Analysis of Binding Events and Diffusion in Living Cells

Markus Elsner

Institute of Biomedicine
Department of Medical and Clinical Genetics
Sahlgrenska Academy
Göteborg University
2006

Markus Elsner
Institute of Biomedicine
Department of Medical and Clinical Genetics
Sahlgrenska Academy
Göteborg University
Sweden
Göteborg, Sweden, 2006
Für meine Eltern
Und
Für Christiane
"The world is full of obvious things which nobody by any chance ever observes."
Sherlock Holmes in The Hound of the Baskervilles
by Sir Arthur Conan Doyle
List of Publications

This thesis is based on the following publications, which are referred to in the text by their roman numerals:

III. Elsner, M., Nilsson, T. and Weiss, M. Evidence for Golgi localization by oligomerization - kin recognition revisited
 In manuscript
Abstract .. 7
Abbreviations ... 8
Aims and Scope ... 9
Introduction ... 10
 4.1 The Secretory Pathway - An Overview ... 10
 4.2 Protein Transport from and to the Golgi Apparatus 11
 4.3 Intra Golgi Transport .. 13
 4.4 The making of a COPI vesicle .. 18
 4.5 The localisation of Golgi resident proteins .. 24
 4.6 Diffusion and Biology .. 28
 4.7 Measuring Diffusion with Fluorescence Correlation Spectroscopy 38
 4.8 Biological consequences of molecular crowding and anomalous
diffusion .. 44
Results and Discussion .. 51
 5.1 Paper 1: Spatiotemporal dynamics of the COPI vesicle machinery 51
 5.2 Paper 2: Anomalous Subdiffusion Is a Measure for Cytoplasmic
Crowding in Living Cells .. 54
 5.3 Paper 3: Evidence for Golgi localization by oligomerisation - kin
recognition revisited .. 57
Acknowledgements ... 61
References ... 64
1 Abstract

Analysis of Binding Events and Diffusion in Living Cells

Markus Elsner

Institute of Biomedicine, Department of Medical and Clinical Genetics, Sahlgrenska Academy, Göteborg University, Medicinaregatan 9A, 413 90 Göteborg

It is well known that diffusion is the main mode of transport in living cells, but the consequences of diffusion in a complex cellular environment are not generally appreciated. In this thesis, we have investigated several aspects of how diffusion properties influence the observability of cellular binding kinetics and how they can be used to obtain information about the environment of proteins and other molecules.

First, the binding kinetics of the coat protein I (COPI) vesicle machinery were investigated. Three proteins are mainly responsible for the formation of COPI vesicles; coatomer, Arf1 and ArfGAP1. From biochemical studies, it was expected that Arf1 and coatomer would show similar binding kinetics to the Golgi membranes. This was tested \textit{in vivo} using GFP constructs in “fluorescence recovery after photobleaching” (FRAP) experiments. Surprisingly, the recovery constant of coatomer was twice that of Arf1. We could show that this did not reflect a difference in the actual binding kinetics, but difference due to a diffusion-limited exchange of coatomer between the cytosol and the membrane. For this we measured the diffusion coefficient of all three proteins with fluorescence correlation spectroscopy (FCS). We found that Arf1 and ArfGAP1 are highly mobile in the cytosol, whereas coatomer diffuses 5–10 times more slowly than expected. Using computer simulations we could show that the slow diffusion of coatomer translates into a two times slower FRAP recovery than expected for the non-diffusion limited case.

Second, the unexpectedly slow diffusion of coatomer led to the idea of investigating the diffusion properties of inert tracers in the cytosol of living cells. Fluorescently labelled dextrans showed normal diffusion in water, but strong anomalous subdiffusion when microinjected into cells. It could be ruled out that large scale-structures like the cytoskeleton or the endoplasmic reticulum were responsible for the observed subdiffusion. Instead the emergence of subdiffusion could be attributed to macromolecular crowding using computer simulations and \textit{in vitro} measurements in an artificially crowded solution. Anomalous diffusion caused by macromolecular crowding can be used as a measure for the extent of crowding for a given solution.

In the third part of this thesis the focus is shifted from diffusion in the cytosol to diffusion in the membrane. Previously, it had been observed in FCS experiments that Golgi resident transmembrane proteins show anomalous subdiffusion. Since no consistent explanation for this phenomenon had been provided previously, we investigated whether the formation of dynamic oligomers can explain the observed subdiffusion. We constructed a computer model for two-dimensional diffusion of particles that participate in oligomerisation reactions. It could been demonstrated that for the short time scales relevant for FCS experiments, anomalous diffusion can be observed. For long times the diffusion crossed over to normal diffusion. The extent of anomality and the crossover time depended on the equilibrium constant of the binding, the valence of the monomers and on the kinetics of the binding reaction.

Keywords: COPI, Golgi, diffusion, glycosyltransferases, sorting, molecular crowding
2 Abbreviations

Arf1 ADP Ribosylation Factor 1
ArfGAP1 ARF-GTPase activating protein1
BFA Brefeldin A
BSA Bovine Serum Albumin
COPI Coat Protein I
COPI) Coat Protein II
CHO Chinese Hamster Ovary
CTRW Continuous Time Random Walk
DAG Diacylglycerol
ER Endoplasmic Reticulum
EM Electron Microscopy
ERGIC ER-Golgi-Intermediate-Compartment
FCS Fluorescence Correlation Spectroscopy
FITC fluorescein isothiocyanate
FRAP Fluorescence Recovery after Photobleaching
FRET Fluorescence Resonance Energy Transfer
GDP Guanidine diphosphate
GFP Green Fluorescent Protein
GlcNAc N-acetylglucosamine
GTP Guanidine triphosphate
GTPγS Guanosine 5’-(3-O-thio)triphosphate
MSD Mean Square Displacement
MW Molecular weight
RFP Red Fluorescent Protein
TGN Trans-Golgi Network
VTC Vesicular Tubular Cluster
VSVG Vesicular Stomatitis Virus Glycoprotein
3 Aims and Scope

In the work presented in this thesis we have investigated the nature and role of diffusion processes in cellular biochemistry and live cell experiments. It is centred on processes involved in vesicle formation and sorting in the Golgi apparatus, but the issues raised and discussed have implications for all fields of cell biology.

In two publications and one manuscript, three different aspects of diffusion in living cells have been investigated. First, the influence of slow diffusion on the analysis of binding events in “Fluorescence Recovery after Photobleaching” (FRAP) experiments is examined. Second, basic properties of the cytosol concerning the diffusion of macromolecules are explored. And last, it is shown how the formation of dynamic oligomers changes the diffusive behaviour of membrane proteins.

The thesis is divided in three parts. In the introduction I will first give an overview of the cell biology of the secretory pathway, the Golgi apparatus and the mechanism of COPI vesicle formation. This is followed by an outline of the laws governing diffusion and deviations from normal diffusion that are relevant to biology.

It is concluded with an overview of the effects of the crowded nature of cytosol and anomalous diffusion on cellular biochemistry.

In the second part, the results are summarized and discussed.

In the last part the results are presented in detail in the two publications and the manuscript.
4 Introduction

4.1 The Secretory Pathway - An Overview

The existence of an elaborate system of endomembranes is one of the hallmarks of the eukaryotic cell. While there are numerous organelles with a distinct set of proteins, the production of those proteins is centralized to the endoplasmic reticulum (ER). All proteins destined for intracellular organelles (with the exception of proteins of the mitochondria, chloroplasts and possibly peroxisomes), the plasma membrane or for the extracellular space are synthesized by membrane-bound ribosomes attached to the rough ER. After insertion into the ER membrane or translocation into the ER lumen, the proteins are subjected to quality control before beginning their journey toward their final destination. The quality control machinery ensures that damaged or improperly folded proteins are retained in the ER or degraded.

Besides housing the quality control machinery, the ER is also a major site post-translational modification. For example, the enzymes mediating the formation of disulfide bridges, the hydroxylation of proline residues or the initiation of N-linked glycosylation are located in the ER. The ER also contains a large population of molecular chaperones, that assist protein folding and assembly.

Next, proteins are transported to the Golgi apparatus. Here an extensive machinery of glycosylation enzymes completes N-linked glycosylation and initiates and extends O-linked oligosaccharides. In addition to glycosylation, the Golgi apparatus is also an major site of protein sulfation and phosphorylation.

More downstream in the secretory pathway, especially in the trans-golgi network and secretory granules, most of the proteolytic processing of proteins occurs.
Introduction

To a lesser extent the synthesis and modification of lipids is also centralized to specific organelles in the secretory pathway. The biosynthesis of cholesterol and ceramide is strictly localized to the membranes of the ER. The main site of production for sphingomyelin is the lumen of the *cis*-Golgi. The synthesis of glycosylceramide occurs on the cytosolic side of the early Golgi apparatus, while the subsequent glycolysation reactions are catalyzed by enzymes with an active site on the luminal face of the Golgi membranes \(^4,8,9\).

For phospholipids the picture is more complex. The majority of the bulk phospholipids like phosphatidylcholin, phosphatidylethanolamine phosphonisotiol and phosphatidylserine are synthesized on the cytosolic side of the ER \(^10\). While the initial synthesis of those lipids is centralized, they can participate in complicated regulatory networks in other parts of the cell. A good example is the complex and dynamic role of phosphoinositol species in almost all organelles of the cell (for review see \(^11-13\)).

4.2 Protein Transport from and to the Golgi Apparatus

The localization of protein and lipid production and modification to specialized organelles makes it necessary to have mechanisms to transport proteins and lipids between the different organelles of the cell. The transport of newly synthesised proteins and lipids can be divided in three distinct stages. First, proteins (and lipids, but I will mainly concentrate on proteins here) leave the ER and are transported to the Golgi apparatus. Then they pass through the Golgi and are sorted to their respective destinations in the *trans* Golgi network. In the following, I will very briefly discuss ER-Golgi and Post-Golgi transport and then focus on intra-Golgi transport.

The transport of proteins from the ER to the Golgi apparatus depends on small vesicles (“COPII vesicles”) formed by the concerted action of the small GTPase Sar1p, the protein complexes Sec23/24 and Sec13/31 and the membrane-bound guanidine exchange factor Sec 12. Upon the exchange of
Introduction

GDP to GTP in Sar1p by Sec12, Sar1p binds to the membrane. Sar1 first recruits the Sec23/24 complex from the cytosol to the membrane, which is followed by the binding of Sec13/3114,15. Sar1p has the ability to deform membranes on its own, and is essential for the final pinching off of the vesicles, but is unable to produce vesicles by itself16. The coat protein complexes Sec23/24 and Sec13/31 have three distinct functions. (1) They participate in cargo capture. Some cargo protein interact directly or via adaptors with the coat proteins, especially with the Sec23/24 complex17-20. (2) Sec23 accelerates the hydrolysis rate of Sar1p drastically, a process that is further enhanced by Sec13/3121,22. (3) The Sec13/31 complex has an important role in cross-linking the individual components to ensure the formation of a localised bud on the membrane23.

The exit from the ER via COPII vesicles is restricted to special subdomains on the membrane, called ER exit sites24,25. After they pinched off from the donor (i.e. ER-) membrane, the vesicles uncoat when Sar1p hydrolyses GTP. The uncoated vesicles have the ability to undergo homotypic fusion and to form larger transport carriers26. This is thought to give rise to the ER-Golgi-Intermediate-Compartment (ERGIC) that can be seen between the \textit{Cis}-Golgi and the ER. The ERGIC is a tubular membrane cluster that in not directly connected with either the ER or the Golgi apparatus27-29. So far, it is not clear if all proteins pass through the ERGIC and if and how the homotypic fusion of the COPII vesicles occurs \textit{in vivo}. From the ERGIC, ER-resident proteins and proteins that cycle between the ER and the Golgi/ERGIC are retrieved to the ER30,31.

The final step of the transport from the ERGIC to Golgi apparatus is controversial. The most likely sequence of events is the following: Parts of the ERGIC compartment are transported along microtubules towards the \textit{cis}-Golgi. During the transport they fuse with vesicles from the Golgi. When the ERGIC
membranes reach the Golgi, they form a new cis-cisterna and drive Golgi maturation (see next chapter). For a more in depth discussion of ER exit and ER-to-Golgi transport see the following excellent review articles.

4.3 Intra Golgi Transport

The Golgi apparatus consists of stacks of flat membrane cisternae (cf. Figure 1). Each cisterna is about 2-3 µm long and about 100 nm thick. The number of cisternae varies from cell type to cell type, but is usually between 5 and 8. The membranes of neighbouring cisternae are in extremely close proximity. In mammalian cells the stacks align parallel to each other and form one compact juxtanuclear Golgi ribbon. Under most conditions, the cisternae within the same stacks are not interconnected while equivalent cisternae of neighbouring stacks are connected through fenestrated membrane connections. The two trans-most cisternae are highly fenestrated and less flat then the medial- and cis-cisternae. The surface area of all cisternae is similar, while the volume shows a variation of about 50% with cis-most and trans-most cisternae having the largest volume. Close to the rims of the cisternae, one usually detects small vesicles with a diameter of about 70 nm. All cisternae also show budding profiles. Most are located at the rim of the cisternae or on the edges of holes. Most buds appear to have a protein coat. The ER is closely associated with the Golgi at all levels, but no direct membrane connections can be found.

The Golgi has a large population of resident proteins. Almost all of them have a least one trans-membrane domain. In contrast to the ER the Golgi has no large population of resident luminal proteins. Interestingly, the resident proteins are not distributed evenly over the Golgi. Glycosylation enzymes for example show a gradient like distribution with a preference for one or two cisternae. Other gradients (like a increasing cholesterol content or pH have been suggested to form over the Golgi).
Figure 1: Three dimensional reconstruction of a single Golgi stack from EM-tomography. The individual cisternae are shown in different colours. Picture from Dr. Markus Grabenbauer, methods described in39.

A fascinating aspect of the Golgi apparatus is its high dynamic stability. It can sustain its integrity under conditions ranging from no membrane flux at all to being flooded with a pulse of a temperature sensitive mutant of the Vesicular Stomatitis Virus Glycoprotein (VSVG)44 and a 1000-fold over expression of resident proteins45-47, but disintegrates within minutes upon the addition of the drug brefeldin A (BFA)48. Conceptually, one can imagine three different models for Golgi transport (\textit{cf.} Figure 2) First, proteins could be shuttled between the cisternae by small transport carriers, e.g. vesicles. Second, new cisternae could form on the \textit{cis-}
Introduction

side of the Golgi, then progress through the stack as a whole and disintegrate on the *trans*-side. Third, the Golgi complex could be an interconnected network and cargo could simply diffuse from one side to the other.

Figure 2: Models of Golgi transport (A) Cisternal maturation model, (B) Vesicular Transport model, (C) Percolation model. More details can be found in the text.

For a long time vesicular transport was regarded as the main mode of transport in the Golgi apparatus. The ‘vesicular transport model’ (Figure 2 A) predicts that vesicles from the ERGIC/VTC filled with anterograde cargo (i.e. proteins that move from the ER through the Golgi to their respective destinations) fuse with the *cis*-most cisterna. After the cargo has been exposed to modifying enzymes, the proteins are sorted into vesicles again and moved forward to the next cisterna. This process is repeated until the cargo reaches the *trans*-face of the Golgi apparatus and is send to the respective destinations from the TGN. In this model, the individual cisternae are viewed as stable compartments.
Several lines of evidence led to a wide acceptance of this model. The most important was an *in vitro* system developed in the laboratory of James Rothman. In this assay the transport between isolated Golgi membranes from a wild type and a mutant Chinese hamster ovary (CHO) cell line that lacked the glycosylation enzyme N-acetylglucosamine (GlcNAc) transferase, was reconstituted. The mutant cell line was transfected with the Vesicular-Stomatitis-Virus-Glycoprotein (VSVG). As an indication for transport the incorporation of radioactive GlcNAc was measured. After careful experiments it was concluded that VSVG is transported in vesicles from the mutant to the wt-Golgi stacks\(^{49-51}\). The model received support from electron microscopy studies. Using gold labelled antibodies the presence of anterograde cargo could be detected in budding profiles and vesicles in the Golgi region\(^{52}\).

In the mid-90s several groups provided data that did not fit to the simple vesicular transport model. The most striking were experiments that showed that cargo that is too big to fit into vesicles (a pro-collagen fibre) is transported within the lumen of the cisternae\(^{53}\) (in fact similar experiments had been done before but where largely ignored\(^{54,55}\)). This provided powerful evidence for the progression of whole cisterna from one side of the Golgi to the other. The possibility that the progression pathway is special to large cargo while small proteins are transported via vesicles was addressed in a study comparing the transport of VSVG and in the same cell\(^{56}\). It was shown that pro-collagen and VSVG showed largely the same behaviour and that very little VSVG could be detected outside the cisternae.

The role of vesicles was also revisited. It could be shown that vesicles created in an *in vitro* system in the presence of GTP\(^{57,58}\) and isolated from cell culture cells\(^{59}\) were enriched in Golgi residents. New immuno-EM studies showed an enrichment of retrograde cargo in fixed cells\(^{60}\). The signal in the transport assay of the Rothman laboratory could be attributed to the transport of small amounts of the glycosylation enzyme instead of the VSVG protein\(^{61}\).
Introduction

To account for this new data the idea of vesicular transport was combined with the progression of whole cisternae through the Golgi. In the so called “cisternal maturation model” (Figure 2 B) new cisternae are formed at the cis-side of the Golgi and move through the Golgi stack as a whole. During their progression retrograde vesicular transport recycles Golgi resident proteins to a more cis-cisterna. With computer modelling it could be shown that this model is able to explain the uneven distribution of Golgi enzymes over the stack62,63.

Recently, cisternal maturation could be directly visualized in yeast. In \textit{Saccharomyces cerevisiae} the individual Golgi cisternae do not form perinuclear stacks, but are dispersed throughout the cytoplasm. This allows monitoring individual cisterna with light microscopy. The groups of Benjamin Glick and Akihinko Hakano used GFP and RFP labelled Golgi resident proteins and time lapse confocal imaging to show that Golgi cisternae do not have a stable protein content. On the contrary, cisternae labelled with a cis-Golgi marker lost their labelling after 1.3 minutes. A rapid transition from green to red labelling of the same cisterna could be observed in yeast cells double labelled with GFP cis-Golgi markers and RFP trans-Golgi markers. The speed of maturation was shown to be consistent with the rate of secretion. Interestingly, a knock out of α-COP did not completely inhibit maturation, although slowing it down drastically64,65.

Recently, two groups reported the dynamic appearance of tubular connections between cisterna in mammalian cells. \textit{Marsh et al.} investigated Golgi morphology in mouse islet beta cells. They could show that upon stimulation with glucose inter-cisternal connections appeared. All connections bypassed one interceding cisterna. Both connections on the rim of the cisternae and through \textit{fenestrae} in the cisterna where observed66.

Luini and colleagues used the temperature sensitive mutant of VSVG and a temperature shift protocol to create pulses of cargo through the Golgi. In the temperature shift protocol cargo is accumulated in the ERGIC at 15°C. Then
the temperature is shifted to 40°C and the cargo proteins move to the Golgi. Under the conditions of the pulse they were able to observe the appearance of tubular connections between neighbouring cisternae in the same stack. The use of the temperature shift protocol to study morphological changes associated with transport has been questioned by experiments showing that a temperature shift alone can lead to the formation of tubular connections. In fact tubular connections between cisternae in the same stack were observed before, but since no functional framework for their function existed, their importance was not acknowledged.

Both studies suggest that high protein traffic through the Golgi can lead to the connections between the individual cisternae of a single stack. This is supported by an analysis of the kinetics of VSVG transport by the group of Jennifer-Lippincott Schwartz. They found inconsistencies of the observed kinetics with both the vesicular transport and the cisternal maturation model. This led this group to favour passive transport via tubular connections as the most probable mechanism for intra-Golgi transport (J. Lippincott-Schwartz personal communication).

So far, little is know about the mechanism of formation and the role of tubular connections in Golgi transport. The data currently available suggests a role in conditions of high protein transport activity.

4.4 The making of a COPI vesicle

While there is still debate about the exact nature of intra-Golgi transport, a major role for COPI vesicles is largely undisputed. COPI vesicles were first described as non-clathrin coated vesicles that were produced from isolated Golgi stacks in the presence of cytosol. It was observed that budding vesicles on the Golgi membranes had a distinct 18 nm thick protein coat, while free vesicles were frequently uncoated. The uncoating of free vesicles could be inhibited by the non-hydrolysable GTP analogue GTPγS, which allowed for
the isolation of the coat forming proteins from vesicles accumulated in the presence of GTPγS75,76. The so called coatomer complex is essential for protein transport between Golgi cisternae \textit{in vitro}51,77 and \textit{in vivo}78. Coatomer consists of 7 equimolar subunits, that form a stable cytosolic complex of approx. 570 kDa75,79,80 (for review see 81). Coatomer alone shows little affinity for membranes, but binds to the Golgi membranes in the presence of GTP without binding GTP itself.

