Teknisk analys av konst på papper
-Exemplifierad genom undersökning av träsnitt

Erik Rask

Uppsats för avläggande av filosofie kandidatexamen i Kulturvård, Konservatorprogrammet
15 hp
Institutionen för kulturvård
Göteborgs universitet
2011:18
Teknisk analys av konst på papper
-Exemplifierad genom undersökning av träsnitt

Erik Rask

Handledare: Jonny Bjurman och Charlotta Hanner Nordstrand

Kandidatuppsats, 15 hp
Konservatorprogrammet
Lå 2010/11
ABSTRACT

The aim of this bachelor thesis has been to investigate some of the materials present in and on printed papers which might be suitable for analysis. A brief history of paper making and some pigments were studied after which the theory of some of the available methods for technical analysis were summarized. Two works of art on paper were chosen for a closer examination, both are woodblock prints but of different composition and origin. The investigation was made to exemplify some of the common techniques applied on works of art. There were two aims in these examinations. One was to extract sufficient information about the objects so that a decision about possible measures in conservation can be supported or avoided. The other aim was to try and extract enough useful information from the objects so that a determination of age and attribution either could be supported or rejected. The two most advanced analytical instruments used in the study were FTIR and SEM-EDX. An evaluation of the application of these for pigments and a specific dye on paper was made. The conclusion of this was that the lack of references for the comparison of results was one of the main limiting factors. Even though a definite result wasn't achieved, the study showed that one possibility to determine possible presence of the moisture sensitive dye dayflower blue (commelinin) was through examination with SEM-EDX. The way in which this was done with the equipment used was to determine the presence of the element magnesium. Further studies would include whether a non-destructive method of determining the presence of this dye could be performed using a XRF equipment.
Förord

1. Inledning

1.1 Bakgrund

Då man arbetar med en konstsamling innebär detta att man ibland ställs inför uppgiften att analysera de ingående materialen i ett verk. Skälen till varför man genomför analysen kan skifta, de kan vara att man behöver fastställa vilka material som ingår innan man kan besluta om lämplig åtgärd, det kan vara en del i en inventering, det kan vara ett sätt att datera verket som ett led i att avgöra verketets autenticitet. Under min praktikperiod på Ateneum i Helsingfors utfördes frekvent olika analyser, ibland även av mer avancerade slag. Analyserna genomfördes för att extrahera information angående objektens materialssammansättning, en information som sedan låg till grund för museets utlåtanden angående autenticiteten hos de olika konstverk som undersöktes. Under grundutbildningen till papperskonservator ges undervisning i de vanligast förekommande undersökningsmetoderna såsom mikroskopering, reagenstester och identifikation av tryckteknik. Oftast har dessa varit av enklare slag och endast berört några få utvalda metoder under en relativt kort studieperiod. Då det finns analysmetoder av betydligt mer avancerad art, som kan vara möjliga att använda vid en analys av papper, valde jag att skriva min kandidatuppsats inom detta ämnesområde. Detta för att kunna fördjupa mig inom ämnet och på så sätt erhålla en mer gedigen grund och förståelse rörande vilka möjligheter som finns att tillgå då man ställs inför uppgiften att undersöka pappersobjekt. För andra som står inför samma uppgift kan denna uppsats förhoppningsvis vara användbar och erbjuda en uppdatering i ämnet samtidigt som den kan ge förslag på möjliga ingångar då analyser skall utföras.

1.2 Problemformulering och frågeställningar

En fråga som länge har intresserat mig är huruvida man rent tekniskt kan ta reda på om ett tryck är tryckt av upphovsmannen, alternativt vid tiden denne var verksam, eller om det är ett senare avdrag. Ofta avgörs detta genom en rent visuell analys av linjerna i avdraget och hur sliten det som använts som tryckform därför kan tänkas ha varit vid trycktillfället. Ett kompletterande sätt att avgöra detta på bygger till stor del på en teknisk analys vilken ofta syftar till att datera ingående material i ett verk. Innan en konserveringsåtgärd påbörjas är det viktigt att vara på det klara med vilka material, eller vilken materialssammansättning det är man kommer arbeta med. Om det till exempel rör sig om ett färgtryck, handkolorerat tryck eller en akvarell är för ett vant öga ganska enkelt att avgöra med hjälp av ett arbetsmikroskop eller lupp. Men för att avgöra huruvida vissa av de färger som har använts i verket är mer känsliga än andra, och eventuellt kan ta skada av någon av de tilltänkta metoderna krävs oftast mer avancerade metoder. Utöver att vara en hjälp vid daterande och attribuerande av konstverk på papper, och i förlängningen en grund för ett autentifikationsutlåtande för verket, kan resultaten från en analys av materialssammansättningen i papper och media även avgöra vilka konserveringsmetoder som kan användas på ett säkert sätt. I uppsatsen har jag ämnat skildra detta utifrån följande frågeställningar.

- Vad kan man undersöka och analysera i ett verk på papper?
- Vilka analysmetoder kan man använda sig av, hur går dessa analyser till och vilka analysmetoder kan jag tillämpa på de valda objekten?
• Vilka fördelar respektive nackdelar finns med de olika metoderna, finns det felkällor att ta i beaktande i respektive metod? Skall man använda en särskild metod hellre än en annan?

• Hur långt kan jag komma i en teknisk analys och hur mycket relevant information kan jag som konservator extrahera ur objektet?

1.3 Syfte och målsättning

Uppsatsens syfte är att ta reda på hur ett antal valda analysmetoder fungerar och hur de kan tillämpas på specifika objekt samt vilken information som kan extraheras genom dessa metoder. Undersökningsdelen har två mer preciserade syften vilka är att visa hur man kan gå tillväga då man försöker åldersbestämma ett verk på papper samt hur man kan gå tillväga då man önskar identifiera materialsammansättningen hos ett objekt inför konserveringsåtgärd. Ett mer övergripande mer personligt syfte med uppsatsen är att jag själv skall få en ökad kunskap i ämnet.

1.4 Forskning och tillämpningsläge

Den litteraturgenomgång jag har gjort, som delvis har fått ligga till grund för detta arbete, har givit mig uppfattningen att analyser och forskning regelbundet genomförs som en del i de större museinstitutionernas uppdrag. Den litteratur och forskning som har publicerats har ofta varit konferensbidrag i form av artiklar i publikationer knutna till olika konserveringsorganisationer. Dessa har nästan uteslutande beskrivit specifika fall, såsom jag själv gör i uppsatsens tredje kapitel. Litteraturen som på ett mer generellt plan avhandlar hur de olika pappersanalyserna går till och vad de bygger på har varit svårare att finna. Sådan litteratur, inom konserveringsfältet, har istället ofta varit inriktad på vilka analysmetoder som kan tillämpas på måleri. Publikationer angående pappersanalys finns, men är ofta avsedda för pappersindustriella ändamål varför den ofta baserar sig på destruktiva metoder.

Förhoppningen är att i uppsatsens undersökande del hitta ett sätt att påvisa den fuktälska färgen dayflower blue. Resultatet av detta kan sedan komma till användning
då konservatorer står inför uppgiften att identifiera färger i japanska polykroma träsnitt inför konserveringsåtgärd.

1.5 Källkritik

Flera av analysmetoderna som beskrivs i uppsatsen är sådana som traditionellt används inom andra materialkategorier, exempelvis oljemåleri. Få av dem är utvecklade för att tillämpas på papper och mycket av den litteratur som har legat till grund för uppsatsen har handlat om analyser på andra material eller varit inriktade på pappersanalytik inom pappersindustrin. Eftersom det är stor skillnad i att analysera papper jämfört med andra material, särskilt då det gäller installdningen av analysutrustningens känslighet, är det inte säkert att analysresultaten är tillförlitliga då de tillämpas på papper. Detta beror till stor del på att papper, och mediet på detta, är så tunt att mängden material att analysera blir i knappaste laget då man använder sig av icke-destructiva metoder. Detta leder ofta till att man i sitt analysresultat får med störningar från både papperet och underlaget detta ligger på. De artiklar jag har läst som berör analyser utförda på papper i konserverings-sammanhang har sällan beskrivit metoderna utan snarare de resultat som erhållits. Dessa artiklar har ändå givit mig en god insyn i vilka metoder som kan nyttjas då man söker olika slags information.

1.6 Metod och material

1.7 Avgränsningar

Uppsatsen gör inte anspråk på att vara en sammanfattning av olika analysmetoder som kan tillämpas på papper utan bör snarare ses som en ingång i ämnet till några av de metoder som kan tillämpas då man vill ta reda på vissa uppgifter knutna till specifika objekt. Detta exemplifieras genom de valda objekten och de valda metoderna begränsas i antal genom de
valda objekten och det som kan undersökas i dessa. Utgångspunkten är således de material som bygger upp de objekt jag har valt och analysmetoder som är lämpliga kan således skilja sig åt från fall till fall. Uppsatsens främsta avgränsande faktor är därför fallstudien som utgör den undersökande delen. Arbetet avgränsades även av vilken utrustning jag kunde få tillgång till och den tidsram som fanns för genomförandet av analyserna. Då flera av de möjliga analysmetoderna inte är fritt tillgängliga, alternativt är för kostsamma att utföra, kommer dessa endast beröras som möjliga metoder eller metoder som kan nytjas i ytterligare analyser.

1.8 Disposition

Uppsatsens andra kapitel ägnas åt vad man kan undersöka för olika delar i ett konstverk på papper. I uppsatsens tredje kapitel redogörs för några av de olika analysmetoder som går att tillämpa på papper, vad dessa bygger på och vad man kan ta reda på med respektive metod. Fjärde kapitlet utgörs av en fallstudie av två olika sorters träsnitt där dessa beskrivs och några valda analyser genomförs varpå resultaten av dessa tolkas. I det femte kapitlet diskuteras pappersanalyser, vilka svårigheter detta förknippas med samt hur detta begränsas av den materielsammansättning som skall analyseras. Slutligen sammanfattas uppsatsen i det sjätte kapitlet.
2. Analyserbara faktorer/beståndsdelar

2.1 Pappersfibrer

något krossat utseende, ofta med fransiga ändar. Under 1700-talet kom den kvarnliknande maskinen kallad holländare att ersätta stampverket då det gällde finfördelandet av fiberråvaran. Istället för att krossa så malde och skar denna fibrerna i suspensionen tills de var tillräckligt finfördelade för att formas till papper. Papper som tillverkats av fibrer som har bearbetats antingen på det ena eller på det andra sättet kan således ibland skiljas åt genom det skilda utseendet de uppvisar i hög förstorning (Cradock, P, 2009, s. 315).

Beroende på vad papperet är uppbyggt av, om det till exempel innehåller hög andel lignin, kan detta avgöra huruvida vissa konserveringsmetoder skall väljas framför andra alternativt undvikas helt. Vidare kan en analys av pappersfibrer i vissa fall resultera i sådana uppgifter som antingen kan styrka eller förkasta en hypotes då man önskar datera ett konstverk på papper. Vidare kan den också ge en antydan om i vilken del av världen pappersråvaran har sitt ursprung.

2.2 Vattenmärken och kedjelinjer

Ett vattenmärke kan lätt lokaliseras då papperet genomlyses av exempelvis dagsljus eller en lampa. Märket utgörs av den fortunning av papperet som är resultatet av en mer eller mindre avancerad bild, ofta utförd i metallträ, som fästs i pappersformens botten medelst tråd. Placeringen av detta märke på papperet berättar hur stort papperet en gång varit innan det eventuellt delades. Pappersformens botten utgjordes i europeiska pappersbruk från början av fina mässingstrådar vilka vilade tätt samman och var fästa på en uppsättning träribbor med större mellanrum i rätt vinkel. Utöver vattenmärket kan man då man genomlyser ett sådant papper även se en fin struktur från pappersramens rutnät och de ”knutar” som fäste vattenmärket och trådarna i ramens konstruktion. Alla formar med vattenmärken och dess tillhörande ramar tillverkades för hand, något som omöjliggör
existensen av flera identiska ramar. Alla olika avtryck formen medfört i papperet gör att det finns en rad specifika olikheter i ett papper som kan skilja det från ett annat vid en identifikation.

