Urlakning av järn ur arkeologiskt trä med dietylentriaminpentaättiksyra (DTPA): undersökning av koncentrationens påverkan på extraktionstakten

Åke Henrik-Klemens

Uppsats för avläggande av filosofie kandidatexamen i Kulturvård, Konservatorsprogrammet 15 hp
Institutionen för kulturvård Göteborgs universitet
2015:06
Urlakning av järn ur arkeologiskt trä med dietylentriaminpentaättiksyra (DTPA): undersökning av koncentrationens påverkan på extraktionstakten

Åke Henrik-Klemens

Handledare: Yvonne Fors
Extern handledare: Gunnar Almkvist, Sveriges lantbruksuniversitet Uppsala

Kandidatuppsats, 15 hp
Konservatorsprogrammet
Lå 2014/15
Iron Extraction from Archeological Wood: A Study on the Effect of Diethylene Triamine Pentaacetic Acid (DTPA) Concentration on the Extraction Rate

ABSTRACT

The accumulation of iron in waterlogged archaeological wood during burial and its later implications for conservation has been extensively researched in recent years. Methods utilizing high performance iron chelators for the dissolution and extraction of iron have been studied and diethylene triamine pentaacetic acid (DTPA) has proved to be effective in accomplishing this. This study aims to further explore extraction treatments with DTPA and to provide a bridge for the implementation of research into conservation practice. The problem is approached from the perspective of the conservator: how the treatment can be optimized to achieve the aims minimal intervention and maximum benefit as well as time and resource efficiency. The study has experimentally investigated at what levels of concentration of DTPA was most effective at dissolving and extracting iron. The experiment was carried out on wet untreated oak samples from the newly excavated Skaftö Shipwreck (late mediaeval) and on previously PEG-impregnated dry oak from the warship Vasa (1628). After a month of extraction the samples and solutions were analysed. Iron distribution depths before and after treatment were scanned using XRF. The amount of iron extracted in the DTPA-solutions and the remaining iron content in the samples after treatment were analysed with atomic absorption spectrometry. The results were conclusive: the concentration did not affect the effectiveness of the treatment. It appears as it is only effective to increase the concentration of DTPA to a certain level. After this level the extraction rate levels out and the reaction rate appears to become surface rather than diffusion controlled. The extraction of iron with DTPA was equally effective on both materials in this study.
Förord

Åke Henrik-Klemens

Göteborg 14/05/2015
Innehållsförteckning

Förord .. 7
Innehållsförteckning .. 1
1. Introduktion .. 3
 1.1 Bakgrund ... 3
 1.2 Tidigare forskning .. 4
 1.3 Problemformulering .. 5
 1.4 Syfte och målsättning Mål: .. 6
 1.5 Teoretiskt ramverk .. 6
 1.6 Avgränsningar .. 7
 1.7 Källkritik .. 7
 1.8 Definitioner ... 7
2. Metod, material och experiment ... 9
 2.1 Metod ... 9
 2.2 Provmaterial från Vasa och Skaftövraket ... 10
 2.3 Komplexkemi, järn och dietylentriamintenaåttiksyra (DTPA) 11
 2.4 Experiment ... 12
 2.4.1 Analys av extraherat och kvarvarande järn med atomabsorbtionsspektrometri (AAS) 13
 2.4.2 Analys av järnfördelning med skannande X-ray fluorescence (XRF) 14
3. Resultat ... 15
 3.1 Järninnehåll före och efter urlakning ... 15
 3.2 Extraktion ... 16
 3.3 Järnfördelning före och efter urlakning .. 17
4. Diskussion .. 19
 4.1 Extraktionseffektivitet och reaktionsförlopp ... 19
 4.2 Extraktion i vedens djupled ... 20
 4.3 Jämförelse av provmaterial ... 20
 4.4 Felkällor ... 21
5. Sammanfattning och slutsatser ... 23
 5.1 Kommentar angående implementering ... 23
 5.2 Framtida forskning ... 24
6. Källföreteckning ... 25
 6.1 Tryckta källor: ... 25
7. Figurföreteckning ... 29

Bilaga 1: Vedartsidentifikation av material från Skaftövraket
Bilaga 2: Umax-undersökning ...
Bilaga 3: Järnfördelning före och efter urlakning ...
Bilaga 4: Järninnehåll och extraktion ..
1. Introduktion

Svavel, syra och osynliga faror – efter att under utbildningen fått den diffusa hotbilden uppmålade var det omöjligt att värja sig mot det nautiska kulturavets kall. Och ett uppsatsämne blev till.

Arkeologiskt trä är likt allt arkeologiskt material historiska dokument, det vill säga att de har potential att berätta något om den tid i vilken de tillverkats och brukats. I denna studie undersöks material från ett senmedeltida handelsfartyg och från ett krigsskepp från den svenska Stormakstiden – fynd som kan berätta om teknologi och båtkonstruktion såväl som socialhistoria och handel. Skaftövraket och Vasa är båda forskningsobjekt men Vasa är även en av Sveriges största turistattraktioner; mångsidigheten hos detta material gör bevarandet viktigt både för vår förståelse av det mänskliga förflutna och vår plats i den likväl som för vår fantasi och för framtida generationers intresse. Bevarandet av vattendränkt arkeologiskt trä efter utgrävning är dock långtifrån enkelt och denna uppsats kommer behandla ett av de problem som uppstår i sammanband med ackumulation av oorganiskt material i virket.

1.1 Bakgrund

En förutsättning för att träföremål ska överleva den process i vilka de blir arkeologiska fynd är att förhållandena i dess deponi är sådana att de naturliga nedbrytningsvägar för trä avskärs eller kraftigt fördröjs.

En ytterligare biologisk faktor som på senare tid visats sig ha stor påverkan på vattendränkt arkeologiskt trä är svavelreducerande bakterier (SRB). SRB, så kallade sekundära tränedbrytande organismer, är beroende av att andra mikroorganismer tillgängliggör enklare kolhydrater i veden då de inte själva kan bryta ner frisk ved. Att SRB är svavelreducerande innebär att de nyttjar sulfat som förekommer i hav och sjöar som elektronmottagare istället för syre i sin metabolism vilket gör att de kan verka i helt syrefria miljöer. SRBs aktivitet har under Vasas 333 år på havsbottomen lett till en betydande ackumulering av reducerat svavel i hennes ved – svavel med potential att oxideras till svavelsyra i kontakt med luftens syre och bryta ner veden genom sur hydrolys (Björdal, 2000: 31; Fors, 2008: 22-23, 56-57, 90).

Järnackumulation i arkeologiskt trä är resultatet av penetration av järnjoner, naturligt förekommande i mark och vatten eller i form av kontaminering från närliggande järnföremål, som sedan bildat organiska komplex i veden, förenat sig med reducerat svavel eller fällts ut i form av rostpartiklar: järn (II) och (III) -oxider (Almkvist, 2008: 14; Fors, 2008: 65; Fors et al., 2012: 2530).

