} \]

Slanglängden erhålls ur ekv (15):
3.3 Isbildning i nollgradigt vatten

\[
 f(s) = (T_f - T_g) \times t_f \quad (18)
\]

Här är \(f(s) = \frac{2}{G} \times (D_y + 2 \times s)^2 \times (\ln (1 + 2 \times s/D_y) - 0.5) + \frac{D_y^2}{G} \quad (19)\)

\(G\) är en materialkonstant:

\[
 G = 16 \times \frac{K_1}{(d_1 \times H \times v)}
\]

Vidare är \(T_g \) medeltemperaturen vid isrörets inre cylindriska gränsla. \(D_y + 2 \times s \) är isrörets yttre diameter, \(v \) är faktorn som tar hänsyn till vattnets volymexpansion (Eckert & Drake, 1972), \(v = 1.189 \). Det framgår att isbildningen inte är linjärt beroende av tiden.

Detta uttryck kan anses som en god approximation under förutsättning att

a. temperaturfördelningen i is antas vara av steady-state typ
b. \(H >> c_1 \), vilket inträffar för vatten
c. värmeöverföringen i fasgränsen antas vara rent konduktiv.

Eftersom isens tjocklek på småtvärmeväxlare skall begränsas till några mm är steady-state approximationen godtagbar. Begränsning till konduktiv värmetransport utsluter förekomsten av konvektiv värmeöverföring, vilket innebär att ekv (5) gäller endast vid nollgradigt vatten.

Ekv (18) tar ingen hänsyn till den cylindriska gränstans eventuella tjocklek och värmemotstånd. I verkligheten utgörs gränsen mellan köldbäraren och iscylindern av en slangvägg med en typisk tjocklek 2-4 mm. Temperatur
skillnaden $T_f - T_g$ över isskiktet förhåller sig till temperaturdifferensen $T_g - T_f$ som den utkristalliserande isens värmemotstånd, m_{is}, till slangväggens totala värmemotstånd, $m_i + m_g$. Enligt Fig B1.3 måste man alltså ta hänsyn till temperaturfallet över slangväggen som har ett visst konstant värmemotstånd. Vid ökande istjocklek ändras även dess värmemotstånd, samtliga som kylvätskans temperatur utmed slangen ökar genom värmeväxling. Därmed ändras också gränsytans temperatur.

Man får alltså:

$$\frac{T_f - T_g}{T_g - T_b} = \frac{m_{is}}{m_{is} + m_g} \tag{20}$$

Här är T_b köldbärarens logaritmiska medeltemperatur utmed slangen under frystiden t_f:

$$T_b = \frac{T_1 - T_2}{\ln T_1 - \ln T_2} \tag{21}$$

Temperaturdifferensen över isskiktet erhålls ur (18)

$$T_f - T_g = f(s)/t_f \tag{22}$$

som ger för medeltemperaturen i gränsytan

$$T_g = T_f - f(s)/t_f \tag{23}$$

Vid issättning i (19) erhålls för isens värmemotstånd

$$m_{is} = (m_i + m_g) \times \frac{f(s)}{(T_f - T_b) \times t_f - f(s)} \tag{24}$$

Värmegenomgångskoefficienten vid isbildning i nollgradigt vatten blir

$$k = \frac{1}{(m_i + m_g + m_{is})} \tag{25}$$

$$= (m_i + m_g) \times \frac{f(s)}{(1 + \frac{f(s)}{(T_f - T_b) \times t_f - f(s)})} \tag{26}$$
Frystiden t_f är obekant. Den bestäms enligt följande.

För slanglängden måste två villkor vara uppfyllda: ekv (17) samt

$$L = \frac{P \times t_f}{\pi l \times s \times (D_y - s) \times d_1 \times H}$$ \hspace{1cm} (27)

som erhållits ur uttrycket för kristallisationsvärmeeffekten:

$$P = \frac{\pi l/4 ((D_y-2xs)^2 - D_y) \times L \times d_1 \times H}{t_f}$$ \hspace{1cm} (28)

Med hjälp av (12), (17), (26) och (27) erhålls efter jämkningsnödvändig fristdid för att uppnå önskad istjocklek s:

$$t_f = s \times (D_y - s) \times d_1 \times H \left(\frac{m_i + m_q}{T_{1og} \times D_i} \right) + \frac{f(s)}{T_f - T_b}$$ \hspace{1cm} (29)

Den andra termen är frystiden för oändligt tunn slangvägg, medan den första uttrycker frystidens förlängning på grund av slangväggens värmemotstånd. T_{1og} beräknas med (14).