The factor responsible for the GTP-dependent association of coatomer with Golgi membranes was discovered to be ADP Ribosylation Factor 1 (Arf1). Arf1 was discovered as an essential GTP-depended co-factor for ADP-ribosylation of a G-protein by cholera toxin82. The first hints of its cellular function came when Serafini et al. could show that Arf1 forms a stoichiometric component of the coat of COPI vesicles83 and Taylor \textit{et al.} identified it as a GTPγS sensitive regulator of intra-Golgi transport \textit{in vitro}84. Subsequent studies showed that coatomer binding to membranes requires Arf1 and that Arf1 binds to the membrane in the absence of coatomer85,86. The binding is GTP dependent. The GDP-bound form of Arf1 is water soluble and binds to membranes only very weakly. After the exchange of GDP for GTP, the water solubility decreases dramatically and Arf1 binds to membranes. Arf1 is N-myristylated and in the absence of the myristylation the membrane binding is drastically decreased. The myristol moiety is supposedly hidden in the Arf1-GDP structure and only exposed to the solvent upon GDP/GTP exchange. In addition to myristol, membrane affinity is increased by a conformational change in N-terminal helix that exposes several hydrophobic residues upon GTP binding87.

Experiments with the fungal toxin Brefeldin A suggested rapid cycling of Arf1 between the cytosol and the Golgi membranes. BFA treatment leads to a rapid loss of Arf1 from the Golgi apparatus both \textit{in vivo} and \textit{in vitro}88,89. This cycling was later directly visualized using GFP-tagged proteins and modern
microscopy techniques like FRAP90,91 (see also 5.1 and Paper I). The dependency of the binding and unbinding cycle on the ability of Arf1 to hydrolyse GTP could be shown using an Arf1 mutant unable to catalyse GTP hydrolysis90,92 and GTP\textgamma{}S93,94. While Arf1 is necessary for vesicle formation, it is not able to bend the membrane itself. Only in complex with coatomer deformation of membranes is observed76. In experiments with purified Arf1 and coatomer it could be shown that Arf1 and coatomer are sufficient for the formation of vesicles from artificial liposomes95 and Golgi membranes96,97, although the lipid composition95 and possibly receptors on the target membrane enhanced the rate of vesicle formation97.

From these and other observations the following model was developed for the formation of functional COPI vesicles (cf. Figure 3). First, cytosolic Arf1 exchanges GDP for GTP and binds to the Golgi membrane. Second, cytosolic coatomer is recruited to the membrane by Arf1-GTP and starts to deform it. A bud is formed. The growing bud finally pinches off and a free vesicle is formed. Finally, Arf1 hydrolyses GTP and coatomer and Arf1 dissociate from the vesicle.

After this model was formulated and widely accepted in the mid-90s, research concentrated on the regulation of the binding and un-binding events of the vesicle forming machinery and the sorting of proteins into vesicles. Surprisingly, purified Arf1 is neither able to hydrolyse GTP nor to exchange GDP for GTP at significant levels88,89,98,99. This led to the search for co-factors that are necessary for these functions.

It has been known that Golgi membranes have an Arf1-GEF (Guanidine exchange factor) activity since 1992, when it was shown that BFA inhibits Golgi membrane catalysed GDP/GTP exchange of Arf188,89. The first ARF-GEF identified were Gea1 in yeast100 and BIG1 in mammals101. ARF-GEFs vary widely in size, structure and domain composition, but all share a domain homologous to the yeast protein SEC7. The SEC7 domain alone is enough to
catalyze the exchange reaction, the other domains of the proteins are responsible for localization and substrate specificity. All ARF-GEFs studied so far are peripheral membrane proteins, in contrast to the GEF involved in the COPII (Sec12) vesicle machinery, which is a transmembrane protein.

The 15 human proteins containing Sec7 domains, can be divided in 7 families. Two of them, the BIG/SEC7 and the GBF/GEA families, are important for trafficking through and from the Golgi. Namely, GBF1, BIG1 and BIG2 have been localized to the Golgi region. GBF1 binds mainly to early Golgi compartments, including the ER-to-Golgi-Intermediate-compartment, while BIG1/2 is found mainly in later Golgi compartments. BIG2 localizes to the trans-Golgi-network and is not involved in COPI trafficking.

BIG1 is found at trans-Golgi cisternae and is BFA sensitive. Contrary to the initial reports, it could recently be shown that BFA inhibits GBF1 in living cells.

Currently, it seems likely that GBF1 is responsible for catalysing GDP/GTP exchange in the early the ERGIC and early Golgi, while BIG1 is active in later Golgi compartments. How the subcellular localisation of GBF1 and BIG1 is controlled and if and how they participate in regulatory processes during the formation of COPI vesicles is currently not known.

The first protein with an Arf1GAP (GTPase activating protein) activity was cloned in 1995. ArfGAP1 is still by far the best studied Arf-GAP, although at least 24 genes with Arf-GAP domains exist in the human genome. ArfGAP1 associates with the Golgi apparatus. The binding is Arf1 depended, since BFA treatment leads to a rapid loss of ArfGAP1 from the Golgi. Overexpression causes disintegration of the Golgi.
Introduction

Figure 3: Current model for the formation of COPI vesicles. See main text for more details.

First, it was thought that ArfGAP1 simply counteracts vesicle formation and facilitates the uncoating of the vesicles\(^97,112\). More recent experiments point towards a more complex role of ArfGAP1. ArfGap1 plays an important role in the sorting of proteins into COPI vesicles. Lanoix et al. could show that GTP hydrolysis by Arf1 is essential for sorting events during vesicle formation\(^57\). This observation led to the idea that ArfGAP1 could be a target for regulation of the vesicle forming machinery by cargo molecules. Goldberg demonstrated that coatamer increases the effect of ArfGAP1 on a soluble form of Arf1 ([Δ17])Arf1. This enhancing effect could be blocked with peptides derived from the cytoplasmic tails of an abundant cis-Golgi protein family, the p24 proteins. Although coatamer does not have an effect on the hydrolysis rate of full length Arf1\(^113\), it could be shown by Lanoix et al that p24 peptides have the ability to regulate sorting and GTP hydrolysis in an in vitro budding assay\(^58\).
this study it was demonstrated that ArfGAP1 is the target of this regulatory pathway.

These studies lead to the proposition of a model for cargo sorting during the formation of COPI vesicles58,114. The so-called ‘kinetic proof-reading mechanism’ extends the sequence of events that lead to the formation of a vesicle by one regulatory step. In the absence of cargo molecules ArfGAP1 efficiently catalyses the hydrolysis of GTP by Arf1, which leads to a residence time of the Arf1/coatomer complex too short for the formation of a vesicle. If a sufficient number of cargo molecules are present ArfGAP1 is sequestered by binding to the cytoplasmic tails of those molecules and is unable to catalyse hydrolysis. This increases the residence time of the Arf1/coatomer and allows for enough time to form a vesicle (cf. Figure 3).

A second regulatory mechanism of ArfGAP1 seems to ensure an efficient uncoating of the budded vesicle. The group of Antonny showed in elegant experiments that the activity of ArfGAP1 depends on the curvature of the membrane115. ArfGAP activity increases for increasing curvature of the membrane. During vesicle formation ArfGAP1 would therefore show little activity while the membrane is flat. The formation of a vesicle increases the curvature of the membrane and therefore increases the ArfGAP1 activity. This in turn increases the GFP hydrolysis rate in Arf1 and leads to uncoating of the vesicle. The region of the ArfGAP1 protein that is responsible for sensing the curvature (called ALPS for “ArfGAP1 lipid packing sensor”) forms an amphipathic helix. One side is polar but only weakly charged. The membrane insertion of this helix seems to be responsible for the changes in ArfGAP1 activity. As the name suggest it does not sense the curvature \textit{per se}, but the tightness of the lipid packing on the surface of the membrane, which decreases when curvature increases. A similar effect to the one that curvature exerts can be observed when the content of diacylglycerol (DAG) is altered. An increasing content of the small lipid DAG decreases the lipid packing of the
bilateral and allows the ALPS helix to insert further into the membrane, which in turn increases ArfGAP1 activity116.

In addition to its role in regulating Arf1 activity ArfGAP1 is also thought to be a structural component for the coat. COPI can bind to ArfGAP1 and the existence of a three party ArfGAP1-coatomer-Arf1-GTP complex has been suggested117,118.

For the yeast Arf-GAP Glo3p it has been demonstrated that it binds to β´-COP and γ-COP 119,120. At least one study suggest that the presence of ArfGAP1 is necessary for efficient vesicle formation121.

4.5 The localisation of Golgi resident proteins

As discussed in chapter 1.3, the cisternal maturation model is the current paradigm for Golgi transport. It predicts that Golgi resident proteins are sorted into COPI vesicles backwards to counterbalance the forward flow of the cisternae.

Strangely, the most abundant class of Golgi resident proteins, the family of glycosyltransferases, have no known interaction with the COPI vesicle machinery. Yet they are enriched in COPI vesicles58,60. In contrast to proteins that cycle between the ER and the Golgi apparatus, they do not carry an K(X)KXX motif, that binds directly to coatomer122. In fact, glycosyltransferases have a very short cytoplasmic tail, devoid of recognisable sequence motifs. All glycosyltransferases have the same overall structure a single transmembrane domain with a very short N-terminal cytoplasmic sequence. On the luminal side a so-called stem region is adjacent to the TM-domain. The globular catalytic domain is located at the C-terminus.

The signal for the correct localisation was discovered to lie in the transmembrane domain and the stem region for most glycosyltransferases45,46,123-126. Only for α1,3-galactosyl-transferase and α1,2-fucosyltransferase an involvement of the cytoplasmic tail has been shown127,128.
This observation raises the question how the transmembrane and part of the luminal domains of the proteins can mediate incorporation into vesicles, when all the components that are responsible for vesicle formation are soluble, cytosolic proteins. Two not necessarily exclusive models have been proposed to account for that problem. The lipid bilayer sorting model was proposed by Bretscher and Munro129 and Masibay \textit{et al.}130 in 1993. It is based on four observations. First, the average length of the transmembrane domain of Golgi resident enzymes is on average shorter than of plasma membrane proteins131. A related observation is that the overall hydrophobicity of Golgi enzyme transmembrane domains is significantly lower than of proteins that move through the Golgi132. Second, it was thought that the thickness of the lipid would increase along the secretory pathway because the sphingolipid and cholesterol contend increases, as cholesterol was shown to have a strong influence on the thickness of model membranes133. The relevance of the results obtained from model membranes was recently challenged by studies on purified cellular membranes134. Third, mutational studies of the transmembrane domain failed to find specific motifs sufficient for Golgi localisation45,135, while varying the length of the TM-domain altered the Golgi localisation. In fact, a protein with a 17 residue poly-leucine TM-domain was retained in the Golgi, while the same protein with a 23 residue Poly-L TM-domain localises to the plasma membrane136.

From those observations, a model was constructed that predicts that Golgi resident proteins will be excluded from lipid microdomains. Vesicles would then form preferentially from cholesterol and sphingomyelin-poor domains, which in turn leads to an enrichment of Golgi resident proteins in COPI vesicles. To support this theory, it was shown that the content of cholesterol and sphingomyelin is lower in COPI vesicles then in the Golgi membranes137 and that the membrane is thinner in COPI/II buds and vesicles77. Since this model was developed, however, it was shown by multiple groups that the TM-
domain does not fully account for the Golgi localization of several enzymes124,128,138-140. An alternative model termed ‘kin recognition model’ was suggested by Nilsson \textit{et al.} in 1993141. The model predicts that enzymes that are localized to the same cisterna will form homo- and/or hetero-oligomers by forming contacts with their TM- and luminal domains. For some glycosyltransferases it has been shown that their active form is a homodimer in native membranes142. When the model was suggested, the complexes where supposed to be too large to be incorporated into COPI vesicles in accordance with the ‘vesicular transport model’. In the light of the ‘cisternal progression model’ favoured by recent evidence, such complexes would preferentially be incorporated into vesicles. How this is achieved can be elegantly explained by a kinetic proofreading mechanism for the formation of COPI buds58,114. The model predicts that complexes of cargo molecules inhibit the activity of ArfGAP1 by incorporating proteins that interact with the COPI machinery. This leads to an increased residence time of coatamer on the membrane and therefore to an increased rate of vesicle formation in areas containing complexes of resident proteins. Proteins without the ability to influence Arf1 activity would be in a complex with proteins that can influence the Arf1 activity directly or indirectly. The higher the concentration of Arf1 influencing proteins in the complex the more likely is an incorporation of complex into COPI vesicles. The immobilisation originally envisaged by the kin-recognition model was not observed in studies with GFP tagged glycosylation enzymes in living cells143,144. The formation of small dimers and oligomers has been confirmed by a number of groups for a large number of enzymes (for a review see 145 and 146). How large this complexes are \textit{in vivo} and if they contain proteins that are able to interact with the COPI machinery is not known so far. The question of the size of the oligomers will be addressed in this thesis in chapter 5.3 and paper III.
So far, most of the oligomers described are complexes of enzymes involved in the same glycosylation pathway. This opens the possibility that the observed oligomers are less important for localisation, but allow substrates to be shuttled between subsequent enzymes in the pathway in order to increase catalytic efficiency and specificity. One example for a multi-enzyme complex that is apparently governed by the necessity for catalytic efficiency, is the oligomer formed by at least three enzymes of the ganglioside synthesis pathway. Galactosyltransferase1 and sialyltransferase1 form stable dimers and as well as sialyltransferase2 with sialyltransferase1. The trimerization is mediated by ST1, as GalT1 and ST2 have no obvious affinity147. Whether an absence of kin recognition leads to mislocalisation is a question that cannot be clearly answered at the moment. While replacing the complete region responsible for kin recognition of Manosidase II by N-acetylgucosamintransferase I (NAGT I) leads to a cell surface expression of NAGT I, no thorough investigation has been performed for the possible connection between kin recognition and localisation of Mannosidase II or for point mutations that would abolished kin recognition123. To my knowledge the only two other studies dealing with the question whether lack of kin recognition leads to mislocalisation were done by Chen et al.139 and Sasai et al.148. Chen et al. could demonstrate a clear correlation between complex formation and localisation. In the same study the interesting observation was made that the oligomerisation is strongly dependent on the pH, opening a new way to control localisation by a pH gradient over the Golgi. Sasai et al. investigated the role of disulphide bonds between the stem regions of N-acetylglicosaminyltransferase V in homooligomer formation and retention. The also found a clear correlation between oligomerisation and Golgi retention. Most of the studies that have described the formation complex between Golgi enzymes so far have used either genetic or biochemical approaches. Only one study has tried to look at the problem in unperturbed living cells. Giraudo et al.
used fluorescence resonance energy transfer (FRET) to demonstrate that two glycosyltransferases are physically associated. A big disadvantage of FRET based approaches is that they cannot distinguish between dimerisation and larger oligomers.

Taking together those observations Benjamin Glick et al. and Matthias Weiss/Tommy Nilsson have developed a scheme to explain the sub-Golgi localisation of glycosyltransferases in the Golgi. According to this model, sorting is achieved by a competition of the resident enzymes to enter COPI vesicles. The more likely a protein is to enter retrograde vesicles the more they localise to the cis side of the Golgi stack. Resident proteins that are not incorporated in vesicles at all are recycled from the TGN directly to the ER and show an equal distribution over all cisternae. In the original model the system proved to be quite sensitive to over-expression in computer simulations. In order to account for the remarkable stability of the Golgi localisation under conditions of high over expression, Weiss and Nilsson introduced the concept of ‘triggered sorting’. It assumes that the probability to be sorted into vesicles in not only determined by intrinsic properties, but influenced by an external trigger like pH and/or membrane thickness. With this modification, the system proved to be extremely robust in simulations.

4.6 Diffusion and Biology

Almost all biological processes happen in solution, either in three dimensional fluids like the cytoplasm or in the two dimensional fluids of cellular membranes. In solution particles undergo random motion due to the thermal noise of the solvent molecules. This process is called diffusion or Brownian motion. Since the diffusive movement of proteins, lipids, nucleic acids etc. is essential for the function of life it is important to understand how diffusion works and which laws govern it.
Even before the link between the thermal motion of molecules and the
diffusion had been formalized by Einstein in 1905149, Adolf Fick had already
provided a mathematical framework for its description, although Fick could not
derive the law from first principles or provide extensive experimental evidence.
Inspired by Einstein’s seminal paper in 1905, modern treatments of diffusion
usually derive the diffusion equations from the model of a random walk.
For simplicity I will only consider the diffusion along one axis and show how
the equation is derived for the one dimensional case151,152. I will mainly follow
the derivation given in152.
For the derivation we will make the following assumptions.
1. Each particle will move on step Δx with equal probability to left or to the
 right at each time step Δt.
2. The probability to go to the right is $p_r=1/2$, the probability to go to the left
 is $p_l=p_r=1/2$.
3. The movement at each time step is statistically independent from the
 previous time step, the process has no memory (Markov assumption).
4. All particles move independently from all other particles.
After n time steps each particle can be anywhere between $+n\Delta x$ and $-n\Delta x$, but
clearly the probabilities for each position are different.
To get the probability $p(m,n)$ that a particle reached a spot m after n time steps,
we need to get the number of possible combinations of steps to right and steps
to the left that lead to point m. If we call the number of steps to the right a
and the number of steps to the left b we can write:
$m=a-b$, $a+b=n$,
therefore:
$$ a = \frac{n+m}{2} \text{, } b = n - a \text{ Eq. 1} $$
The probability to go exactly \(a \) steps to right in \(n \) tries is given by the binomial distribution:

\[
p(a, n) = \frac{n!}{a!(n-a)!} \frac{1}{p_r^a} \frac{1}{p_l^{n-a}} \quad \text{Eq. 2}
\]

since \(p_l = p_r \) and \(m \) is defined by \(a \):

\[
p(m, n) = \frac{n!}{a!(n-a)!} \frac{1}{2^n} \quad \text{Eq. 3}
\]

For large \(n \), as we usually have in diffusion problems, the binomial distribution is well approximated by the Gaussian distribution, due to the central limit theorem:

\[
p(n, m) = \left(\frac{2}{\pi n} \right)^{1/2} \exp \left(- \frac{m^2}{2n} \right) \quad \text{Eq. 4}
\]

if we now set \(m\Delta x = x \) and \(n\Delta t = t \) and let \(n \to \infty, \Delta x \to 0 \) and \(\Delta t \to 0 \), we can transfer the result from the random walk approximation to continuous space and time.

The probability to find a particle in the interval \([x, x+\Delta x]\) is given from equation (4):

\[
p \left(\frac{x}{\Delta x}, \frac{t}{\Delta t} \right) = \left(\frac{\Delta t}{2\pi(\Delta x)^2} \right)^{0.5} \exp \left(- \frac{x^2}{2t(\Delta x)^2} \right) \quad \text{Eq. 5}
\]

if we set:

\[
\lim_{\Delta x \to 0} \left(\frac{\Delta x^2}{2\Delta t} \right) = D \quad \text{Eq. 6}
\]

with \(D \) being the diffusion coefficient, we get the diffusion equation:
\[
p(x,t)dx = \left(\frac{1}{4\piDt} \right)^{\frac{1}{2}} \exp\left(\frac{x^2}{4Dt} \right)dx \quad \text{Eq. 7}
\]

This equation gives the probability to find a particle in an interval \([x, x+dx]\) at a distance \(x\) from its origin \(x_0=0\) at a time \(t\) (see Figure 4).

Figure 4: The solution of the diffusion equation (eq. 7) plotted for 4 different time points. All units are arbitrary.

Not incidentally, this equation is also a solution for Fick’s diffusion law that relates the change of concentration at one point to the gradient of concentration at this point:

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad \text{Eq. 8}
\]

for a point source of particles at \(t=0\)
Equation 7 has some interesting properties. The mean distance a particle travelled is given by:

\[
\langle |x| \rangle = 2 \left(\frac{1}{4 \pi D t} \right)^{\frac{1}{2}} \int_{0}^{\infty} x \exp \left(\frac{x^2}{4 D t} \right) dx = 2 \left(\frac{D t}{\pi} \right)^{\frac{1}{2}} \text{ Eq. 9}
\]

The mean square displacement (MSD) is directly proportional to time:

\[
\langle x^2 \rangle = 2 \left(\frac{1}{4 \pi D t} \right)^{\frac{3}{2}} \int_{0}^{\infty} x^2 \exp \left(\frac{x^2}{4 D t} \right) dx = 2 D t \text{ Eq. 10}
\]

Another interesting result from Einstein’s molecular theory of diffusion is the Einstein-Stokes equation that relates molecular properties to the diffusion coefficient:

\[
D = \frac{k T}{f} \text{ Eq. 11},
\]

where \(k \) is the Boltzmann constant, \(T \) the absolute temperature, and \(f \) the frictional force between the particle and its surrounding. If \(f \) is described by Stokes’ law for the friction of a sphere in a fluid equation 11 becomes:

\[
D = \frac{k T}{6 \pi \eta r} \text{ Eq. 12}
\]

with \(r \) being the radius of the sphere and \(\eta \) the viscosity of the fluid.