Järn bidrar till nedbrytandet av arkeologiskt trä genom möjliggörandet av autooxiderande kedjereaktioner där fria radikaler bildas (för initialsteg se ekv. 1) som bryter ner lignin, cellulosa, hemicellulosa och polyetylenglykol (PEG). Förekomsten av järn påskyndar även oxidationen av reducerat svavel på samma vis vilket kan leda till en ökad produktion av svavelsyra (Almkvist, 2008: 28; Fuzzi, 1978: 42).

\[Fe^{2+} + O_2 \leftrightarrow Fe^{3+} + OO^- \quad \text{[ekv. 1]} \]

Järnsalter kan även verka nedbrytande på veden genom att hindra penetrering av konsolideringsmedel och genom cykler av omkristalisering som med tiden kan spränga trästrukturen (Richards et al., 2010: 2).

Mycket av den forskning som nämnts i detta kapitel (Almkvist, 2008; Fors, 2008) har varit specifik för Vasa, men liknande ackumulerings- och nedbrytningsprocesser har uppmärksammats på många håll (Fors et al., 2012; MacLeod and Kenna, 1990; Wetherall et al., 2008; MacLeod et al., 1990) och att järn katalyserrad nedbrytningsprocesser i färskt trä är väl känt (Emery and Schroeder, 1974: 124).

1.2 Tidigare forskning

Med den ökade förståelsen för ackumuleringsprocesser av järn och svavel i Vasa och andra vrak och föremål samt dess skadliga påverkan på arkeologiskt trä har möjliga behandlingar börjat undersökas i större utsträckning än tidigare.

Försök att neutralisera syran i Vasa med ammoniakgas genomfördes 2010 (Fors and Richards: 51). Metoden neutraliserade den befintliga syran men visade sig även försätta järnjoner i ett mer passivt tillstånd. De tester som hittills utförts har varit lovande, en stor fördel är bland annat att materialet ej behöver våtas, men ytterligare tester bör utföras innan metoden kan tas i bruk (Fors and Richards: 51).

Ytterligare en metod som undersökts (Sandström et al., 2003b; Almkvist and Persson, 2006) är urlakning av järn med så kallade high performance iron chelators (HPIC): organiska molekyler som bildar mycket stabila koordinerade komplex med järn under ett brett pH-intervall. Genom att använda sig av denna metod vill man överbrygga problemet att järn (III) ofta bildar svår lösliga salter och komplex (Sandström et al., 2003b: 84).

Dessa två studier undersökte dietylentriaminpentaetansyra (DTPA) och etyldiaminhydroxyethylpentetaetansyra (EDDHMA) förmåga att urlaka järn samt det pH där de bildade mest stabila komplex. Med pH-diagram och jämviktskonstanter för de olika komplexen, sammanställda av Ahrland et al. (1990), beräknades och jämfördes de olika komplexbildarna med varandra. DTPA bildar mest stabila komplex mellan pH ≈ 6-9 och EDDHMA mellan pH ≈5-11 (Sandström et al., 2003b: 84; Ahrland et al., 1990: 107).

Båda undersökningarna påvisade möjligheten att urlaka järn med HPIC. Behandlingen är visserligen tidkrävande men stora mängder järn urlakades: i Almkvist och Perssons undersökning...
urlakades föremål i upp till 2½ år och 58-96% av föremålens järninnehåll extraherades.

I Almkvist avhandling (2008: 65-68) sammanställs av flera extraktionsexperiment (experiment på både ek och furu och med varierande koncentrationer av komplexbildaren) följande slutsatser:

- Stor variation i resultat beroende på materialets heterogenitet.
- Högre koncentration komplexbildare leder till högre extraktionstakt.
- Frekventa byten av extraktionsvätskan leder till högre extraktionstakt.
- Ingen tydlig skillnad i extraktionseffektivitet var synlig mellan EDDHMA och DTPA, trots EDDHMAs betydligt högre stabilitetskonstant.
- pH påverkar extraktionsgraden.

Problemet med järn i arkeologiskt vattendränkt trä och försök att behandla dessa har inte bara lyfts av forskarna kring Vasa utan även internationellt.

I Australia har extraktionsexperiment (Richards et al., 2010) utförts på mycket järnkontaminerade träklossar funna i skeppsvraket från ångfartyget Xantho. Experimenten testade en rad olika lösningar: diammoniumcitrat, natriumdiitionat, DTPA, EDDHMA, PEG. Den överlägset mest effektiva metoden var behandlingen med natriumditionit, ett reduceringsmedel som reducerar järn (III) till det mer lättlösta järn (II), och detta oavsett om den användes tillsammans med citrat. Undersökningen utredde inte hur reduceringsmedlet påverkade virket.

Studien kom fram till att elektrofores hade liten eller ingen effekt på extraktionseffektiviteten. Utöver detta ansågs natriumditionit mest effektivt följt av etylendiaminterASYRA (EDTA, en komplexbildare av vilken DTPA är ett derivat).

Behandlingar med HPIC verkar troligen inte nödvändiga på veden i större utsträckning än andra idag använda konserveringsåtgärder för vattendränkt arkeologiskt trä då behandlingen kan utföras vid nära neutrala förhållanden, men de långsiktiga effekterna av behandlingen bör utrönas (Almkvist, 2008: 67).

1.3 Problemformulering

De senaste åren började arkeologiskt trä i ångfartyg nästan varit framgångsrik i att identifiera övergripande metoder för urlakning men har haft svårare att besvara specifika frågor relevanta för praktiserande konservatorer.

En sammanställning gjord av Riksantikvarieämbetet (2014: 18) lyfter specifikt att det underlag som konservatorer använder för att planera urlakningsbehandlingar är bristande.

Ett område där tillräckligt underlag saknas är optimering av extraktion med komplexbildaren DTPA. Att pH, koncentration och temperatur på urlakningsvätskan påverkar extraktionstakten är
bevisat, men få entydiga eller specifika svar på hur processen kan effektiviseras med dessa faktorer finns att tillgå.

En ytterligare omständighet som försvårar implementerandet av metoden är att samtliga studier endast utförts på antingen torrt PEG-impregnerat eller vått icke-konserverat trä och i vilken utsträckning förloppet för dess två materialtyper överensstämmer är inte känt.

Kонcentration är en viktig faktor i utvecklandet av en effektiv urlakningsprocess då den påverkar diffusionstaken och därigenom reaktionshastighet och extraktionstaken. Koncentration kan alltså påverka den totala behandlingstiden, urlakningens effektivitet samt resursanvändandet.

En utökad förståelse för koncentrationens inverkan på urlakningsprocessen samt hur denna skiljer sig åt emellan konserverat och icke-konserverat trå har potential att effektivisera både behandlingen och resursanvändandet.

Frågeställning:

- Hur påverkar koncentrationen av DTPA i extraktionsvätskan extraktionseffektiviteten?
- Hur påverkar koncentrationen av DTPA i extraktionsvätskan extraktionen i vedens djupled?
- Hur skiljer sig extraktionsprocessen mellan torrt PEG-impregnerat och vått obehandlat arkeologiskt trä?

1.4 Syfte och målsättning

Mål:

- Konkreta förslag på hur urlakningsprocesser med DTPA kan optimeras.
- Skapa underlag för framtida forskning genom att undersöka eventuell relation mellan koncentration och extraktionstakt.