Studier av vattenmärken grundar sig i det faktum att ett pappersbruk vid en given tid hade ett begränsat antal formar involverade i produktionen. På grund av skador och det dagliga slitage formarna utsattes för hade dessa en begränsad livslängd vilken för ett par formar av de vanligare pappersstorlekarerna har uppskattats till ungefär två år. Formarna, med tillhörande ramar, var tillverkade i par för att den som formade papperet ur fibersuspensionen skulle kunna arbeta kontinuerligt med detta medan det nyligen formade papperet guskades av sidan av en annan anställd. Dessa formar var försedd med ett märke som ofta utgjordes av böjd mässingstråd och var specifik för bruket, berättade om bruksorten, papperets storlek och kvalitet. Utöver att själva märket var unikt, då det var format för hand och således hade smärre variationer jämfört med andra från samma bruk, varierade även placeringen av detta på formens fina rutnät av kedje- och lagda linjer (chain lines, laid lines). Ett rutnät som i sig innehöll olika variationer, exempelvis i form av olika mellanrum mellan trådarna i de lagda linjerna och mellan kedjelinjerna, där de sistnämnda är de som utgörs av färre antal linjer med bredare mellanrum. Med detta sagt finns det åtskilliga olikheter som kännetecknar varje pappersform, vilket i sin tur gör att olika papper kan skiljas från varandra. De vanligast tillämpade är följande: vattenmärkets form, storlek, placering, fästpunkter mot formen och mellanrummen mellan kedje- och lagda linjer. Utöver detta innehar papper gjorda under 1400-1600-talen karaktärsdraget att märket fästs med tjock tråd till formen, något som tydligt syns i det färdiga papperet och avtecknar sig som vita punkter runt vattenmärket. Under 1700-talet började märket fästas med finare tråd och dessa karaktäristiska ljusa punkter blev mindre tydliga (Nicholson, 1982, s. 120). En annan förändring av handpappersformarna som kom under detta århundrade vara att trädnätet successivt började ersättas av vävda trädnät samtidigt som olika vattenmärken utvecklades till att bli mer avancerade i sina utformningar (Craddock, P 2009, s. 315).

2.3 Pigment och bindemedel

2.3.1 Svart tryckfärg

En mängd svarta pigment har använts till färgberedning. Ett av de vanligt förekommande är kimrök (carbon black) som även går under namnet lampsvart. Detta framställs genom förbränning av olika organiska ämnen där man låter sotet som avges ansamlas på en plåt. De svarta pigmenten består nästan uteslutande av kol, C, men beroende på vilket material som förbrännas kan de även innehålla föroreningar. Ett sådant pigment är bensvart som utöver grundämnet kol även innehåller Ca₃(PO₄)₂. Det förekommer även att trä som förbrännas utan tillgång till syre, då kallat träkol, finfördelas och används som pigment (Gettens, Stout, 1966, s. 148c).

Högtrycksfärg

Djuptrycksfärg
Svart tryckfär g avsedd för koppartryck hade däremot större variation vad det gäller inblandade pigment. Detta berodde bland annat på att man ville ha en färg som lättare kunde torkas av från plåten under tryckförfarandet, något som andra kolbaserade pigment underlättade. Under tiden från 1400-talet fram till 1700-talet använde man sig främst av bensvart och elfenbensvart som blandades med lamspart. Från 1700-talet och framåt blandades pigmenten bensvart och lamspart. Inom djuptrycksförfarandet använde man sig också av sekundära tillsatser i tryckfärgen, dock i mer begränsad omfattning. Fram till 1800-talet var den enda tillsatsen olika torkmedel, vilka utgjordes av samma ämnen som inom de typografiska tryckfärgerna. Under 1800-talet började man även tillsätta pigmentet Preussiskt blått (Hamm, 1992, s. 30 ff).
Andra tillsatser i form av asfalt, beck och anilinfärger blev också vanliga. De nyss nämnda anilinfärgämnena kom från 1860-talet och framåt att få utbredd användning som tillsats i tryckfärg. Från 1880-talet och framåt började det traditionella lampsvarta helt eller delvis bytas ut i tryckfärgerna mot det billigare alternativet gas-svart. Utöver dessa förändringar i tryckfärgens sammansättning blev även andra oljor än linolja vanliga samt att vat, paraffin, terpentin och harts såsom kolofonium, copal, mastix och shellack började tillsätta tryckfärgerna (Colbourne, Singer, 2009 s. 57 f).
Ur ovanstående redogörelse för tryckfärgers sammansättning framgår att dessa innehåller en rad ämnen som gör att färgerna ofta är mer känsliga än vad man kan tro. De innehåller tvålämnen och andra tillsatser som är vattenlösliga, men innehåller även harts som kan förtvålas av alkalisiska behandlingar om dessa överstiger pH 8 (Hamm, 1992, s. 33). De tillsatta pigmenten och färgämnena är även de känsliga, både för alkaliska lösningar och lösningsmedel, där risken att dessa bleks eller "blöder" till andra områden vid behandling måste beaktas.

2.3.2 Kulörta pigment och färgämnen i japanska polykroma tryckfärgar
Inom den japanska ukiyo-e konsten under Edo-perioden, vilken varade mellan 1600-talets första år fram till 1868, brukades både traditionella pigment och färgämnen av både organiskt och oorganiskt ursprung. Under 1820-talet började bland andra syntetiska och
artificiellt framställda blå pigment, däribland Preussiskt blått, importeras från Europa. Detta kom att användas samtidigt som olika inhemska blå färger där dessa ofta kombinerades i samma tryck för att möjliggöra olika skalar i blått (Mueller... et.al. 2007, s. 149). Följande redogörelse baserar sig på några av de olika pigment och färgämnen som användes inom både japanskt måleri och tryck under den aktuella tidsperioden och är således intressanta i förhållande till undersökningen av materialsammansättningen i objekt1. De pigment och färgämnen nedanstående sammanfattning redogör för är några av de som har identifierats i daterade äldre japanska konstverk och beskrivs i artikeln *Japanese paper screens: manufacturing materials and painting techniques* av Sandra Grantham. En av de inhemska blå färgerna, som bland annat har brukats inom den japanska polykroma tryckkonsten, är dayflower blue. Denna färg är, på grund av sina egenskaper, mycket intressant utifrån konserveringshänsyn varför den beskrivs mer ingående nedan.

Dayflower blue

Färgen commelinin har en ovanlig sammansättning som består av sex molekyler malonylawobanin (C\(_9\)H\(_{18}\)O\(_4\)), sex molekyler flavocommelin (C\(_{28}\)H\(_{32}\)O\(_{15}\)) och två magnesiummjoner. Molekylerna malonylawobanin och flavocommelin är i sin tur delvis uppbyggda av monosackariden glukos, en enkel sockerart, vilket är en förklaring till varför färgen är instabil då den kommer i kontakt med fukt. (Sasaki, Webber. 2002 s. 185 f) Färgen commelinin har av olika källor benämnts som både pigment och som färgämne. I löst tillstånd ger den i UV-Vis ett absorptionsspektrum med topparna \(\lambda_{\text{max}}\) 273, 316, 591 och 643 nanometer. Vid jämförelse mellan syntetiskt framställt commelinin och commelinin som extraheerats ur växten *Commelina Communis L.* visade sig dessa vara identiska då de analyserades i UV-Vis och IR absorptionsspektra. Molekylförhållandet mellan beståndsdelarna i commelinin fastställdes till 2:2:1 för awobanin, flavocommelin och Mg\(^{2+}\) där det sistnämnda utgjorde 0,83% av molekylvikten. Då commelinin syntetiserades ur dess beståndsdelar awobanin, flavocommelin och Mg\(^{2+}\) visade det sig också att mängden commelinin som bildades stod i proportion till mängden tillsatt Mg\(^{2+}\) och vidare att inget commelinin alls kunde bildas utan tillsats av Mg\(^{2+}\) (Takeda, 2006, s. 142 ff), (Takeda, et al, 1984, s. 879 f).

De flesta färger som utgör ett *ukiyo-e* tryck är mer eller mindre känsliga för vatten, något som delvis beror på att bindemedlet utgörs av ett limämne (Lekholm, 2005, s. 1). Även om tryckfärgerna lätt kan skadas i fuktigt tillstånd stannar de ändå i viss mån kvar på papperet, något som inte gäller för commelinin. Detta färgämne avlägsnas i princip helt från papperet då det utsätts för fukt utan att några spår efter färgämnet blir kvar i papperet. Skadan är
irreversibel och det räcker med endast en liten droppe vatten för att åstadkomma en vit fläck i en yta färgad med ämnet. Utöver att färgen förekommer i sitt rena blå tillstånd har den även använts i blandningar med andra färger för att åstadkomma färger såsom lila. Följden av detta är att även andra kulörer som förekommer i *ukiyo-e* tryck kan vara extremt känsliga för fukt (Sasaki, Webber. 2002 s. 186).

Ett av de vanligare testerna som brukar genomföras innan konserveringsåtgärder inleds på pappersbaserade verk, är att först testa huruvida färgerna är lösliga i vatten och därefter i en blandning av vatten och etanol. Oftast börjar man då med att avsätta en droppe vatten på ytan för att se hur tryckfärgen reagerar. Om resultatet av testet blir att droppen snabbt sugs in i papperet eller på någon färg följer med när man sedan suger upp droppen med ett filterpapper brukar konserveringsåtgärder som tillämpar de testade materialen undvikas. Om ett sådant test genomförs på färgen dayflower blue skulle detta resultera i en irreversibel skada i form av en vit fläck i den annars blå färgytan. För träsnitt som tänks innehålla denna färg bör man således låta andra undersökningar föregå åtgärderna.

Ett sätt att genomföra en ickedestruktiv identifiering av färgen skulle kunna innebära att man med analysisinstrument söker efter magnesium (Mg) i dessa färgytor. Detta eftersom färgytan, om den innehåller färgämnet commelinin, även innehåller magnesium. I de fall commelinin påträffas i ett tryck måste samtliga konserveringsåtgärder istället genomföras med hjälp av organiska lösningsmedel eftersom färgämnet endast är lösligt i vatten (Sasaki, Webber. 2002 s. 186).

Indigo, \(C_{16}H_{10}N_2O_2\)

Är ett organiskt blått färgämne inom vilket indigotin är den färgande substansen. Har en lång historia som färgämne i den östra delen av världen. Indigo existerar både i syntetiskt framställd form och som naturligt färgämne från växter (Gettens, Stout, 1966, s. 120f).

Safflower, \(C_{25}H_{24}O_{12}\)

Den kemiska formeln avser den färgande substansen carthaminic acid. Safflower är ett naturligt organiskt rött färgämne som utvinns ur tisteln *Carthamus tinctorius o*. Färgämnet är till viss grad lösligt i vatten och alkohol (Gettens, Stout, 1966, s. 154).

Ultramarin, naturlig, \((Na,Ca)_8(AlSiO_4)_6(SO_4,S,Cl)_2\)

Ultramarin, artificiell, \(Na_{6-10}Al_{6}Si_{6}O_{24}S_{2-4}\)

Pigmentet är även känt under namnet *French ultramarine* och har en kemisk formel vars förhållanden kan skifta något beroende på förhållandet mellan de ingående materialen i framställandet av pigmentet. Även om de två varianterna av pigmenten, naturlig och artificiell, liknar varandra och har de flesta grundläggande samma är det påpekas att det naturligt förekommande mineralet även kan innehålla andra förorenande ämnen. Ett ekonomiskt hållbart sätt att framställa artificiell ultramarin togs fram 1828 och produktionen av detta tog fart under de följande åren. Endast en liten andel var dock avsedd som konstnärsmaterial (Feller, Roy (red.) 1993, s. 55 ff).