Slanglängden L och kyleffekt P vid nollgradigt vatten kan nu med (27), resp (28) bestämmas.

3.4 Isbildning i varmt vatten

Ett analytiskt uttryck för endimensionell isbildning i varmt vatten finns inte. En approximation kan göras om man antar att situationen kännetecknas av simultan frysning (enligt föregående kapital) och steady-state smältning. För båda processerna är gemensamt att de äger rum vid fasändringstemperaturen T_f. I den här använda modellen antas att varje process pågår oberoende av varandra med avseende på temperaturen på andra sidan fasgränsen.
Vid issmältning är ett plant småltskiks tjocklek \((z_p)\) vid steady-state och vid konstant yteffekt \(P\) (W/m\(^2\)) med samtidigt omedelbart avlägsnande av bildat småltvatten (vilket antas gälla vid konvektiv värmeöverföring i varmt vatten) följer:

\[
z_p = \frac{P \times t}{d_1 \times (H/v + c_1 \times (T_o - T_f))}
\]

(30)

Om \(z_p \ll Dy\) är \(z\) (radiellt) \(\approx z_p\). I annat fall är

\[
z_t = \frac{Dy}{2} - \left(\frac{Dy^2}{4} - z_p \times Dy\right)^{1/2}
\]

Med \(P = a_y \times (T_o - T_f)\) och ekv (11) får

\[
z_p = \frac{78.8 \times K_1 \times (T_o - T_f)^{5/4} \times t}{d_1 \times (H/v + c_1 \times (T_o - T_f)) \times Dy^{1/2}}
\]

(31)

Vi definierar:

\(T_c > 0^\circ C\) = kritiska vattentemperaturen viden vilken isbildningshastigheten = issmältningshastigheten

Ur ekvationen (31) erhålls tiden \(t\) vid smältning:

\[
t = z_p \times \frac{d_1 \times (H/v + c_1 \times (T - T_f)) \times Dy^{1/2}}{76.8 \times K_1 \times (T - T_f)^{5/4}}
\]

(32)

För isbildningen gäller enligt (29):

\[
t = \text{konstant} \times s_1 \times (Dy - s_1) + f(s_2) (T_f - T_b)
\]

(33)

Sättas \(s_1 = s_2 = s\) så kan för varje \(s\) genom iterationsräkning den kritiska vattentemperaturen \(T_c = T\) uppskattas som funktion av brineterminperaturen \(T_b\), småltvärmexiarenas logaritmiska medeltemperaturdifferens enligt ekvation (14) och materialegenskaperna för slangen och vatten.
Indikeringen för s i de båda termerna har införts för att underlättta dimensioneringsresonemanget).

Här är T_c alltså den vattentemperatur som är nödvändig för att förhindra att ett isskikt $s_1 (= s_2)$ just skall börja bildas. Ju mera T_c underskrids (dvs ju mindre temperaturdifferensen $T - T_f$ blir) på desto kortare frystid bildas isskiktet s_1.

4. DIMENSIONERING AV SLANGLÄNGD

Dimensioneringstidpunkten för en värmeanläggning infaller då utetemperaturen motsvarar LUT, dvs normalt i januari-februari. Vid denna tidpunkt har i hybridlagret redan mycket is bildats genom småtvärmeväxling och naturlig frysning. Vattentemperaturen har då sjunkit mot fryspunkten. Om under isläggningstiden värme tillförs lagret från omkringliggande mark kommer emellertid vattentemperaturen kring småtvärmeväxlanerna att ligga någon tiondels grad över fryspunkten. Samtidigt som is bildas på slangen sker en viss avsmältning. Om detta tillstånd antages vara dimensionerande så beräknas en annan slanglängd än om tillståndet med vattentemperaturen $T_0 = 0^\circ C$ antages som dimensionerande.

För ett givet hybridvärmelager måste man bestämma vilket av de inledningsvis beskrivna tillstånd som är dimensionerande.