Undersökningen syftar till att skapa ytterligare underlag för konservatorer att ta hänsyn till i utformandet av konserveringsåtgärder. Förhoppningen är att koncentrationer över eller under en viss nivå ska kunna avvisas som mindre verkningsfulla respektive överflödiga.

Undersökningen syftar även till att skapa ett underlag för framtida studier genom att undersöka urlakningsprocessen och fastställa eventuell relation mellan koncentration och extraktionstakt.

1.5 Teoretiskt ramverk

Undersökningen är utformad som en metodutveckling där en konserveringsåtgärd utvärderas efter hur väl den löser ett problem, men naturvetenskapliga teorier och analysmetoder används för att upprätta experiment, måta dess utslag samt diskutera dess resultat.
1.6 Avgränsningar

Undersökningen är avgränsad till att endast använda koncentration som faktor. pH och temperatur kommer alltså inte undersökas även om de är intressanta för urlakningsprocessens optimerande.

Då experimentet utförs i liten skala och på autentiskt provmaterial kommer möjligheten att implementera resultaten i konserveringspraktik diskuteras med förståelsen att arkeologiskt trä är en mycket heterogen materialkategori och att möjligheten att dra allmänna slutsatser därav är begränsad.

1.7 Källkritik

En majoritet av källorna är kollegialt granskade och samtliga är möjliga att lokalisera. En övervägande stor del av litteraturen som beskriver ackumulerings- och nedbrytningsprocesser i arkeologiskt trä är från forskarlag i Sverige och Australien, men större spridning är svår att uppnå i ett fält av denna storlek. Litteratur som beskriver liknande processer i icke-arkeologiskt material är dock av mer spritt slag.

1.8 Definitioner

- **Järnoxider** – används som en sammanfattande term för järnoxider, -hydroxider och –oxidhydroxider i denna uppsats.
- **Komplexbildare** – Molekyl eller jon som används i syfte att bilda komplex med en metalljon eller atom.
- **Inaskning** – Metod som genom förbränning av organiskt material erhåller dess oorganiska innehåll.
- **Extraktionseffektivitet** – Andelen urlakat järn av materialets totala järninnehåll.
- **Extraktionstakt** – Extraktionseffektiviteten över tid.
2. Metod, material och experiment

I detta kapitel beskrivs metoden och de två huvudmaterialen i undersökningen: träproverna och komplexbildaren. Därefter ges en kortare introduktion till komplexkemi och kinetik och sist beskrivs utförandet av experimentet samt de följande analyserna.

2.1 Metod

Materialet delas upp i mindre provbitar: dels för att anpassa proverna till urlakningstiden, dels för att minimera användandet av autentiskt material och dels för att skapa ett större antal prover med en högre inbördes homogenitet. Materialets nedbrytningsgrad undersökas för att underlätta jämförelser både inom studien och med andra studier.

Då endast koncentration är parameter i denna undersökning regleras pH så att alla provomgångarna håller sig inom samma intervall. pH regleras till 7 ±0,5 som en avvägning mellan trämaterialets bevarande och FeDTPA-komplexets stabilitet. Detta ligger även inom buffertzonen för DTPA vilket innebär att förskjutningar i pH på grund av eventuell syrlighet i trämaterialet kommer ske trägt.

Inför denna studie genomfördes en rundfrågning bland konserveringsinstitutioner som hanterar arkeologiskt trä i Sverige och flertalet av dessa urlakade nyupptaget material med DTPA och med koncentrationer mellan 10 och 20 mM.

För att utreda nyttan med att använda högre koncentrationer än de idag vanligen brukade undersöks följande koncentrationer:

- En låg koncentration, 10 mM, för att jämföra dess effektivitet med högre koncentrationer.
- En hög koncentration, 90 mM, för att jämföra dess effektivitet med lägre koncentrationer.
- Ett värde mellan den höga och låga koncentrationen, 50 mM, för att fastställa eventuell relation mellan koncentration och extraktionstakt.

Provomgångarna duplicerar, det vill säga att två Vasa-prover och två prover från Skaftövraket urlakas i varje koncentration, för att öka undersökningens precision. Detta innebär att totalt tolv prover undersöks, sex från Vasa och sex från Skaftövraket.

För att undersöka extraktionstakt tas prover av lösningarna vid halvtid och avslut som analyseras på sitt järninnehåll. Att undersöka urlakningen efter halva tiden ger möjlighet att bestämma eventuell relation mellan tid och extraktionseffektivitet.

Efter avslutat urlakningsexperiment analyseras samtliga provbitar på sitt järninnehåll. Med denna information kan både det ursprungliga totala järninnehållet beräknas samt behandlingens effektivitet (procentuell urlakning) vilket gör det möjligt att jämföra effekten av de olika koncentrationerna.
Träprover från några urlakade prover samt från icke-urlakat referensmaterial analyseras på fördelningen av järn för att extraktionen i vedens djupled ska kunna undersökas.

2.2 Provmaterial från Vasa och Skaftövraket

Provmaterialet från Vasa är ett utsågat stycke ek (f-nr 5689 prov-nr 65884) med måtten 22,5 x 7,5 x 5,3 cm. I Vasamuseets databas beskrivs det som ett formstykke, det vill säga bearbetat trå utan identifikation. Stycket är impregnaterat med PEG och grundat på tidigare undersökningar (Håfors, 2001: 483) utgör PEG-innehållet troligen mellan 10-30 % av brädans totala torrvikt. Troligen rör det sig främst om PEG med molekylmassan 600 och 1500 g/mol men inga uppgifter om detta återfinns i museets databas (Sandström et al., 2003a: 20; Almkvist, 2008: 44).

Provmaterialet har inga krusor och inga järnutfällningar är heller synliga. I tvärsnitt syns likt materialet från Vasa en mörk gradient som troligen är resultatet av nedbrutet trä och kontaminering, gradienten dock är mer oregelbunden i formen. På ytan är virket mjukt och svamplikt men blir snabbt hårdare längre in. Umax-undersöknings av plankan (se Bilaga 2) bekräftar denna beskrivning (se fig. 1) med högre värdet (högt vatteninnehåll) i de yttre lagren.
2.3 Komplexkemi, järn och dietylentriaminpentaättiksyra (DTPA)

I denna undersökning används komplexbildaren DTPA då den visat sig bilda mycket stabila komplex med järn (III). DTPA har åtta funktionella grupper (se fig. 2), fem karboxylsyra-grupper och tre amin-grupper, med potential att fungera som ligander – funktionella grupper som agerar elektronparandenator (Lewis bas) gentemot metalljonen (för exempel se ekv. 3) (Ahrland et al., 1990: 103).

\[
COO^- + Fe^{3+} \rightarrow COOFe^{2+} \tag{ekv. 3}
\]

Ett mått på hur stabila komplex en komplexbildare bildar med olika metalljoner är komplexets stabilitetskonstant (se ekv. 4). För att exempelvis Fe^{III}DTPA-komplexets stabilitet är dess stabilitetskonstant i neutrala förhållanden \(\log K_{ML} = 28 \) medan Fe^{II}Citrat endast har \(\log K_{ML} = 3 \) (Ahrland et al., 1990: 103; Wolbers, 2003: 114).

\[
K_{ML} = \frac{[ML]}{[L][M]} \tag{ekv. 4}
\]

Ekvation 4: där M är metalljon och L komplexbildare.