Preussiskt blått, \(Fe_4[Fe(CN)_6]_3\) alternativt \(Fe(NH_6)Fe(CN)_6\)

Pigmentet benämns även som Pariserblått och Berlinerblått och framställs syntetiskt sedan 1750 (med början i Europa). Det är vanligt förekommande i målningar från det sena 1700-
talet och framåt. Pigmentet är känsligt för alkalier och kan vid kontakt med sådana ändra färg till brun (Gettens, Stout, 1966, s. 149f).

Smalt
Utgörs egentligen av ett färgat glas vars varierande sammansättning innehåller K₂O, As₂O₃, CoO och en rad olika föroreningar i oxidera former (Feller, Roy (red.) 1993, s. 37 ff). Användningen av detta som pigment i Europa är känt sedan sent 1500-tal, men ersattes av bland annat artificiell ultramarin som konstnärsmaterial under 1800-talet. Det finns uppgifter som gör gällande att färger har brukats i Asien redan under 1200-talet (Gettens, Stout, 1966, s. 157 ff).

Azurit, 2CuCO₃•Cu(OH)₂
Pigmentet azurit, från mineralet med samma namn, har använts i Europa främst under 1400-1600-talen som en ersättning till det kostsamma blå pigmentet från naturlig ultramarin (lapis lazuli). Det är även ett av de vanligare äldre pigmenten i Japan (Gettens, Stout, 1966, s. 96). Den artificiellt framställda varianten, Blue Verditer, har samma kemiska formel som den naturliga (Gettens, Stout, 1966, s. 98).

Järnoxidrött, Fe₂O₃
Går även under namnen hematit, *indian red* med flera. Förekommer i naturen och har använts som pigment sedan förhistorisk tid (Gettens, Stout, 1966, s. 122).

Blymönja (*Red Lead*), Pb₃O₄
Den röda färgen är känt sedan antiken och är omnämnt i kinesisk skrift redan 200 f.Kr. Färgen har identifierats i japanska väggmålningar från 600-talet (Feller, 1986, s. 109 ff).

Orpiment, As₂S₃
Naturligt förekommande gult pigment som har haft en vid användning i världens östra delar. Pigmentet kan förekomma i blandningar då man exempelvis önskar grön färg (Gettens, Stout, 1966, s. 135).

2.3.3 Ytbehandling, fyllmedel, optiska vitmedel

Japanska papper ytlimmades ofta med djurlim, vanligtvis från hud, med en tillsats av alun med uppgiften att hårdta limmet. Ytlimningen gjordes främst för att förstärka sådana papper som skulle monteras på olika sätt och limningens omfattning avgjordes av vad papperet skulle användas till (Grantham, 2002, s. 85). Även papper avsett för tryck kunde ytlimmas för att bättre klara påfrestningen under tryckförfarandet. Vidare innehöll japanska papper ofta fyllmedel i form av finfördelad lera, kisel (Si).
Då en konserveringsteknik skall väljas för ett papper med ytbehandling måste valet således även grundas på innehållet i ytbehandlingen eftersom man med vissa åtgärder riskerar att påverka denna negativt. Det är därför av största vikt att undersöka sådana papper innan åtgärder vidtas för att dessa inte skall resultera i irreversibla skador. Beroende på vilka pigment och limämnen som har nyttjats i ytbehandlingen kan en undersökning av dessa även utgöra en hjälp vid dateringen av verket.
3. Undersökningsmetoder

3.1 Reagenstester

3.1.1 Fibrer

Det finns ett stort antal olika reagenstester som kan tillämpas för att påvisa vilket fiberinnehåll papper har och för att grovt uppskatta i vilken grad detta har förädlats. Även tester för att påvisa exempelvis ytlimning och tillsatser vid tillverkningsprocessen finns. Nedan redogörs kort för några av de vanligare testerna.

Floroglucinol test

Graff-C-Stain

Ett fiberprov läggs på objektglas och infärgas med lösningen varpå eventuella färgförändringar betraktas i stereomikroskop med belysning underifrån. Om fibrerna färgas gula indikerar detta att provet har ett högt lignininnehåll vilket indikerar att papperet tillverkats av en mekanisk- eller semimekanisk trämassa alternativt av jutefibrer. Övriga fibrer som kan färgas gula är fibrer från rågräs, löv samt veddelar från stammar. Bland de som färgas i en svagare gul nyans, ofta med en ton mot grönt, orange eller brun, förekommer fibrer från delvis föräldlad trämassa, halm, gräs och jute. Om fibrerna färgas blå innebär detta att dessa kommer från en pappermassa av exempelvis trä, gräs eller lövfibrer som är väl renad från lignin. Graden av skiftning från gul mot färgerna grön, blå och röd säger något om hur långt man har gått i förädlingen av pappersmassan då det gäller att avlägsna ligninet. Om fibrerna istället färgas röda finns inget lignin närvarande och papperet är sannolikt tillverkat av bomull eller någon av bastfibrerna från lin, hampa, ramie eller kozo. Det kan även innebära att papperet tillverkats av ren alfacellulosa eller av bleka lövfibrer från manilla hampa (från abaca) (Seibert...et.al. 1990, kap. 10.4.3 B1). Med C-stain är det även möjligt att skilja mellan stärkelse och proteinbaserad limning i papperet. Om protein, exempelvis gelatin, finns närvarande i provet färgar lösningen detta gult. Om istället stärkelse har använts till limningen färgas denna blå (Seibert...et.al. 1990, kap. 10.4.8 B2).

Herzberg Stain

Hertzberg reagens, vattenlösning av ZnCl₂, KI, I₂, tillsätts pappersfibrer varpå eventuell reaktion betraktas i mikroskop. Metoden innebär att trämassa i papperet kan identifieras genom att ren cellulosa från trä (kemisk trämassa) färgas blå. Fibrer från lump och blekt...
abaca ger en rosa-lila färg medan alfacellulosa från trä färgas röd. Mekanisk massa, oblekta fiber från jute och abaca samt fiber från gräs färgas gula av reagensen (Seibert...et.al. 1990, kap. 10.4.3 B2).

Stärkelse

3.1.2 Pigment

Spot test / staining test

Utförs vanligtvis på pigmentprov från målningar och är således en destruktiv metod. Den baseras på en hypotes angående vad materialet kan tänkas vara sammansatt av och är ofta baserat på pigmentets färg. Metoden går till så att man tar små prover av det material man önskar undersöka och lägger dessa på objektsglas. Proverna, som bör vara i storleksordningen 500 ng till 5 ng beroende på partikelstorlek, betraktas sedan i stereomikroskop då olika reagenser droppas på proverna. Metoden kräver att man samtidigt utför samma reagenstest på prover, både färsk och äldre, av känd sammansättning för att man ska kunna kontrollera de resultat man får från testerna av de okända proverna mot en referens (Pinn... et.al. 2009, s. 193f). Undersökning av pigment och färgämnen i konst på papper begränsas ofta av att provtagningen innebär stora ingrepp i objektet. Metoden är således mindre lämplig för undersökning av sådana objekt för vilka någon av de mer avancerade instrumentella metoderna är att föredra.

3.2 Mikroskopering

Kan användas på de flesta material eller prover därav och underlättar identifiering med hjälp av förstoring av olika grad. Då det gäller att identifiera olika trycktekniker nyttjas med fördel ett arbetsmikroskop i vilket objektet kan undersökas utan att provtagning behöver utföras. Detta kan kombineras med en ljuskälla med varierande infallsvinkel, för att påvisa exempelvis relieferkan i tryck, och kan vara användbart då olika trycktekniker skall skiljas från varandra. Vidare underlättas provtagning på objektet av att utföra denna i ett arbetsmikroskop. Olika prover kan sedan undersökas i ett ljusmikroskop, som generellt sett möjliggör ytterligare förstoring. I detta måste proverna förberedas på en glasskiva i ett medium varpå det sedan kan undersökas i strålning av olika våglängder. Har man tillgång till ett polarisationsmikroskop är det möjligt att identifiera olika pigment i prover tagna från objektet (Davis, 1996, s. 45). I ett sådant mikroskop är det möjligt att undersöka de olika karakteristiska egenskaper som är specifika för olika pigment vilka sedan kan identifieras, något som emellertid kräver erfarenhet hos den som genomför undersökningen.

3.3 Undersökning med hjälp av synlig och osynlig strålning

Elektromagnetisk strålning av olika våglängd kan användas på många olika sätt då ett objekt skall undersökas. Dels kan den användas för att lokalisera och preliminärt identifiera olika material i objekten samtidigt som strålning av olika våglängd ingår i många av de mer avancerade instrumenten.

Med IR strålning är det till exempel möjligt att skilja järngallusbläck från andra bläck genom att det reflekterar denna strålning och framträder ljus i IR. Kolbaserat bläck och sepia absorberar istället IR strålning och framträder som en mörk färg i denna våglängd (Kecskeméti, 2009, s. 121ff). IR strålning har även använts till att synliggöra spår av bläck som en gång har avlägsnats i så kallade palimpsest (då pergament tvättats och skrapats ren för att återanvändas) (Cradock, P, 2009, s. 314). UV strålning kan i sin enklaste form, i princip bestående av en särskild lampa och ett mörkt rum, användas till att lokaliera senare tillägg i exempelvis ett färgskikt. Detta kan vara ett sätt att lokalera områden av intresse och således vara en ingång för ytterligare undersökningar, eventuellt för mer avancerad art. Ofta används strålning av denna våglängd för att lokaliera tidigare konserveringsåtgärder vilket bygger på att senare tillkomma material fluorescerar tydligare än äldre material.

Strålning av ännu kortare våglängd, inom intervallet 0,001-50 nm, kallas röntgenstrålning och kan även vika vara användbar särskilt då man önskar undersöka uppbyggnaden av olika material. Strålningen uppkommer när partiklar med hög energi, exempelvis elektroner, bromsas upp i ett material. En vanlig strålningskälla är röntgenröret där elektroner i vakuum accelereras i ett elektriskt fält varpå de bromsas upp i en metallyta. Då detta sker avges den röntgenstrålning som sedan används i undersökningar av olika slag. Förmågan hos denna strålning att tränga igenom olika material beror på hur tunga ämnen materialet innehåller. I kompakt material, som har högre densitet, är absorptionen av strålningen högre vilket gör att strålningen efter att den passerat sådana material får en minskad intensitet. Absorptionen i olika material är beroende av bindningsenergierna i de respektive ämnenas elektronskal vilket bland annat utnyttjas i olika analysinstrument som använder sig av denna typ av strålning (Nationalencyklopedin, 2011, Internet, sökord: röntgenstrålning). Då paper analyseras med hjälp av röntgen är det vanligt förekommande att detta görs för att registrera och erhålla en exakt bild av vattenmärket. Strålning av denna våglängd tillämpas även i flera av de mer avancerade instrumenten såsom i röntgenflourescensutrustning (XRF).

De olika metoderna möjliggör ofta att man kan undersöka objekt utan att behöva ta några prover, något som gör att de betraktas som icke-destructiva. Detta gäller med visst förbehåll. Då man använder sig av UV strålning bör man tänka på att denna har en blekande effekt på färger, något som är av yttersta vikt att ta i beaktande då man skall undersöka konst på papper eftersom färgskiktet på dessa ofta är mycket tunna. Vidare kan strålning av olika våglängd även påverka själva papperet och påskynda nedbrytningen hos detta material. Därför är det viktigt att undersökningsutförs under kortast möjliga tidsrymd för att minimera påverkan på materialet. Många av de mer avancerade analysinstrumenten som redogörs för i nästa stycke bygger på undersökningsmetoder som använder sig av elektromagnetisk strålning av olika våglängd.