Dimensionerande storheter för beräkning av slanglängden är maximalt tillåten medelstjocklek, värmepumpens dimensionerande kyleffekt P, vattnets lägsta temperatur vid dimensioneringstidpunkten, tiden för slangtömning t_t (när is skall avlägsnas) samt kylvätskans massflöde och inloppstemperatur. Dimensioneringen påverkas också av slangmaterialets och kylvätskans egenskaper.

Här definieras:

$$s_t = \text{Tillåten (=dimensionerande) istjocklek efter tiden } t_t.$$

Om $s > s_t$ äventyras både islossningen från slangen och eventuellt slangens bottenförankring.
Tillåten (fiktiv) ökning av s_t som vid vattentemperatur-
ren $T_0 = T_c$ just kan smältas.

$z_t =$ Maximal istjocklek som under frystiden $t = t_f$ skulle
erhållas i nollgradigt vatten ($T_0 = T_f$).

$s_{\text{max}} = s_t + z_t =$ den frystid som behövs för att erhålla dimensionerande
kyleffekt, t_p är pumpningstiden för en isbildningscykel,
tt_t är slangtömningstiden, ca 1 à 2 min.

4.1 Sommartillstånd

Under sommaren uttages värme ur lagret endast för varmvattenberedning
eller förvärming av varmvatten. Även om störrtappningseffekten antages
som dimensionerande så kan detta tillstånd inte vara dimensionerande för
slanglängden. Större delen av störrtappningseffekten kan lämnas av en
här för dimensionerad varmvattenackumulator.

4.2 Vintertillstånd

Vintertillståndet skall här godtyckligt karakteriseras av att hybridlager-
vattnet har nätt frystpunkten.

Sättes $s = s_c$ så kan man med hjälp av ekv (26) - (28) beräkna dimensioner-
ande slanglängd och frystid. Man får i detta extrema fall den minsta
möjliga slanglängden pga maximalt k-värde.

4.3 Övergångstillstånd

För övergångstillståndet måste man betrakta två olika fall, beroende på om
vid dimensioneringstidpunkten vattentemperaturen $T_0 > T_c$ eller $T_0 < T_c$. I
denna betraktelse ges ingen hänsyn till vattnets inversionstemperatur ($4^\circ C$)
fast den har betydelse för egenkonvektionen.

4.3.1 Överkritisk temperatur

Fall 1: Vattentemperaturen är så hög vid dimensioneringstidpunkten att
isbildning överhuvudtaget inte kan ske. Detta fall kan inträffa ifall man
förlägger en slang för begränsat värmeuttag i en mycket stor vattenreservoar (t ex djup insjö) vars lägsta temperatur håller sig alltid någon grad över fryspunkten. Om detta inträffar i ett artificiellt hybridvärmelager så är detta feldimensionerat. Den dimensionerande slanglängden beräknas med ekv (16) och (17). Man finner då att vid samma medeltempereraturdifferens som vid vintertillståndet blir den dimensionerande slanglängden längre än vid isbildning i nollgradigt vatten. Annorlunda uttryckt: k-värde är mindre i varmt vatten utan isbildning än med isbildning i nollgradigt vatten.

Man får här det något paradoxala förhållandet att det för denna typ av värmelager är önskvärt att så fort som möjligt nå frystemperaturen i vattnet för att få lägsta möjliga slanglängd och därmed den lägsta kostnaden för småtvärmeväxlaren (underförstått att detta inte innebär en suboptimering).

4.3.2 Underkritisk temperatur

Fall 2: Vattentemperaturen ligger under den för den tillåtna istjockleken beräknade kritiska temperaturen. I normala fall kan man utgå ifrån att det rör sig om någon tiohals grad. Med kännedom om lagrets geometri och värmeflöden in till lagret från omgivande mark kan denna temperatur tillnärmelsvis uppskattas som en medeltemperatur T_m för den vattenvolym som omsluter de bottenplacerade småtvärmeväxlarna.

I ekv (32) och (33) sättes $z = z_t$, $s_1 = s_t$, $s_2 = s_{\text{max}}$ och $T = T_m$ och z_t beräknas. Med detta värde insatt i ekv (32) erhålls frystiden t_f som insättes i ekv (27), med $s = s_t$, varvid slanglängden dimensioneras. Både den så beräknade frystiden och slanglängden är större än för vintertillståndet (nollgradigt vatten).