Som tidigare beskrivet har det pH-värde där DTPA bildar stabilast komplex beräknats till pH ≈ 6-9. Över dessa värden hydrolyserar komplexet (en ligand substitueras mot en hydroxidjon) vilket sänker dess stabilitetskonstant avsevärt och vid lägre värden protoneras komplexbildaren (dess ligander tar upp vätejoner) vilket gör bindningen till järnjonen mindre stabil (Ahrland et al., 1990: 103; Cornell and Schwertmann, 1996: 272).

Stabilitetskonstanterna för ett komplex i lösning relaterar ofta till stabilitetskonstanterna för motsvarande ytkomplex. En hög stabilitetskonstant för komplexet i lösning kan alltså innebära att komplexbildaren även har en hög förmåga att försvaga metalljonens bindning till substratet (Stumm and Wollast, 1990: 60).

En ytterligare faktor som är viktig vid upplösning av järnprodukter är dess speciering: järnets oxidationstillstånd och vilken typ av förening den föreligger som påverkar direkt dess potential till upplösning (Schwertmann, 1991: 2). Om järnet är bundet till organiska föreningar i veden eller har fällt ut i form oxider spelar stor roll för upplösandet och således extraktionen.

Urlakningsprocessen av järn ur arkeologiskt trä med DTPA har i tidigare forskning (Almkvist and Persson, 2006: 682; Richards et al., 2010: 8) beskrivits som diffusionsstyrda. Detta innebär att processen som helhet styrs av diffusionen av DTPA in i veden och diffusionen av FeDTPA-komplexet ut ur veden.

2.4 Experiment

Materialet sågades upp i mindre provbitar, cirka 5x5x5 cm (se fig. 3); totalt tolv stycken, sex från Vasa och sex från Skaftövraket. Varje provbit registrerades med en kod baserad på dess ursprung, koncentration den ska urlakas i samt vilken omgång den tillhör: till exempel V.10.A (Vasa, 10 mM, provomgång A).

![Figur 3 Provmaterial från Vasa med provindelningen markerad i blått. Bilden illustrerar även provindelningen för proverna från Skaftövraket då dessa indelades på samma vis.](image)

Alla provbitar urlakades i samma förhållande ytarea/vätskevolym. Då alla prover hade samma ytarea lakades samtliga ut i 1 liter extraktionsvätska.

I undersökningen användes Na5-DTPA (503 g/mol) från AkzoNobel Dissolvine som levereras i en 40% lösning. Lösningens molaritet beräknades med hjälp av dess densitet till cirka 1 M vilket innebär att 10 mM är det samma som 0,4 viktprocent.
Tre lösningar, om fyra liter vardera, med tre olika koncentrationer DTPA blandades: 10 mM, 50 mM och 90 mM. Lösningarna reglerades med 2 M saltsyra till pH=7.

Urlakningen skedde i plastkärl med lock. Provbitarna placerades på en platå av stelt nylonnät så att alla sidor var exponerade.

pH mättes regelbundet. Vid pH-mätning rördes vätskorna ordentligt varpå ett mindre prov togs och undersöks, provet återfördes sedan till extraktionsvätskan. pH-värdet mättes med Metrohm 827 pH lab. Vid avsteg större än 0,5 enheter reglerades pH tillbaka till 7 med 2 M natriumhydroxid (vätskorna försurades endast).

Urlakning skedde under 28 dagar.

2.4.1 Analys av extraherat och kvarvarande järn med atomabsorbionsspektrometri (AAS)

För att utvärdera extraktionseffektiviteten analyserades mängden urlakat järn i extraktionsvätskan och mängden kvarvarande järn i provbitarna med atomabsorbionsspektrometri (AAS).

AAS bygger på principen att olika grundämnen absorberar ljus i olika våglängder. I AAS tillämpas detta genom att provet atomiseras, antingen i en flamma eller i plasma, varpå provet bestrålas med för det undersökta grundämnet lämplig våglängd. Det ljus som inte absorberas av de fria atomerna träffar en detektor och därigenom kan koncentrationen beräknas. AAS kan alltså användas för att analysera koncentrationen av ett visst grundämne i en vätska (Gigante and Schiavon, 2012: 134).

Provtagning och analys:

- 50 ml-prov togs av samtliga extraktionsvätskor vid halvtid (14 dagar) och avslut (28 dagar).
- Efter urlakning torkades samtliga prover i ugn på 105°C tills vitken förblev konstant varefter torrvikten bestämdes. Järninnehållet i de olika provbitarna relateras sedan till torrvikten vilket gör det möjligt att jämföra proverna.
- Inaskning: samtliga prover skars i småbitar och brändes i porslinsdeglar med lock på 600°C i två timmar i muffleugn; värmén ökades successivt. Därefter vägdes det förkolnade provet och finmalades till ett homogent pulver i en mortel. Från detta pulver avlägsnades cirka en femtedel som brändes i ytterligare tio timmar på 600 grader varpå det löstes upp i koncentrerad salpetersyra.
- Vätskeproverna preparerades (späddes till för analysen lämpliga koncentrationer) och järninnehållet analyserades i samarbete med Gunnar Almkvist på Institution för kemi och bioteknologi på SLU med atomabsorptionsspektrometern Perkin-Elmer AAnalyst 800. Det kvarvarande järnet i proverna beräknades sedan med de uppmätta koncentrationerna.

2.4.2 Analys av järnfördelning med skannande X-ray fluorescence (XRF)

For att undersöka järnfördelningen före och efter urlakning i provbitarna sågades fyra kärnor ur från variterna material: två urlakade prover och två icke-urlakade referensprover, som sedan skannades med X-ray fluorescence (XRF) (se Bilaga 3).

Samtliga kärnor är tagna i linje med varandra för att öka jämförbarheten (se fig. 4). Kärnorna sågades ut från materialets mitt och utåt och mäter ca 35x5x10 mm. De åtta kärnorna analyserades av Håkan Grudd på Institutionen för naturgeografi vid Stockholms universitet med det skannande XRF-systemet i Cox Analytical Systems Itrax Multi Scanner. Apparaturen har anpassats så att den kan skanna arkeologiskt trä och såldes kan ge penetrationsdjupet hos kontamineringsprodukter. Fördelningen järn mättes med ett intervall på 0,1 mm över provets bredsida.

Figur 4 Illustration över prover (de sex klossarna i mitten), referensprover (de två avlånga bitarna på var sida). Kärnor för XRF-skanning är markerade i blått. Bilden illustrerar både prövorna från Vasa och Skaftövretat då provtagningsen skedde på samma vis.
3. Resultat

I detta kapitel redovisas de resultat som uppmätts i experimentet. Fullständig data återfinns i Bilaga 3 och 4.

3.1 Järninnehåll före och efter urlakning

Totalt järninnehåll före urlakning beräknades genom att lägga ihop mängden urlakat järn med den kvarvarande mängden järn i proverna, vården som både mättes med AAS. Järninnehållet presenteras som mg järn/g trä då det möjliggör jämförelse mellan prover.