3.4 Mer avancerade instrumentella metoder

3.4.1 Destruktiva metoder

Kromatografi

Med extraktion följt av kromatografiska analysmetoder vore det således möjligt att skilja olika tillsatser i tryckfärg från den huvudsakliga linoljan i tryckfärgen. Detta kan sedan jämföras med de tidpunkter vid vilka de olika tillsatserna började brukas i olika sorts tryckfärg. Analysen kan kompliceras av de kemiska förändringar som sker i olja över tid. Vidare innebär en sådan analys att många prov av kända material måste analyseras så att referenser finns att tillgå vid jämförelserna. Utöver nyss nämnda begränsningar innebär metoden även att relativt stora prover måste tas för analys. Denna klassas därför som en destruktiv metod som lämpar sig mindre väl för objekt som innehåller begränsade mängder material möjliga för provtagning, såsom ofta är fallet med pappersbaserad konst.

Svepelektronmikroskop (Scanning Electron Microscopy, SEM)

Svepelektronmikroskop (SEM) är ett elektronmikroskop som kan användas till att undersöka mikroprover av alla slags material, både organiska och oorganiska. Detta görs genom att ytan besträlas med en högenergistråle av elektroner som sverper över provytan i ett rektangulärt mönster. De elektroner som sprids bakåt (backscatter) från varje punkt av provet registreras i en detektor. På detta sätt läses ytans topografi av och en kontrastrik bild i hög förstorning upp till 300.000 gånger kan erhållas (Pinna... et.al. 2009, s. 191). I bilden kan olika ämnen och materialsammansättningar grovt lokaliseras rent visuellt då de tyngre elementen, som till exempel bly, avbildas som ljusa ytor och de lättare elementen avtecknas mörkare, vilket gör att man i ett prov exempelvis kan skilja ut metaller från support vid analysen.

Tekniken innebär att man fäster sitt prov på en yta täckt av självhäftande koltejp i en vakuumkammare där själva elektronbestrålningen utförs. Anledningen till att bestrålningen utförs i vakuum är att elektronerna annars bromsas upp av luften i kammaren. Mindre föremål kan teoretiskt sett placeras i utrustningen utan att en provställning behöver föregå analysen, men då det gäller pappersföremål, och flera andra känsliga material, går detta endast i teorin eftersom elektronbestrålningen i vakuumkammaren medför stora strålingar i objektet, särskilt om det inte är ett ledande material. Om exempelvis ett konstföremål av papper skulle undersökas i SEM kammaren skulle detta sannolikt hettas upp av bestrålningen och det riskerar att skadas samtidigt som vakuumet teoretiskt sett skulle kunna medföra formförändringar. Detta beror på att material som innehåller fukt, såsom cellulosa och vissa färger/bläck, påverkas negativt av vakuumet varför objektet bör förberedas så att fuktens binds innan analysen genomförs. Detta är också en förutsättning eftersom endast vissa lågvacuuminstrument tål fukt. Det finns flera sätt att kringgå dessa svårigheter varav ett är att täcka materialet i ett ledande material som till exempel kol eller guld för att undvika upphettningen. Detta är knappast tillämpligt på konstföremål av papper eftersom det ledande ämnet man väljer att täcka föremålet med sannolikt skulle bli svårt att avlägsna från objektet efter analysen. Tekniker som tillämpar en lägre spänning under analysen har tagits fram men innebär att man endast kan framställa en topografisk bild. Den låga energin som elektronerna har i denna teknik är inte tillräcklig för att materialet skall exciteras och avge röntgenstrålar vilket innebär att det inte är möjligt att analysera materialsammansättningen. Även en teknik som utförs under lägre vacuum har tagits fram och går under namnet E-SEM. Denna fyller kammaren med vattenånga istället vilket, förutom att möjliggöra ett lägre vacuum, även sänker nivån för den laddning som byggs upp i objektet/provet som analyseras.

SEM med efterföljande fotografering kan användas till att skilja olika pigment (som i olika grad innehåller samma grundämnen) från varandra genom jämförelse av dessas rent fysiska former. Till exempel är det möjligt att utifrån bilder i hög förstorning tagna med SEM skilja äldre grafit (det som vanligtvis kallas blyerts) från yngre sådan som förekommer i teckningar. Detta beror på att tillverkningen av teckningsmateriala, då främst finfördelen och tillsatserna i detta, har förändrats sedan upptäckten på 1600-talet (Newman, 1982, s. 115 ff). Liknande analyser kan även vara möjliga att genomföra på andra pigment uppbyggda av samma grundämne men med olika fysisk form. Teoretiskt
sett är det då möjligt att exempelvis skilja pigmenten lampsvart från gassvart i vanlig tryckfärg. På detta sätt skulle det med en SEM kunna vara möjligt att avgöra huruvida ett tryck (om det är ett misstänkt senare avdrag) är tryckt före 1800-talet eller ej. Vidare kan ett SEM vid analys av själva pappersytan vara behjälplig då man önskar upptäcka olika fyllmedel, ytbehandlingar och eventuellt identifiera fibrer från olika sorters träslag.

Energy Dispersive X-ray Spectroscopy (EDS eller EDX)

Till SEM utrustningen kopplas ofta andra analysinstrument eftersom elektronbestrålningen också ger upphov till ytterligare information som kan analyseras. Utöver den bild av ytan som de bakåtspridda elektrona möjliggör i svepelektronmikroskopet bidrar elektronbestrålningen till att röntgenstrålningen avges från de besträlade ämnena i provet. Röntgenstrålningen är specifik för de olika ämnena från vilka de avges och kan samlas in och analyseras med en EDS eller EDX utrustning. I den förstorade bilden man erhållit i SEM kan man ställa in EDS/EDX utrustningen så att den analyserar en specifik punkt i provet. På detta sätt kan även de grundämnen som provet består av analyseras och identifieras. Tekniken begränsas av att provet måste innehålla minst 0,1 wt% (viktprocent) av ämnet för att det ska kunna skiljas från bakgrundsmaterialet och synas i analysen. För mindre prover kan man kombinera tekniken med wavelength dispersive spectroscopy (WDS), som har en lägre gräns för vad som kan avläsas vilket gör att denna applikation ger en noggrannare analys (Pinna... et.al. 2009, s. 191). Sammanfattningsvis så ger en analys med en SEM-EDS/EDX utrustning en förstorad bild av provet och en identifikation av grundämnen som ingår i detta. Utifrån grundämnessammansättningen kan sedan tolkningar angående protvets molekylära uppbyggnad göras. Metoden säger varken någon ting angående uppgifvningen hos molekyllerna som bygger upp protvet eller vilka bindningar som finns mellan grundämnen. Vidare lämpar sig inte grundämnesanalysen för att identifiera organiska sammansatta ämnen eftersom protvet analyseras på en yta av kol. I utrustningens uppbyggnad förekommer även ämnen som syns i analysresultaten trots att dessa inte förekommer i protvet. Ett sådant är beryllium (Be) som finns närvarande i en av utrustningens delar och således alltid kommer ge resultat i analysen vare sig detta ämne finns närvarande i protvet eller ej.

3.4.2 Möjlig metod

Kol-14 (\(^{14}\text{C}\)) datering

Analysmetoden bygger på det faktum att allt organiskt material innehåller en viss mängd radioaktiva kolisotoper med en känd halveringstid. I den övre delen av jordens atmosfär bildas radioaktiva isotoper på grund av inverkan av den kosmiska strålningen. En av dessa radioaktiva isotoper är \(^{14}\text{C}\) som har en beräknad halveringstid på 5730 år (Nationalencyklopedin, 2011, Internet, sökord: kol-14). Det radioaktiva kolet oxideras i atmosfären till \(^{14}\text{CO}_2\) och tas genom detta upp av växterna genom fotosyntesen. Under hela växtens livslängd hålls mängden \(^{14}\text{C}\) i växten på en konstant nivå i förhållande till övriga kolisotoper eftersom växten alltid tar upp nytt \(^{14}\text{C}\) genom fotosyntesen. Förhållandet mellan \(^{14}\text{C}\) och \(^{12}\text{C}\) är detsamma i växten som förhållandet mellan dessa i atmosfären under hela växtens livslängd. Detta gäller för växternas levande delar och utesluter därför exempelvis den inre delen av träd som utgörs av ved (vars celler är döda och ej längre deltar i fotosyntesen). När växten dör tas inte längre mer kol upp, varken \(^{14}\text{C}\) eller \(^{12}\text{C}\), vilket gör att förhållandet mellan dessa inte längre hålls konstant på grund av det radioaktiva kolets sönderfall. Sönderfallet av \(^{14}\text{C}\) sker hela tiden men förhållandet till övrigt kol hålls konstant eftersom nytt kol i olika former hela tiden fylls på. Så snart växten dött minskar mängden \(^{14}\text{C}\) med en känd hastighet. Ställer man detta i förhållande till mängden \(^{12}\text{C}\) i växten kan man beräkna tidpunkten för när växten skördades.
Dessvärre förknippas metoden med en rad felkällor där en av dessa är att den är sammankopplad med en felmarginal på minst ±20-30 år (Pinna... et.al. 2009, s. 186). Utöver denna felmarginal tillkommer även att sönderfallet i många fall redan kan ha pågått i hundra år då ett trädfälls eftersom denna del av veden då den väl har upphört att utgöras av levande celler ej längre deltar i fotosyntesen och således inte längre håller en konstant nivå i förhållande mellan kolisotoperna. Vidare gäller att buffrat papper, vilka ofta innehåller karbonater, först måste behandlas med syra för att avlägsna karbonaterna eftersom dessa annars kan medföra förvrängda analysresultat som visar att papperet är betydligt äldre än vad som är möjligt. När det gäller papper tillverkat av lump har växten i de flesta fall skördats, och således dött, långt innan papperet tillverkades. Kol-14 dateringen ger alltså endast en indikation på tidigast möjliga tillverkningsdatum för sådana papper och lämpar sig bättre för undersökning av papper tillverkade under senare tid då rävaran sällan utgjordes av lump. Detta skulle kunna innebära att exempelvis handgjorda japanska papper, som tillverkas av innerbarken från buskar och träd, kan vara lämpliga att undersöka med metoden. Vill man tidsbestämma ett papper är detta sålunda teoretiskt sett ett möjligt sätt att göra detta på. Metoden är destruktiv då den kräver prov för analys men idag kan detta göras mikrodestruktivt där endast några milligram av materialet behöver offras. Detta kan förstås anses som mindre destruktivt för vissa material än andra beroende på mängden som finns att tillgå (Pinna... et.al, 2009, s. 186).