For biological membranes the dependence of the diffusion coefficient on the size of the particle is more complicated than for the ideal objects in an ideal solvent used to drive equations 11 and 12. This was first analysed by Saffman and Delbrück in 1975\(^{153} \). They found that the diffusion coefficient of a cylindrical inclusion of the radius \(r \) in a membrane with the thickness \(h \) is given by the following equation:
\[D_T = \frac{k_B T}{4 \pi \mu_{\text{mem}} h} \left(\log \left(\frac{\mu_{\text{mem}} h}{\mu_{\text{flu}} r} \right) - \gamma \right) \]
Eq. 13

\(\mu_m \) and \(\mu_{\text{flu}} \) are the viscosities of the membrane and the surrounding medium, \(\gamma \) is Euler’s constant (0.5772). The most striking difference between equations 12 and 13 is the logarithmic dependence of the diffusion coefficient in the membrane. The Saffman-Delbrück relation was recently under scrutiny both in simulation and experimental studies. Guigas and Weiss used mesoscopic simulations to confirm the Saffman-Delbrück relation for small and medium sized inclusions in the membrane. For larger inclusions they found deviations from the Saffman-Delbrück relation that lead to a scaling \(D \sim 1/r^2 \). If internal degrees of freedom are neglected the diffusion coefficient scales with \(1/r^{154} \).

While earlier experimental studies confirmed the validity of Saffman-Delbrück relation\(^{155-157}\), a recent study raised the possibility that the diffusion coefficient scales with \(1/r \) for \(r > 1 \text{ nm} \)^{158}. The conflicting results warrant a more thorough investigation of the dependence of the diffusion coefficients on molecular size and lipid bilayer properties.

In the above treatment of diffusion one makes a number of simplifications that are not necessarily applicable, especially in the environment of living cells. Three important complications will be discussed in the remainder of the chapter.

First, we assumed that all space is accessible for the diffusing particle. This is not necessarily true. In living cells there are a number of essentially immobile structures that will obstruct the diffusion of particles. How does this influence the diffusional behaviour? The influence of obstacles has been intensively studied by percolation theory. Most results have been obtained for situations close to the percolation threshold. The percolation threshold is the highest concentration of obstacles at which there is on average still an unobstructed path from each point of the medium to every other point. The diffusing particle
can go around the obstacles, but will encounter bottlenecks and be trapped in dead ends on all length scales159-161.

At the percolation threshold the MSD changes its behaviour, and is no longer proportional to time, but to a fractional power of time:

\[\langle |x|^2 \rangle \sim t^{\alpha}, \alpha < 1 \quad \text{Eq. 14} \]

For the two dimensional case \(\alpha \) is 0.697 at the percolation threshold, in three dimensions 0.55159. Diffusion processes with a MSD of the form of equation 14 are called anomalous diffusion. For \(\alpha<1 \) it is called anomalous subdiffusion, for \(\alpha>1 \) anomalous superdiffusion.

The diffusional behaviour at obstacle concentrations less than the percolation threshold has been studied using Monte Carlo simulations161. For long time scales diffusion is normal, although the diffusion coefficient decreases compared to the unobstructed case. At short times the diffusion is anomalous even at concentration below the percolation threshold. The time point when anomalous diffusion crosses over to normal diffusion and the extent of the anomalous diffusion (measured by the value of the exponent \(\alpha \) in equation (14)) are functions of the obstacle concentration. The closer the obstacle concentration approaches the percolation threshold, the longer subdiffusion persist and the lower is \(\alpha \)161.

A related phenomenon is molecular crowding. This will be discussed further down in this thesis (chapters 4.8 and 5.2, and paper II).

Second, we assumed that the diffusing particles are free of interaction with other particles and structures. This is usually not the case. A simple example is the diffusion of electrolytes, where the anions and cations strongly influence each other due to electrostatic forces162.

Binding of molecules to immobile structure can also have a strong influence on diffusion. Structures that are immobile on the time scales relevant for diffusion are abundant in living cells. The cytoskeleton and the endomembrane system allow for numerous interactions of cytosolic particles with stationary objects.
Introduction

In membranes the underlying cytoskeleton provides an immobile scaffold that membrane bound proteins can interact with.

How does binding to immobile structures influence diffusion? This has been studied both theoretical and using computer simulations163,164.

If we assume thermal equilibrium and a simple binding reaction characterised by an on rate k_{on} and an off-rate k_{off} the diffusion remains normal, but the diffusion coefficient can be drastically decreased, depending on the strength of the binding and the concentration of binding partners. If binding to immobile structures is combined with obstructed diffusion, diffusion does not get more anomalous, but the cross-over time from anomalous to normal diffusion is increased due to the slower diffusion.

The picture is entirely different if the system is out of thermal equilibrium or one assumes more complicated binding kinetics.

Saxton studied how diffusional behaviour changes for different initial conditions in Monte Carlo simulations. When he used random initial conditions, he found strong anomalous diffusion that persisted for long times. This raises the possibility that active processes that drive diffusing particles out of equilibrium could lead to anomalous diffusion.

If one considers more complicated binding kinetics, diffusion can be anomalous even in thermal equilibrium. The important property is the distribution of the waiting times τ (i.e. the time that the diffusing particle stays bound to the immobile binding partner). Distributions of τ that have a significant probability for long waiting times, give raise to anomalous diffusion. An example for such a distribution is159,165:

\[p(\tau) = \frac{\beta}{(1+\tau)^{1+\beta}} \quad \text{Eq. 15} \]

For long times t the mean square displacement approaches:
\[\left\langle x^2 \right\rangle \sim t^\beta \text{ Eq. 16} \]

This mechanism of creating anomalous diffusion is called Continuous Time Random Walk (CTRW).

For normal on/off kinetics the waiting time \(\tau \) distribution is given by a Poisson Distribution:

\[p(\tau) \sim e^{-\tau} \]

This does not lead to anomalous diffusion, but reduces the diffusion coefficient\(^{164}\).

A third complication that can arise is the formation of polymers by the diffusing particles. I will give a short introduction here; a special case is studied further down in this thesis (chapter 5.3 and paper III).

A simple but highly instructive model for polymer motion is the self-avoiding Rouse model\(^{166,167}\). It treats the polymers as chains of beads connected by ideal springs in an ideal solvent. Hydrodynamic interactions are not taken into account. From this model some interesting predictions can be made.

The motion of the centre of mass can be shown to be normal diffusive on all time scales. This is not true for the motion of the individual monomers. For long times (longer then a critical time \(\tau_c \)) the monomer motion will follow the centre of mass. For short times (\(t > \tau_c \)) the monomers can perform a semi-independent random walk restrained by their bonds to neighbouring particles.

This leads to an anomalous diffusion with

\[\left\langle (\Delta x)^2 \right\rangle \sim \sqrt{t} \text{ for } t < \tau_c \text{ in 3D Eq. 17} \]

and

\[\left\langle (\Delta x)^2 \right\rangle \sim t^{\frac{3}{5}} \text{ for } t < \tau_c \text{ in 2D Eq. 18} \]
Polymers also show an interesting behaviour in the presence of immobile obstacles or a high concentration of other polymers. Under those conditions it moves along defects in the obstacle/polymer matrix. Movements are much more likely along the axis of the polymer then perpendicular to it. It is said that the polymer moves along a tube. The mode of movement was first investigated by de Gennes, who coined the term reptation to describe it. Reptational movement is characterized by the movement along a free tube between the obstacles. The main mode of movement will be the formation of “defects” by fluctuation of the polymer in the tube. The “defects” can be imagined as protrusions, like those that form during the movement of a caterpillar.

Figure 5 A polymer in a mesh of immobile obstacles. The main mode of movement will be the relaxation of defects, which will drive the polymer forward along its axis. Adopted from 166
The extra length stored in the protrusions drives the movement of the polymer between the obstacles. A mathematical analysis of this model yields for the MSD:

$$\langle (\Delta x)^2 \rangle \sim \sqrt{t} \quad \text{for } t < \tau_{\text{rep}} \quad \text{Eq. 19}$$

for time less than a critical time τ_{rep}. Above that time the diffusion process will appear to be normal, i.e. MSD $\sim t^{66,167}$.

Deviations from normal diffusive behaviour can indeed be observed in living cells and model system. Anomalous subdiffusion has been described using single particle tracking for the plasma membrane$^{168-170}$, model membranes171,172, and the cytoplasm of yeast173 and E. coli174, using Fluorescence Correlation Spectroscopy (see next chapter) for the nucleoplasm175, for organelle membranes144 and the plasma membrane176,177.

4.7 Measuring Diffusion with Fluorescence Correlation Spectroscopy

Most standard methods of measuring diffusion coefficients are only applicable in simple in vitro systems162. With the exception of some NMR techniques178,179, studies of diffusion in systems relevant to biology rely mainly on techniques based on fluorescence.

Especially since the advent of genetically encoded fluorescent markers like GFP, the dynamics of cellular processes are experimentally accessible in vivo.

Two techniques have been widely used for the measurement of diffusion in living cells, “Fluorescence Recovery after Photobleaching” (FRAP) and “Fluorescence Correlation Spectroscopy” (FCS).

FRAP was pioneered in the 1970s180,181 and is mainly applicable to two dimensional systems (for further developments of the technique see182). FRAP measurements are based on the observation of the recovery of fluorescence in a (preferably) circular area after the fluorophores have been irreversibly bleached.
Introduction

by a short laser pulse. Experiments are usually done in confocal microscopes using a strong laser for bleaching.

For a circular area the shape of the recovery curve has been calculated analytically\(^\text{183}\):

\[
I(t) = e^{-\frac{\tau_D}{t}} \left(I_0 \left(\frac{2\tau_D}{t} \right) + I_1 \left(\frac{2\tau_D}{t} \right) \right) \quad \text{Eq. 20}
\]

with \(\tau_D = w^2/4D\). \(w^2\) is the diameter of the bleach spot and \(D\) the diffusion coefficient. \(I_0\) and \(I_1\) are modified Bessel functions of the 1\(^{\text{st}}\) and 2\(^{\text{nd}}\) kind.

As a method to investigate the diffusion coefficient FRAP suffers from a number experimental and theoretical limitation that are nicely summarised and discussed in\(^\text{184}\). FRAP is also not very sensitive to deviations from normal diffusion\(^\text{159}\).

FRAP can also be used to quantify binding of molecules to larger structures. This is discussed in detail in chapter 5.1 and paper I.

FCS was also invented in the 1970s\(^\text{185-188}\), but due to the difficult experimental setup it only became widely used in the late 1990s.

FCS measurements can be performed on fluorescently labelled molecules diffusing in aqueous solutions, in living cells and on membranes. FCS is based on the analysis of the fluctuations of fluorescently labelled molecules in a small volume. Today FCS is usually performed using the setup of a confocal microscope, as it was first suggested by Rigler and co-workers\(^\text{189,190}\). In combination with high numerical aperture lenses (NA>0.9) the confocal microscope offers a detection volume (“confocal volume”) of less than 1fl. A small detection volume is essential since the fluctuations are governed by a Poisson process. The root mean square fluctuations of the number of particles \(N\) are given by:
Hence, the relative fluctuations decrease with rising numbers of particles, and are more difficult to observe. In principle very low numbers of particles are ideal for the analysis of fluctuations, as long as the signal is well over the background fluorescence, which can be a problem in living cells.

A good approximation for the shape of the confocal volume is a three dimensional Gaussian volume (Figure 6).

\[W(r) = e^{-\frac{x^2+y^2}{r_0^2}} \cdot e^{-\frac{z^2}{z_0^2}} \text{ Eq. 22} \]

The diameter perpendicular to the optical axis (\(r_0; x \text{ and } y \text{ direction}\)) is about 0.25 μm (\(W(r)\) decayed to \(1/e^2\) at \(r_0\)). Along the optical axis the volume is elongated and about 3 times longer than wide (\(z_0\)).

The fluorescence emitted from the particles in this volume is recorded photon by photon with a high temporal resolution.

The fluctuations are defined by the deviation of the signal at a given time from the average signal:

\[\partial F(t) = F(t) - \langle F(t) \rangle \text{ Eq. 23} \]

If the only source of fluctuations in the fluorescence signal are changes in the local fluorophore concentration in the confocal volume, the fluctuations can be expressed by integrating the fluctuations over the observation volume:

\[\partial F(t) = \int_V W(r) \partial(C(r,t))dV \text{ Eq. 24} \]
η combines the information about the maximal excitation intensity I_0, the quantum yield q, the absorption cross section δ and the overall detection efficiency κ: $\eta = I_0 \cdot q \cdot \delta \cdot \kappa$ and $C(r,t)$ is the local fluorophore concentration.

![Figure 6](image.png)

Figure 6 The observation volume in a modern confocal microscope. Modes of change in the fluorescence intensity are depicted: Transformation into a dark state, change in molecular brightness or colour, movement in and out of the volume. Reproduced from\(^{191}\)

To analyse the diffusional behaviour, we measure the self-similarity of the fluctuating fluorescence signal by autocorrelation analysis.

The normalized autocorrelation function is defined by:

$$ G(\tau) = \frac{\langle \partial F(t) \cdot \partial F(t + \tau) \rangle}{\langle F(t) \rangle^2} \quad \text{Eq. 25} $$
Using those definitions, the autocorrelation curve can be calculated for a freely diffusing particle in three dimensions (for a detailed derivation of the equations see191):\
\[G(\tau) = \frac{1}{V_{\text{eff}} \langle C \rangle} \cdot \frac{1}{\left(1 + \frac{\tau}{\tau_D}\right)} \cdot \frac{1}{\sqrt{1 + \left(\frac{r_0}{z_0}\right)^2 \frac{\tau}{\tau_D}}} \quad \text{Eq. 26} \]

and in two dimensions:
\[G(\tau) = \frac{1}{V_{\text{eff}} \langle C \rangle} \cdot \frac{1}{\left(1 + \frac{\tau}{\tau_D}\right)} \quad \text{Eq. 27} \]

\(V_{\text{eff}} \) is the effective measuring volume: \(V_{\text{eff}} = \pi^{3/2} r_0^2 z_0 \). \(\tau_D \) is the average time a particle stays in the confocal volume and is related to the diffusion coefficient \(D \):
\[\tau_D = \frac{r_0^2}{4D} \quad \text{Eq. 28} \]

The intercept of the curve with at \(\tau=0 \) is at
\[\frac{1}{V_{\text{eff}} \langle C \rangle} = \frac{1}{N} \quad \text{Eq. 29}, \]

which makes FCS an elegant method to measure concentrations by measuring the average number \(N \) of molecule in the confocal volume.
Figure 7: A plot of the FCS autocorrelation function (equation 30). The main parameters are highlighted in the graph, see the main text for more details, (Reproduced from 191)

When using real fluorophores, one usually also observes internal properties of the fluorescent molecules like the excitation of triplet states at short times τ. This will contribute an additional shoulder to the correlation curve for short times. The functions for the autocorrelation curve (equations 26 and 27) have to be amended with the expression for the decay of the triplet states:

$$G_{\text{triplett}}(\tau) = 1 - T + T \cdot e^{-\frac{\tau}{\tau_{\text{triplett}}}}$$ \hspace{1cm} \text{Eq. 30}

$$G_{\text{total}}(\tau) = G_{\text{Diffusion}}(\tau) \cdot G_{\text{triplett}}(\tau)$$
FCS is quite sensitive to deviations from the normal diffusion laws. If a particle shows anomalous diffusion the autocorrelation function takes the form (in the 2D case):

$$G(\tau) = \frac{1}{V_{\text{eff}} \langle C \rangle} \cdot \frac{1}{1 + \left(\frac{\tau}{\tau_D} \right)^a} \quad \text{Eq. 31}$$

Due to the much smaller size of the confocal volume compared to the bleach area of a FRAP experiment, FCS is able to determine the behaviour on molecules on much shorter time and length scales.

The theory of FCS can be extended to allow analysis of inter-molecular interaction by dual colour cross-correlation analysis and to analyse active transport and rotational diffusion. This is discussed in detail in \(^{176,191,192}\).

4.8 Biological consequences of molecular crowding and anomalous diffusion

In chapter 4.6 I briefly mentioned the term molecular crowding and introduced anomalous diffusion. In this chapter, I will discuss how these phenomena influence biological processes.

Physiological fluids contain a high concentration of macromolecules (proteins, RNA, oligosaccharides) that occupy between 7% and 40% of the total volume\(^ {193,194}\). Most of those molecules will have no specific interaction with each other, but their mere presence will make space inaccessible for other molecules by a simple hard-core repulsion. This excluded volume effect can have astonishing consequences. How much volume is available to each solute depends on the shape and size of all molecules present in the environment of interest. The concept of excluded volume can be explained using a macroscopic analogy\(^ {193}\). Imagine a beaker filled with 5 mm metal balls. Although the close packed balls occupy only about 65% of the volume, no additional ball can be
added to the beaker. Geometrical constraints make the 35% empty volume inaccessible to the metal balls. While it is impossible to enter more metal balls one can easily enter sand grains, but they also occupy only about 65% of the space unoccupied by the metal balls. When the beaker is filled with metal balls and sand grains about 10% of the volume is still empty, but is accessible to still smaller molecules, like water.

The thermodynamic effects can be understood when considering the effect of the excluded volume model on the activity of the individual molecule species. The activity of a molecule can be understood as the thermodynamically relevant concentration. When you consider a simple bimolecular reaction like:

\[r_1E_1 + r_2E_2 \rightleftharpoons p_1P_1 + p_2P_2 \] \text{ Eq. 32 }

The thermodynamic activity \(w \) is then defined as:

\[w = \gamma \cdot c \] \text{ Eq. 33 }

with \(c \) being the real concentration and \(\gamma \) the activity coefficient.

The equilibrium constant \(K \) is then defined as:

\[K = \frac{\left(\gamma_{E_1} c(E_1)^{r_1} \right) \cdot \left(\gamma_{E_2} c(E_2)^{r_2} \right)}{\left(\gamma_{P_1} c(P_1)^{p_1} \right) \cdot \left(\gamma_{P_2} c(P_2)^{p_2} \right)} \] \text{ Eq. 34 }

For dilute solutions (i.e. \(c \rightarrow 0 \)) \(\gamma \) approaches 1 and we get the familiar expression for the equilibrium constant:

\[K_i = \frac{\left(c(E_1)^{r_1} \cdot c(E_2)^{r_2} \right)}{\left(c(P_1)^{p_1} \cdot c(P_2)^{p_2} \right)} \] \text{ Eq. 35 }

For real cases we can separate \(K \) in an ideal factor \(K_i \) and a “non-ideal factor” \(\Gamma \):

\[K = \frac{c(E_1)^{r_1} c(E_2)^{r_2}}{c(P_1)^{p_1} c(P_2)^{p_2}} \cdot \frac{\gamma_{E_1}^{r_1} \gamma_{E_2}^{r_2}}{\gamma_{P_1}^{p_1} \gamma_{P_2}^{p_2}} = K_i \cdot \Gamma \] \text{ Eq. 36 }
Interestingly, the activity coefficients that govern the deviation from the ideal case can be expressed quite simply in the case that no other effects, but the excluded volume effect is present:\footnote{193}

\[\gamma = \frac{V_{\text{total}}}{V_{\text{available}}} \quad \text{Eq. 37} \]

Depending on the relative sizes of the crowding species and the particle of interests the excluded volume effect can lead to very large activity coefficients exceeding $100^{193,195}$. This simple theory for the thermodynamic effects of molecular crowding is surprisingly successful in some cases. It predicts for example the activity coefficient of haemoglobin in concentrated solutions, which is 10 times higher at $200 \text{g}\text{l}^{-1}$ and 100 times higher at $300 \text{g}\text{l}^{-1}$ than in diluted solutions\footnote{196,197}. Similar studies have shown that crowding leads to large increase in activity coefficients for macromolecule in the cytosol of \textit{E. coli} bacteria\footnote{198}. The increase of the thermodynamic activity depends strongly on the molecular weight of the molecule. While the activity is three time larger at MW 3000 Da, it is more than 100 times larger for molecular weights over 50 kDa\footnote{198}. Besides changing the thermodynamic activity, crowding also affects the equilibrium constant of the association reactions. The main effect here is that association reactions decrease the excluded volume, which in turn increases the volume accessible for other molecules, therefore decreasing the chemical potential for those molecules. This leads to a 8-40 fold higher dimerisation constant for two 40 kD proteins, for tetramerisation a 10^3-10^5 fold increase would be predicted\footnote{199}. This can indeed be observed in biological systems. For example in the T7 Replication Complex one of the members has a relatively high dissociation constant of approximately $7 \times 10^{-6} \text{ M}$. Upon the addition of crowding reagents (dextran or Polyethylene glycol (PEG)) the dissociation constant decreased to $3.5 \times 10^{-8} \text{ M}^{200}$. Recently, the influence of crowding
reagents on the formation of decamers of the bovine trypsin inhibitor was investigated. In the presence of only 14 Vol% dextran the concentration of decamers increased 30-fold. Other examples for the effect of molecular crowding include actin polymerisation, the association of the 50 s and 70 s ribosomal subunits, DNA polymerases and the bacterial cell division protein FtsZ.

