Antibiotic resistance in the environment:
a contribution from metagenomic studies

av Johan Bengtsson-Palme

Akademisk avhandling
Som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet, kommer att offentligen försvarsas i hörsal Arvid Carlsson, Medicinaregatan 3, Göteborg, torsdagen den 26 maj 2016, klockan 9.00.

Fakultetsopponent:
Professor Thomas Berendonk
Institüt für Hydrobiologie, Technische Universität Dresden, Tyskland

Avhandlingen baseras på följande delarbeten

I. Metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data
 Molecular Ecology Resources 15, 6, 1403–1414 (2015)

II. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation
 Bengtsson-Palme J, Larsson DGJ
 Environment International 86, 140–149 (2016)

III. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms
 Science of the Total Environment 553, 587–595 (2016)

IV. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics
 Manuscript

V. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India
 Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ
 Frontiers in Microbiology 5, 648 (2014)

VI. The human gut microbiome as a transporter of antibiotic resistance genes between continents
 Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H, Larsson DGJ, Johansson A
 Antimicrobial Agents and Chemotherapy 59, 10, 6551-6560 (2015)

VII. Antibiotic resistance genes in the environment: prioritizing risks
 Bengtsson-Palme J, Larsson DGJ
 Nature Reviews Microbiology 13, 369 (2015)
Antibiotic resistance in the environment: a contribution from metagenomic studies

Johan Bengtsson-Palme

Abstract
Antibiotic resistance accounts for hundreds of thousands of deaths annually, and its projected increase has made the WHO recognize it as a major global health threat. In the last decade, evidence has mounted suggesting that the environment plays an important role in the progression of resistance. The external environment acts as a source of resistance genes for human pathogens, but is also an important dissemination route allowing the spread of resistant bacteria between different environments and human populations. In this thesis, large-scale DNA sequencing techniques are used to gain a better understanding of the risks associated with environmental antibiotic resistance. A key task in this process is the quantification of the number of antibiotic resistance genes in different environments using metagenomics. However, equally important is to put this information into a larger perspective, by including, for example, taxonomic data, concentrations of antibiotics present, and the genomic contexts of identified resistance genes. This thesis presents a software tool – Metaxa2 – for improved taxonomic analysis of shotgun metagenomic data, which is shown to give more accurate taxonomic classifications of short read data than other tools (Paper I). It also provides theoretically predicted no-effect concentrations for 111 antibiotics (Paper II), and experimentally determined minimal selective concentrations for tetracycline (Paper III). Furthermore, resistance genes are quantified in two environments suggested to pose selective conditions for resistance: sewage treatment plants (Paper IV) and a lake exposed to waste from pharmaceutical production (Paper V). There was no clear evidence for selection of antibiotic resistance genes in sewage treatment plants, however other factors such as oxygen availability seem to have much stronger effects on these microbial communities, which may mask small selective effects of antibiotics and other co-selective agents. In contrast, in the lake subjected to industrial pharmaceutical pollution, resistance genes and mobile genetic elements were both diverse and abundant. Finally, Paper VI shows that travel contributes to the spread of resistance genes against several different classes of antibiotics between countries with higher resistance rates and Sweden. In Papers IV–VI, the genetic contexts of resistance genes were assessed through metagenomic assembly, showing how different resistance genes are linked to each other in different environments. Through these means, the thesis contributes knowledge about risk settings for development and transmission of antibiotic resistance genes, which can be used to guide risk assessment and management schemes to delay or reduce clinical resistance development.

Keywords: antibiotic resistance, metagenomics, bioinformatics, next generation sequencing, resistance selection

ISBN: 978-91-628-9759-8 (PDF)