Samtliga prover från provomgång B, både från Vasa och Skaftövraket, innehåller avsevärt mer järn än provomgång A. Detta på grund av dessa provers större andel föremålsytan, det vill säga den yta som varit mest kontaminerad. Denna stora skillnad gör att prover inom samma provomgång (A eller B) bäst jämförs med varandra.

Som framgår i tabell 1 förekommer ingen tydlig skillnad i andelen urlakat järn mellan de olika koncentrationerna av DTPA. De prov som innehåller en högre andel järn har haft en procentuellt lägre urlakning, men det är inte relaterat till halten av komplexbildare.

Materialet från Skaftövraket har en mycket låg järnhalt med ett medelvärde på 0,33 mg/g trä.

<table>
<thead>
<tr>
<th>Prov</th>
<th>Järninnehåll före urlakning (mg/g trä)</th>
<th>Järninnehåll efter urlakning (mg/g trä)</th>
<th>Andel urlakat järn</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.10.A</td>
<td>5,40</td>
<td>1,36</td>
<td>75 %</td>
</tr>
<tr>
<td>V.50.A</td>
<td>6,42</td>
<td>1,53</td>
<td>76 %</td>
</tr>
<tr>
<td>V.90.A</td>
<td>7,20</td>
<td>2,08</td>
<td>71 %</td>
</tr>
<tr>
<td>V.10.B</td>
<td>15,28</td>
<td>7,13</td>
<td>53 %</td>
</tr>
<tr>
<td>V.50.B</td>
<td>16,25</td>
<td>5,47</td>
<td>66 %</td>
</tr>
<tr>
<td>V.90.B</td>
<td>18,11</td>
<td>6,62</td>
<td>63 %</td>
</tr>
<tr>
<td>S.10.A</td>
<td>0,24</td>
<td>0,07</td>
<td>70 %</td>
</tr>
<tr>
<td>S.50.A</td>
<td>0,23</td>
<td>0,05</td>
<td>77 %</td>
</tr>
<tr>
<td>S.90.A</td>
<td>0,26</td>
<td>0,07</td>
<td>72 %</td>
</tr>
<tr>
<td>S.10.B</td>
<td>0,38</td>
<td>0,10</td>
<td>73 %</td>
</tr>
<tr>
<td>S.50.B</td>
<td>0,44</td>
<td>0,10</td>
<td>77 %</td>
</tr>
<tr>
<td>S.90.B</td>
<td>0,42</td>
<td>0,09</td>
<td>78 %</td>
</tr>
</tbody>
</table>

Tabell 1: Provernas järninnehåll beräknades genom att lägga ihop mängden urlakat järn med den kvarvarande mängden järn i proverna, vården som både mättes med AAS. Järninnehållet presenteras som mg järn/g trä då det möjliggör jämförelse mellan prover.
3.2 Extraktion

Graf 1 och 2 presenterar järnhalten mätt med AAS i extraktionsvätskorna vid de två provtagningstillfällena.

Inom samma provomgång (A och B) finns ett svagt samband mellan högre koncentration DTPA och järn i lösningen.

Den absolut största delen järn lakades ur under de första två veckorna – till exempel lakades endast 1-2 mg/l ur de sista 14 dagarna ur materialet från Skaftövraket.

Graf 1 & 2 Koncentrationen järn i extraktionsvätskan efter 14 och 28 dagar uppmätt med AAS.
3.3 Järnfördelning före och efter urlakning

Resultaten från XRF-skanningen ges i *count rate* (se graf 3 & 4), det vill säga av detektorn mottagen emission per tidsenhet, utöver en sträcka. Resultaten är inte kvantifierade, men i och med det undersöka provernas homogena densitet kan resultaten i viss utsträckning jämföras kvantitativt både inom samma prov och mellan prover.

De två referensproverna (SV1 & SH1) från Skaftövraket uppvisar en snarlik järnfördelning: höga värden i den yttersta millimetern av veden som sedan snabbt avtar. Vid 2 mm har värdena åttadelats och från 4 mm har järninnehållet planats ut på en låg nivå.

De två profilerna från Vasas referensprover (VH1 & VV2) överensstämmer i stor utsträckning: mycket hög järnhalt i de yttre skiktorna som snabbt avtar och en platå näs vid cirka 6 mm. Denna bild överensstämmer i stora drag även med tidigare studier av kärrprover från Vasa (Fors, 2008: 54).

De urlakade provernas profiler (V.10.A % V.90.A) liknar referensprovernas med höga ingångsvärden som sedan avtar, dock med en nära halverad järnhalt. Den faktiskt skillnaden
mellan de två proverna är dock liten, den genomsnittliga count rate är 11697 och 11763 för prov V.10.A respektive V.90.A, det vill säga att mängden uppmätt järn i de två proven är närmst identisk.

Järnhalten i provmaterialet från Vasa är betydligt högre än prover från Skaftövraket och järnet har även trängt längre in.
4. Diskussion

I detta kapitel diskuteras resultaten utifrån problemformuleringen i inledande kapitel och undersökningens felkällor redovisas.

4.1 Extraktionseffektivitet ochreaktionsförlopp

Koncentrationen av DTPA i lösningen har inte haft en betydande påverkan på extraktionseffektivitet i undersökningen (se tabell 2). Denna bild stärks vid studier av den faktiska koncentrationen järn i urlakningsvätskorna efter urlakning (se graf 3 & 4). Här syns ett samband mellan högre koncentration DTPA och högre järnhalt i vätskan, men den är endast 17,5 % högre i snitt trots en niofaldigad koncentration.

En större mängd reaktant har inte lett till en nämnvärd större mängd produkt, det vill säga att en ökad tillgång på DTPA inte verkar ökat extraktionseffektiviteten. Detta innebär att diffusionen troligen redan förser processen med tillräckligt med DTPA och överskottet inte nyttjas. Detta oberoende av koncentrationen kan tyda på att reaktionshastigheten över en viss koncentration går från att vara diffusionsstyrd (att den kontinuerliga tillförseln av DTPA avgör hastigheten) till att styras av de två senare ytreaktionerna som beskrevs i avsnitt 2.2: succesi ligandsubstitution och avspjällning av FeDTPA-komplex (se figur 5). Det vill säga att DTPA med sin mycket höga stabilitetskonstant fort mättar de järnbärande ytorna och att förloppet sedan styrs av i vilken hastighet FeDTPA-komplexen bildas och kan avspjällas från ytan så att underliggande järn exponeras.

Ett intressant undantag i undersökningen är prov V.10.B. Detta är det enda prov som inte haft en flerfaldig högre stökiometrisk mängd DTPA än järn. Provet innehöll totalt cirka 15 millimol järn och urlakades med en liter 10 mM DTPA. Detta medföljde att extraktionsvätskans snabbt mättades: efter 14 dagar var mättnadsgraden 74 %. Den minskade tillgången på DTPA (endast cirka 2,5 mM DTPA var nu fritt att bilda komplex) återspeglar sig i extraktionseffektiviteten där endast 53 % av det ursprungliga järnet urlakades: en betydande skillnad på 13 procentenheter inom provomgången (övriga provomgångar skiljer sig endast max 7 enheter). I detta undantag har alltså förloppet återigen blivit beroende av koncentrationen. Då en mindre mängd DTPA har funnits tillgänglig har efter hand gränsen passerats för när fler järnbärande ytor blivit åtkomliga än det funnits DTPA att binda till dem.