Molecular crowding not only influences the thermodynamics of biochemical reactions, but also has a strong effect on the kinetics and dynamics. A well studied aspect is the influence on long range diffusion of macromolecules. Using FRAP experiments the diffusion constant of inert tracers was investigated by several groups. Early experiments suggested that the ratio between the $D_{\text{water}}/D_{\text{cytosol}}$ (i.e. increase of the viscosity compared to water) depends on the size of the tracer particle, with large particles experiencing a larger viscosity. This was challenged by the Verkman group that could not see a dependence of the $D_{\text{water}}/D_{\text{cytosol}}$ ratio on the tracer size. All groups agree that for small macromolecules with hydrodynamic radii of ~5 nm the viscosity of the cytosol is about 5 times higher than water and attribute that to molecular crowding (for a discussion of other possibilities and experimental verification of the role of molecular crowding see the excellent reviews by Luby-Phelps and Verkman).

The influence of crowding on diffusion at shorter distances was investigated with FCS in this thesis and will be discussed in Paper II and chapter 2.2. Crowding is also essential to understand the role of chaperones in protein folding and the assembly of multi-protein complexes. This is nicely discussed in.

While the effects of crowding on cellular biochemistry have been described in some detail, much less is known about those of anomalous diffusion. The effect of anomalous diffusion in systems where it occurs due to obstruction by immobile obstacles was investigated by Saxton and by Bujan-Nunez et
Introduction

*al.*213 using Monte Carlo simulations. For reactions of the type A+B → product they found that anomalous diffusion strongly decreases the reaction rate for fast reactions, i.e. reactions where a high proportion of the inter-molecular collisions yields a product. For less likely reactions the difference between the anomalous diffusion case and the unobstructed diffusion case decreases until reactions occur slightly faster in the case of obstructed diffusion for very low reaction probabilities. From this cross-over point on, the rate of product formation is almost independent of the obstacle concentration and therefore the degree of anomalous diffusion. This can be understood if one considers the two effects that influence the rate of product formation. The first factor is the time needed for the first collision between two particles. This is decreased by anomalous diffusion. The second is the rate of re-collision after an unsuccessful collision. Since the particles will separate slower in case of anomalous subdiffusion, this rate increases.

For reactions with a low probability those effects can offset each other, making the reaction rate nearly independent of the concentration of the obstacles.

The influence of obstacles on Michaelis-Menten kinetics in 2D was investigated in Monte Carlo simulations by H. Berry214. He could show that even at obstacle concentrations well below the percolation limit, the Michalis-Menten equation fails to describe the reaction kinetics if both enzyme and substrate are subject to hindered diffusion in the same way. This was due to a time dependence of the effective rate of formation of the enzyme-substrate complex in the Michalis-Menten scheme (\(E + S \xrightarrow{k_{-1}} ES \xrightarrow{k_1} P \)).

The time dependence of the effective rate \(k_1 \) is a consequence of anomalous diffusion. The enzyme stays close to its starting point much longer than in the case of normal diffusion. It reacts with substrate molecules close to it fast in the beginning, but it takes a longer time to react in distant regions. Since \(k_1 \) decreases with time.
The influence of anomalous subdiffusion on the formation of Turing patterns was investigated by M. Weiss215. Turing patterns arise from simple reaction-diffusion systems. They are named after the English mathematician Alan Turing who proposed them first in 1952 as a mechanism for the formation of form and shape in biological systems with an particular emphasis on embryogenesis216.

Mechanisms related to those suggested by Turing have been proposed in several biological systems152,217-221. An especially well described example for dynamic self-organisation is the formation of the central division plane in \textit{E.coli}222-226.

A general problem with self-organisation mechanisms is the stability at low number of particles, as expected in living cells. Investigating a simple model system, M. Weiss could show that a relatively high number of particles might be necessary to get a stable pattern. In living cells and bacteria, it can be expected that only a few hundred or thousand particles participate in pattern formation. In this case anomalous diffusion was shown to stabilize the pattern formation mechanism greatly. In the Schnakenberg model patterns were only stable when much more than 5000 particles were involved. When only modest anomalous diffusion ($\alpha=0.9$) was introduced, the number of molecules needed to form stable patterns decreased to less then 2000215.

Recently subdiffusion has received some attention in the field of gene expression. For a long time researchers have been baffled by the short time transcription factors need to find their targets on the DNA. The times are much shorter than those that would be expected, if the transcription factor just randomly collides with the DNA during simple 3D diffusion. Usually it is supposed that the transcription factors bind to the DNA unspecifically and perform a 1D diffusion for significant times, which would increase the efficiency of finding the correct binding site227-229 (for a in depth review see230). Anomalous diffusion could provide an alternative mechanism for effective
search. Even tough the transcription factor needs a longer time to find the DNA initially it would also stay close to it longer. It was estimated that the probability p of finding a target of the size a starting at an initial distance r is:

$$P_{capture} \approx \left(\frac{a}{r} \right)^{3 - \frac{2}{\alpha}} \text{ Eq. 38}$$

The smaller α is the higher is the probability to find the target. As the probability of finding the target increases the rate slows down:

$$k = \frac{\Gamma_{\alpha}}{2a^{\alpha-3}} \text{ Eq. 39}$$

Subdiffusion therefore increases the probability to find the target on the DNA at all, but decreases the overall rate in of association. For the small number of available transcription factors available in living cells the overall effect of anomalous maybe to tip the balance between the protein finding its binding site and running away to far from the DNA174,230. A more detailed analysis of the effect of anomalous diffusion on gene expression, taking into account the particularities of the pro- and eukaryotic systems and cellular geometries, is missing so far.

Most studies on the effects of anomalous diffusion are done in silico, to my knowledge no experiment study has been done so far.
5 Results and Discussion

5.1 Paper 1: Spatiotemporal dynamics of the COPI vesicle machinery

The model for the formation of COPI vesicles was mainly developed from *in vitro* studies on isolated Golgi membranes or liposomes in connection with cytosol or purified components (compare chapter 4.4). To confirm the model *in vivo*, we employed live cell imaging approaches. A crucial prediction of the current model is that coatomer and Arf1 binding to and release from the membrane are coupled events. To investigate if this is the case in living cells we used GFP tagged ε-COP, Arf1 and ArfGAP1 and measured their binding kinetics to Golgi membranes using FRAP. Surprisingly, the apparent binding kinetics of coatomer was two times slower then of ARF. As expected Arf1 and ArfGAP1 showed similar kinetics (Fig. 2*). Similar results for Arf1 and coatomer were obtained by the group of J. Lippincott-Schwartz90. While the Lippincott-Schwartz group suggested a modification of the model for coatomer action *in vivo*, we decided to take a closer look at the experimental conditions. The measurement of the binding kinetics with FRAP is based on the assumption that the diffusion from and to the membrane is not limiting to the measured binding constant. We tested this assumption using a combination of Fluorescence Correlation Spectroscopy and computer simulation. First, we measured the diffusion coefficients of ε-COP, Arf1 and ArfGAP1. All three showed a fast and a slow diffusing component. In all cases the fast diffusing component had a diffusion coefficient D of about 15 μm²/s, while the slow

* The figure numbers used in this and the following chapters correspond to the figures in the papers reproduced in section 3
Results and Discussion

component had a very low diffusion coefficient of about 0.5 μm²/s. The percentages varied greatly. For ARF the slow component comprised only 15% of the total pool. The slow ArfGAP1 component accounted for 30% and the slow component of ε-COP 26% in stably transfected Hela cells and 52% of the whole pool in stably transfected CHO cells (Fig. 1).

The slow diffusion components suggested that the GFP labelled proteins were part of a large protein complex. We theorized that ArfGAP1 could be in a complex with coatamer. To test this we increased the concentration of free coatamer by treating the cells with BFA, which releases coatamer from Golgi membranes. As predicted, the increased availability of coatamer increased the percentage of the slow ArfGAP1 component from 30% to 50%.

The slow component of ε-COP is likely to consist of ε-COP that is correctly inserted into the coatamer complex, while the fast component is probably free ε-COP not incorporated in the complex due to overexpression. Treatment with BFA again increased the slow component. To further strengthen this argument, we knocked down β-COP using RNA interference. β-COP is essential for the correct assembly of the coatamer complex. As expected a decreased slow component was observed reflecting an absence of intact coatamer complexes (Fig. 1).

Having established that coatamer diffuses about 30 times slower in the cytoplasm than the main component of Arf1, we investigated next if this could account for the 2 times slower binding kinetics observed in the FRAP experiments.

We used a simple computer model determine the influence of diffusion on the binding kinetics. For simplicity we assumed the cell to be square shaped and overlaid it with an 11x11 grid. To account for the height of the cell we added a second 11x11 grid in top of the first. 2x6 grid points on one level were declared Golgi points. In accordance with microscopic data we assumed that the dimensions of the cell to be 33x33x3 μm. For the simulation we allowed the
particles to freely diffuse between the cytosolic sites. Binding and unbinding to the cytosolic sites was only allowed from and to adjacent cytosolic sites with specific rates (Fig. 3).

From the simulations we estimated that for a $D < 2 \, \mu m^2/s$, the binding constants estimated from the FRAP data, deviated significantly from those used in the simulation (we used the binding/unbinding rates in accordance with the experimental results for Arf1). For the diffusion coefficient that was measured in vivo, the apparent binding rate was about twice the real binding rate used in the simulation. This showed that the slow diffusion of coatomer is sufficient to account for the slow binding rates of coatomer without the need for additional factors in the COPI machinery (Fig. 3).

Besides the fact that we found that the binding kinetics of the COPI machinery are consistent with the biochemical model, the paper raises issues important for the analysis of binding events in living cells in general. Our results show that not only the binding kinetics themselves influence the recovery in FRAP experiments, but that one has to take the diffusion of the molecules in question into account as well. An experimental measurement of the diffusion coefficient in vivo is essential for estimating its effect on the recovery. In our case we would have overestimated the diffusion coefficient of the coatomer complex greatly if we had used an estimation based on the molecular size of the coatomer. A more detailed analysis of possible diffusion artefacts in FRAP experiments was published by M. Weiss184. For the field of Golgi it is important that our experiments hinted towards an association of ArfGAP1 and coatomer in the cytosol, warranting a closer investigation of the role of this association.
5.2 Paper 2: Anomalous Subdiffusion Is a Measure for Cytoplasmic Crowding in Living Cells

The coatamer diffusion in living cells that we found in the first paper was surprisingly slow. From calibration measurements with GFP and the size of the coatamer complex, one would have expected a much higher diffusion coefficient. In the discussion of paper I we suggested that the slow diffusion of coatamer could be a consequence of binding to immobile structures in the cytosol or the formation of large protein complexes in the cytosol.

Since the there was some discussion in the literature over the size dependence of the diffusion coefficient of proteins in the cytosol (compare chapter 4.8) and no study had employed the non-invasive method of FCS, we decided to investigate if the cytosol has properties different from a simple viscous solution that can affect diffusion properties. We used fluorescently labelled, but inert tracer particles as probes and compared their diffusion in solution, in life cells and an artificial crowded environment. The results were confirmed with computer simulations. As tracer particles we used FITC labelled dextran polymers of different sizes. In PBS buffer all dextrans showed normal diffusion and the hydrodynamic radius increased proportional to $m^{0.4}$ (Fig. 2). In living cells all dextrans showed different degrees of anomalous subdiffusion (see chapter 4.6) (Fig. 3 and Table 1).

To separate properties of the cytosol from properties imposed by higher order structures like microtubules, actin and the ER, we used different drugs to disrupt these structures. In all cases subdiffusion persisted ruling out those structures a cause for the phenomenon. The major rearrangement of all cellular components in cells arrested in mitosis had also just a minor effect on the α-values (Table 2).

After ruling out higher order structures as a cause for subdiffusion we investigated if molecular crowding can cause subdiffusion.
We studied this possibility in two ways. First, we constructed a computer model for free 3D diffusion. We simulated the diffusion of tracer particles in a crowded environment of diffusing particles by solving the Langevin equation numerically. The excluded volume effect was considered by using a softcore repulsive force between the particles. Consistent with the assumption that crowding can cause subdiffusion we found a size dependent anomalous diffusion of the tracer particles. We also tested two different distributions for the sizes of the solutes. Both were inspired by the size distribution we obtained from an SDS page of purified cytosol of Hela cells. The overall effect was similar for an equal distribution of solutes ranging from 0.05 to 1 MDa and a Poisson distribution over the same range of masses. But there was a clear difference in the critical size of the probe before it became subdiffusive (Fig. 4).

Second, we studied the diffusion of labelled dextrans in a concentrated solution of a mixture of unlabeled dextrans. The dextrans showed a concentration and size dependent subdiffusion. The higher the concentration of unlabelled dextrans, the lower the observed α. Interestingly, we detected the same relation between the size of the dextran and the α-value as in living cells (Fig 5). This puzzling non-linear relationship is likely to be an effect of the polymer properties of the dextrans. Polymers can show a phenomenon called reptation, which leads to $\alpha=0.5$ under ideal conditions of obstructed diffusion. Globular particles under the same conditions show a much higher value for α. We propose that small dextrans adopt a snake like, elongated confirmation, while larger dextrans have a more globular confirmation. Behaviour like this was, for example, reported for a close relative of dextran called fructan.

The results of the paper show that diffusion of large particles in the cytosol is more complicated than in a simple viscous solution. Large particles will diffuse much slower and in a qualitatively different way than expected from measurements in solution.
This has important consequences for the kinetics of biochemical reactions. The slow diffusion that was expected for crowded solutions, should lead too a low rate of encounter of proteins in the cell. The discovery that diffusion is not only slower, but anomalous gives an indication of how efficient biochemistry can still take place. If most biochemical reactions have a quite low probability of reaction per encounter, then it is expected that those reactions are favoured by the increased rate of re-collision in that case of anomalous diffusion\(^{213}\) (see chapter 4.8). Anomalous diffusion could therefore be a prerequisite of an efficient biochemistry in the cell.

We also suggested that anomalous diffusion could be used as a measure for the crowding experienced by a particle of a certain size. A simple measure is necessary, since crowding effects on specific cellular pathway have not been well described so far. To reconstitute crowding effects \textit{in vitro} or \textit{in silico} one needs to be able to quantify the effect. As we have seen in chapter 4.8, the excluded volume effect can explain most effects of molecular crowding, but is very tedious to determine the excluded volume experimentally for a given experimental situation, if at all possible. The measurements of the diffusive behaviour are comparably straightforward and could be used to compare the \textit{in vivo} with the \textit{in vitro} situation.

Our results have been largely confirmed in a study by Banks and Fradin\(^{231}\). In addition to our paper they investigate the influence of the size of the crowding particles on the observed anomalous diffusion. For streptavidin as a tracer they find, that small crowding dextrans cause only \(\alpha\) values close to 1, while larger dextrans cause considerable subdiffusion. They also investigated the ability of Bovine serum albumin and streptavidin to cause crowding for BSA sized particles. It was found that BSA sized proteins are weaker crowding agents than large dextrans.

In a recent study it was shown that molecular crowding also causes anomalous diffusion in bacterial cytoplasm\(^{174}\).
In the light of these findings we have to revise the conclusion we drew in the first paper. A large part of the surprisingly slow diffusion of coatomer will not be due to specific interactions or protein oligomerisation, but reflects a basic property of the cytosol. Since it is likely that the shape of coatomer is far from spherical, coatomer will be affected stronger by an inhomogeneous cytoplasm than spherical proteins.

5.3 Paper 3: Evidence for Golgi localization by oligomerisation - kin recognition revisited

In chapter 4.5 we saw that oligomerisation is one mechanism suggested for the localisation of Golgi resident proteins. It is expected that oligomerisation influences the diffusion properties of the enzymes. This was studied by Weiss et al using EGFP tagged proteins and FCS. They found that all proteins studied show strong anomalous diffusion with α values ranging from 0.55 to 0.75. In this publication the anomalous diffusion was explained with a continuous time random walk. For a CTRW the kinetics binding have to be rather complicated or the system has to be out of thermal equilibrium.

We therefore decided to investigate if another mechanism can explain the subdiffusion that is observed in FCS experiments. In chapter 4.6 I discussed the occurrence of anomalous diffusion in the motion of the monomers in a polymer chain for short time scales. Those results have been obtained in static polymers of a given length. In biology polymers formed by proteins are most likely dynamic.

In this manuscript we investigate if the dynamic formation of oligomers on the membrane leads to anomalous diffusion on time scales relevant to FCS. For this we constructed a computer model for the diffusion of membrane proteins that participate in the dynamic formation of oligomers. Diffusion was simulated by solving the overdamped Langevin equation in two dimensions. In addition to the random forces in the Langevin equation, two types of
Results and Discussion

Conservative forces were applied on the particles. Particles not bound to each other interacted by soft core repulsion, when their distance was lower than a critical distance r_s. Bound particles were subject to a linear restoring force, when their distance deviated from the bond length r_s.

Binding and unbinding occurred with simple on/off kinetics. Bonds could be formed with a rate k_{on}, if particles were closer than a minimum binding distance r_c and were dissolved with a rate k_{off}. Each particle had two or three binding sites.

Deviations from normal diffusion were measured by plotting the MSD versus the time.

As expected, diffusion was normal for long times. The diffusion coefficient decreased for decreasing k_{off}/k_{on}-ratios, since larger oligomers were formed.

For the short timescales relevant to FCS experiments, the MSD shows strong deviations from normal diffusion (Figure 2). The α-value decreased when the one-rate was increased and the subdiffusion persisted to longer times.

An increase of the valency from 2 to 3 gives the same picture, but the deviations from normal diffusion are stronger and persist to longer times (Figure 3).

The dependency of the α-value on the equilibrium constant (changing k_{on} while k_{off} is kept constant) has a sigmoid shape (Figure 4). In both the valency 2 and 3 case the crossover from the subdiffusive regime to the normal diffusion is smooth and covers about two orders of magnitude of the equilibrium constant.

At valency 3 the particles are always more subdiffusive than in the valency 2 case. Very low α values down to 0.25 can be reached for low k_{off}/k_{on} ratios.

We could show that the dynamics of the association is as important as the k_{off}/k_{on} ratio. When we increased $k_{off} + k_{on}$ while keeping the k_{off}/k_{on} ratio constant, α increased in a sigmoid curve. The crossover from anomalous to normal diffusion was again smooth and was spread over at least 3 orders of magnitude.
The results indicate that oligomerisation of proteins can indeed be observed in FCS measurements by measuring the anomaly of the diffusion. If we assume a valency of 3, α values less than 0.6 can be reached. For the case of Golgi enzymes this is important since we observe 0.55 for one of the enzymes. This ability to explain low α make this model for anomalous subdiffusion superior to the popular model of obstructed diffusion if it come to explaining α-values below 0.69.

We can conclude that the diffusion properties that we observe for Golgi resident proteins are consistent with the model of kin-recognition and the formation of large oligomers.

The original kin recognition model envisaged an immobilisation of the kin-oligomers and an exclusion of the proteins from COPI vesicles. The model clearly has to be reformulated to reconcile it with the redefined role of COPI vesicles. Glycosyltransferases are mobile in the Golgi membrane and are incorporated preferentially into COPI vesicles in an GTP hydrolysis depended manner.

The easiest way to picture the sorting of Glycosyltransferases, is to assume that kin-oligomers contain proteins that have the ability to interact with both the COPI machinery and the resident proteins. So far, no obvious candidate for this role has been suggested. The members of the p24 protein family cycle between the ER and have the ability to influence the COPI machinery. Although they have been suggested to function as cargo receptors, no interaction with other proteins that are sorted into COPI vesicles has been reported so far. It is possible that some Glycosyltransferases might have the ability to interact with the COPI machinery as their cytoplasmic tail is important for their localisation, but this has not been investigated, yet.

The increase of α values for resident proteins from the cis to the trans-Golgi suggests that trans-proteins participate in the formation of larger oligomers.
than cis-proteins. Whether this is a general trend, valid for all proteins, will have to be verified by studying more proteins.

In the simplest form, the kin-recognition/cargo-receptor model would predict that large oligomers are more efficient in recruiting the COPI machinery, because a larger number of cargo receptors would be present in the same area of the membrane. In the maturation scheme for Golgi transport, one would expect the opposite preference for sorting into COPI vesicles. Trans-proteins should be less competitive in the sorting reaction compared to cis-proteins\(^\text{62,63}\). A possible mechanism to ensure a reduced competitiveness of large oligomers, can be found if one considers the processes during vesicle budding. The formation of a bud/vesicle requires a large increase in the curvature of the membrane. Due to its intrinsic stiffness the oligomers will resist this bending, and reduce the probability to make a vesicle during the time given by Arf1 hydrolysis. Large oligomers will offer more resistance to membrane bending than small ones. In addition larger and stiffer polymers will have a reduced probability to enter the highly curved rim regions of the Golgi were most of the buds are observed, especially if the large oligomers have to compete with smaller oligomers for places in the rims.

An alternative explanation is to assume that that putative cargo receptor has different affinities to proteins that are resident in different cisternae. Cis-oligomers would have a higher concentration of cargo receptors, and be incorporated more efficiently into COPI vesicles.

This model poses a lot of new questions that have to be addressed in future work. Our simulation results will have to be verified experimentally in systems allowing for controlled oligomerisation of tracer proteins. An oligomer-size dependence of the Golgi localisation of resident proteins will have to be shown. Proteins with the ability to bind both, to the COPI machinery and glycosyltransferases, will have to be identified.
6 Acknowledgements

mmmhhhh, here comes the most difficult part. Not only because it is the most personal section, but also because this is the only section that most people will actually read.