3.4.3 Icke-destruktiva metoder

Raman spektroskopi

Tekniken möjliggör analys av de flesta material, allt från oorganiska till organiska men även kristallina och amorfa material. Metoden bygger på en optisk analys där materialet

Proton-induced X-ray emission spectroscopy (PIXE)

Tekniken bygger på att man med partiklar, vanligtvis protoner, bestrålar materialet som skall undersökas. Detta ger upphov till att elektromagnetisk strålning av röntgenväglängd avges från de ämnen som bestrålas. Eftersom våglängden hos röntgenstrålningen är specifik för varje ämne som avger den kan olika ämnen identifieras. Analyseinstrumentet använder sig av en sond vars storlek är anpassad till ytan på objektet som skall undersökas. Sonden kan vara av storleksordningen några få 100µm i diameter vilket gör det möjligt att undersöka en mycket specifik punkt i ett objekt. Detta kan till exempel vara en linje av bläck, där sondens storlek gör att bläcket kan analyseras utan att man behöver få med omkringliggande material i analysen. PIXE kan utföras direkt på papperet utan att detta behöver vidröras vilket gör den till en icke-destruktiv metod. Med tekniken är det möjligt att genomföra en fullständig identifikation av exempelvis ett bläck, där sammansättningen hos detta kan fastställas, både huvudämnen och mindre ämnen (Bitossi... et.al. 2005, s. 202). Metoden har till exempel tillämpats för att analysera sammansättningen hos järngallusbläck före och efter våtbehandling, något som har möjligt att utvärdera av behandlingseffektivitet i avsyrningshänseendet. På detta sätt kan man med PIXE tekniken avgöra huruvida en behandling är effektiv eller ej men även huruvida den var skadlig för objektet. Om PIXE utrustningen är kopplat till en tillräckligt liten sond kan instrumentet även användas i mikroskop, något som även möjliggör identifikation av ämnen som förekommer i låg koncentration. Om PIXE därtill kombineras med PIGE (proton-induced gamma-ray emission) möjliggör detta att även ämnen med låga masstal såsom magnesium, natrium och aluminium kan analyseras, något som utgör en begränsning hos många andra analysmetoder (Bitossi... et.al. 2005, s. 203).

Fourier- Transform Infrared Analysis (FTIR)

Med metoden är det möjligt att genomföra en kemisk karakterisering av olika material såsom organiska bindemedel, fernissa, adhesiv, täckmedel (coatings), bestrykningar, konsolideringsmedel men även av oorganiska material såsom pigment,

En försvårande omständighet är att sammansatta ämnen, såsom exempelvis bindemedel, ofta genomgår kemiska förändringar med tiden vilket gör att en referens av känt ursprung och sammansättning inte nödvändigtvis stämmer överens med det material som undersöks även fast de båda är av samma sammansättning från början (Pinna... et.al. 2009, s. 151).

FTIR mikroskopi

Tekniken har i kombination med mikroskop möjliggjort analys av enstaka färgade fibrer i kraftigt nedbrutet stadium. Detta har genomförts på prover tagna i form av enstaka färgade fibrer vilket innebär att metoden är att betrakta som mikrodestruktiv. Eftersom fiberns sammansättning i sig kan tänkas påverka spektrat bör ett spektra på en ren fiber samtidigt tas och hållas i åtanke då spektrarna från den okända färgen jämförs med spektra från kända prover. Analysen innebär även i detta fall att en referensdatabas måste byggas upp med egenhändigt färgade fribrer där sammansättningen är känt (Gillard... et.al. 1994, s. 187 ff).

Röntgen radiografi (X- radiography)

Det finns flera sätt att gå tillväga då man önskar avbilda det vattenmärke som finns i objektet. Av största vikt är att denna avbildning blir så exakt som möjligt. Ett sätt är att
nyttja röntgenradiografiska tekniker. Dessa nyttjar principen att radioaktiv strålning absorberas i olika stor grad av materialen som bygger upp ett objekt, i papperets fall dess tjocklek, densitet och de färger som har blivit pålagda. De material som har en låg molekylvikt absorberar mindre strålning än de som har en hög, dvs material med låg densitet släpper igenom större mängd strålning (Pinna... et.al. 2006, s. 214). Metoden att avbilda ett vattenmärke bygger på att papperet där vattenmärket, kedjelinjerna och de lagda linjerna sitter är något tunnare vilket gör att det i dessa områden släpper igenom en större mängd strålning än papperet i övrigt. Vid bestrålningen lägger man papperet som skall undersökas i direkt kontakt med en film avsedd för ändamålet. Sålunda kommer en bild att avteckna sig mörkare på en negativ film där vattenmärket sitter. Under senare år har tekniken utvecklats så att digitala versioner av bildskapandet tillgängliggjorts vilket gör att man slipper handskas med dyra filmer och framkallningar samtidigt som det blir lättare att handskas med materialet direkt via datorn vid jämförelse med databaser. Analysen är att betrakta som en icke destruktiv analysmetod, detta delvis på grund av att endast röntgenstrålar av relativt låg energi behöver nyttjas vid undersökning av papper. Svårigheterna i tillämpningen av låg spänning X-Radiography är att bilden lätt blir överexponerad, något som vägas mot fördelen att tekniken tillåter att hela papperet kan avbildas i samma exponering (Ash, N. E, 1982, s. 2).

Tekniken att identifiera ett papper med hjälp av dess vattenmärken har sina begränsningar och måste kompletteras av andra analysmetoder. Att ett konstverk är utfört på ett papper med ”rätt” vattenmärke innebär endast att verket är utfört någon gång efter att papperet tillverkades i en form med detta märke. Formar med förfalskade märken förekom samtidigt som vidareförsäljning av formar och ramar skedde samt att vissa överlevde längre än brukligt. De bör därför inte ses som en säker daterande källa men kan komplettera andra undersökningar vid sammanvägningar av olika analyser. Eftersom en specifik konstnär använde sig av en begränsad mängd olika papper, och de denne använde sig av ofta har blivit grundligt undersökt (förutsatt att konstnären blev tillräckligt känd), finns därför ett referensmaterial att jämföra med.

Röntgenflourescens (X-Ray Flourescence, XRF)

Tekniken möjliggör, liksom SEM-EDX, analys av vilka grundämnen som bygger upp till exempel ett pigment. Detta innebär att information angående vilka atomer som ingår och bygger upp det analyserade materialet kan erhållas. Analysen avslöjar inget angående vilket kemiskt tillstånd materialet befinner sig i eller vilken eventuell molekyllär uppbyggnad detta har (Pinna... et.al. 2009, s. 212). Metoden begränsas av att analysen endast registrerar de grundämnen som har tillräckligt hög atomvikt. Dessvärre kan varken
organiska pigment eller färgämnen analyseras med XRF. Analysen går till så att objektet
bestrålas med röntgen vilka har en högre energi än de bindningsenergier som binder en
elektron i något av de inre skalen till atomen. En av elektronerna exciteras vilket medför att
atomen får en instabil elektronstruktur (befinner sig i ett exciterat tillstånd) och har ett
överflöd i potentialenergi. Detta får till följd att en av elektronerna i något av de yttre
skalen faller in och tar den plats där den exciterade elektronen en gång suttit. Då detta
händar frigörs energi i form av en foton, en energi som är densamma som skillnaden i
energi mellan de två elektronskalen. Den energi som frigörs är karakteristisk för den atom
den frigörs från och ger en fluorescerande effekt (Pinna... et.al. 2009, s. 210). Den
fluorescerande strålningen kan sedan analyseras genom mätning av fotonernas respektive
energier med en EDX utrustning eller genom att separera strålningens våglängder med
hjälp av en WDX (wavelength-dispersive analysis) utrustning.

Fördelen med XRF utrustningen är att den möjliggör en icke-destruktiv analys, till
skillnad mot SEM-EDX, och att den finns som portabel utrustning som kan riktas direkt
mot objektet utan att behöva vidröra det. Metodens begränsningar ligger som tidigare
nämnts i att den endast ger svar på vilka grundämnen som bygger upp ämnet men även att
ju lägre atomvikt grundämnet har desto svårare är de att analysera eftersom dessa inte
fluorescerar lika tydligt som tyngre atomer. Eftersom metoden är relativt billigt samt
snabb, känslig och detaljerad samtidigt som den är icke-destruktiv och kan göras portabel
har den fått en stor spridning i exempelvis museivärlden.

När metoden tillämpas på papper är det viktigt att använda sig av röntgenstrålar av relativt
låg energi för att undvika att dessa går rakt igenom papperet och istället analyserar
underlaget. Om ytan som bestrålas med röntgenstrålarna inte är tillräckligt slät finns även
risker med stora felkällor i resultaten (Bitossi... et.al. 2005, s. 200). Röntgenflourecens har
bland annat använts till att identifiera grundämnen i järngallusbläck på papper. Eftersom
techniken är icke-destruktiv har den ofta kommit till användning då man önskar avslöja
förfalsknings och på annat sätt förändrade dokument. Även denna metod används ofta i
kombination med, eller som en complement till, andra avancerade instrument såsom SEM-
EDX och FTIR (Bitossi... et.al. 2005, s.201 ff).
4. Undersökning av två träsnitt

4.1 Objektsbeskrivning

Utagawa Kunisada levde och verkade i Toyokunis ateljé mellan 1786-1865. Några år efter läromästarens död tog han sig år 1844 namnet Toyokuni III. Kunisada kom att bli en av Utagawaskolans mest kända konstnärer specialiserad inom bildgenren yakusha-e, bilder föreställande skådespelare. Denna genre var nära sammankopplad med den tidens samtida teaterform, kabukiteatern, vars skådespelares uttrycksfulla ansiktsuttryck och positioner man försökte avbilda i ukiyo-e träsnitten. Övriga konstnärer som specialiserade sig inom denna genre var från samma atelje och bar artistnamnen Toyokuni och Kunimasa. Utöver denna specialisering utmärkte Kunisada sig inom två ytterligare genrer; bilder av vackra kvinnor, bijin-ga, och bokillustrationer (Mueller... et.al. 2007, s. 29 ff).

Ukiyo-e

Syftet med de här genomförda undersökningarna är dels att ta reda på den information om objektens materialsammansättning som krävs för att sedan kunna fatta beslut om vilka konserveringsmetoder som kan genomföras utan risk för objekten. Ett ytterligare syfte med analyserna är att utifrån den information som erhålls kunna avgöra huruvida objektens respektive dateringar kan stämma med de material som objekten är sammansatta av. I denna fråga kan exempelvis fiber- och pigmentanalyser vara behjälpliga då det kommer till att avgöra huruvida objektets påstådda tillverkningsdatum kan överensstämma med de material det är sammansatt av, det vill säga huruvida materialen faktiskt hade tagits i bruk vid de respektive tidpunkterna.

4.2 Objekt 1

Föremålet som återges i Fig. 1, BIL. 3, har av anställd vid Bukowskis Market identifierats som ett japanskt träsnitt från 1800-talet och attribueras den japanska konstnären Utagawa Kunisada (Toyokuni III). Vidare har det försetts med titeln *Beauty under a Pine Tree*.

Trycket är utfört på ett papper med bladstorleken 37,1 x 25,4 cm. Motivet är tryckt ända ut i marginalen på höger sida, övriga sidor har en marginal som varierar mellan 0,2 - 0,9 cm. Tryckt på tunt långfibrigt papper vars baksida är försedd med en fodring av papper i ljusare ton än originalet. Som framgår av Fig. 1 och 2 innehåller trycket de för ett högtryck av träsnittstyp karaktäristiska kännetecknen där de tryckta ytorna är något nedsänkta i papperet. Denna reliefverkan uppkommer då papperet utpressas från baksidan där färgen från den infärgade stocken skall avsätta sig på papperet. I samma detaljbild kan den vid tryckförfarandet utpressade färgen synas vid sidan av tryckytan vilket också gjort att färgen ansamlats i större mängd i linjens ytre kanter än i dess centrala del. Vidare uppvisar trycket vissa oregelbundenheter i infärgningen, tydligast i de större ytorna, något som är vanligt förekommande då trå infärgas eftersom en viss skillnad i densitet finns i tråets sammansättning. Detta kan göra att trået absorberar färgen i olika hög grad vilket sedan visar sig i den efterföljande tryckningen med ojämnt färgade tryckta ytor som följd. En ytterligare ojämnhet som styrker uppfattningen att det rör sig om ett träsnitt finns i tryckets linjer. Dessa har sannolikt en gång varit skarpa och utan brott men kan vid tryckets tillkomst tänkas ha blivit något slitna varför dessa kvaliteter istället uppvisar sig. Sammantaget gör dessa kännetecken det möjligt att dra slutsatsen att detta är ett träsnitt,
vilket utesluter möjligheten att det istället skulle kunna vara tryckt med hjälp av en senare producerad kliché.