Förklaringsmodellen för hur en ökad koncentration inte lett till en effektivare extraktion och varför en låg koncentration i förehållande till järninnehållet återigen gjort processen koncentrationsberoende är självklart mycket förenklad då den ej tar hänsyn till järnets speciering och fördelning, men förklaras väl resultaten i undersökningen.

<table>
<thead>
<tr>
<th>Diffusion</th>
<th>Ytreaktioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTPA</td>
<td>1. Bildande av ytkomplex</td>
</tr>
<tr>
<td></td>
<td>2. Ligandsubstitution</td>
</tr>
<tr>
<td>FeDTPA</td>
<td>3. Avspjällning av komplex</td>
</tr>
</tbody>
</table>

Figur 5 Illustration av urlakningsprocessen.
4.2 Extraktion i vedens djupled

XRF-skanningen av järnfördelningen i träkärnorna visar ingen skillnad mellan referensproverna och de urlakade proverna 4 och 6 mm in i veden för Skäftö- respektive Vasa-proverna. Detta innebär troligen att komplexbildaren inte trängde längre in i materialet.

Det förekom ingen skillnad i järnfördelning i djupled mellan de urlakade Vasa-proverna beroende av koncentration av DTPA (se graf 3). Detta stämmer överens med extraktionseffektiviteten där skillnaden mellan proven endast var 4 procentenheter.

Skillnaden i järnfördelning hos de urlakade proven från Skäftövraket är däremot större. Det prov som urlakats i den lägre koncentrationen har initialt fem gånger högre värden än den som urlakats i den högre koncentrationen. Detta återspeglar sig dock inte i extraktionseffektiviteten där proven endast skiljer sig 2 procentenheter åt.

Orsaken till skillnaden mellan de två materialen skulle kunna vara deras olika utgångslägen. Då proverna från Vasa var torra före urlakningen vättes dessa med extraktionsvätskan medan komplexbildaren diffunderade in i det redan vattendränkta Skäftö-materialet. Vasa-proverna fylldes alltså med den koncentrerede extraktionsvätskan medan det i Skäftö-proverna bildats en gradient av koncentrationer och därför har urlakningsförloppet troligen blivit mer tidskrävande.

Extraktionen har oavsett koncentration av DTPA lämnat kvar höga järnnivåer i Vasa-provens yttre skikt, något som troligen beror på dessa skikts innehåll av mer svårlossa järnföreningar. Denna bild stämmer överens med tidigare forskning (Almkvist, 2008: 52-53; Almkvist and Persson, 2011: 1495) som beskrivit fördelningen av tvåvärt järn i Vasas ved som en stigande gradient från ytan och inåt. Denna fördelning förklaras dels av det tvåvärda järns större löslighet och således större förmåga att diffundera in i materialet och dels av den efter bärgning ökade syretillgången vid skeppets yta som efterhand oxidérer järnet till svårlossa järn(III)föreningar.

I XRF-analyserna av Skäftö-proverna förekommer inga tydliga skillnader i järnfördelningen efter urlakning, något som skulle kunna antyda att samma typ av svårlossa produkter som återfanns i Vasa inte förekommer i samma utsträckning. Möjlig beror detta på att materialet förvarats fuktigt och kallt sen det togs upp 2005 och järnet har oxidérer i lägre utsträckning.

4.3 Jämförelse av provmaterial

Att PEG-impregneringen inte framstår ha saktat ner förloppet kan förklaras med att urlakningen av torrt material möjlig är effektivare då materialets väts med den koncentrerade extraktionsvätskan. Den barriär som PEG utgör kompenseras av en effektivare åtkomst av DTPA.

Metoden framstår dock som mindre effektiv när jämförendena i veden oxidérets av atmosfärens syre, något som främst drabbar konserverat torrt material. Som diskuterat i 4.2 förekommer det troligen en skillnad i oxidationstillstånd mellan proverna från Vasa och
Skaftövratet beroende på Vasas längre exponering mot syre. Men denna skillnad framstår enbart vara lokal och påverkan på den totala urlakningen endast marginell.

4.4 Felkällor

XRF. I tidigare undersökningar har noggrannheten för systemet beräknats till 10 % för kvantifierade resultat. (Fors, 2008: 55). En felkälla av denna storlek påverkar inte tolkningen av resultaten i denna undersökning då de olika profilerna främst används i jämförelse med varandra.

AAS. Systemet testades kontinuerligt mot standardlösningar och kalibrerades på nytt vid avsteg större än 0,1 mg/l. De lägsta koncentrationerna i undersökningen mättes (järrinnehållet i Skaftöproverna efter urlakning) till runt 1 mg/l vilket innebär att felkällan för dessa prover är cirka 10 %. Fel av denna storlek påverkar inte tolkningen av Skaftö-provernas extraktionseffektivitet nämnvärt. Felkällan för övriga prover är i undersökningen försumbar.

Inaskning och hantering. Då inaskningen skedde med lock och syretillförseln således är låg riskerar inget material att gå förlorat genom antändning (Jorhem, 1995: 212). Metoden förutsätter dock att provet blivit tillräckligt homogeniserat under finmalningen för att endast en del av provet ska behöva analyseras; i vilken utsträckning detta stämmer är svårt att avgöra.

Hanteringen av proverna skedde på ett sådant sätt att den kvantitativa överföringen skal vara så tillräcklig som möjligt: prover i pulverform har vägts in och delprover tagits och vätskeprover har överförts i sammanband med spädning så att kärl kunnat sköljas ur.

Extraktionsvätskor. Efter 14 dagar avlägsnades 50 ml från samtliga extraktionsvätskor till prover för AAS-analys. Denna förlust är intagen i beräkningarna av järnhalten i den sista analysen av extraktionsvätskorna, däremot har den minskade andelen DTPA inte kompenserats för, men dess påverkan på resultaten är troligen marginell.

pH-regleringens utspädande effekt är försumbar: som mest har 7 ml tillföerts.
5. Sammanfattning och slutsatser

Förekomsten av järn i arkeologiskt trä och dess implikationer för bevarande framstår idag som ett relativt nytt och diffust problem inom konservering. Arbete pågår både inom högskolan och bland praktiserande konservatorer för att bättre förstå problematiken och hur den bäst ska tacklas. Syftet med denna studie var att tillföra ytterligare underlag till denna process med förhoppningen att både effektiva och skonsamma metoder i framtiden ska utkrystallisera sig.

Uppsatseren genom genom experimentella metoder undersökt hur koncentrationen av komplexbildaren DTPA relaterar till optimerandet av behandlingen. För att undersökningen skulle få en bred utfördes experimentet på både nyutgrävt och tidigare konserverat material. De både provmaterialen delades upp i ett flertal mindre bitar som urlakades i tre olika koncentrationer DTPA i en månad.

Järnfördelningen före och efter urlakning analyserades sedan med skannade XRF och mängden urlakat och kvarvarande järn i proverna mätttes med AAS. Resultaten från dessa analyser var entydiga: koncentrationen av DTPA påverkade inte extraktionseffektiviteten i undersökningen.