I will begin with an apology to those people I will forget to mention. Those who know me know that this is not evil will, but ..well… just me.

I want to thank:

First, Tommy: I cannot believe it is more then 4 years ago that I walked into your tiny office in the corner of the EMBL lab for the first interview! Thank you for everything! (Which includes the opportunity to work in his lab, the science, the freedoms I had, the interesting discussion etc. etc.)

Then Matthias Weiss, for being a never ending source of inspiration and ideas and a friend!

Fredrik, Jacqui and Johan for being great lab mates and much more importantly good friends! F. and Jo. good luck with the rest of your thesis! F. and Ja. Good luck with Nathalie! Jo. good luck with your Hattrick team!

Maria for suffering with me through subdiffusion and FCS. For always being there for my questions and problems! Hope we will stay friends!

Lennart for all the interesting and long science discussions. I will miss them!

Je remercie Fred2 pour avoir été mon seul compagnon pendant beaucoup des nuits entières à la paillasse et pour tous nos conférences bière et pizzas.
Marlies for being the “Gute Geist” of the lab.

Linda for being always, always there to help!

Julia for introducing us to that Spanish ham whose name I cannot remember. For lively coffee brakes and kicking the a.. of the Zeiss people to get the microscope repaired on time.

Magnus for being a valuable source of experience.

Cecilia for starting up the lab, when we moved and keep it running afterwards.

Gunnar Hansson for helping me with all the administrative stuff and always answering my many questions.

Martin for introducing me in the art and science of doing a disputation in Gothenburg.

Brigitta, Michael, Ulrika, Cecillia and Minette for being there when one of the many papers and forms was missing.

Sweden for being a wonderful host country.

Meinen Eltern ohne deren Hilfe und Liebe ich nie so weit gekommen wäre!
Christiane für die letzten drei, trotz

die fünf davor, mit einem dicken:

und für hoffentlich viele weitere Jahre! Beginnend mit:
7 References

References

66. Marsh BJ, Volkmann N, McIntosh JR, Howell KE. Direct continuities between cisternae at different levels of the Golgi complex in glucose-

References

110. Zhao X, Lasell TK, Melancon P. Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments:
References

References

References

178. Lindblom G, Oradd G, Filippov A. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol An NMR study of

75
References

202. Drenckhahn D, Pollard TD. Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules. J. Biol. Chem. 1986;261(27):12754-12758.
204. Zimmerman SB, Trach SO. Macromolecular crowding extends the range of conditions under which DNA polymerase is functional. Biochim Biophys Acta 1988;949(3):297-304.
References

Paper I
Spatiotemporal dynamics of the COPI vesicle machinery

Markus Elsner1, Hitoshi Hashimoto1, Jeremy C. Simpson1, Dan Cassef, Tommy Nilsson1 & Matthias Weiss1,3+

1Cell Biology and Cell Biophysics Programme, EMBL, Heidelberg, Germany; 2Department of Biology, Technion, Haifa, Israel; and 3Physics Department, MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark

Assembly of the coat protein 1 (COPI) vesicle coat is controlled by the small GTPase ADP ribosylation factor 1 (ARF1) and its GTPase-activating protein, ARFGAP1. Here, we investigate the diffusional behaviours of coatomer, the main component of the coat, and also those of ARF1 and ARFGAP1. Using fluorescence-correlation spectroscopy, we found that most ARF1 and ARFGAP1 molecules are highly mobile in the cytosol (diffusion constant $D = 15 \mu m^2 s^{-1}$), whereas coatomer diffuses 5–10 times more slowly than expected ($D = 1 \mu m^2 s^{-1}$). This slow diffusion causes diffusion-limited binding kinetics to Golgi membranes, which, in FRAP (fluorescence recovery after photobleaching) experiments, translates into a twofold slower binding rate. The addition of aluminium fluoride locks coatomer onto Golgi membranes and also decreases the binding kinetics of both ARF1 and ARFGAP1, suggesting that these proteins function in concert to mediate sorting and vesicle formation.

doi:10.1038/sj.emboj.7600942

INTRODUCTION

Newly synthesized proteins move through the secretory pathway in membrane-bound structures that originate from the endoplasmic reticulum (ER). Forward movement is offset by the recycling of resident proteins. Two recycling mechanisms exist in mammalian cells, one that is mediated by coat protein I (COPI) vesicles, and another that is independent of known coat proteins (for a review, see Storrie & Nilsson, 2002). Whereas COPI-independent recycling is poorly understood, COPI-dependent recycling has been characterized extensively. After nucleotide exchange (GDP to GTP), the small GTPase ADP ribosylation factor 1 (ARF1) becomes firmly attached to Golgi membranes, whereas on GTP hydrolysis ARF1 is released back into the cytoplasm, an event that requires an activating protein, ARF GTPase-activating protein 1 (ARFGAP1). While it is present on membranes, ARF1 is able to recruit coatomer, the main coat component of COPI. Coatomer, as well as ARF1 and ARFGAP1, can also bind individually to cytosolic domains of resident proteins. The formation of vesicles in vitro requires only ARF1 and coatomer (Osterrmann et al., 1993; Spang et al., 1998) when a non-hydrolyzable GTP derivative, GTPγS, is used. However, the incorporation of cargo proteins requires GTP hydrolysis by ARF1 (Lanoix et al., 1999, 2001; Malsam et al., 1999; Pepperkok et al., 2000). How GTP hydrolysis by ARF1, which is known to release coatomer, promotes sorting into COPI buds and vesicles can be explained in terms of a kinetic proofreading mechanism (Weiss & Nilsson, 2003).

Despite many advances in the understanding of the biogenesis of COPI vesicles, the binding and assembly kinetics of the COPI-vesicle machinery are poorly characterized. Recent studies of the binding kinetics of ARF1 and coatomer in vivo, using fluorescence recovery after photobleaching (FRAP; Presley et al., 2002), unexpectedly revealed that coatomer shows a twofold slower recovery than ARF1, suggesting that release of coatomer from membranes occurs by mechanisms that do not involve ARF1. This interpretation was supported by the observation that an addition of aluminium fluoride, coatomer was locked onto the membrane, whereas ARF1 detached with unperturbed kinetics. Here, we have determined the cytosolic mobilities of GFP-tagged COPI components. We find that coatomer is nearly an order of magnitude less mobile in the cytoplasm than would be theoretically expected, whereas ARF1 and ARFGAP1 are highly mobile. However, ARF1 and ARFGAP1 are also found in slow-moving fractions that are likely to represent the formation of complexes with other factors. We also show that the binding kinetics of ARF GAP1 to Golgi membranes are similar to those of ARF1 and confirm the apparent twofold slower binding kinetics of coatomer (Presley et al., 2002). On the basis of computer
simulations, however, we suggest that this is due to diffusion-limited kinetics of coatamer.

RESULTS AND DISCUSSION

FRAP can be used to determine the diffusional mobilities of fluorescently labelled molecules: on bleaching an area of interest (typically several square micrometres), the diffusion constant of the molecule can be deduced from the recovery of fluorescence. Alternatively, FRAP can be used to monitor the dynamic exchange of peripheral membrane proteins. The fluorescence recovery rate in this case is a combination of attachment and detachment rates of the peripheral protein. This only holds true, however, if the time needed for the molecules to diffuse through the cytoplasm towards the target is short. This can be tested by assessing the diffusion coefficient with FRAP, in which restricting the bleaching to the focal spot gives high temporal and lateral resolution (for a review, see Eto & Qian, 1989). Alternatively, fluorescence-correlation spectroscopy (FCS) can be used to determine the diffusion constant by monitoring the Brownian movement of individual proteins without bleaching the cell. FCS monitors fluctuations in the fluorescence that arise due to the diffusion of single green fluorescent protein (GFP)-tagged molecules in a confocal volume of \(\approx 1 \mu m^3 \). Calculating the autocorrelation function \(C(\tau) \) of the recorded fluorescence time series \(F(\tau) \), one can determine from the characteristic decay time of \(C(\tau) \), the diffusion coefficient \(D \) of the protein of interest. FCS provides information more readily about the state of the molecules; that is, if a portion associates with other molecules, this will give both fast/fast and bound/bound populations. In this study, we combine FCS and FRAP to analyse the main COPI components: coatamer, ARF1 and ARFGAP1.

Full-length complementary DNAs encoding GFP and GFP-tagged ARF1, ARF GAP1 and e-COP were expressed in HeLa and Chinese hamster ovary (CHO) cells and monitored by FCS (see Methods). For free GFP in the cytoplasm, the data were best described by a single diffusing component with a diffusion coefficient of \(D = 25 \mu m^2 s^{-1} \), indicating an approximately threefold to fourfold higher viscosity of cytoplasm as compared with buffer (Fig. 1A). For ARF1 (Fig. 1B), we saw two components that contribute to \(C(\tau) \): a fast and a slow population, with diffusion coefficients \(D = 15 \mu m^2 s^{-1} \) and \(D = 0.5 \mu m^2 s^{-1} \), respectively, being present in average proportions of 85% and 15%, respectively. The faster component is consistent with the expectations for monomeric ARF1--GFP (see Methods), whereas the slower fraction is probably due to complex formation with other proteins. For ARFGAP1 (Fig. 1C), we saw similar curves: that is, a fast population (70%; \(D = 13 \mu m^2 s^{-1} \), consistent with the theoretical expected value), and a minority of slow molecules (30%; \(D = 0.5 \mu m^2 s^{-1} \)). The slow diffusion of the minor ARFGAP1 fraction suggested complex formation of ARF GAP1 with a larger protein complex, such as coatamer. To test this, we increased the level of cytosolic coatamer by applying brefeldin A (BFA), which causes the release of coatamer from Golgi membranes (Helm & Rothman, 1992). In support of our hypothesis, we found that the average fraction of the slow component of ARF GAP1 increased from 30% to about 50% (Fig. 1C), whereas \(C(\tau) \) for ARF1 was not affected (data not shown).

We then determined the mobility of coatamer using GFP-tagged e-COP stably expressed in HeLa (Fig. 1D) and CHO (Fig. 1E) cells. As expected, we saw a fast component (HeLa cells, 74%; \(D = 16 \mu m^2 s^{-1} \); CHO cells, 48%; \(D = 16 \mu m^2 s^{-1} \)), which was consistent with the theoretical expectations for free, monomeric e-COP--GFP. The slower component (HeLa cells, 26%; \(D = 0.5 \mu m^2 s^{-1} \); CHO cells, 52%; \(D = 0.5 \mu m^2 s^{-1} \)) most probably represents e-COP--GFP incorporated into the coatamer complex, but its mobility is much slower than expected from the size of coatamer. Consistent with this, the addition of BFA to increase the cytosolic pool of coatamer increased the slow fraction on average from 52% to 70% in CHO cells (Fig. 1E). To confirm that the slower component was indeed coatamer, we removed \(\beta \)-COP by RNA interference (RNAi). This coatamer component is required for the assembly of the coatamer complex (Eugster et al., 2000) and, as expected, its removal resulted in a marked reduction of the slow component (Fig. 1F). We therefore conclude that the slower component of e-COP--GFP corresponds to coatamer. As the slower fraction of ARFGAP1 has the same diffusion constant as the slower component of coatamer and its levels are increased on BFA treatment, we suggest that ARFGAP1 and coatamer might exist as a complex in the cytosol. Further experiments to test coatamer association with ARFGAP1 and other proteins are underway.

A possible explanation for the unexpectedly slow diffusion of coatamer and a portion of ARFGAP1 is that coatamer is involved in coat formation on peripheral ER exit sites (Stephens et al., 2000). To test this, we microinjected cells with a plasmid encoding a GDP-restricted mutant of Sar1 (0.1 mg ml\(^{-1} \); incubation for 6 h), which leads to the disassembly of ER exit sites (Ward et al., 2001). At most, the mobility of coatamer increased about twofold as determined by FCS (data not shown), which is clearly insufficient to explain the slow diffusion of coatamer. A more likely explanation is provided by the fact that the large coatamer complex is predicted to encounter steric hindrance due to membranes and cytoskeletal structures while diffusing through the cytoplasm. For large complexes, obstructed diffusion could easily account for a slow-down of diffusion by a factor of 5–10 (Saxton, 1993).

To complement the FCS measurements, we also performed FRAP using e-COP--GFP. We bleached a circular spot (area, 47 \(\mu m^2 \)) through the entire thickness of the cell and fitted the resulting recovery curves with the appropriate formula for a single diffusing species (Saxton, 2001). Fitting with a two-component expression was not successful, as the time resolution of the FRAP measurement (154 ms) was insufficient to resolve the recovery of free e-COP--GFP (recovery time \(T = 240 \) ms, assuming \(D = 16 \mu m^2 s^{-1} \)). The diffusion coefficient determined in this way (\(D_{\text{rms}} = 1.7 \mu m^2 s^{-1} \)) was higher than that obtained by FCS, which is in part explained by the contribution of the fast but unresolved pool of free e-COP--GFP. However, the diffusion constant determined by FRAP was still significantly slower (approximately fivefold) than theoretically expected.

We next used FRAP to investigate the binding kinetics of ARF1, ARFGAP1 and coatamer to Golgi membranes. We bleached the entire pool of the GFP-tagged proteins in the Golgi region, then monitored and fitted the recovery. Whereas ARF1 (Fig. 2A) and ARFGAP1 (Fig. 2C) showed similar recovery curves with a characteristic time constant of \(T = 10 \) s, coatamer (Fig. 2E) seemed to recover with a twofold slower rate, in agreement with a previous report on ARF1 and coatamer (Presley et al., 2002).
Applying aluminium fluoride to the cells locked coatomer onto Golgi membranes (Fig. 2F), whereas ARF1GAP1 showed a 30% increase in T (Fig. 1D). For ARF1, the recovery time changed even more significantly to T = 20 s (Fig. 2B), whereas the addition of fluoride did not have any effect (data not shown). In contrast to previous reports (Presley et al., 2002), this provides in vivo evidence that the entire COPI vesicle machinery is affected by aluminium fluoride.

Because coatomer diffuses significantly more slowly than the main fraction of ARF1 and ARF1GAP1, we next investigated to what extent this could affect binding kinetics determined by FRAP. A simple model was constructed for analysing the FRAP experiment. For simplicity, we assumed the cell to have a square shape and then overlaid a grid in the x-y direction with a lattice of 11 × 11 sites, each having a volume of 3 × 3 × 3 µm³ (Fig. 3A). The area of this ‘cell’ is therefore 1,089 µm², which is comparable to the area of CHO and HeLa cells. The Golgi apparatus was modelled by 12 adjacent lattice points in the middle of the cell (Fig. 3A, grey areas), consistent with fluorescence microscopy pictures of CHO and HeLa cells in which Golgi sites represent about 10% of the cell area. Neighbouring cytosolic sites were coupled to support a diffusive flux of proteins, whereas the attachment and detachment of proteins to and from the Golgi sites could only occur from neighbouring cytosolic lattice points.

![Figure 1](https://example.com/image1.png)

Fig. 1 | Cytosolic mobility of COPI proteins. Representative fluorescence correlation spectroscopy (FCS) curves for (A) green fluorescent protein (GFP) in buffer and cytoplasm, (B) ADP ribosylation factor 1 (ARF1), (C) ARFGTPase-activating protein 1 (ARF1GAP1) and (D) ε-COP (ε-coat–protein) in HeLa cells (black lines), with best fits according to equation (1) (red symbols; see Methods). The autocorrelation function C(τ) shown for ARF1 involves a fast (87%, D = 15 µm² s⁻¹) and a slow (13%, D = 0.5 µm² s⁻¹) population, which is probably because of interactions with nucleotide-exchange factors. Similarly, ARF1GAP1 shows a large, fast pool (40%, D = 13 µm² s⁻¹) and a minority of slow molecules (60%, D = 0.5 µm² s⁻¹), which increased on addition of brevveA (BFA). The FCS curve of ε-COP comprises a fast component (93%, D = 16 µm² s⁻¹), due to monomeric ε-COP, and a slow one (71%, D = 0.5 µm² s⁻¹), due to ε-COP which is incorporated into coatomer. (B) In untransfected Chinese hamster ovary (CHO) cells, the FCS curve also showed two components (left curve, fast, 45%; D = 16 µm² s⁻¹, slow, 55%, D = 0.5 µm² s⁻¹), and applying BFA to release coatamer from Golgi membranes increased the slow component (to 68%). (F) Knocking out the β-COP subunit of coatamer reduced the slow component to less than 20%. This confirms that the slow component is the coatamer complex. RNAi, RNA interference.
with rates R and γ respectively. To account for the height of the cell, we coupled the corresponding sites of a second, identically shaped lattice to the first one to support diffusional flux. Our cell is therefore a box of $11 \times 11 \times 2$ sites. As the Golgi apparatus typically does not fill the entire thickness of the cell, that is, cytosol is present above and below it, we did not specify Golgi sites on the second lattice. The Golgi region therefore consists of 12 Golgi sites and 12 cytosolic sites below them. To be consistent with the FRAP experiments described above, we used $\gamma = 0.05 \text{ s}^{-1}$ in the simulations and fixed the ratio $R = 3\gamma$, so that at steady state the Golgi pool of the protein is threefold larger than the cytosolic pool in a corresponding area.

Using this model, we investigated the following three situations: first, an instantaneous bleaching of only the Golgi sites (Fig. 3B); second, an instantaneous bleaching of the Golgi region (Fig. 3C); and third, bleaching the Golgi region at $\tau = 500 \text{ s}$ for 4 s (Fig. 3D), which was the typical bleaching time used in our FRAP experiments. Qualitatively, the three situations all resulted in similar recovery curves; the recovery was fastest for $D = 15 \mu \text{m}^2 \text{ s}^{-1}$, with a typical recovery time $T = 10 \text{ s}$, consistent with the experimental observations (Fig. 2A,B). These results were not altered significantly when using $D = 10 \mu \text{m}^2 \text{ s}^{-1}$. For $D < 2 \mu \text{m}^2 \text{ s}^{-1}$ however, the recovery was significantly slower, an effect which became more pronounced as D decreased. As the rates R and γ were the same in all simulations, this could only occur due to a diffusion-limited recovery. Neither the incorporation of a cytosolic contribution (Fig. 3C) nor the more realistic situation of bleaching for a finite time (Fig. 3D) qualitatively altered this result. Moreover, fitting the curves for $D = 15 \mu \text{m}^2 \text{ s}^{-1}$ and $D = 1.5 \mu \text{m}^2 \text{ s}^{-1}$ with single exponential kinetics with typical times T_f and T_g gave a ratio of $T_f/T_g < 1.9 - 2.1$ in all three cases, although the rates R and γ had not been altered. These results show how a diffusion-limited recovery curve can result in apparently slower binding kinetics. One might have anticipated that ARFGAP1, if complexed to coatomer, should also show a diffusion-limited recovery. However, the experimental recovery curves for ARFGAP1 only provided some variation in the recovery times from cell to cell ($7 \text{ s} < T < 15 \text{ s}$). This is most readily explained by the excess of ARFGAP1 when expressed as a GFP fusion protein compared with the levels of endogenous coatamer. Unbound ARFGAP1 diffusing more rapidly would mask the more slowly diffusing coatamer–ARFGAP1 complex. Each of the COPI components can also bind to Golgi membranes by themselves, explaining to some extent their faster recovery rates. There are also coatmer-independent processes on Golgi membranes that require the action of ARF1. For example, ARF1 regulates phospholipase D, which catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (Williger et al., 1999) and recruits PtdIns-4-OH-kinase-β to Golgi membranes (Godi et al., 1999).

In summary, we have presented evidence that ARF1, ARFGAP1 and coatamer have approximately the same kinetics of binding to Golgi membranes when taking into account the observed diffusion-limited behaviour of coatamer. Previously, the apparent discrepancy between ARF1 and coatamer kinetics seen in FRAP experiments was taken as evidence that GTP hydrolysis by ARF1 is not responsible for coatamer dissociation (Presley et al., 2002). Our results do not support this conclusion, and instead suggest that the coat components bind and dissociate in concert. In addition, our data suggest that ARFGAP1 is recruited to membranes alongside ARF1 and coatamer, and is thus likely to have a key function in the regulation of coat dynamics and sorting, for example through a kinetic proofreading scheme (Weiss & Nilsson, 2003).
Fig. 3 | Simulation of diffusion-limited reaction kinetics. (A) Simulation of fluorescence recovery after photobleaching (FRAP) was performed on a model cell consisting of a square lattice of 11 × 11 × 2 sites with 12 Golgi sites embedded in the first layer (marked in grey; see main text for details). (B-D) Resulting recovery curves for various diffusion coefficients (filled circles, \(D = 15 \, \mu\text{m}^2\text{s}^{-1} \); open squares, \(D = 1.5 \, \mu\text{m}^2\text{s}^{-1} \); open triangles, \(D = 0.5 \, \mu\text{m}^2\text{s}^{-1} \); open diamonds, \(D = 0.1 \, \mu\text{m}^2\text{s}^{-1} \)), with best fits according to single-exponential kinetics (lines). Bleaching was performed instantaneously on (B) Golgi sites only, (C) the Golgi region and (D) on the Golgi region at a rate of 500 s⁻¹ for 4 s. The recovery curves depend strongly on the diffusion coefficient \(D \) and the typical recovery time increases about twofold in all cases when comparing \(D = 15 \, \mu\text{m}^2\text{s}^{-1} \) with \(D = 1.5 \, \mu\text{m}^2\text{s}^{-1} \). For lower values of \(D \), this effect becomes even more marked.