Fiberprover togs från punkterna 10-12 i Fig. 1 BIL. 3. Dessa undersöktes i ljusmikroskop med genomfallande belysning. Ett reagenstest med floroglucinol utfördes på ett fiberprov. Då fibererna ej färgades av lösningen indikerar detta att lignin inte finns närvarande i papperet. Därefter utfördes ett reagenstest med Graff C stain på ytterligare ett fiberprov för att noggrannare kunna avgöra vilken fibersammansättning papperet kan ha. Detta gav inget tydligt resultat då fibererna inte synligt färgades av lösningen. Det tredje fiberprovet som undersöktes i ljusmikroskop utan reagens visade att papperet är sammansatt av långa fiber av varierande tjocklek. Flertalet av fibererna var omgivna av ett tunt transparent membran vilket kan ses i Fig. 3 ovan. Efter jämförelse med referenserna i Fiber atlas: identification of papermaking fibers kunde fibererna skiljas från övriga japanska pappersfibrer och slutsatsen dras att papperet består av kōzo-fibrer (Ilvessalo-Pfäffli, 1995, s. 348ff).

FTIR
Analysen på Objekt 1 genomfördes inom våglängdsområdet 4000 cm\(^{-1}\) - 375 cm\(^{-1}\). Spektra från de olika kulörerna jämfördes inbördes och med spektra hämtade från databasen www.irug.org. Samtliga spektra från analysen återfinns i BIL. 2 och http adresserna till olika jämförelsespektra återfinns sist i käll- och litteraturförteckningen.

Den första ytan att undersökas med FTIR var en pappersyta utan tryckfärg belägen i den vänstra fågeln vars spektra återges i Fig. 1 i BIL. 2. En jämförelse mot detta spektra kunde sedan göras med övriga spektra som togs fram av tryckets olika kulörer. Det som avviker dem emellan kan då sannolikt utgöras av pigment och färgämnen. Den undersökta ljusblå färgen i den högra fågeln, Fig. 2 i BIL. 2, avviker endast i en del av spektrat där den visar en topp vid ca 2100 cm\(^{-1}\). Denna topp överensstämmer ganska väl med de referensspektra för Preussiskt blått som hämtades från www.irug.org. Spektra för den mörkblå himlen, Fig. 3 i BIL. 2, uppvisar samma avvikelse vid samma våglängd, om än starkare (högre topp) som föregående undersökt kulör. Utöver detta visar den även en mindre topp vid 2350 cm\(^{-1}\), en våglängd som sammanfaller med den för bensvart. Denna färg består då sannolikt av Preussiskt blått med möjlig inblandning av andra färger samt bensvart. Den
mellanblå färgen i havet (horisonten), Fig. 4 i BIL. 2, uppvisar även den samma avvikelse som de två tidigare undersökta färgbarna varför denna också sannolikt till viss del består av färgen Preussiskt blått. Den undersökta gröna färgen i trädkronans löverk, Fig. 5 i BIL. 2, har även den ett spektra med en topp vid 2100 cm\(^{-1}\) och kan därför även den tänkas innehålla samma blå pigment. Ytterligare ett prov på den gröna färgen i trädkronan togs, denna gång på ett område med ljusare grön färg, och återges av spektra Fig. 6 i BIL. 2. Detta gav en topp vid 2100 cm\(^{-1}\) och en vid 2350 cm\(^{-1}\) och kan därför tänkas innehålla både Preussiskt blått och bensvart pigment blandat med andra som inte ger synligt utslag i detta spektra. Spektra från den svarta färgen i kvinnans hår, Fig. 7 i BIL. 2, visar endast en tydlig avvikande topp. Denna inträder vid väglängden 2350 cm\(^{-1}\) varför en möjlig slutsats kan vara att denna färg endast består av bensvart. Vid samma väglängd visade den grå färgen i trädstammen en topp, Fig. 8 i BIL. 2, dock var utslaget hos denna lägre i jämförelse. Denna färg består sannolikt också av bensvart men i en lägre koncentration. Slutfilen undersöktes även den röda färgen i kvinnans bälte, Fig. 9 i BIL. 2, vars enda avvikande topp sammanfaller med den vid 2350 cm\(^{-1}\) varför sannolikt även denna kan tänkas bestå av en blandning av pigment där endast bensvart syns i spektrat.

I samband med denna analys bör det påpekas att det inom övriga områden i spektrat, under väglängder där kurvan ligger högt, kan flera toppar från olika ämnen dölja sig. Ett sådant ämne skulle kunna vara ultramarin vars tydligaste topp ligger vid väglängden 1030 cm\(^{-1}\). Eftersom detta väglängdsområde, i likhet med flera andra, döljs av det spektra papperssupporten ger upphov till är det svårt att urskilja fler färger än de som har hittats i analysen. I de spektra som togs från olika kulörer kan i princip endast en tydlig topp urskiljas eftersom kurvan i detta område ligger betydligt lägre än vid övriga väglängder. Analysen begränsas således av att man aldrig kan få fram ett spektra som endast visar den färg man undersöker. Resultaten från analysen blir således knapphändiga och visar snarare att kompletterande analyser med andra instrument är nödvändiga.

SEM-EDX

Prover av tryckfärgerna togs vid markeringarna 1-9 i Fig. 1, BIL. 3. Dessa undersöktes i SEM-EDX där grundämnesanalyserna uttolkas nedan. En sammanställning av resultaten från analysen finns i Tabell 1. där grundämnena är fördelade efter kvantitativ ordningsföljd (viktprocent) med uteslutning av syre. Analysens samtliga diagram återfinns i BIL. 1.

Tabell 1. Sammanställning av resultat från SEM-EDX analys av objekt 1.

<table>
<thead>
<tr>
<th>Prov</th>
<th>Färg</th>
<th>Grundämnen</th>
<th>Möjliga pigment/färgämnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mörkblå himmel</td>
<td>Ca, Si, Fe, Al, S, Cl, K</td>
<td>Preussiskt blått</td>
</tr>
<tr>
<td>2</td>
<td>Blått hav (horisont)</td>
<td>Ca, Fe, Si, Al, P, S, Cl, K, Mg</td>
<td>Preussiskt blått, Bensvart, commelinin</td>
</tr>
<tr>
<td>3</td>
<td>Svagt blå fägelvinge</td>
<td>Si, Al, Ca, K, Fe, P, Na, S, Mg, Cl</td>
<td>Ultramarin, Preussiskt blått, commelinin</td>
</tr>
<tr>
<td>4a</td>
<td>Svagt blått dräktmönster</td>
<td>Na, S, Cu</td>
<td>Azurit</td>
</tr>
<tr>
<td>4b</td>
<td>Svagt blått dräktmönster</td>
<td>S, Ca, Na, Al, K</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Blått rutmönster dräkt</td>
<td>Fe, Si, Al, P, Ca, S, K, As, Cl, Zn</td>
<td>Preussiskt blått, Orpiment, Bensvart, Smalt</td>
</tr>
<tr>
<td>6</td>
<td>Rött "bälte"</td>
<td>Fe, Si, Ca, S, Al, K, Cl</td>
<td>Järnoxidrött</td>
</tr>
<tr>
<td>7</td>
<td>Grå dräktfärg</td>
<td>S, Ca, Si, Al</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Grön trädkrona</td>
<td>As, S, Fe, Al, Ca, P, Si, Cl, Na, K</td>
<td>Orpiment, Preussiskt blått, Ultramarin, Bensvart</td>
</tr>
<tr>
<td>9</td>
<td>Rosa dräktfärg</td>
<td>Ca, Al, S, Fe, Na, Cl, P, Mg, K, Si</td>
<td>Järnoxidrött, Ultramarin, Bensvart, commelinin</td>
</tr>
</tbody>
</table>

Resultat

En tänkbar förklaring till varför magnesium påträffats i flera av proverna skulle kunna vara att ämnet finns närvarande i ett eventuellt fyllmedel baserat på lera, något som även skulle kunna förklara förekomsten av kisel i många av proverna. Då samtliga prover utgjordes av ett fåtal färgade fiber tagna från papperet borde därför alla proverna innehålla de ämnen som kan tänkas utgöra ett fyllmedel. Så var dock inte fallet vilket tydligt kan ses i tabellen ovan. En annan förklaring skulle kunna vara att naturligt förekommande ultramarin, lapis lazuli, teoretiskt sett kan innehålla föroreningar från andra ämnen. Detta skulle kunna förklara varför magnesium påträffades i det blå provet nummer 3, taget från den svagt blå fägelvinge, men inte varför ämnet förekommer i prov 2 och 9. Om man istället ställer detta resonemang mot det faktum att den i ukiyo-e träsnitt vanligt förekommande färgen dayflower blue (commelinin) innehåller magnesium kan man antingen härleda magnesiumförekomsten hos de blå proverna som SEM-EDX analysen visade till commelinin eller som en förorening i naturlig ultramarin. Med tanke på att naturlig ultramarin var oehört kostsam, känns det mindre troligt att just detta pigment skulle ha använts i tryck som kunde ha en daglig upplaga på 200 exemplar. Särskilt med tanke på att det vid den här tiden redan existerade syntetiskt framställd ultramarin, till betydligt lägre
priser, som inte ens i teorin innehåller föroreningar från magnesium. Ett antagande kan därför vara att trycket framställdes med en blandning av de tre blå färgerna: dayflower blue (commelinin), Preussiskt blått och ultramarin. Möjligheten finns att färgen i den förstnämnda av dessa till viss del har försvunnit på grund av fukt och den fodring som trycket har försetts med (vilken kan ha klisterats till baksidan med vattenbaserat adhesiv av någon som inte kände till instabiliteten hos nyss nämnda blå färg). Förekomsten av magnesium i prov 9 kan möjlichen förklaras av att färgen är tagen från ett område i trycket där flera kulörer, däribland ljuusblå och rosa, ligger nära eller på varandra. Det är inte otänkt att detta område en gång har varit av en annan kulör, exempelvis en blandning av rosa och blå färg, där den blå färgen om den utgjorts av commelinin har försvunnit på grund av att den utsatts för fukt. Ett annat alternativ vore att färgprovet har tagits så nära en annan färg att färgade fibrer från denna också har kommit med i provet.

De sammanvägda resultaten från undersökningen av objektet är att träsnittet är tryckt på ett papper tillverkat av kōzo-fibrer med färger bestående av blandade pigment och färgämnen. Eftersom konstnären och dennes tryckare enligt uppgift arbetade med pigmentblandningar för att åstadkomma olika kulörer, bland annat uppbyggda av preussiskt blått, stärker detta den attribution som gjorts av trycket (Mueller... et. al, 2007, s. 149). Den färg som trycket med säkerhet kan sägas innehålla är Preussiskt blått eftersom flera av de spektra som FTIR analysen genererade överensstämmer med referensspektra för denna färg. Detta styrks av den grundämnesanalys som utfördes med SEM-EDX på färgprover från samma kulörer. Grundämnesanalysen indikerar vidare att nästan samtliga färgprover innehåller blandningar av olika sorts pigment. Den visar även att magnesium finns närvarande i flera av de analyserade färgproverna. Detta indikerar att commelinin (dayflower blue) kan finnas i trycket, eller åtminstone att man inte kan utesluta närvaron av detta färgämne.