Det är emellertid viktigt att observera att den nu beräknade frystiden är den vid $T = T_m$ maximalt tillåtna. Överskrids den så överskrider också den tillåtna istjockleken. Underskrider den så erhålls inte tillräcklig effekt. Å andra sidan om vattentemperaturen något är blir lägre än det för slanldimensioneringen beräknade T_m så måste vid dimensioneringstillståndet frystiden reduceras. I annat fall blir $s > s_t$ dvs större än tillåtet.
4.4 Dimensionering vid kritisk temperatur

Som framgår av det som sagts ovan är det vanskligt att bestämma rätt dimensioneringstillfälle ifall inte beräkningen av T_m är tillräckligt säker. En acceptabel lösning torde dock vara att basera dimensioneringen på den kritiska temperaturen. Den härvid beräknade slanglängden är tillräckligt lång för att täcka varierande effektbehov.

Slanglängden har i Fig B1.4 plottats mot vattentemperaturen för olika logaritmlska medeltemperaturdifferenser och effekter med följande utgångsdata:

Slang: Spiraldiameter $S = 0,8$ m, $D_i = 0,03$ m, $D_y = 0,036$ m, $K_\lambda = 0,2$ W/mK, $s_t = 0,003$ m, $t^c = 0$

Brine: 40 % glykol-vattenblandning, massflöde $m = 0,7$ kg/s

Skärningspunkterna mellan grafer för istäckt slang och isfri slang erhålls vid $T_0 = T_c$. För istäckt slang kan längder för $T_0 > T_c$ (den streckade delen) fysikaliskt inte förverkligas eftersom is inte kan bildas. För isfri slang är längder för $T_0 < T_c$ (streckad graf) likaså fysikaliskt orealistiska eftersom i detta temperaturområde is bildas. Men den vid $T_0 = T_c$ dimensionerade slanglängden synes därför vara ett optimum.

Eftersom även i detta fall den kortaste frystiden blir för lång då vatten-temperaturen vid maximalt effektbehov sjunker under T_c, så är det säkrast att frystiden dimensioneras för $T_0 = T_c = 0^\circ C$. Sedan kan man välja ett reglersystem som verkställer slangtömning antingen vid fastlagda tidsintervaller $t^b_p = t_f(T_m) + t_t < t_f(T_c) + t_t$ eller vid varierande, till vattentemperaturen anpassade intervaller:

$t^b_p = t_f(T_m) + t_t > t^a_p$.

5. INVERKAN AV SMUTSSKIKT

För en smältvärmeväxlarssläng av gummipolymer som mycket lätt släpper på ytan bildad och vid kontraktion krossad is är situationen annorlunda. Islossningen sker, beroende på dimensioneringen för övrigt, med 1 till 3 timmars intervall under flera månader. Det är därför rimligt att antaga att smutsskikt bindes till isen och på ett tidigt stadium helt avlägsnas. Smältvärmeväxlaren blir på detta sätt självrensande.
Värmeflöden mellan lager och omgivande mark
För några modulgeometrier har bl a tvådimensionella värmeflöden från och till omgivande mark numeriskt beräknats för fem årscyklor med hjälp av en enkel matematisk modell. Värmeflöden har beräknats separat för modulbotten och modulsidorna. Modulens längd kan väljas godtyckligt. Totala värmeflödet för en vald geometri erhålls genom summering av värmeflöden genom botten och sidorna.

De numeriska beräkningarna tar inte hänsyn till hörnfeffekt och förhållandena i området 0-0,9 m under markytan. I dessa beräkningar föreskrivs väggtemperaturen som under isperioden är typiskt 0°C i ofrust vatten. Det antagandet att väggtemperaturen är entydigt given går inte att tillämpa på områden nära markytan med den enkla beräkningsmodellen som används här. Går man med sina numeriska beräkningar för nära markytan så går värmeflöden mot oändlighet.

Att dessa 0,9 m inte kommer med i värmebilansen betyder, fysikaliskt sett, att kontaktytan mellan lager och mark är perfekt värmeisolerad. Ingen värme transporteras in eller ut.