METHODS

Cell culture and microscopy. Monolayer HeLa or CHO cells were cultured in DMEM and RPMI, respectively, both supplemented with 10% fetal calf serum, 100 units ml⁻¹ penicillin, 100 mg ml⁻¹ streptomycin and 10 mM glutamine (Gibco). The ARF1-GFP and ARFGAP1–GFP plasmids will be described elsewhere. The e-COP–GFP cDNA fragment (a gift from R. Pepperkok) was inserted into pSG-puro and stably expressed in HeLa cells. The e-COP–GFP CHO cell line was a gift from I. Presley. The concentrations of the chemicals used and the plasmids injected were: ARF1, 25 μg ml⁻¹; BFA, 5 μg ml⁻¹; aluminium fluoride, 30 mM NaF and 50 μM AICl₃.

Oligonucleotides used for RT-PCR were derived from a cDNA that encodes human β-COP (GenBank accession number NM_016451). The most inhibitory RNA was against nucleotides 161–181 downstream of the ATG (target sequence: 5′-AACU UCCUGGACUUCUGAUGA-3′). Complementary oligonucleotides (5′-CUUUCCUGACGCUCCUGAAdTdT-3′) and (5′-CAACUGAAGUCCAGGAAdTdT3′) were synthesized, annealed and purified (Dharmacon). Lyophilized oligonucleotide duplexes were resuspended in water at 20 μM.

FCS measurements were carried out with a ConfoCor 2 (Carl Zeiss) using an Apochromat 40x/1.2W objective, a 488-nm laser, a 505–550-nm bandpass and a pinhole width of 1 Airy unit. In all cases, 20 fluorescence time series (f(t)) of 10 s were recorded (time resolution, 50 ms), correlated according to Wohland et al. (2001) and superimposed for fitting. In all cases, multiple cells and different locations (outside the nucleus and the Golgi) were used for FCS. From cell to cell, results were consistent. Reported diffusion coefficients and slow/fast ratios are averages, and the figures are representative examples of single cells.

All FRAP experiments were performed with an open pinhole, that is the marked region of interest was bleached throughout the entire thickness of the cell.

Data evaluation and simulation. FCS curves were fitted with a Levenberg–Marquardt algorithm (Press et al., 1993) using the expression for three-dimensional diffusion of two components (Schwille et al., 1997):

\[
C(t) = \frac{A t}{(1 + \tau_0^2/(4 \tau t^2))} + \frac{A (1 - t)}{(1 + \tau_0^2/(4 \tau t^2))}
\]

Here, \(t \) is the fraction of particles with diffusion coefficient \(D_1 < D_2 \), and \(\tau_0^2 \equiv \tau_0^2(4D_1/D_2) \) are the characteristic times of the autocorrelation decay, which includes the diffusion coefficient and the radius \(r_0 \) of the confocal volume. The elongation of the optical volume along the optical axis is described by the stretching factor \(S \). From the times \(\tau_0^2(1) \) and \(\tau_0^2(2) \), the diffusion coefficients \(D_1 \) and \(D_2 \) were extracted by comparison with the calibration using GFP in buffer: that is, \(D_{GFP} = 87 \, \mu\text{m}^2\text{s}^{-1} \) (Wachsmuth et al., 2003) corresponds to \(\tau_0 = 130 \, \mu\text{s} \). \(t = 1 \) in equation (1) (Fig. 1A). From this, \(D_{GFP} \) and \(D_{ARF1} \), \(D_{ARFGAP1} \) and \(D_{ARF-GAP} \) were also able to predict the diffusion coefficients of ARF1, ARFGAP1 and coatamer using the Einstein–Stokes relationship for the molecular weight of GFP (25 kDa), we were also able to predict the diffusion coefficient of ARF1, ARFGAP1 and coatamer using the Einstein–Stokes relationship for the molecular weight of GFP (25 kDa), we were also able to predict the diffusion coefficient of ARF1, ARFGAP1 and coatamer using

© 2003 Nature Publishing Group
diffusion equation was solved with a fourth-order Runge–Kutta algorithm (Press et al., 1993) using reflecting boundary conditions at the edges and the Golgi sites. Diffusion of proteins in the Golgi was considered by solving the diffusion equation on the Golgi sites with reflecting boundary conditions and a diffusion coefficient $D = 1 \, \mu$m$^2 \, s^{-1}$, which is typical on membranes (Weiss et al., 2003). During bleaching, the diffusion and binding reactions continued.

ACKNOWLEDGEMENTS
We thank J. Preley and J. Lippincott-Schwartz for providing us with e-CP1–GFP. Young for critically reading the manuscript, and R. Pepperkok for helpful comments and advice and for the use of the Advanced Light Microscopy Facility at EMBL. M.W. was supported by an EMBO long-term fellowship.

REFERENCES

Paper II
Anomalous Subdiffusion Is a Measure for Cytoplasmic Crowding in Living Cells

Matthias Weiss,* Markus Elsner,† Fredrik Kartberg,† and Tommy Nilsson†
*MEMPHYS-Center for Biomembrane Physics, Physics Department, University of Southern Denmark, Campusvej 55, Odense M, Denmark; and †Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, Göteborg, Sweden

ABSTRACT Macromolecular crowding dramatically affects cellular processes such as protein folding and assembly, regulation of metabolic pathways, and condensation of DNA. Despite increased attention, we still lack a definition for how crowded a heterogeneous environment is at the molecular scale and how this manifests in basic physical phenomena like diffusion. Here, we show by means of fluorescence correlation spectroscopy and computer simulations that crowding manifests itself through the emergence of anomalous subdiffusion of cytoplasmic macromolecules. In other words, the mean square displacement of a particle will grow less than linear in time and the degree of this anomaly depends on the size and conformation of the traced particle and on the total protein concentration of the solution. We therefore propose that the anomaly of the diffusion can be used as a quantifiable measure for the crowdedness of the cytoplasm at the molecular scale.

INTRODUCTION

At first glance the cytoplasm of mammalian cells appears to be an unstructured, aqueous liquid in which proteins, sugar molecules, and other solvents are dissolved. Taking a closer look, one realizes that the cytoplasm is in fact structured on many length scales: on the μm-scale we find organelles like the mitochondria, endosomes, and the Golgi apparatus. On a smaller scale (~100 nm) the endoplasmic reticulum (ER) imposes a random reticular network (Marsh et al., 2001) together with the cytoskeletal elements, such as microtubuli and actin filaments. Together, these yield a higher order structure of the cytoplasm (see, for example, Alberts et al., 1994 for a more detailed introduction). As a consequence, diffusional movement of particles, such as macromolecules, can be obstructed. In fact, it has been reported that the diffusional mobility in the cytoplasm strongly decreases with an increasing radius of the tracked particle, leaving particles with a radius >25–30 nm immobile (Luby-Phelps et al., 1986, 1987; Seksek et al., 1997; Arrio-Dupont et al., 2000). Extensive computer simulations also have shown that the molecular mobility is reduced when a particle diffuses in a maze-like environment (Saxton, 1993): When increasing molecular mobility is reduced when a particle diffuses in an increasing radius of the tracked particle, leaving particles with a radius >25–30 nm immobile (Luby-Phelps et al., 1986, 1987; Seksek et al., 1997; Arrio-Dupont et al., 2000). Extensive computer simulations also have shown that the molecular mobility is reduced when a particle diffuses in a maze-like environment (Saxton, 1993): When increasing the concentration c of obstacles in the maze, the tracer particles appeared to diffuse slower and slower until complete immobilization occurred beyond a certain value, c⁺. Interestingly, when approaching c⁺ the characteristics of the diffusional motion changed dramatically. The mean square displacement v(t) of the monitored particles did no longer grow linearly in time but, rather, showed a power law v(t) − tα with α < 1. This kind of diffusion is known as anomalous subdiffusion and has been found in many different contexts; e.g., for the movement of lipids on model membranes (Schutz et al., 1997), integral membrane proteins on organellar membranes (Weiss et al., 2003) and proteins in the nucleoplasm (Wachsmuth et al., 2000), solute transport in porous media (Drazer and Zanette, 1999), and the translocation of polymers (Metzler and Klafter, 1999, 2000; Kantor and Kardar, 2004).

In the case of obstructed diffusion, the emergence of a transitional subdiffusive regime is observed when the concentration of obstacles is increased. This transient subdiffusive behavior collapses back to normal diffusion after a timescale T which diverges in the limit c → c⁺. At c = c⁺ (the so-called percolation threshold), subdiffusion is observed on all timescales. Whereas T grows with increasing obstacle concentration, the (transient) anomaly parameter α decreases concomitantly from unity to a finite value α⁺ at c⁺, which is given by α⁺ ≈ 0.697 and α⁺ ≈ 0.526 for two- and three-dimensional environments, respectively (Havlin and Ben-Avraham, 1988; Bouchaud and Georges, 1990). These values were obtained for continuum percolation in a “Swiss-cheese” model (see Havlin and Ben-Avraham, 1987 for details) and presumably represent the best approximation to the actual values in nature. However, other mechanisms can also lead to anomalous subdiffusion where the entire range 0 < α < 1 may be observed (see, for example, Bouchaud and Georges, 1990; Metzler and Klafter, 2000). Regardless of its microscopic origin, anomalous subdiffusion has been shown to strongly influence the formation of spatiotemporal patterns (Weiss, 2003) as well as kinetic rates (Saxton, 2002) and the time course of enzymatic reactions (Berry, 2002).

When neglecting the higher-order structuring of the cytoplasm by cytoskeletal elements and membranes, one could anticipate from the above that one deals with an unstructured aqueous solution in which normal diffusion...
should be observed. Yet, the assumption of the cytoplasm as being a homogenous viscous solution is somewhat misleading as differently sized proteins, lipids, and sugars constitute up to 40% of the cytoplasmic volume (Fulton, 1982). This phenomenon is commonly referred to as molecular crowding and has recently received increased attention (Ellis and Minton, 2003; Rivas et al., 2004) since, for example, enzymatic reactions and protein folding appear to be strongly affected by the crowdedness (for reviews see Ellis, 2001; Hall and Minton, 2003). Also, crowding seems to contribute significantly to the high viscosity of the cytoplasm which has been determined to be three- to fourfold higher than that of water (Verkman, 2002; Elsner et al., 2003). Despite the increased interest in the phenomena associated with molecular crowding, the term “crowdedness” so far has been used without a quantitative definition of what it actually means. In other words, we lack a definition of a quantity which summarizes how crowded an environment really is and also states in which primary physical property of the heterogeneous fluid the crowdedness is manifested. As basic criterion, a quantitative measure of crowdedness should be independent of influences imposed by the cytoskeletal and membrane obstacles discussed above. Rather, it should reflect a basic and unambiguous physical quantity which can be assigned to the highly, yet heterogeneous, concentrated protein/sugar solution called cytoplasm.

Here we utilize fluorescence correlation spectroscopy (FCS) to show that inert tracer particles show anomalous subdiffusion in the cytoplasm of living cells over a wide range of particle sizes. This behavior is found to occur irrespective of the stage of the cell cycle or the presence of ER membrane structures and cytoskeletal scaffolds. Using computer simulations, we demonstrate that this effect most likely arises due to molecular crowding, e.g., diffusing particles are scattered by nearby particles due to excluded-volume interactions. We verify our hypothesis in vitro by determining the degree of anomalous diffusion of tracer particles in highly concentrated dextran solutions.

MATERIALS AND METHODS

Cell culture

HeLa cell lines were grown in DMEM supplemented with 10% fetal calf serum, 100 µg/ml penicillin, 100 µg/ml streptomycin, and 10 mM glutamine (Gibco, Eggstein, Germany). FITC-labeled dextrans of different molecular masses (10, 40, 500, 2000 kDa: Molecular Probes, Eugene, OR; 150 kDa: Sigma, Germany) were either injected with an Eppendorf microinjection system (Eppendorf, Hamburg, Germany) or incorporated by electroporation. Microstipples were disrupted by incubating cells with 20 µM nocodazole at 37°C for one hour. To disrupt the ER network, cells were treated with 5 µg/ml Filipin III (Sigma, Germany) for 30 min at 37°C and 45 min at 30°C. The efficiency of the treatment was confirmed by examining the change of the fluorescence pattern of HeLa cells expressing the ER marker Sec61 fused to CFP (see Axelson and Warren, 2004 for details). Experiments using mitotic cells were accomplished by arresting HeLa cells in the metaphase of mitosis by incubating them for 16 h in the presence of 100 nM nocodazole (Sigma Chemical, St. Louis, MO) (Zave et al., 1980).

For subcellular fractionation, HeLa cells were scraped off the culture dish and collected by centrifugation (500g, 5 min). Cells were washed with phosphate-buffered saline (PBS) twice and once with homogenization buffer. The homogenization buffer consisted of 20 mM HEPES-KOH (pH 7.4), 1 mM EDTA, 250 mM sucrose (USB, Cleveland, OH), 1 mM EDTA (Merck, Hamburg, Germany), plus protease inhibitors (1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µg/ml pepstatin, 1 µg/ml antipain, 1 mM Benzamidine-HCl, 40 µg/ml phenylmethylsulfonyl fluoride). Cell pellets were resuspended in 4 volumes of homogenization buffer in the presence of protease inhibitors and homogenized using a ball-bearing homogenizer (10 passages with a 16 µm clearing). The homogenate was then centrifuged sequentially at 10,000 × g (P1, 10,000 × g (P10), and at 100,000 × g (P100), retaining the supernatant at each subsequent centrifugation step. The final 100,000 × g supernatant (S100) was boiled in equal volume sample buffer and various amounts (0.1–10 µg) of protein were resolved on a 12.5% SDS-polyacrylamide gel. Protein bands were visualized by Coomassie Brilliant blue G250 (Merck, Darmstadt, Germany).

Fluorescence microscopy and FCS

FCS measurements were carried out on a LSM510/ConfoCor 2 (Carl Zeiss, Jena, Germany) using a 488-nm laser line for illumination. The fluorescence was detected with a bandpass filter (505-550 nm) and the objective (Apochromat 40×/1.2 W) was heated to 37°C using an objective heater (Biobjectics, Butler, PA). The pinhole for all shown measurements was 1 Airy unit. We verified that for free diffusion in water, the autocorrelation function of the fluorescence was well fitted by Eq. 1 with α = 1. Thus, our analysis does not suffer from deviations of the confocal volume from a three-dimensional Gaussian point-spread function (see also discussions in Hess and Webb, 2002; Weiss et al., 2003). For each cell and condition, at least 30 fluorescence time series of 10 s duration were recorded, autocorrelated, and superimposed for fitting with XMGRACE (see http://plasma-gate.weizmann.ac.il/Grace/).

Autocorrelation times τC were translated into apparent hydrodynamic radii by comparison with green fluorescent protein (EGFP, Molecular Probes) in PBS: From the diffusion coefficient D = 85 µm²/s of GFP in buffer (Terry et al., 1995) and the determined diffusive time τC = 130 µs, we obtained via the Einstein-Stokes equation 0.3 s for a mean radius r = 2.6 nm for GFP (6.3 nm) is the thermal energy and η ≈ 10⁻³ kg/(m·s) is the viscosity of water). This value agrees well with the dimensions derived from the crystal structure of GFP (Yang et al., 1996).

Fitting anomalous diffusion

To determine if the experimentally observed autocorrelation function C(t) is governed by anomalous subdiffusion one has to generalize the well-known expression for the autocorrelation decay due to normal diffusion. Knowing the illumination profile (which is usually approximated by a three-dimensional Gaussian), this task is essentially done when the propagator G(τ₁, τ₂, r) of the density of the (sub)diffusing particles is known. This function simply tells the probability to find a particle at position R₂ after a time τ when it was initially at position R₁. For normal diffusion G(τ₁, τ₂, r) is simply a Gaussian which satisfies the diffusion equation and it is easy to derive the appropriate expression for C(t) (for details see, for example, Hess and Webb, 2002; Weiss et al., 2003). In contrast, the propagator for subdiffusion is somewhat more difficult to obtain. Bearing in mind that subdiffusion is commonly defined via the asymptotic power-law increase of the mean square displacement r(t) ~ t^α (α < 1), a straightforward (yet approximate) approach to determine G(τ₁, τ₂, r) is to assume a time-dependent diffusion coefficient D(t) ~ τ^(-1) so that r(t) ~ D(t) × t. Clearly, this interpretation is problematic for small times as D(t) diverges for t → 0. Yet, assuming that one still can use this approximation for all times, one obtains the propagator

Biophysical Journal 87(9) 3518–3524
the unavoidable extension of the confocal volume along the optical axis, a

 fitting procedure, we have chosen to always use Eq. 1 for fitting. In view of this and due to its much simpler use in the experimental data. In total, Eq. 1 and the FFPE is therefore a representative example). The anomalous degrees

ematically correct treatment of the problem therefore has to employ a diffusion time which is related to the diffusion coefficient D and the width \(r_0 \) of the focus as \(\tau_D = r_0^2/(4D) \) for \(\alpha = 1 \). The parameter \(S \) considers the unavoidable extension of the confocal volume along the optical axis, whereas \(f \), \(\tau_D \) are the triplet fraction and time, respectively, which take care of the photophysics on short timescales.

The fitting function Eq. 1 has been used previously to determine anomalous subdiffusion in FCS experiments (Schwille et al., 1999; Wachsmuth et al., 2000; Weiss et al., 2003) and the very same approach served as a starting point to derive fitting functions for quantitative photobleaching experiments (Feder et al., 1996; Saxton, 2001). However, the outlined strategy appears somewhat questionable due to the divergence of the time-dependent diffusion coefficient on short timescales. A mathematically correct treatment of the problem therefore has to employ a fractional Fokker-Planck equation (FFPE), i.e., a sophisticated extension of the normal diffusion equation. For the FFPE one can analytically calculate the propagator in terms of Fox functions for all \(\alpha < 1 \) (see Metzler and Klafter, 2000). From this, one could derive \(C(\tau) \) analytically. However, the emerging function only has a limited value for a later fitting procedure as its complexity severely hampers the fitting to experimental data. We therefore have chosen a different approach: Using the series expansions of the propagator (cf. Metzler and Klafter, 2000), we calculated numerically the propagator and the resulting correlation function. We then fitted these curves with Eq. 1 (fixing the triplet fraction to \(f = 0 \)) to test if the obtained value \(\alpha_{fit} \) corresponds to the value \(\alpha_{FFPE} \) imposed in the FFPE. In all cases, Eq. 1 yielded a good fit to the \(C(\tau) \) as obtained from the FFPE (see Fig. 1 for a representative example). The anomaly degrees \(\alpha_{fit} \) and \(\alpha_{FFPE} \) on the other hand were slightly different (Fig. 1, inset) and a linear regression yielded \(\alpha_{fit} = 1.1 \times \alpha_{FFPE} - 0.12 \). In the range \(0.5 \leq \alpha \leq 1 \) the deviations between Eq. 1 and the FFPE is therefore <10% which is within the accuracy of the experimental data. In view of this and due to its much simpler use in the fitting procedure, we have chosen to always use Eq. 1 for fitting.

Computer simulations

To investigate the effect of crowding by means of computer simulations, we considered a cubic probe volume with linear extension \(L \) and periodic boundary conditions. In total, \(N = 5000 \) spherical particles/proteins having molecular masses in the range 50 kDa–1 MDa were positioned at random locations in the probe volume. By changing \(L \) we were able to change the apparent concentration of particles. To consider excluded volume effects, we imposed a soft-core potential between the particles, which is common for mesoscopic simulations (Nikunen et al., 2003). Each particle \(k \) experienced a (repulsive) force \(\mathbf{F}_k = A(1-t/d)\mathbf{r}_k \) from a neighboring molecule \(i \) along the vector \(\mathbf{r}_{ki} \) pointing from particle \(k \) to particle \(i \). Here, \(d \) measures the distance between the particles \(i, k \), \(r_i, r_k \) of the two particles. For \(d > r_i \), the particles do not meet and thus \(\mathbf{F}_k = 0 \). Besides this excluded volume interaction, all particles were also subject to thermal noise, i.e., for each time step \(\Delta t \) the new position emerged from the old one via the (overdamped) Langevin equation \(\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \sum_j \mathbf{f}_i/j/\gamma_i \). Here, \(\gamma \) is Gaussian random number with variance \(2D_i\Delta t \) and the friction of the particle is assumed to be given by Stoke’s formula \(\gamma_i = 6\pi\eta a_i/\rho_i \) from which one also obtains the diffusion coefficient via \(D_i = k_BT/\gamma_i \). The radii were calculated from the imposed molecular mass \(m_i \) via the empiric formula \(r_i = (8m_i/50)^{1/3} \) nm. This relation has been derived by considering that \(\text{BSA} (m = 66 \text{ kDa}) \) is approximately globular and has an apparent radius of 2 nm. The distribution \(p(m) \) of molecular weights \(m \) was taken to be either a Poissonian or uniform (see main text), and a upper cutoff at \(m = 1 \) MDa was imposed. Before monitoring the diffusional motion, the particles were allowed to equilibrate for 5000 time steps. The remaining parameters were \(\Delta t = 10^{-3} \text{s}, r_c = 2 \text{ nm}, A/(6\pi\eta) = 10^3 \text{m}^2\text{s}^{-1} \).