4.3 Objekt 2

Objektet, som återges i Fig. 2, BIL. 3, utgörs av ett tryck i svart färg på handgjort papper med måtten 20,6 x 13 cm, där själva träsnittet utgör 13,6 x 10,3 cm. En tryckt text i latin finns på både bak- och framsida vilket indikerar att trycket ursprungligen har utgjort en sida i en bok. Själva bilden är monogramsignerad i tryckets nedre kant med inskriptionen HA till vänster om porträttet samt dateringen 1594 till höger. Efter undersökning i arbetsmikroskop kan det konstateras att även detta tryck är framställt genom högttryckteknik. I släpljus uppvisar trycket de för högttryck karaktäristiska känetecken som redogjorts för i undersökningen av Objekt 1. I detta fall tydliggörs dessa i Fig. 4 nedan. Vidare har trycket på vissa ställen något ojämna infärgning samt ett brott i övre kantlinjen vilket tyder på visst slitage eller en spricka i tryckstocken, något som möjligtvis kan bero på bokupplagans storlek. Papperet visade sig efter genomlysning sakna vattenmärke, varför ytterligare undersökning av vattenmärken med exempelvis röntgenradiografiska metoder ej genomfördes. Detta kan tydligt ses i Fig. 5, där en antydan av pappersformens linjer syns i form av de vågräta kedjelinjerna och de lodräta lagda linjerna.
Ett fiberprov togs från objektets baksida och undersöckes i ljusmikroskop med genomfallande ljus vilket kan ses i Fig. 6. Därefter genomfördes reagenstester på två nya fiberprov. Reagenstestet med floroglucinol gav ingen reaktion, i vilket fibrerna skulle ha färgat röda om de hade innehållit lignin, något som kan ses i Fig. 7. Det därpå följande testet med Graff C Stain som genomfördes för att närmare kunna avgöra fibersammansättningen gav inte heller det någon tydlig reaktion vilket kan ses i Fig. 8. Undersökningen av fibersammansättningen resulterade främst i att många fibrer kunde uteslutas. De tydligaste dragen som kunde identifieras var att fibrerna hade längsgående ränder och ”knän” och att två olika fibertjocklekar förekommer. Dessa drag är båda karakteristiska för lin- och hampfibrer där de sistnämnda utgör de tjockare. Ett tredje fiberslag fanns också närvarande, om än av sällsynt förekomst, vilket identifierades som ullfibrer från får och kan ses i nedre delen av Fig. 9. Fibrerna visade sig vara bearbetade till sådan grad att några väl definierade drag var sällsynta. Den omfattande bearbetningen av fibrerna utgör en information i sig då detta tyder på att fibrerna snarare har förberetts i ett stampverk än i en holländare. Detta syns främst i fiberändarna, men även i fibrerna i sig, då dessa snarare är krossade än skurna. Efter att proverna hade jämförts med fiberatlas kunde slutsatsen dras att de hör till kategorin bastfibber och att papperet sannolikt är sammansatt av lumpfibber från linne och hampa med några få inslag av ullfibrer från får. Fibrer från lin och hampa var de växtfibber som huvudsakligen användes till textilier under medeltiden (Ilvessalo-Pfäffli, 1995, s. 336). Andra vanliga fibrer i textilier utgjordes av ull varför det är troligt, då papper vid denna tid uteslutande tillverkades av lump, att ett papper tillverkat i slutet av 1500-talet kan innehålla fibrer från samtliga dessa tre fiberslag.
SEM-EDX
Ett prov från den svarta tryckfärgen togs från objektets baksida och analyserades med hjälp av SEM-EDX. Resultatet av analysen, vilket kan ses i Fig. 10, identifierade endast grundämnen syre (O) och kalcium (Ca) i tryckfärgen. Dessa utgör sannolikt en buffring eller ett fyllmedel i form av kalciumkarbonat i papperet. Utöver dessa innehåller provet, liksom papperet i sig, även kol, ett ämne vars atomvikt är för låg för att upptäckas med denna teknik. Nämns bör också att den första toppen, i Fig. 10 benämnd Be, är ett resultat av analysinstrumentets berylliumfönster och således inte är ett ämne som ingår i provet. Möjligheten att finna några av övriga tillsatser vanliga i tryckfärg, till exempel anilinfärger eller asfalt, finns inte med denna teknik eftersom även dessa är sammansatta av kol.

Resultat
Eftersom papperets fibersammansättning stämde väl överens med vad som vid tidpunkten (dateringen 1594 i trycket) fanns tillgängligt, och en nyproduktion sannolikt inte skulle bemödat sig med att välja ut lump endast från linne och hampa, kan antagandet göras att dateringen mer eller mindre sammanfaller med upphovsmannens datering i trycket. Resultatet av grundämnesanalysen gav ingen indikation på att tryckfärgen skulle vara av senare datum, då endast förväntade ämnen identifierades. Varken något av de grundämnen
som Preussiskt blått är sammansatt av eller någon av de vanliga bly och manganbaserade torkämnena påträffades i analysen.

Ytterligare undersökningar och analyser skulle kunna genomföras, dock är det tveksamt hur mycket mer information dessa skulle kunna bidra med. En analys skulle kunna genomföras på de ullfibrer som finns i papperet med förhoppningen att kunna identifiera eventuella färgämnen i dessa. Till detta skulle exempelvis något av instrumenten FTIR eller Raman kopplade till mikroskop kunna användas, något som även skulle innebära att omfattande referensprover måste framställas och analyseras. Vidare skulle till exempel en kol-fjorton datering kunna genomföras med förhoppningen att denna skulle kunna säga något om när fiberråvaran till papperet skördades. En sådan skulle dock innebära både en kostnad och en hel del arbete samtidigt som resultatet antagligen skulle vara förknippat med så stora felkällor att det ej går att använda. Organiska ämnen i tryckfärgen, såsom tillsatser i form av oljor, harts, asfalt hade kunnat vara möjliga att identifiera i en FTIR-, Raman eller gaskromatografisk analys. Några sådana analyser genomfördes emellertid inte då även dessa hade inneburit mer arbete än vad jag hade möjlighet att utföra inom ramen för detta arbete.

5. Diskussion och slutsatser

Vad man kan analysera i ett konstverk på papper beror både på själva papperet i sig och vilket medium konstnären har använt sig av. I uppsatsen har fokus kommit att ligga på vilka material som kan tänkas förekomma i de objekt som undersöks i uppsatsens fjärde kapitel. Denna fokusering har varit en förutsättning för den studie som har gjorts angående tryckfärger och fibersammansättning och som fått ligga till grund för de undersökningar och analyser som har gjorts samt för tolkningarna av dessa. En generell redogörelse för vad man kan undersöka i konst på papper skulle bli alltför omfattande inom ramen för denna uppsats samtidigt som en sådan redogörelse skulle känna mindre relevant i sammanhanget.

Då det gäller vilka analysmetoder som kan tillämpas på papper och hur dessa går till har dessa både utgått från papperet som material och från olika pigment, färgämnen och bindemedel. Även detta är ett stort ämnesområde där vissa analysmetoder lämpar sig bättre än andra. Valet av de som jag har valt att beskriva grundar sig på en genomgång av tidigare forskning där ingående material i konst på papper har analyserats. I denna forskning har författarna i regel angett vilka analysmetoder de har använt sig av och vilka resultat de har kommit fram till med respektive metod, något jag har använt mig av i urvalet av de möjliga metoder jag beskriver. Hur dessa sedan går till och vilken teknik de bygger på anser jag vara av vikt både för förståelsen av vad man kan tillämpa dem på och för vilka resultat man kan förvänta sig att finna. Vidare visar sig denna förståelse vara nödvändig eftersom den avgör huruvida metoden kan anses vara destruktiv eller ej och således avgör vilka metoder som kan tillämpas på olika objekt. På vissa objekt kan man kanske tänka sig att utföra en destruktiv analysmetod om ingreppet kan motiveras men oftast innebär sådana metoder alltför stora ingrepp i konstverk på papper då dessa generellt sett innehåller en mycket begränsad mängd material där prov kan tas. Många av de mer avancerade analysmetoderna begränsas av att de inte är anpassade för att tillämpas på papper och de material dessa är sammansatta av. Ofta är mängden material som finns tillgängligt för analys och provtagning inte heller tillräckliga för flera av metoderna. Andra begränsningar i olika metoder är att instrumenten är avsedda att tillämpas med särskilda inställningar och med en viss känslighet, något som gör att dessa, i de fall det är möjligt, måste genomgå omfattande kalibreringar innan de kan tillämpas på papper. Detta kan till exempel bero på att färgskikt på ett papper ofta är betydligt tunnare än färgskikt i exempelvis oljemålningar, vilket gör att instrument som är kalibrerat för analys av de sistnämnda snarare analyserar papperet istället för färgskiktet om det används för analys av färg på papper.

De mer avancerade analysmetoderna som tillämpades på objekten i uppsatsens undersökningsdel var de som fanns tillgängliga på Institutionen för kulturvård vid Göteborgs universitet under den tidsperiod som hade avsatts för analyser. Hade jag kunnat välja fritt bland de metoder som beskrivs i uppsatsens tredje kapitel så hade valen av analysmetoder sett annorlunda ut. Strävan hade varit att primärt genomföra undersökningen helt icke-destruktivt och inledningsvis nyttja XRF eller PIXE metoderna till pigment- och färgämnesanalyserna. PIXE kopplat till en PIGE hade, eftersom den är icke-destruktiv och kan identifiera lätta ämnen såsom magnesium, varit ett utmärkt instrument för att i ett inledande stadium indikera förekomsten av dayflower blue (Bitossi... et.al. 2005, s. 200). Avsikten med de undersökningar som genomfördes var att extrahera sådan information att objektens materialsammansättning kunde bestämmas. Denna information skulle ligga till grund för såväl dateringen av objekten som för framtida
möjliga konserveringsåtgärder. Ett av undersökningarnas syften var därför att söka ett specifikt färgämne, något som visade sig vara svårare än väntat att genomföra inom de begränsningar som studien genomfördes. Dessa begränsningar utgjordes främst av den tidsrymd inom vilken arbetet skulle genomföras samt de analysinstrument som fanns att tillgå. Om tillgång till referenser hade funnits till möjliga pigments och färgämnen, särskilt färgen dayflower blue (commelinin), hade färgrarmsättningen i objekt 1 kunnat fastställas på ett säkrare sätt. De enda analysresultaten som påträffats i litteraturstudien rörande detta färgämne är från undersökningar där färgen undersöks löst i vatten med spektrofotometriska analysmetoder. För att kunna använda de resultaten som referenser i mina egna undersökningar hade jag således varit tvungen att lösa färg från objekt 1 i vatten och därefter analyserat lösningen. Detta hade dock inneburit alltför stora ingrepp i objektet eftersom en sådan undersökning skulle innebära att så stora prover måste tas att objektet i princip måste offras. De analyser som genomfördes baserades istället på mindre destruktiva metoder, såsom SEM-EDX, där syftet var att påvisa färgämnen genom att leta efter det magnesium som finns i commelinin i de prover som undersöktes.

Att försöka påvisa färgämnet på detta sätt var inte det mest optimala eftersom det endast gav en indikation på att färgen möjligtvis förekommer i trycket. Flertalet bättre, och mindre destruktiva, analysmetoder hade kunnat nyttjats om tid och tillgång hade funnits. Till exempel hade en FTIR utrustning kopplad till mikroskop kunnat användas för att ta fram spektra från enskilda färgade fibrer, något som hade möjliggjort tydligare spektra av de olika färgerna med mindre "föroreningar" från själva papperet. Dessa hade sedan, vid ytterligare undersökningar, kunnat jämföras med spektra från undersökningar av färgen i artificiellt åldrade aobana-gami papper. En sådan undersökning hade dock tagit betydligt mycket mer tid i anspråk än den i uppsatsen genomförda undersökningen. Resultatet från den som genomfördes blev ofullständigt men lyckades ändå påvisa några av de pigment som konstnären använde sig av. Utöver detta kunde även ett av de grundämnen som ingår i färgen dayflower blue identifieras varför förekomsten av färgämnet ej kan uteslutas i objekt 1. Även om området kräver ytterligare undersökningar och verifiering för att säkerställa att färgämnet kan påvisas genom nyss genomförda metod utgör detta en indikation på att det kan vara möjligt. Om de preliminära resultaten visar sig stämma skulle detta kunna utgöra en grund för utvecklingen av icke-destruktiva analyser för att påvisa denna färg. En sådan analys, som i likhet med nyss genomförda SEM-EDX analys också är en grundämnesanalys, är den potentiellt icke-destruktiva metoden XRF som även kan tillämpas in-situ. Om det med detta instrument skulle visa sig vara möjligt att påvisa färgämnet på ett tillförlitligt sätt skulle denna analys vara ett utmärkt att använda sig av innan konserveringsåtgärder vidtas på japanska träsnitt.