I själva verket råder detta förhållande närmelsevis vintertid då isläggningen sker i lagret och tjälen tränger in i omgivande mark. Den laterala temperaturgradienten över begränsningsytan är förmögen liten i det marknära skiktet. Temperaturledningsförmågan är av samma storlekordning för frusen mark och is.

När tjälen gått ur marken och isen börjat smälta ändras dock situationen. Temperaturledningsförmågan för vatten är nästan en storleksordning mindre än för diverse jordarter. Sålange vattenrörelser är försumbara och is finns får man räkna med en lateral temperaturgradient in till lagret. Under sommaren, när all is är smält, kompenserar vattnets dåliga temperaturledningstävlig insättande egenkonvektion och vindforcerad konvektion (s k entrainment).
I denna förstudie har inga försök gjorts att kvantitativt uppskatta laterala värmestrommar i ytskiktet.

De numeriska beräkningarna har gjorts för hybridlagerplaceringar i följande material:

a. mo, värmeledningstal 1,86 W/m K
värmekapacitet $2,29 \times 10^6$ Ws/m3K

b. granit, värmeledningstal 3,5 W/m K
värmekapacitet $2,16 \times 10^6$ Ws/m3K

c. mo över snabbrörligt grundvatten på 5 m djup under markytan vars årsmedeltemperatur på detta djup i stockholmsstrakten uppskattats till 6,6°C med en sinusformad variation med amplituden 1°C. I förhållande till luftens max temperatur är fasförskjutningen ca 4 mån.

Beräkningarna har gjorts månad för månad för två olika långa isperioder med nollgradigt vatten under isen och två antagna max temperaturer sommartid i vatten. Det har antagits att lufttemperaturen den 15e dagen i månaden motsvarar månadens medeltemperatur. Vid simuleringsberäkningarna för hybridlagermodulen har aktuella dygnvärmeflöden genom lagrets sidor och botten vid rådande hybridlagertemperatur beräknats genom linjär interpolation.

I de följande tabellerna återges värmeflöden för år 5 som vid de numeriska beräkningarna erhållits.
Tabell 1

Sort: kWh/m²

Värmevinst: negativa värden

<table>
<thead>
<tr>
<th>Material Isperiod</th>
<th>Månad</th>
<th>Max.temp 15°C</th>
<th>Max temp 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Botten</td>
<td>Sida</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-6.42</td>
<td>-6.29</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-4.74</td>
<td>-4.83</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-2.90</td>
<td>-3.07</td>
</tr>
<tr>
<td>Mo</td>
<td>2</td>
<td>-2.25</td>
<td>-2.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.89</td>
<td>-1.95</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.67</td>
<td>-1.67</td>
</tr>
<tr>
<td>15.12-30.4</td>
<td>5</td>
<td>-1.50</td>
<td>-1.62</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.71</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.76</td>
<td>5.78</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.40</td>
<td>6.51</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.40</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-0.82</td>
<td>-0.95</td>
</tr>
</tbody>
</table>
Tabell 2

Sort: kWh/m². Värmevinst: negativa värden

<table>
<thead>
<tr>
<th>Material</th>
<th>Månad</th>
<th>Max.temp 15°C</th>
<th>Max temp 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Botten</td>
<td>Sida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isperiod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-6.44</td>
<td>-7.17</td>
</tr>
<tr>
<td>Mo</td>
<td>12</td>
<td>-4.88</td>
<td>-5.50</td>
</tr>
<tr>
<td>15.11-30.5</td>
<td>1</td>
<td>-2.42</td>
<td>-3.50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.42</td>
<td>-2.71</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.07</td>
<td>-2.23</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.84</td>
<td>-1.91</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.68</td>
<td>-1.82</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.55</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.74</td>
<td>6.69</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.51</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.57</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-0.70</td>
<td>-1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-8.69</td>
<td>-9.88</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-6.74</td>
<td>-7.89</td>
</tr>
<tr>
<td>Granit</td>
<td>1</td>
<td>-4.33</td>
<td>-5.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-3.48</td>
<td>-3.98</td>
</tr>
<tr>
<td>15.11-30.5</td>
<td>3</td>
<td>-2.00</td>
<td>-3.25</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.68</td>
<td>-2.78</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-2.45</td>
<td>-2.78</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.55</td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.95</td>
<td>8.67</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10.1</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.21</td>
<td>6.14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-0.88</td>
<td>-1.34</td>
</tr>
</tbody>
</table>
Tabell 3