En slutsats att dra från detta är att koncentrationen av DTPA endast påverkar extraktionseffektiviteten under en viss nivå. Över denna nivå förser diffusionen redan processen med tillräckligt med DTPA och överskottet nyttjas inte.

Detta innebär att processen troligen går från att vara diffusionstyrd till att i större utsträckning styras av de reaktioner som sker vid gränsytan: succesiv ligandsubstitution och avspjälkning av FeDTPA-komplex.

Avvikelser i extraktionseffektivitet visade sig endast när det stökiometriska förhållandet mellan DTPA och järn var förskjutet i järnets riktning. Då urlakades en betydligt mindre andel järn vilket skulle antyda att förloppet återigen blev beroende av koncentrationen.

Resultaten för hur koncentrationen av DTPA påverkar extraktion i vedens djupled är inte entydiga. De otydliga resultaten beror troligen på skillnaden i järnspeciering mellan de två provmaterialen samt skillnaden i hur DTPA har tagit sig in i materialet: våtning av de torra Vasa-proverna och diffusion in i de vattendränkta proverna från Skaftövraket.

Urlakning av järn med DTPA har varit lika effektivt för båda provmaterialen i undersökningen, detta trots deras olika komposition och förutsättningar.

5.1 Kommentar angående implementering

Undersökningen visar att mycket höga koncentrationer endast påverkar extraktionstakten marginellt. Troligen är det så att koncentrationer kring 10 till 20 mM räcker väl för att uppnå en effektiv urlakning även av större och mycket järnrika föremål, förutsatt att extraktionsvätskan byts när den börjar nära sig mättnad.

Om urlakningen sker i mindre kärl (dvs. med en mindre mängd vätska) eller om väteskebyten av olika skäl inte kommer kunna ske tillräckligt ofta skulle detta kunna kompenserats med en högre koncentration DTPA.

Urlakning av järn med DTPA framstår i undersökningen som lika effektiv vid urlakning av torrt PEG-impregnerat som icke-konserverat vått arkeologiskt trä. Det främsta hindret för urlakningen...
framstår vara när materialet befann sig i en syrrik miljö och järnet således oxiderat i en större utsträckning. Det oxiderade järnets olösighet gör det dock mindre benäget att katalysera nedbrytningsreaktioner och således är det ett tämligen litet bekymmer ur bevarandesynpunkt.

5.2 Framtida forskning

Ett uppslag för framtida studier är att mer utförligt testa den föreslagna hypotesen: att processen går från att vara diffusionsstyrd till att styras av ytreaktionerna vid en viss punkt. Detta görs förslagvis med en ännu större spridning av koncentrationer – till exempel 1, 10 och 100 mM.

Ett andra uppslag hade varit att närmare undersöka punkten för när denna övergång inträffar. Det skulle till exempel kunna ske genom att titta på det stökiometriska förhållandet mellan DTPA och järn som ju i denna undersökning dök upp som en eventuell faktor.

Ett tredje uppslag hade varit att undersöka om det är möjligt att få processen diffusionsstyrd igen genom att höja temperaturen på extraktionsbaden. Teoretiskt skulle detta kunna öka hastigheten på ytreaktionerna och således öka åtgången av DTPA och därigenom åter göra reaktionen diffusionsstyrd.

6. Källförteckning

6.1 Tryckta källor:

7. Figurförteckning

- Figur 1, sida 10: Illustration av Umax-värden.
- Figur 2, sida 10: Syran av DTPA.
 Källa: http://commons.wikimedia.org/wiki/File:Dtpa_structure.png
- Figur 3, sida 11: Illustration av provindelning.
- Figur 4, sida 13: Illustration av provtagning.
- Figur 5, sida 19: Illustration av urlakningsförlopp.
- Bilaga 1
 o Figur 1: Illustration av vedens olika riktningar. Källa: https://commons.wikimedia.org/wiki/File:PSM_V03_D334_Annual_ring_growth.jpg
 o Figur 2: Mikrograf i vedens tangentiella riktning.
 o Figur 3 Mikrograf i vedens transversella riktning.
- Bilaga 2
 o Figur 1: Illustration av Umax-värden.
- Bilaga 3
 o Figur 1: Illustration av provtagning.

Om inte annat uppges är författaren upphovsman.
Bilaga 1: Vedartsidentifikation av material från Skaftövraket

Snitt togs i vedens transversala och tangentiala riktning (se fig. 1), färgandes in med safranin och undersöcktes i ljusmikroskop på Institutionen för kulturvård vid Göteborgs universitet med hjälp av Charlotte Björdal. Snitten jämfördes med Vedanatomi (Mork, 1966) och Wood Anatomy of Central European Species (Schoch et al., 2004). De breda märgstrålarna (se figur 2) samt de karaktäristiska kärlen med tyloser (se figur 3) överensstämmer med ek (Quercus robur).

Figur 1 Tvärsnitt i stammens transversala riktning med den tangentiala skärning markerad i rött.

Figur 2 Mikrograf av tangentiellt snitt, X 100 förstoring. Märgstråle, en del av växtens transportsystem i horisontellt led, i tvärsnitt i bildens centrum.

Figur 3 Mikrograf av transversellt snitt, X 100 förstoring. Märgstråle i bildens centrum med kärl (transport i vertikalt led) med tyloser ("ballonger" som hindrar uttorkning vid skada) på varder sida.
Bilaga 2: Umaxundersökning

Vid uppdelning av Skaftö-materialet (se 2.4.1) togs ett 1 cm tjockt tvärsnitt för att bestämma vedens totala vatteninnehåll (Umax). Tvärsnittet delades upp i centimeterstora kuber. Proverna placerades i vattenbad i cyklist partiellt vaccuum, för att minimera luftfickor, varpå dess våtvikt bestämdes. Därefter torkades proverna i en ugn i 105°C tills vikten var konstant och torrvikten kunde bestämmas (se tabell 1). Vikten mättes med 0,001g säkerhet.

Umax beräknades enligt Skaar (1988: 7):

\[
\text{Våtvikt} / \text{Torrvikt} \times 100
\]

Undersökningen visar tydligt att nedbrytningen är störst i de yttre skikt av provmaterialet samtidigt som variationen inom materialet är stor (se fig. 1). Umax-värden för välbevarad ek brukar beräknas till 150% (McConnachie et al., 2008: 35) vilket innebär att veden varierar mellan måttligt till mycket nedbruten.