Då resultaten från de undersökningar som genomfördes på objekt 1 inte innehöll några av de pigment och färgämnen som blev vanligare under senare delen av 1800-talet finns inga indikationer på att trycket skulle vara ett senare avdrag. Hade trycket till exempel innehållit kadmiumfärgar, vilka emellertid fanns redan i mitten av 1800-talet men inte nådde någon större spridning som konstnärmateriel förrän i slutet av seklet (Feller (red.) 1986, s. 65 f), skulle detta ha varit ett tydligt bevis för att trycket hade tillkommit efter konstnärens död. Ej heller resultaten från undersökningen av objekt 2 indikerar att detta tryck skulle ha tillkommit mycket senare än vad dess datering gör gällande. Med de undersökningar som genomfördes begränsades dock denna analys till pigmentinnehållet i tryckfärgen varför analysen av denna avgörs av att den inte innehöll något av de under senare tid tillsatta pigmenten. En mer omfattande undersökning hade kunnat utföras på objektet, något som exempelvis hade kunnat inbegripa en identifikation av tryckfärgens bindemedels-sammansättning. Efter de resultat som erhölls ur fiber- och SEM-EDX analyserna bedömdes dock vidare analyser vara överflödiga trots att de hade kunnat bidra med ytterligare information angående materialsammansättningen i objektet.
6. Sammanfattning

Syftet med denna uppsats var att undersöka hur man i egenskap av konservator kan gå tillväga då man skall genomföra en undersökning av materialsammanordningen hos konst på papper. Detta görs genom en redogörelse för vad man kan undersöka, hur detta kan gå till och med vilka metoder det kan göras. Vidare tydliggörs detta genom en undersökningsdel där några av metoderna tillämpas. Utgångspunkten för uppsatsarbetet har varit följande frågeställningar:

- Vad kan man undersöka och analysera i ett verk på papper?
- Vilka analysmetoder kan man använda sig av, hur går dessa analyser till och vilka analysmetoder kan jag tillämpa på de valda objekten?
- Vilka fördelar respektive nackdelar finns med de olika metoderna, finns det felkällor att ta i beaktande i respektive metod? Skall man använda en särskild metod hellre än en annan?
- Hur långt kan jag komma i en teknisk analys och hur mycket relevant information kan jag som konservator extrahera ur objektet?

Uppsatsen är indelad i tre delar där den första delen handlar om vad man kan undersöka och där fokus har lagts på vad man kan undersöka i papper och tryckfärger. Kapitlet ligger till grund för uppsatsens undersökande del och har därför inriktats på de material som kan tänkas ingå i de undersökta objekten. Innehållet i kapitlet är uppbyggt kring materialhistorik och redogör för hur papperstillverkning har gått till samt vad som kännetecknar papper från olika tidpunkter. Därefter beskrivs uppbyggnaden hos olika tryckfärger och hur dessa historiskt sett har förändrats. Ungefärliga tidpunkter anges för när olika pigment, färgämnen, bindemedel och tillsatser förekommer varefter några av dessas olika egenskaper beskrivs med utgångspunkten hur de kan tänkas reagera i samband med konserveringsåtgärder. Följande kapitel handlar om olika undersökningsmetoder som kan tillämpas på papper och media. Inledningsvis beskrivs metoder av mindre avancerad art som är relativt vanligt förekommande och inte kräver särskilt kostsam utrustning. Efter detta följer en beskrivning av hur man kan utnyttja elektromagnetisk strålning av olika våglängder i preliminära undersökningar och hur olika våglängder av strålning ligger till grund för flera av de mer avancerade instrumentella metoderna. Följande underkapitel redogör för några av dessa instrument och tekniken bakom dessa. En indelning i destruktiva och icke-destruktiva metoder görs där viss insikt ges i vilka material som är analyserbara med respektive metod. Detta är delvis uppbyggt kring, och refererar till, några av de undersökningar som genomförts av andra för att exemplifiera hur andra har använt sig av olika metoder för att bestämma materialsammanordningen i olika material. I det därtå följande kapitlet, undersökning av två träsnitt, presenteras de två objekt som skall exemplifiera några av undersökningsmetoderna. Det ena objektet är ett japanskt polykromt träsnitt från 1800-talet som attribueras till Utagawa Kunisada. En undersökning av tryckteknik och fiberprover genomförs i mikroskop. Två undersökningar med mer avancerade instrumentella metoder genomförs, en FTIR och en SEM-EDX analys. Resultaten från FTIR analysen utgörs av svårtydiga spektra där själv papperet i sig ger upphov till ett spektrum som kan tänkas döjja många av topparna från de undersökta.
7. Käll- och litteraturförteckning

7.1 Otryckta källor

7.2 Tryckta källor och litteratur

Pinna, Daniela, Galeotti, Monica & Mazzeo, Rocco (red.) (2009). Scientific examination for the investigation of paintings a handbook for conservators-restorers. Florens: Centro D

47

7.3 Internetreferenser

FTIR spektra

Hooker's green http://www.irug.org/ed2k/spectra.asp?file=IOD00010.DX
Prussian blue http://www.irug.org/ed2k/spectra.asp?file=IMP00049.DX
Ultramarine blue, synthetic http://www.irug.org/ed2k/spectra.asp?file=IMP00009.DX
Bone black (Kremer) http://www.irug.org/ed2k/spectra.asp?file=IMP00020.DX
8. Bildförteckning

Kapitel 4. Undersökning av två träsnitt

Fig. 1. Detaljbild av kragen i objekt 1, mikroskop 10 x förstoring, släpljus från vänster. Fotograf: Erik Rask
Fig. 2. Detaljbild textilmönster i objekt 1, mikroskop 20 x förstoring, släpljus från vänster. Fotograf: Erik Rask
Fig. 3. Bild tagen i ljusmikroskop i 125 x förstoring, kōzo-fibrer från objekt 1. Fotograf: Erik Rask
Fig. 4. Detaljbild av kragen objekt 2, mikroskop 30 x förstoring, släpljus från vänster. Fotograf: Erik Rask
Fig. 5. Bild tagen på ljusbord för att påvisa kedjelinjer, lagda linjer och avsaknad av vattenmärke. Fotograf: Erik Rask
Fig. 6. Bild tagen i ljusmikroskop på fibern från objekt 2, 125 x förstoring. Fotograf: Erik Rask
Fig. 7. Fibrer från objekt 2 i floroglucionol lösning, ljusmikroskop 125 x förstoring. Fotograf: Erik Rask
Fig. 8. Fibrer i Graff C Stain lösning, ljusmikroskop 125 x förstoring. Fotograf: Erik Rask
Fig. 9. Ullfibre, ljusmikroskop 125 x förstoring. Fotograf: Erik Rask
Fig. 10. SEM-EDX diagram av grundämnen närvarande i tryckfärgen i objekt 2.

BIL. 1: SEM-EDX- diagram Objekt 1

Fig. 1. Prov 1: Mörkblå himmel
Fig. 2. Prov 1: Mörkblå himmel, fördelning efter viktprocent
Fig. 3. Prov 2: Blått hav (horisont)
Fig. 4. Prov 2: Blått hav (horisont), fördelning efter viktprocent
Fig. 5. Prov 3: Svagt blå fågelvinge
Fig. 6. Prov 3: Svagt blå fågelvinge, fördelning efter viktprocent
Fig. 7. Prov 4a: Svagt blått dräktmönster
Fig. 8. Prov 4a: Svagt blått dräktmönster, fördelning efter viktprocent
Fig. 9. Prov 4b: Svagt blått dräktmönster
Fig. 10. Prov 4b: Svagt blått dräktmönster, fördelning efter viktprocent
Fig. 11. Prov 5: Blått rutmönster dräkt
Fig. 12. Prov 5: Blått rutmönster dräkt, fördelning efter viktprocent
Fig. 13. Prov 6: Rött "bälte"
Fig. 14. Prov 6: Rött "bälte", fördelning efter viktprocent
Fig. 15. Prov 7: Grå dräktfärg
Fig. 16. Prov 7: Grå dräktfärg, fördelning efter viktprocent
Fig. 17. Prov 8: Grön trädkrona
Fig. 18. Prov 8: Grön trädkrona, fördelning efter viktprocent
Fig. 19. Prov 9: Rosa dräktfärg
Fig. 20. Prov 9: Rosa dräktfärg, fördelning efter viktprocent
BIL. 2: FTIR analyser Objekt 1

Fig. 1. Ofärgad pappersyta
Fig. 2. Fågel
Fig. 3 Mörkblå himmel
Fig. 4. Blått hav (horisont)
Fig. 5. Trädkrona
Fig. 6. Ljusgrön färg lövverk
Fig. 7. Kvinnans svarta hår
Fig. 8. Trädstam
Fig. 9. Rött "bälte"

BIL. 3: Undersökta objekt i kapitel 4

Fig. 1. Objekt 1. Provtagning färger punkt 1-9, fiberprover punkt 10-12. Fotograf: Erik Rask
Fig. 2. Objekt 2. Provtagning färg- och fiberprov från baksidan. Fotograf: Erik Rask
BIL. 1. SEM-EDX analyser objekt 1

Fig. 1. Prov 1: Mörkblå himmel

Fig. 2. Prov 1: Mörkblå himmel, fördelning efter viktprocent

Fig. 3. Prov 2: Blått hav (horisont)

Fig. 4. Prov 2: Blått hav (horisont), fördelning efter viktprocent

Fig. 5. Prov 3: Svagt blå fågelvinge

Fig. 6. Prov 3: Svagt blå fågelvinge, fördelning efter viktprocent
Fig. 7. Prov 4a: Svagt blått dräkmönster

Fig. 8. Prov 4a: Svagt blått dräkmönster, fördelning efter viktprocent

Fig. 9. Prov 4b: Svagt blått dräkmönster

Fig. 10. Prov 4b: Svagt blått dräkmönster, fördelning efter viktprocent

Fig. 11. Prov 5: Blått rutmönster dräkt

Fig. 12. Prov 5: Blått rutmönster dräkt, fördelning efter viktprocent
Fig. 13. Prov 6: Rött "bälte"

Fig. 14. Prov 6: Rött "bälte", fördelning efter viktprocent

Fig. 15. Prov 7: Grå dräktfärg

Fig. 16. Prov 7: Grå dräktfärg, fördelning efter viktprocent

Fig. 17. Prov 8: Grön trädkrona

Fig. 18. Prov 8: Grön trädkrona, fördelning efter viktprocent
Fig. 19. Prov 9: Rosa dräktfärg

Fig. 20. Prov 9: Rosa dräktfärg, fördelning efter viktprocent
BIL. 2. FTIR analyser objekt 1

Fig. 1. Ofärgad pappersyta

Fig. 2. Fågel
Fig. 3 Mörkblå himmel

Fig. 4 Blått hav (horisont)
Fig. 5. Trädkrona

Fig. 6. Ljusgrön färg lövverk
Fig. 7. Kvinnans svarta hår

Fig. 8. Trädstam
Fig. 9. Rött "bälte"
Fig. 1. Objekt 1. Provtagning färger punkt 1-9, fiberprover punkt 10-12.
Fig. 2. Objekt 2. Provtagning färg- och fiberprov från baksidan.