Sort: kWh/m².
Värmevinst: negativa värden

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Isperiod</th>
<th>Månad</th>
<th>Max. temp 15°C</th>
<th>Max. temp 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Botten</td>
<td>Sida</td>
<td>Botten</td>
</tr>
<tr>
<td>Material</td>
<td>Månad</td>
<td>Max. temp 15°C</td>
<td>Max. temp 25°C</td>
<td></td>
</tr>
<tr>
<td>VZT</td>
<td>11</td>
<td>-2.91</td>
<td>-3.13</td>
<td>-4.34</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-6.33</td>
<td>-6.81</td>
<td>-10.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-4.63</td>
<td>-5.12</td>
<td>-7.21</td>
</tr>
<tr>
<td>IZ</td>
<td>2</td>
<td>-3.05</td>
<td>-3.41</td>
<td>-4.58</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.44</td>
<td>-2.68</td>
<td>-3.56</td>
</tr>
<tr>
<td>15.10-30.4</td>
<td>4</td>
<td>-2.08</td>
<td>-2.25</td>
<td>-2.97</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.30</td>
<td>-0.42</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.55</td>
<td>4.65</td>
<td>8.07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.17</td>
<td>6.38</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.78</td>
<td>5.99</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.79</td>
<td>3.90</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.69</td>
<td>0.68</td>
<td>1.62</td>
</tr>
<tr>
<td>Mo</td>
<td>11</td>
<td>-6.42</td>
<td>-7.16</td>
<td>-10.2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-4.75</td>
<td>-5.51</td>
<td>-7.41</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-2.91</td>
<td>-3.50</td>
<td>-4.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.26</td>
<td>-2.72</td>
<td>-3.27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.91</td>
<td>-2.23</td>
<td>-2.68</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.68</td>
<td>-1.91</td>
<td>-2.31</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.52</td>
<td>-1.82</td>
<td>-2.04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.70</td>
<td>0.28</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.78</td>
<td>6.68</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.43</td>
<td>7.51</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.43</td>
<td>4.44</td>
<td>7.87</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.79</td>
<td>1.06</td>
<td>-0.84</td>
</tr>
</tbody>
</table>
Tabell 4

Sort: kWh/m². Värmevinst: negativa värden

Modultyp: motsv tabell 3

<table>
<thead>
<tr>
<th>Material</th>
<th>Månad</th>
<th>Max.temp 15°C</th>
<th>Max temp 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Botten</td>
<td>Sida</td>
</tr>
<tr>
<td>Isperiod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granit</td>
<td>11</td>
<td>-3.85</td>
<td>-4.08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-8.47</td>
<td>-9.27</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-6.25</td>
<td>-7.23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-4.16</td>
<td>-4.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-3.34</td>
<td>-3.83</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.87</td>
<td>-3.21</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.48</td>
<td>-0.87</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.66</td>
<td>2.66</td>
</tr>
<tr>
<td>15.12-30.4</td>
<td>8</td>
<td>4.12</td>
<td>4.12</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.96</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-8.61</td>
<td>-9.86</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-6.45</td>
<td>-7.89</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-4.00</td>
<td>-5.12</td>
</tr>
<tr>
<td>Granit</td>
<td>2</td>
<td>-3.15</td>
<td>-3.97</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.68</td>
<td>-3.24</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.37</td>
<td>-2.77</td>
</tr>
<tr>
<td>15.11-30.5</td>
<td>5</td>
<td>-2.14</td>
<td>-2.78</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.82</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.99</td>
<td>8.67</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.92</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.94</td>
<td>6.17</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.05</td>
<td>-1.30</td>
</tr>
<tr>
<td>Material Isperiod</td>
<td>Månad</td>
<td>Max.temp 15°C</td>
<td>Max temp 25°C</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Botten</td>
<td>Side</td>
</tr>
<tr>
<td>Mo</td>
<td>11</td>
<td>-0.53</td>
<td>-0.43</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-5.94</td>
<td>-7.44</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-6.66</td>
<td>-6.01</td>
</tr>
<tr>
<td>(Grundvatten)</td>
<td>2</td>
<td>-6.13</td>
<td>-4.31</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-5.68</td>
<td>-3.74</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-5.27</td>
<td>-3.36</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-3.45</td>
<td>-0.49</td>
</tr>
<tr>
<td>15.12-30.4</td>
<td>6</td>
<td>2.27</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.03</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.68</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.96</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.04</td>
<td>6.02</td>
</tr>
</tbody>
</table>
Tabell 6