Medelvärde: 332,8

Figur 1 Tvärsnitt av provmaterial från Skaftövraket med värdena för Umax utskrivna
Tabell 1: Våtvikt, torrvikt och Umax-värden utskrivna i schematisk ordning (se figur 1)

<table>
<thead>
<tr>
<th>Våtvikt (g)</th>
<th>1,130</th>
<th>1,319</th>
<th>1,315</th>
<th>1,153</th>
<th>1,477</th>
<th>1,282</th>
<th>1,389</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,248</td>
<td>1,364</td>
<td>1,540</td>
<td>1,416</td>
<td>1,238</td>
<td>1,283</td>
<td>1,230</td>
</tr>
<tr>
<td></td>
<td>1,416</td>
<td>1,536</td>
<td>1,753</td>
<td>1,370</td>
<td>1,204</td>
<td>1,172</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td>1,672</td>
<td>0,808</td>
<td>1,360</td>
<td>1,310</td>
<td>1,157</td>
<td>1,451</td>
<td>1,220</td>
</tr>
<tr>
<td>Torrvikt (g)</td>
<td>0,160</td>
<td>0,261</td>
<td>0,260</td>
<td>0,228</td>
<td>0,339</td>
<td>0,301</td>
<td>0,547</td>
</tr>
<tr>
<td></td>
<td>0,233</td>
<td>0,275</td>
<td>0,372</td>
<td>0,320</td>
<td>0,285</td>
<td>0,368</td>
<td>0,367</td>
</tr>
<tr>
<td></td>
<td>0,356</td>
<td>0,351</td>
<td>0,541</td>
<td>0,333</td>
<td>0,269</td>
<td>0,241</td>
<td>0,260</td>
</tr>
<tr>
<td></td>
<td>0,062</td>
<td>0,110</td>
<td>0,239</td>
<td>0,292</td>
<td>0,088</td>
<td>0,086</td>
<td>0,161</td>
</tr>
<tr>
<td>Umax</td>
<td>606,3</td>
<td>405,4</td>
<td>405,8</td>
<td>405,7</td>
<td>335,7</td>
<td>325,9</td>
<td>153,9</td>
</tr>
<tr>
<td></td>
<td>435,6</td>
<td>396,0</td>
<td>314,0</td>
<td>342,5</td>
<td>334,4</td>
<td>248,6</td>
<td>235,1</td>
</tr>
<tr>
<td></td>
<td>297,8</td>
<td>337,6</td>
<td>224,0</td>
<td>311,4</td>
<td>347,6</td>
<td>386,3</td>
<td>361,5</td>
</tr>
<tr>
<td></td>
<td>497,1</td>
<td>453,4</td>
<td>297,7</td>
<td>329,5</td>
<td>240,3</td>
<td>233,6</td>
<td>288,5</td>
</tr>
<tr>
<td></td>
<td>625,8</td>
<td>212,7</td>
<td>218,0</td>
<td>259,6</td>
<td>435,2</td>
<td>481,4</td>
<td>334,8</td>
</tr>
</tbody>
</table>
Tabell 1: Prover som analyseras med XRF

<table>
<thead>
<tr>
<th>Prov</th>
<th>Skepp</th>
<th>Koncentration DTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.10.A</td>
<td>Vasa</td>
<td>10 mM</td>
</tr>
<tr>
<td>V.90.A</td>
<td>Vasa</td>
<td>90 mM</td>
</tr>
<tr>
<td>S.10.A</td>
<td>Skaftövraket</td>
<td>10 mM</td>
</tr>
<tr>
<td>S.90.A</td>
<td>Skaftövraket</td>
<td>90 mM</td>
</tr>
</tbody>
</table>

Utöver proven i tabell 1 analyseras fyra referensprover, två från varandra skepp. Alla prover är tagna i linje med varandra (se figur 1) för att öka jämförbarheten. Kärnorna sågades ut från materialets mitt och utåt och mäter ca 35x5x10 mm.

Figur 1 Illustration över prover (de sex klossarna i mitten), referensprover (de två avlånga bitarna på var sida). Kärnor för XRF-skanning är markerade i blått. Bilden illustrerar både proverna från Vasa och Skaftövraket då provtagningen skedde på samma vis.

Kärnorna analyserades av Håkan Grudd på Institutionen för naturgeografi vid Stockholms universitet med X-ray fluorescence systemet i Cox Analytical Systems Itrax Multi Scanner. Apparaturen har anpassats så att den kan skanna arkeologiskt trä och såldes kan ge penetrationsdjupet hos kontamineringsprodukter. Fördelningen järn mättes med ett intervall på 0,1 mm över provets bredsida. Resultaten ges i count rate, det vill säga av detektor mottagen fluorescense per tidsenhet, utöver en sträcka. Resultaten är inte kvantifierade i koncentrationer, men i och med det undersökta provernas homogena densitet kan resultaten i viss utsträckning jämföras kvantitativt både inom samma prov och mellan prover.
Järnföredling med röntgenbild av provet som bakgrund

Provens ytterkant är till vänster i grafen. X-axelns värden är koordinater men anges i millimeter och Y-axelns i count rate.
Bilaga 4: Järninnehåll och extraktion

<table>
<thead>
<tr>
<th>Prov</th>
<th>Torvikt (g)</th>
<th>Järninnehåll efter urlakning (g)</th>
<th>Provtagning efter 14 dagar Järn i urlakningsvätskan (mg/l)</th>
<th>Total mängd järn (g)</th>
<th>Provtagning efter 28 dagar Järn i urlakningsvätskan (mg/l)</th>
<th>Total mängd järn (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.10.A</td>
<td>66,735</td>
<td>0,090911</td>
<td>215,8</td>
<td>0,2158</td>
<td>283,8</td>
<td>0,26961</td>
</tr>
<tr>
<td>V.10.B</td>
<td>56,355</td>
<td>0,401693</td>
<td>411,6</td>
<td>0,4116</td>
<td>483,6</td>
<td>0,45942</td>
</tr>
<tr>
<td>V.50.A</td>
<td>70,852</td>
<td>0,108258</td>
<td>283,35</td>
<td>0,28335</td>
<td>364,8</td>
<td>0,34656</td>
</tr>
<tr>
<td>V.50.B</td>
<td>55,02</td>
<td>0,301108</td>
<td>488</td>
<td>0,488</td>
<td>624</td>
<td>0,5928</td>
</tr>
<tr>
<td>V.90.A</td>
<td>68,23</td>
<td>0,141867</td>
<td>313,8</td>
<td>0,3138</td>
<td>367,5</td>
<td>0,349125</td>
</tr>
<tr>
<td>V.90.B</td>
<td>54,703</td>
<td>0,36194</td>
<td>428,5</td>
<td>0,4285</td>
<td>662</td>
<td>0,6289</td>
</tr>
<tr>
<td>S.10.A</td>
<td>41,312</td>
<td>0,002987</td>
<td>5,7</td>
<td>0,0057</td>
<td>7,29</td>
<td>0,006926</td>
</tr>
<tr>
<td>S.10.B</td>
<td>39,757</td>
<td>0,004153</td>
<td>9,93</td>
<td>0,00993</td>
<td>11,55</td>
<td>0,010973</td>
</tr>
<tr>
<td>S.50.A</td>
<td>42,017</td>
<td>0,002251</td>
<td>6,45</td>
<td>0,00645</td>
<td>7,75</td>
<td>0,007363</td>
</tr>
<tr>
<td>S.50.B</td>
<td>38,84</td>
<td>0,004003</td>
<td>11,72</td>
<td>0,01172</td>
<td>13,85</td>
<td>0,013158</td>
</tr>
<tr>
<td>S.90.A</td>
<td>41,689</td>
<td>0,003082</td>
<td>7,23</td>
<td>0,00723</td>
<td>8,26</td>
<td>0,007847</td>
</tr>
<tr>
<td>S.90.B</td>
<td>40,689</td>
<td>0,003719</td>
<td>12,72</td>
<td>0,01272</td>
<td>13,99</td>
<td>0,013291</td>
</tr>
</tbody>
</table>