RESULTS

We first monitored with FCS the diffusional motion of fluorescently labeled dextrans in PBS to verify that we observe normal diffusion under these conditions. Indeed, fitting the experimental data with Eq. 1 yielded \(\alpha = 1.0 \pm 0.05 \) which indicates that finding anomalous subdiffusion with our setup is not an artifact of a distorted confocal volume (Hess and Webb, 2002; see also discussion in Weiss et al., 2003). Representative autocorrelation curves \(C(\tau) \) for dextrans of different molecular weight are shown in Fig. 2. The measurements in PBS also allowed us to determine the apparent hydrodynamic radius \(r_H \) of the particles (see Methods). In the inset of Fig. 2 we show the increase of the radii for increasing molecular weight \(m \) \(r_H \sim m^{0.65} \). In fact, the radii increase slower than anticipated for a simple random-coil polymer for which a description as a linear Gaussian chain yields \(r_H \sim m^{0.5} \) (Doi, 1996). This deviation is in agreement with previous reports (Cheng et al., 2002) and may be explained by the fact that dextrans become strongly branched polymers when their mass increases (Nordmeier, 1993).
Moreover, the characteristic timescales of dextran showed subdiffusive motion in cytoplasm albeit not shown in Fig. 3. In strong contrast to the behavior in PBS, all dextran particles (see Table 1). Rather, we observed a very strong subdiffusive motion for small dextrans (40 kDa) which relaxed for increasing mass (500 kDa) and then became stronger again (2 MDa). We next verified that the observed subdiffusion in cytoplasm was not a particular feature of dextran by monitoring the diffusion of a FITC-labeled IgG antibody (m ≈ 150 kDa) in cytoplasm. Having an apparent hydrodynamic radius \(r_H \approx 5.5 \text{ nm} \) (cf. also Arrio-Dupont et al., 2000), we expected IgG to show a similar degree of subdiffusion as seen with 150 kDa dextran (\(r_H \approx 5 \text{ nm} \)). In fact, we observed a stronger anomality (\(\alpha \approx 0.55 \)), see also Fig. 3, inset), which may be explained by the fact that an IgG has a different shape than a 150 kDa dextran in solution.

We hypothesized that molecular crowding may have caused the observed anomalous subdiffusion rather than obstruction by cytoskeletal elements or membrane structures. To test for the validity of this assumption, we monitored the diffusional properties of a selection of dextrans in i), nocodazole-treated; ii), latrunculin-treated; iii), Filipin-treated; and iv), mitotic cells. In cases i and ii the microtubules and actin filaments are depolymerized, respectively, whereas in case iii the ER membrane is broken down and other membrane structures like the Golgi apparatus are not affected (Axelsson and Warren, 2004). In case iv the interior of the cell has undergone major changes due to the impending cell division, e.g., the microtubules form a spindle rather than an astral array. In agreement with our hypothesis, the subdiffusion persisted in all cases with similar values for \(\alpha \) (see summary in Table 2). This provides strong evidence that obstruction by higher-order structures is not the major cause of the observed subdiffusion. Rather, the observed subdiffusion is caused by molecular crowding.

To obtain further evidence for if and when molecular crowding can cause the emergence of subdiffusion, we used computer simulations of spherical soft-core molecules subject to thermal noise and excluded volume effects (see Methods). To be able to model the cytoplasmic environment, we had to first get an idea about the distribution of protein masses/sizes in the cytoplasm of mammalian cells. We therefore analyzed purified HeLa cytosol by SDS page and Coomassie staining (see Methods). The resulting distribution of molecular weights \(p(m) \) is shown in Fig. 4a and is most consistent with a Poisson distribution with a mean \(\langle m \rangle = 80 \text{ kDa} \). Bearing in mind that the used approach actually overestimates the fraction of small proteins due to the denaturing conditions in the gel (protein

TABLE 1 Summary of masses \(m \), hydrodynamic radii \(r_H \) (in PBS), and anomalies \(\alpha \) and diffusive times \(\tau_D \) of dextrans in the cytoplasm of living cells

<table>
<thead>
<tr>
<th>(m) (kDa)</th>
<th>(r_H) (nm)</th>
<th>(\alpha)</th>
<th>(\tau_D) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kDa</td>
<td>1.8 ± 0.04</td>
<td>0.84 ± 0.04</td>
<td>0.39 ± 0.05</td>
</tr>
<tr>
<td>40 kDa</td>
<td>3.5 ± 0.04</td>
<td>0.59 ± 0.04</td>
<td>2.9 ± 1.3</td>
</tr>
<tr>
<td>150 kDa</td>
<td>4.8 ± 0.04</td>
<td>0.73 ± 0.03</td>
<td>6.1 ± 1.9</td>
</tr>
<tr>
<td>500 kDa</td>
<td>6.8 ± 0.05</td>
<td>0.82 ± 0.05</td>
<td>3.1 ± 1.1</td>
</tr>
<tr>
<td>2 MDa</td>
<td>14.4 ± 0.04</td>
<td>0.71 ± 0.04</td>
<td>15.9 ± 4.5</td>
</tr>
</tbody>
</table>
TABLE 2 Summary of the found degrees of anomality α and diffusive times τ_D in the cytoplasm of living cells under various treatments

<table>
<thead>
<tr>
<th>m</th>
<th>Interphase α, τ_D</th>
<th>Mitotic α, τ_D</th>
<th>Filipin α, τ_D</th>
<th>Nocodazole α, τ_D</th>
<th>Latrunculin α, τ_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kDa</td>
<td>0.87 ± 0.03</td>
<td>0.74 ± 0.02</td>
<td>0.74 ± 0.06</td>
<td>0.76 ± 0.07</td>
<td>0.74 ± 0.05</td>
</tr>
<tr>
<td>150 kDa</td>
<td>0.39 ± 0.05 ms</td>
<td>0.39 ± 0.06 ms</td>
<td>0.55 ± 0.26 ms</td>
<td>0.34 ± 0.03 ms</td>
<td>1.8 ± 0.06 ms</td>
</tr>
<tr>
<td>500 kDa</td>
<td>0.73 ± 0.03</td>
<td>0.75 ± 0.04</td>
<td>0.83 ± 0.04</td>
<td>0.76 ± 0.06</td>
<td>0.76 ± 0.05</td>
</tr>
<tr>
<td>1 MDa</td>
<td>6.1 ± 1.9 ms</td>
<td>1.7 ± 0.6 ms</td>
<td>2.2 ± 0.8 ms</td>
<td>7.8 ± 4.3 ms</td>
<td>1.9 ± 0.3 ms</td>
</tr>
</tbody>
</table>

(The protein masses are overestimated and can be expected to be significantly higher in reality. (a) A Poisson distribution with $(m) = 350$ kDa, and ii), a uniform distribution. In both cases we only considered proteins with masses up to 1 MDa and, for simplicity, assumed the proteins to be globular. In both simulation settings, we observed a size-dependent emergence of anomalous subdiffusion which also clearly depended on the fractional volume occupied by the globular proteins (“excluded volume”). In Fig. 4b we show representative curves for the mean square displacement obtained for scenario i, i.e., a Poissonian distribution of molecular masses, at an excluded volume of 13%. Although small proteins were still diffusing more or less normally, the big particles clearly moved subdiffusively. This size-dependence is further highlighted in Fig. 4c, where one can observe the decrease of the anomaly parameter α with increasing effective particle size. This result was only slightly altered in scenario ii, i.e., for a uniform size distribution. The decrease of α with increasing radii persisted (Fig. 4d) albeit occurring at bigger radii and at lower values for the excluded volume (7% instead of 13%). As both settings yielded the same gross features, we conclude that an excluded volume interaction (= molecular crowding) likely explains the subdiffusion observed in the cytoplasm of living cells. The successful simulations of course only represent the simplest possible configuration due to the use of globular particles. To quantitatively explain the experimentally observed α-values, a more detailed approach may be necessary which includes, for example, the polymeric nature of the probe (see also Discussion). To verify the simulation results and consistently test if the mere effect of crowding can cause anomalous subdiffusion, we also studied the diffusional properties of some labeled dextrans (10 kDa, 40 kDa, 500 kDa) in aqueous solution when varying the molar percentages of macromolecules (unlabeled dextran in the range 60–90 kDa; from Acros Organics, Geel, Belgium) to hinder diffusion. As these artificially created crowded fluids were intended to mimic the cytoplasm of living cells, we expected to observe an overall correlation of the α-values between in vitro and in vivo experiments using a particular probe. Consistent with our findings in vivo (the cytoplasm), we observed an increase of the diffusional time τ_D and a concomitant decrease of the anomaly parameter α for the tested dextrans when the concentration C of unlabeled dextran (i.e., the crowding) in the solution was increased (Fig. 5). These experiments also confirmed the simulation results, i.e., the interaction via excluded volume can cause subdiffusion. In accordance with the results in living cells, we again observed that 40 kDa dextran appeared to be much more subdiffusive than its 500 kDa counterpart. We speculate that in both cases this may be caused by a partial reptational movement of the fairly short 40 kDa polymer whereas the more heavy dextrans may be more globular and are thus less prone to reptation (see also Discussion). Nevertheless, we

![Diagram](image-url)
Subdiffusion Due to Molecular Crowding

conclude that the degree of anomalous diffusion (α) is a direct reflection of molecular crowding. By comparing in vivo measurements with those in vitro, one can therefore use the determined α-values as a measure for molecular crowding.

DISCUSSION

In summary, we have determined with FCS that inert tracer particles show anomalous subdiffusion in the cytoplasm of mammalian cells. As the occurrence of subdiffusion was not altered in cells where cytoskeletal or organellar membrane architecture have been disrupted, we conclude that the observed subdiffusion is due to molecular crowding. In support of this view, we showed with simulations that subdiffusion naturally arises in a concentration-dependent manner in a system where particles are subject to Brownian motion and only interact via excluded volumes. We further verified these simulation results by monitoring the emergence of subdiffusion in highly concentrated dextran solutions. Thus, we have provided strong evidence that molecular crowding causes anomalous subdiffusion in the cytoplasm of living cells.

It is likely that the observed subdiffusion only persists for intermediate times and that normal diffusion is reencountered for asymptotically large times. For example, in our simulations we observed via the growth of the mean square displacement $v(t)$ that even for a fairly low excluded volume subdiffusion transiently emerged on scales $t < 1$ ms and then collapsed back to normal diffusion. For increasing particle concentration this subdiffusive regime eventually extended beyond the 1 ms-scale (cf. Fig. 4). Similar phenomena are, for example, also found for obstructed diffusion with immobile obstacles near to the percolation threshold (Saxton, 2001) or for reptating polymers (Doi, 1996). Bearing this in mind, our results do not contradict but rather complement previous studies on cytoplasmic diffusion by means of photo-bleaching techniques (Seksek et al., 1997; Arrio-Dupont et al., 2000) which employ larger spatial and temporal scales than in FCS and therefore potentially miss the regime of subdiffusion.

In regards to the nature of the used probe, we observed that small dextran molecules can exhibit a much stronger anomalous subdiffusion than their more heavy counterparts (cf. Table 1 and Fig. 5). The most likely explanation for this phenomenon is a (partially) reptational movement of small dextrans. In the ideal case, reptation yields $\alpha = 0.5$ (Doi, 1996) whereas obstructed diffusion of globular particles typically yields a higher value for α (see Introduction). For our case, we propose that small dextran adopt a 'snake-like' conformation whereas the more heavy dextrans are more globular and thus are rather subject to obstructed diffusion than reptation. This reasoning is supported by the fact that fructan, a close relative to dextran, was shown to behave like a random-coil polymer for masses $m < 100$ kDa, whereas above 100 kDa it appeared more like a globule (Kitamura et al., 1994). This reasoning appears even more plausible when bearing in mind that the conformation of (bio)polymers can depend critically on the solvent and that dextrans show strong branching when their mass increases (Nordmeier, 1993). Of course, for reptational movement the simple picture used in the simulations becomes invalid and has to be replaced by a more elaborate polymer model in a heterogeneous environment. It will be interesting to study the crossover from reptation to obstructed diffusion in more detail (M. Weiss et al., unpublished results).

Despite the caveat that the observed subdiffusion may be a transient feature, it is still likely to play a major role in cytoplasmic processes. In our approach with FCS, we observed subdiffusion on a scale of ~500 nm (the diameter of the confocal volume), a scale which is ~100-fold bigger than the typical radius of a globular protein and almost corresponds to the typical size of an *Escherichia coli* bacterium. At least on this scale, anomalous diffusion can greatly modulate the interaction of proteins, e.g., in reaction networks (Berry, 2002; Saxton, 2002) and maybe in protein folding (Ellis, 2001; Hall and Minton, 2003).

Most importantly, the described emergence of subdiffusion provides a means to define a quantitative measure to what crowdedness actually means. In fact, the term ‘‘crowdedness’’ by its mere literal sense signals that the

FIGURE 5 (a) Representative autocorrelation curves for 10 kDa dextran in solutions with different crowdedness due to dissolved unlabeled dextran (0.08 and 0.25 g/ml, from left). A shift and stretching of $C(\tau)$ is visible for increasing crowdedness. (b) Same as in (a) but for 500 kDa dextran. (c) The anomaly parameter α decreases with increasing crowdedness as measured by the macromolecular concentration (d) The diffusive time τ_0 concurrently increases with increasing macromolecular concentration, indicating an increase of the effective viscosity. For better visibility error bars have been omitted.
size and conformation of a test particle dictates if it feels an environment as being crowded. Being a water molecule, the cytoplasm does not appear to be any more crowded than any other solution. However, for a macromolecule, and even more for a polymer-like dextran, the cytoplasm with all its embedded proteins provides an obstacle-rich environment. We therefore propose that the degree of anomality \(\alpha \) can serve as a size- and conformation-dependent quantity to characterize the concentration/composition of a heterogeneous solution like the cytoplasm. In other words, by using a defined and standardized set of in vitro solutions (where the composition is varied), it should be feasible to use the degree of anomality \(\alpha \) as a quantitative measure to probe molecular crowding in vivo, be it in the cytoplasm, the nucleus, or other cellular or extracellular environments.

M.W. acknowledges helpful discussions with P. L. Hansen, J. H. Ipsen, and B. Klioggen. The MEMPHYS-Center for Biomembrane Physics is supported by the Danish National Research Foundation. We also thank the Advanced Light Microscopy Facility (European Molecular Biology Laboratory, Heidelberg) and the SWEGENE Centre for Cellular Imaging at Göteborg University, Gothenburg, Sweden.

REFERENCES

Paper III
Evidence for Golgi localization by oligomerization - kin recognition revisited

M. Elsner¹, T. Nilsson¹* and M. Weiss²*

¹ Dept. of Medical and Clinical Genetics, Inst. of BioMedicine, Sahlgrenska Academy, Göteborg University, Medicinaregatan 9A, 41390 Gothenburg, Sweden

² Cellular Biophysics Group (BIOMS), German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg

* These authors contributed equally to this work

Contact information for corresponding authors:
Dr. Matthias Weiss
Cellular Biophysics Group (BIOMS), B085
German Cancer Research Center
Im Neuenheimer Feld 580
D-69120 Heidelberg
Phone: +49 6221 421930
Fax: +49 6221 421931
email: m.weiss@dkfz.de

Prof. Dr. Tommy Nilsson
Dept. of Medical and Clinical Genetics
Inst. of BioMedicine, Sahlgrenska Academy
Göteborg University
Medicinaregatan 9A
S-41390 Gothenburg, Sweden
Phone: +46 31 773 3606
Fax: +46 31 41 61 08
email: tommy.nilsson@medkem.gu.se

Short title: Kin recognition revisited

Keywords: Golgi apparatus, anomalous diffusion, simulation

Abbreviations used:
Ms Length: words, characters (incl. space).
Abstract: words
Abstract

The mechanism for localization of Golgi resident transmembrane proteins has not been elucidated in detail yet. Both lipid phase separation and oligomerisation have been discussed as not mutually exclusive means to ensure correct sorting. We have previously described the diffusional behavior of Golgi resident proteins. All proteins studied so far show strong anomalous subdiffusion. Here we provide evidence that the observed subdiffusion is an indication for the formation of large oligomers in the membrane. Using computer simulations, we investigate the diffusion properties of dynamically formed oligomers in two dimensions. We show that for the short times, relevant to FCS experiments, the diffusion of the monomers of an oligomer is subdiffusive (i.e. the mean square displacement of a protein will grow less than linear in time) and that the degree of subdiffusion depends on the equilibrium constant of the binding process and on the kinetics of the binding reaction. Furthermore, we show that the experimentally observed subdiffusion is not an artifact of the labeling with EGFP.

Introduction

The Golgi apparatus is one of the dominant organelles in the secretory pathway of mammalian cells. Elucidating its complex dynamics has been a challenge since the first reports on its existence. Phenotypically, the Golgi appears as a ribbon of interconnected stacks of flattened membrane cisternae (1-3), each of which comprise a unique chemical milieu, e.g. in terms of pH(4). Functionally, the Golgi is the main site of lipid metabolism and (protein and lipid) glycosylation. Due to its pronounced role in sorting and sequential modification of nascent proteins, the organelle may be regarded as a cellular post office. Individual Golgi stacks typically consist of 4-6 cisternae whose polar organization is reminiscent of a distillation tower: the cis face serves as an entry for cargo that is delivered from the endoplasmic reticulum (ER) while modified cargo leaves the Golgi at the opposing trans face. The mode of transport within the Golgi is still a matter of debate. While some experimental evidence supports the view of static cisternae that exchange proteins by means of distinct anterograde and retrograde vesicles, several lines of evidence support the view that the entire stack is subject to a maturation scheme (for review see (5, 6)). Here, the oldest (trans-most) cisterna gradually disappears by sending out vesicles with modified cargo while the remnant is finally consumed by the ER. During these processes, a new cis cisterna is built de novo by newly arriving membrane structures from the ER and retrograde Golgi vesicles. In essence, this scheme predicts that each cisterna will mature from cis to trans thereby creating an assembly line with a
default anterograde flux of material. While the cisternal maturation has been visualized in yeast very recently (7, 8), the driving force behind the actual physical movement of cisternae in the maturation process (which also seems to work in the absence of microtubules as functional mini-Golgis have been reported in cells treated with microtubule disrupting reagents (9, 10)) has not been elucidated so far.

Irrespective of the aforementioned modes of transport a large family of transmembrane proteins has been identified that preferentially is (dynamically) localized to the Golgi apparatus. Glycosyltransferases form the largest and most abundant family of Golgi resident proteins. All family members studied so far are type II membrane proteins, with a large catalytic domain on the luminal (i.e. C-terminal) side, a single transmembrane domain and a very short cytoplasmic domain (11, 12). Virtually all Golgi resident proteins show a gradient-like distribution across the Golgi stack with a preference for one or two cisternae (2, 13). The precise localization of the individual glycosyltransferases depends on their retrograde transport by COPI vesicles implicating a dynamical positioning of the resident proteins that is consistent with the cisternal maturation model (14, 15). COPI vesicles are formed exclusively at the Golgi apparatus and the ER-to-Golgi-Intermediate-Compartment by the small GTPase ARF-1 and the heptameric coatomer complex (for review see (5, 16). How Golgi resident enzymes are sorted into COPI vesicles is largely unknown. So far only one characteristic retrieval signal has been identified for transmembrane proteins, the cytoplasmic K(X)KXX sequence which for example mediates the sorting of the p24 protein family into COPI vesicles (17-19). It was found that some proteins, e.g. p24β1, have the ability to reduce the hydrolysis rate of ARF1 by sequestering ARF-GAP1. This led to the formulation of a kinetic-proofreading mechanism, where the cargo increases the residence time of coatamer on the membrane by modulating the ARF1 activity (20, 21).

While the mode of interaction with COPI has remained elusive for glycosyltransferases, the transmembrane domain and a short luminal domain (called stem region) have been shown to be necessary and sufficient for correct Golgi localization(5, 11, 22). Based on this finding, essentially two (not mutually exclusive) mechanisms have been proposed to rationalize the localization of Golgi resident proteins: (1) the transmembrane domain could test the thickness of the cisternal membrane and trigger a localization to the cisterna with the lowest hydrophobic mismatch (23), or (2) the two mentioned domains induce a milieu-dependend, lateral attraction between similar, co-
localizing proteins and the formed ‘kin oligomers’ are dynamically positioned within the maturing
stack by means of COPI-dependend transport (‘kin recognition’)\(^{(24)}\). In agreement with the latter
model, the formation of dimers and small oligomers has been shown biochemically for some
glycosyltransferases (for review see \((12)\) and \((25)\)). A recent electron microscopy study suggested
that the Golgi enzyme GalNacT2 does not distribute equally over the membrane of individual
cisterane, but forms clusters\(^{(2)}\).