Sort: kWh/m² Värmevinst: negative värden

Modulltyp:

<table>
<thead>
<tr>
<th>Material</th>
<th>Månad</th>
<th>Max.temp 15°C</th>
<th>Max.temp 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Botten</td>
<td>Sida</td>
</tr>
<tr>
<td>Isperiod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-3.83</td>
<td>-4.62</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-8.47</td>
<td>-9.56</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-6.25</td>
<td>-7.01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-4.14</td>
<td>-4.30</td>
</tr>
<tr>
<td>Mo</td>
<td>3</td>
<td>-3.30</td>
<td>-3.18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.81</td>
<td>-2.59</td>
</tr>
<tr>
<td>15.12-30.4</td>
<td>5</td>
<td>-0.40</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.13</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.35</td>
<td>9.11</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.85</td>
<td>8.32</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.19</td>
<td>5.24</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.02</td>
<td>0.66</td>
</tr>
<tr>
<td>Granit</td>
<td>11</td>
<td>-2.88</td>
<td>-3.27</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-6.31</td>
<td>-6.95</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-4.62</td>
<td>-5.15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-3.04</td>
<td>-3.30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.42</td>
<td>-2.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.06</td>
<td>-2.03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.27</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.58</td>
<td>4.97</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.20</td>
<td>6.70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.81</td>
<td>6.20</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.82</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.72</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Värme- och kädfaktorer
1. **Uppskattning av värme- och köldfaktorer**

1.1 **Beteckningar**

- **VF** Värmefaktor
- **KF** Köldfaktor
- **PK** Kondensoreffekt (kW)
- **PA** Axelleffekt (kW)
- **PA** Återvinningseffekt (kW)
- **PF** Förlusteffekt (kW)
- **EM** Motorverkningsgrad (inkluderar motorvärmeförluster)
- **f** Förlustandel i EVP (inkluderar transformator-, distributions- och motor/kompressormässiga förluster), f = $\frac{VF_{EVP} \times PF}{PA} = 0,10 - 0,15$ (Glas, 19...)
- **EP** Dieselmotorns ekvivalenta "pannverkningsgrad", $e_p = 0,80 - 0,85$
- **EG** Generatorns ekvivalenta "pannverkningsgrad", $e_G = 0,80 - 0,85$
- **EI** Inducerad verkningsgrad (inkluderar alla irreversibiliteter i AVP), $e_i = 0,50-0,70$
- **T** Termodynamisk temperatur (K), indices: G = generator, V = värme källa, N = nyttovärme, B = brine, F = framledning, R = returledning

1.2 **DVP-värmefaktor**

Omräkning av EVP-värmefaktor till en ekvivalent DVP-värmefaktor görs med ekv (1)-(4).

$$VF_{EVP} = \frac{PK}{PA + PF}$$ \hspace{1cm} (1)

$$VF_{DVP} = \frac{(PK + PA) \times EM}{PA}$$ \hspace{1cm} (3)

$$PA/EM$$ är primärenergieeffekten

$$PA = (e_p - e_M) \times \frac{PA}{e_M}$$ \hspace{1cm} (4)
Efter insättning av (2) och (4) i (3) erhålls det sökta sambandet:

\[\text{VF}_{\text{DVP}} = e_M \times (\text{VF}_{\text{EVP}} - 1 + f) + e_p \] \hspace{1cm} (5)

Köldfaktorn uppskattas:

\[\text{KF}_{\text{EVP}} = \text{VF}_{\text{EVP}} - 1 + f \] \hspace{1cm} (6)
\[\text{KF}_{\text{DVP}} = \text{VF}_{\text{DVP}} - e_f \] \hspace{1cm} (7)

1.3 AVP-värmefaktor

En praktiskt användbar värmefaktor beräknas av uttrycket:

\[\text{VF}_{\text{AVP}} = e_G \times e_i \times \frac{T^*_{G} - T^*_V}{T^*_G} \times \frac{T^*_N}{T^*_N - T^*_V} \] \hspace{1cm} (1)

\[T^*_G = (T_{G\text{in}} - T_{G\text{ut}})/(\ln T_{G\text{in}} - \ln T_{G\text{ut}}) \] \hspace{1cm} (2)
\[T^*_V = (T_{B\text{in}} - T_{B\text{ut}})/(\ln T_{G\text{in}} - \ln T_{G\text{ut}}) \] \hspace{1cm} (3)
\[T^*_N = (T_{F} - T_{R})/(\ln T_{F} - \ln T_{R}) \] \hspace{1cm} (4)

Temperaturfallet över generatören antages \(T_{G\text{in}} - T_{G\text{ut}} = 20^\circ\text{C} \)
Köldfaktorn är \(\text{KF}_{\text{AVP}} = \text{VF}_{\text{AVP}} - e_G \) \hspace{1cm} (5)
Figurbilaga
STANDARD HYBRIDLAGEMODUL

\[B = 2.4 \text{ m} \]

\[H = 4 \text{ m} \]

\[h = 1 \text{ m} \]

\[16 \text{ m} \]

Fig 2.1

Fig 2.2
Fig 5.1

Q_G = global strålningsenergi
Q_{GR} = reflektad global strålning
Q_L = långvägig strålning från atmosfären
Q_{LH} = långvägig strålning från hybridlagersystem
Q_E = värmeuttag och -vinster genom avdunstning, resp kondensation
Q_c = värmeutbyte över is/vattenytan genom konduktion och konvektion
Q_{is} = latentvärme vid frysning, resp smältning
Q_b = värmeutbyte genom botten
Q_s = värmeutbyte genom sidan
Q_{VP} = värmeuttag
ΔQ = ändring av vattenmassans värmeenergi per ytenhet
Fig 5.2
Årsmedelvärde för bivalenta system

Fig 5.3
Fig 5.4

Fig 5.5

Max isflisskikt vid förlustfaktor 100 W/°C
MAX. ISFLISSIKT VID FÖRLUSTFAKTOR 150 W/°C

Fig 5.6

JORDVÄRME (% AV DYGSVÄRMEBEHOV)

Fig 5.7
STANDARDMODUL (SM) MED GRANNMODULER (GM)

A

B

D

GM 2

GM1 SM GM3

GM4

D

E

GM3

GM2

GM1 SM GM2

GM2

GM1 SM GM3

GM4

Fig. 5.8

MAX. ISFLISSIKT

Fig. 5.9
Fig 5.10

Fig 5.11
Fig 5.12

Fig 5.13
Fig 5.14
Fig B1.4
LITTERATUR

Bengtsson, L, 1975, Kompendium "Recipienthydraulik", Serie C, Nr 1, 1975 (Högskolan i Luleå, Avdelningen för Vattenteknik), kap 4

BFR-seminarium 1979, Tätning och isolering av behållare för säsongslagring av solvärme i vatten. Rapport G36:1980 (Statens råd för byggnadsforskning)

Collin, M, 1979, Internrapport, Avdelning för teknisk innovation, Teknoterm, Malmö

Green, CM, 1954, GB patentskrift 750576, Improvements in methods of making Ice and Apparatus therefore.

Morawetz, E, 1979 a, Hybrid-säsonglager för solvärme, VVS, Tidskrift för energi- och VVS-teknik, 1979, nr 6, s. 65, Stockholm

Morawetz, E, 1979 b, Sol som Värmekälla i värmepumpsystem, i b i d u m, 1979, nr 12, s. 57

Morawetz, E, 1979 c, Programstudie av vatten-is-jord-hybridlager för säsonglagring av solvärme (Statens råd för byggnadsforskning)
Morawetz, E, 1979 d, Patentansökan, Sätt vid småtvärmeväxling, nr 7908176-6

Platell, O, 1981, Sunstore. Lageranalyser. (Seminarium "Värmelagring i mark (Rörsystem)", Institutionen för matematisk fysik, LTH)

Solvärmeforskning, 1981, En utvärdering av statens insatser, DFE Rapport Nr 44, Delegationen för Energiforskning, s. 125-126, s. 303-312

Denna rapport hänför sig till forskningsanslag 790516-1 från Statens råd för byggnadsforskning till BEMO Projekt-service, Staffanstorp.