An obvious method to determine the size of (kin) oligomers is to study their diffusional behavior
and to determine the size of the complex via the Saffman-Delbrück relation\(^{(26)}\). However, since
the radius \(R\) of the transmembrane domain changes the diffusion coefficient \(D\) only logarithmically
(in contrast to bulk diffusion, where \(D\) and \(R\) are inversely proportional), even a tenfold change in
radius, i.e. the formation of a 100mer, may not be detectable. Using fluorescence correlation
spectroscopy (FCS) we have previously investigated the diffusional properties of different Golgi
resident proteins\(^{(27)}\). While the uncertainty in the diffusional mobility prevented a determination of
the oligomeric state of the studied Golgi resident proteins via the Saffman-Delbrück relation,
strikingly all of the tested proteins showed a strong anomalous subdiffusion. Anomalous
subdiffusion is characterized by a mean square displacement (MSD) \(<r^2> \sim t^\alpha\) with \(\alpha<1\), i.e. the
MSD grows qualitatively slower than for normal diffusion. Interestingly, the degree of anomaly
(\(\alpha\)) deviated stronger from unity for resident proteins that localized towards the trans
face of the Golgi. Basically, two mechanisms can explain the occurrence of anomalous subdiffusion in
general. On one hand, a diffusing particle may take rests of duration \(\tau\) between periods of free
Brownian motion, e.g. due to (cooperative) binding to more immobile structures. If the probability
distribution \(p(\tau)\) of the resting periods follows a power law of the form \(p(\tau) \sim 1/\tau^{1+\alpha}\), then also very
long resting periods are quite probable as the mean resting time diverges. The emerging continuous
time random walk (CTRW) shows anomalous subdiffusion with \(0<\alpha<1\). We would like to
emphasize that a binding event with a single rate constant (which may be the typical for most
biochemical reactions) does not lead to a CTRW as \(p(\tau)\) is given by a Poisson process \((28)\). An
alternative explanation for the observation of anomalous subdiffusion is strongly obstructed
diffusion. If the Brownian motion is hindered by obstacles, for example, anomalous diffusion may
arise with a degree of anomaly that depends on the concentration of obstacles and on the
dimension of the environment (diffusion in two/three dimensions yields \(\alpha>0.69/0.55\))\((29-31)\).
Indeed, early computational studies have confirmed the emergence of subdiffusion due to
obstruction (32) and recent experiments have highlighted the connection between cytoplasmatic crowding and obstructed diffusion (31, 33). A particularly interesting example of anomalous diffusion in the biological context is the motion of monomers inside a polymer/oligomer. Here, the obstruction is due to the bonds to the next neighbors in the polymer, i.e. if a monomer wants to move it will have to drag other monomers with it. A classical result of polymer physics states that the MSD of a monomer inside a very long, linear self avoiding polymer chain moving in two dimensions shows anomalous diffusion with $\alpha=3/5$ (34).

In this study we investigate how the transient formation of oligomers influences the diffusional behavior of individual proteins in a membrane. Using computer simulations, we show that the monomers in the dynamically formed oligomers show anomalous diffusion on the time scales relevant to FCS experiments. The degree of anomaly (α) depends on the binding and dissociation rates as well as on the valency of the monomers. In light of this finding, we argue that the previously observed anomalous diffusion of Golgi resident proteins is a fingerprint of the dynamic formation of (kin) oligomers. We finally discuss how this finding can be used to obtain a refined model of the dynamical positioning of Golgi resident proteins.

Results

We have previously studied the diffusional behavior of a number of Golgi of resident transmembrane proteins by means of fluorescence correlation spectroscopy (FCS) (27). In all cases, we observed a strongly anomalous diffusion with a protein-specific value for the degree of anomaly α. The anomalous diffusion was strongest for β-Galatosyltransferase, (GalT, $\alpha=0.55$) which dominantly localizes to the trans cisternae of the Golgi. In fact, the values obtained for α correlated with the dominant localization of the investigated proteins, i.e. the more proteins localized to the trans face of the Golgi stack, the stronger was the anomalous diffusion. In that study all proteins had been labeled with the enhanced Green Fluorescent Protein (EGFP) variant (35). Since EGFP has been shown to have a weak tendency to dimerize (36), we first tested if this dimerization alters the previously observed diffusional properties. We therefore constructed a GalT tagged with the monomeric GFP (GalT-mGFP) (37), and analyzed the diffusional behavior again with FCS. Comparing the diffusional properties of the two constructs, we did not observe a significant difference between the correlation curves for GalT-EGFP and GalT-mGFP beyond the
usual cell-to-cell variations (a representative example is shown in Fig.1). Fitting the experimental data with the appropriate fitting function (27) (Eq.1, Materials and Methods) yielded almost identical fits. In good agreement with the previously published data (27), we determined the degree of anomaly \(\alpha \) for GalT-EGFP from the fitting procedure as \(\alpha=0.58\pm0.14 \) (\(n=14 \)). For mGFP we obtained \(\alpha=0.57\pm0.13 \) (\(n=18 \)). Thus, the weak dimerization of EGFP hardly affects the diffusional behavior of GalT.

Having confirmed the anomalous diffusion of GalT, the question arises as to why there is such a strange behavior at all. In Ref. (27) a continuous time random walk (CTRW), i.e. power-law distributed resting periods due to cooperative binding events between periods of free diffusion, has been used to rationalize the observed anomalous diffusion. Yet, this explanation requires the cooperative binding to be driven out of equilibrium, e.g. via GTPases, on short time scales (28, 38, 39), which appears somewhat unphysiological. Inspired by the kin recognition theory (12, 25) and the analysis of diffusion of static polymers (40), we hypothesized that the dynamic formation of oligomers can lead to the observed anomalous subdiffusion.

To test this hypothesis, we used computer simulations in which we monitored the mean square displacement of individual monomers (=proteins) that participated in the dynamic oligomerization processes on a membrane. Diffusion was simulated by solving the overdamped Langevin equation numerically (see Methods for details), an approach that is known as Brownian Dynamics. Besides the thermal random forces that drive the Brownian motion, two additional conservative forces were considered: (i) non-bound particles interacted via a softcore potential when their distance was lower than a critical distance \(r_s \) (thus preventing particle penetration), and (ii) particles that did bind to each other were subject to a linear restoring force imposed by a harmonic spring when deviating from an equilibrium distance \(r_s \). For the binding and unbinding reactions a simple on/off kinetics was assumed and each particle was assigned \(k \) possible binding sites (valency \(k \)); when particles with free binding sites were at a distance less then a critical distance \(r_c \), they could form a new bond with a rate \(k_{\text{on}} \). Existing bonds were destroyed with rate \(k_{\text{off}} \).

We first focused on valency \(k=2 \), i.e. the formation of linear polymers. The time course of the MSD \(v(t) \) for different ratios \(k_{\text{off}}/k_{\text{on}} \) is shown in Fig. 2. While the MSD increases proportional to time \((v(t)\sim t) \) for \(k_{\text{off}}/k_{\text{on}}>0.1 \), a clear two-phase behavior is observed for smaller ratios where one
observes an increase in the average size of steady state oligomers. While for large times normal diffusion is observed ($v(t) \sim t$) the MSD shows a marked deviation from the linear behavior for short times: it increase like $v(t) \sim t^\alpha$ with $\alpha < 1$ and a minimum value of $\alpha = 3/5$. This anomalous scaling of the MSD is the hallmark (and actually one possible definition) of anomalous subdiffusion. In fact, for decreasing ratios $k_{\text{off}}/k_{\text{on}}$ the anomalous diffusion persists over longer and longer times, eventually overriding completely the normal diffusive behavior for large times (cf. Fig. 2). A similar result is observed for valency $k=3$ (Fig. 3), i.e. again a two-phase behavior is observed in the MSD in general. Most strikingly, the MSD turns even more subdiffusive for small times, i.e. α can be as low as 0.4.

To thoroughly quantify the dependence of the anomalous diffusion (i.e. α) on the ratio $k_{\text{off}}/k_{\text{on}}$, we fixed $k_{\text{on}} = 0.5/s$ while changing k_{off} over several orders of magnitude. From fitting the MSD for valency $k=2$, 3, we obtained a sigmoidal dependence of the anomaly on the kinetics of oligomerization (Fig. 4). At valency $k=2$, α asymptotically approaches the value $3/5$ for low $k_{\text{off}}/k_{\text{on}}$ ratios, the value expected theoretically for long linear self avoiding polymers (34). For valency $k=3$, much lower values for α, as low as 0.25, are measured when decreasing the ratio $k_{\text{off}}/k_{\text{on}}$. In fact, for all ratios $k_{\text{off}}/k_{\text{on}}$ the MSD for valency $k=3$ polymers is significantly more subdiffusive than for their counterparts with valency $k=2$. To investigate the dependence of α on the individual rates of polymer formation we fixed the $k_{\text{off}}/k_{\text{on}} = 5 \times 10^{-3}$ and varied k_{on} at valency $k=3$. Fitting the obtained MSD for short times resulted in a quasi-logarithmic dependence of α on k_{on} (Fig. 5). In fact, the transition from anomalous to normal diffusion for increasing k_{on} extends over more than two orders of magnitude and the less dynamic the polymers are (low k_{on}) the stronger is the anomalous diffusion.

Discussion

In summary, we have shown that the dynamic formation of oligomers is a likely explanation for the observed anomalous subdiffusion of membrane proteins. Albeit we have shown that the anomalous subdiffusion is a transient phenomenon, its emergence is well within the timescales relevant for FCS measurements. It therefore is likely to explain the experimentally observed subdiffusion of Golgi resident membrane proteins. The anomaly (α) of the diffusion depends on the kinetics of oligomer formation, i.e. on the mean residence time of the monomers inside a steady-state
oligomer, on the affinity of the monomers to each other, i.e. the $k_{\text{off}}/k_{\text{on}}$ ratio, and on the valency of the monomers. Especially the latter has a surprisingly strong influence on the observed α: while $\alpha \geq 0.6$ linear polymers (valency $k=2$), branched polymers (valency $k=3$) can reach values for α as low as 0.25. This is important since we observe α-values around and below 0.6 for GalT which indicates that the oligomerization may be carried by more than two binding sites. For valency $k=2$ and large stable oligomers (low ratio $k_{\text{off}}/k_{\text{on}}$) we also reproduce the theoretical value ($\alpha=3/5$) which validates our simulation method and shows that additional effects like molecular crowding do not play an important role in our simulations. As discussed earlier (27) an interpretation of the observed anomalous diffusion in terms of obstructed diffusion due to the heterogeneous lipid environment is impossible as obstructed diffusion on a membrane is limited by the percolation threshold which predicts $\alpha < 0.69$.

Given this constraint and the conceptual problems with a continuous time random walk (see Introduction), the explanation of the observed subdiffusion as a consequence of oligomerization appears compelling. As we were also able to rule out with FCS experiments that the weak dimerization of EGFP plays a major role in the observed anomalous diffusion, our results give strong evidence that Golgi enzymes form oligomers in the membranes of living cells in vivo.

Perspective

Taking the above as a strong indication for the existence of kin oligomers in the Golgi of living cells, the question arises as to how these data relate to the original kin recognition hypothesis (24) and the dynamic sorting process within the Golgi. We shall therefore formulate an updated version of the kin recognition hypothesis.

In brief, the original kin recognition hypothesis states that ‘alike’ Golgi resident proteins form large hetero-oligomers via their transmembrane domains and that these oligomers are too big to enter COPI vesicles and leave the cisternae. While our above results are supportive for this idea, the original kin recognition model is, in part, inconsistent with other results that have been found after its formulation in the early 1990s. Several lines of evidence now suggest that COPI vesicles mediate retrograde transport of Golgi resident proteins(21, 43-45) and strong evidence has been given that the preferential incorporation of Golgi residents depends on the ability of ARF1 to hydrolyze GTP (20, 43, 46). Indeed, some proteins (e.g. p24β1) have the ability to influence the activity of ARF1 by sequestering ARFGAP1, i.e. a cargo-associated coat becomes more stable. Based on this, a kinetic proofreading scheme has been proposed that can explain the highly
efficient sorting of cargo into COPI (20). As of yet, glycosyltransferases have not been shown to interact with the COPI machinery in any way which is supportive of the idea that kin-oligomers consist of both, glycoyltransferases and proteins that have the ability to interact with the COPI machinery, e.g. by influencing the hydrolysis rate of ARF1.

From the data presented here and in Ref. (27), we suspect that oligomers formed by trans-localizing Golgi proteins are larger than those of cis-localizing proteins. If this is true, the large trans-localizing oligomers should be most competitive for making COPI vesicles, i.e. they should rather hook up at the cis face of the Golgi. How can we resolve this contradiction?

Rather than trying to formulate a detailed model let us make a Gedankenexperiment. Let’s assume we have three kin populations K_1, K_2, K_3 that build oligomers of sizes R_1< R_2< R_3 on ER and Golgi membranes. Initially, the ER and the three cisternae (cis, medial, trans) of the Golgi may contain each kin in the same amount. Now two counteracting processes compete with each other: while larger oligomers have a strong capacity to reduce the hydrolysis of GTP by ARF-1(20, 43) and therefore are potent in creating a well-filled COPI vesicle, the size of the oligomer imposes an elastic constraint. The oligomer tries to resist the membrane bending which takes place while budding a COPI vesicle. This increases the time needed for the formation of a vesicle and reduces the probability of a successful budding event. In addition, its stiffness reduces the likelihood of finding a large oligomer at the strongly curved cisternal rims where COPI vesicles budding takes place. Therefore, kin K_1 with the smallest (=softest), but still hydrolysis-modulating oligomers will undergo retrograde transport faster than K_2 and K_3, i.e. K_1 will concentrate at the cis face and cycle between ER and Golgi. The less competitive kin K_2 will have a chance to also form ‘its’ COPI vesicles when the mean residence time of the (meanwhile diluted) kin K_1 at the rims is lower than the mean residence time of K_2 at the rims. Now K_2 will start its retrograde transport and compete out K_3, which will eventually also be able to undergo retrograde transport. Since production and loading of vesicles is linked here, the scheme should not be sensitive to overexpression of a particular kin. In other words, a more dynamic view of the kin recognition hypothesis is consistent with available experimental and theoretical data.

Acknowledgement

This work was supported by the Institute for Modeling and Simulation in the Biosciences (BIOMS) initiative in Heidelberg.
Materials and Methods

Modeling and Simulations

We employed computer simulations to investigate if the dynamic formation of oligomers leads to the anomalous diffusion of individual monomers on the timescales relevant for FCS. We considered a square area (390nm x 390nm) with periodic boundary conditions into which particles were initially distributed randomly (density of 10^4 particles/ȝm2). The protein density is consistent with studies from (47, 48). Each particle/monomer had a radius $r_c=7.8$nm and was given a valency k (i.e. k binding sites). Diffusion of each monomer i was simulated by numerically solving the overdamped Langevin equation $x_i^{(j)}(t+\Delta t) = x_i^{(j)} + \xi^{(j)} + \Delta tF_i^{(j)}$, where the superscript $j=1,2$ stands for the x and y direction, respectively. Here, $\xi^{(j)}$ is a Gaussian random number with variance $2D_0\Delta t$ (D_0 denoting the diffusion coefficient) and $F_i^{(j)} = \sum_k f_{ik}^j$ is the total force that neighboring particles exert on particle i. With the choice $\Delta t=5\times10^{-3}$ s each monomer had a diffusion coefficient $D_0=1\ \mu$m2/s which is a typical value for protein diffusion on membranes.

A simple on/off kinetics with rates k_{on}, k_{off} was assumed for the dynamic oligomer formation. When the distance between two particles with at least one free binding site per monomer was less then a critical distance r_c, binding occurred with a probability $p_{on}=k_{on}\Delta t$. At each time step each bond between two monomers was destroyed with probability $p_{off}=k_{off}\Delta t$. Between any two bound particles (i,j) within a distance d_{ij} a harmonic potential with the equilibrium distance $r_c=r_c/2$ was applied; this lead to a linear restoring force of the form $f_{ij} = \kappa(1-d_{ij}/r_s)e_{ij}$, where e_{ij} is the corresponding unit vector between the particles. Between any two nonbonded particles within a distance $d_{ij} < r_c/2$ a force of the form $F_{ij}(r) = -\phi(1-d_{ij}/r_s)e_{ij}$ was applied to mimic hard-core repulsion.

Cell Culture and Fluorescence correlation spectroscopy

Hela cells were cultured in Dulbecco's Modified Eagle Medium supplemented with 10% fetal calf serum 100 units ml$^{-1}$ penicillin, 100 mg ml$^{-1}$ streptomycin and 10 mM glutamine (Gibco). FCS measurements were performed on a Leica TCS SP2 AOBS confocal system with FCS extension and a 63x (NA 1.2) water immersion objective. Cells were grown on standard cover slides with a thickness of 0.08-0.13mm (#0 thickness). Variations in cover glass thickness thickness were corrected using the correction ring of the objective. All experiments were done at 37°C in Dulbecco's Modified Eagle Medium supplemented with 20 mM Hepes. All measurements were performed in the endoplasmic reticulum. Fitting of the normalized data was performed using FCS curves were fitted with a Levenberg–Marquart algorithm using the expression for 2D dimensional diffusion anomalous diffusion(31, 49)

$$c(\tau) = \frac{1}{1+(\tau / \tau_D)^\alpha} \quad (1)$$

Here α is the degree of anomalous diffusion and τ_D the diffusion time of particles.
Figure 1
Representative autocorrelation curves for GalT-mGFP (blue) and GalT-GFP (red). Fitting both data sets with the standard expression for anomalous diffusion in two dimensions (Eq.1, Methods) yields almost identical results: $\alpha=0.52$, $\tau_D=48\text{ms}$ for GalT-EGFP; $\alpha=0.53$, $\tau_D=50\text{ms}$ for GalT-mGFP.

Figure 2
(A) The mean square displacement $v(t)$ for $k_{\text{off}}/k_{\text{on}}=2\times10^{-3}$, 8×10^{-3}, 2.5×10^{-2}, 3.9×10^{-6} (from top) for valency $k=2$. For comparison, dashed lines show $v(t)\sim t$ (behaviour for large times) and the subdiffusive part $v(t)\sim t^{0.6}$ (for small times). The crossover from anomalous diffusion to normal diffusion shifts to longer time with decreasing $k_{\text{off}}/k_{\text{on}}$ while the anomaly degree α decreases.
(B) Snapshot of the simulation for a low $k_{\text{off}}/k_{\text{on}}$ ratio. Note the large oligomers formed, and the low number of free monomers. (C) Snapshot of the simulation for a high $k_{\text{off}}/k_{\text{on}}$ ratio. The size of the oligomers is decreased and a few of free monomers is visible.

Figure 3
(A) The mean square displacement $v(t)$ for $k_{\text{off}}/k_{\text{on}}=2.5\times10^{-4}$, 2×10^{-3}, 8×10^{-3}, 3.2×10^{-2} (from top) for valency $k=3$. For comparison, dashed lines show $v(t)\sim t$ (behaviour for large times) and the subdiffusive part $v(t)\sim t^{0.4}$ (for small times). The crossover from anomalous diffusion to normal diffusion shifts to longer time with decreasing $k_{\text{off}}/k_{\text{on}}$ while the anomaly degree α decreases even stronger than for valency $k=2$.
(B) Snapshot of the simulation for a low $k_{\text{off}}/k_{\text{on}}$ ratio. Note increased oligomer size compared to the valency 2 case , and the absence number of free monomers. (C) Snapshot of the simulation for a high $k_{\text{off}}/k_{\text{on}}$ ratio. The size of the oligomers is decreased and free monomers exist now.

Figure 4
The degree of anomality α decrease for decreasing values of the ratio $k_{\text{off}}/k_{\text{on}}$. While for valency $k=2$ (squares) the minimum is well captured by theoretical predictions from polymer theory ($\alpha=3/5$), the values for α can decrease well down to 0.25 for valency $k=3$ (circles). The transition from anomalous to normal diffusion happens at roughly the same ratio $k_{\text{off}}/k_{\text{on}}$. Since the actual value for α not only depends on the ratio $k_{\text{off}}/k_{\text{on}}$, but also on the actual value of either k_{off} or k_{on} (see Fig.5), the entire curve can be shifted along the x-axis depending on the actual value of k_{off} and k_{on}.

Figure 5
The degree of anomality α (at valency $k=3$) increases roughly logarithmically with the rate k_{on} while keeping the ratio $k_{\text{off}}/k_{\text{on}}=5\times10^{-3}$. This reflects the fact that a more dynamic formation of oligomers results in a more diffusive ($\alpha\rightarrow1$) motion of the individual proteins.
References

Figure 2

(A) Graph showing the relationship between $V(\tau)$ and τ [s].

(B) Image of a pattern with a fine structure.

(C) Image of a pattern with a denser structure.
Figure 3

(A) Graph showing the relationship between $V(\tau)$ and τ in seconds.

(B) Image showing sample 1.

(C) Image showing sample 2.
Figure 4