NONPARAMETRIC REGRESSION WITH SIMPLE CURVE CHARACTERISTICS

by

Sture Holm and Marianne Frisén
NONPARAMETRIC REGRESSION WITH SIMPLE CURVE CHARACTERISTICS

S. Holm
M. Frisén
1. Introduction

The character of nonparametric statistical methods is that they are constructed for very general situations, without the specific narrow assumptions, which appear in the common parametric methods. Isotonic regression is a non-parametric regression method, which has paid a well deserved attention for some decades. In this case the only assumption about the regression function is that it is non-decreasing (or nonincreasing). The basic theory of isotonic regression is contained in the book by Barlow, Bartholomew, Brenner and Brunk (1972).

In many applications it is motivated to consider regression functions which are not only monotonic but also have certain convexity or concavity characteristics. For instance in quantal response assays in biological applications, sigmoid curves are used. These are increasing functions which are first convex up to some point and then concave. There are suggested a number of parametric sigmoid curves for analysis of such applications. See e.g. Finney (1978) section 17.

In economical applications involving demand, supply and price, functions with prescribed monotonity and convexity or concavity are common. For instance in Lipsey & Steiner (1972) chapter 5 are found a number of convex decreasing demand curves and convex increasing supply curves (in both cases price as a function of quality). There is also given an example of the quality demanded as a function of household income which might change character from increasing concave to decreasing concave.

In all these applications the regression functions can be assumed to satisfy some simple nonparametric) curve characteristics expressed in terms of increase or decrease and convexity or concavity. Either the function is of one type all the way, or it shifts character in a certain order at some (unknown) points. The aim of the present paper is to discuss the statistical problem of estimating such nonparametric regression functions.
The papers by Dent (1973) and Holloway (1979) consider the problem of estimating convex (or concave) regression functions. In both papers the least squares estimates are obtained by linear programming methods. The case of unimodal regression is treated in Frisén (1985).

The regression functions with a single characteristic are of four types, increasing convex, increasing concave, decreasing convex and decreasing concave. It will be seen in the next section that the corresponding estimation problems are analogous, and we will give a procedure for determinating least square estimates.

For a regression function, shifting curve characteristic in a given point, we can obtain the least square estimate by a slight modification of the method for regression functions with a single curve characteristic. In the case when the regression function shifts curve characteristic in an unknown point we can find the least square estimate by calculating the sum of squares for the solutions for all possible shifting points. The general solution is then the one obtained for the shifting point giving the least sum of squares.

The estimation procedure will be illustrated by two simple examples in section 3. In section 4 we will give the utmost simplest consistency result for the estimates. Further statistical properties and further details on the estimation procedure will be given in forthcoming papers.
2. Estimation procedure

We will first discuss the estimation procedure for fitting a nondecreasing and convex function to a set of data by the least squares criterion. This means that to the observations \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n\) we will find a nondecreasing and convex function \(f(x)\) such that

\[
\sum_{k=1}^{n} (y_k - f(x_k))^2
\]

is minimal. As mentioned in the introduction, the problems to fit a function with some other nonchanging curve characteristic will be very similar to this one.

There is a reformulation of the problem which is good for theoretical as well as practical purposes. Let

\[
\begin{align*}
f_0(x) &= 1 \\
f_1(x) &= x - x_1
\end{align*}
\]

and

\[
f_k(x) = \begin{cases}
0 & \text{for } x \geq x_k \\
 x - x_k & \text{for } x > x_k
\end{cases}
\]

for \(k = 2, 3, \ldots, n-1\).

Then any function \(f(x)\) which is nondecreasing and convex on the set \(\{x_k : k = 1, 2, \ldots, n\}\) can be written:

\[
f(x) = \sum_{k=0}^{n-1} \alpha_k f_k(x)
\]

where \(\alpha_k \geq 0\) for \(k \geq 1\).

There are no restrictions on the constant \(\alpha_0\).

Thus our problem can be formulated as the problem of finding
\[
\alpha_k \geq 0 \quad k=1,2,\ldots,n-1
\]

and \(\alpha_0\) which minimize

\[
\sum_{l=1}^{n} (y_l - \sum_{k=0}^{n-1} \alpha_k f_k(x_l))
\]

For existence and uniqueness of solutions to the minimization problem, the following lemma is essential.

Lemma 1: The set of nondecreasing convex functions on the set \(\{x_k: k=1,2,\ldots,n\}\) is a closed convex cone.

Proof: We can write the functions in the form

\[
f(x) = \sum_{k=0}^{n-1} \alpha_k f_k(x)
\]

with \(\alpha_k \geq 0\) for \(k=1,2,\ldots,n-1\).

If

\[
g(x) = \sum_{k=0}^{n-1} \beta_k f_k(x)
\]

is another function of this type, then so is

\[
\lambda f(x) + (1-\lambda) g(x) = \sum_{k=0}^{n-1} (\lambda \alpha_k + (1-\lambda) \beta_k) f_k(x)
\]

for all \(\lambda, 0 \leq \lambda \leq 1\). Thus the set is convex. Further obviously \(\gamma f(x)\) belongs to the set for all \(\gamma > 0\) if \(f(x)\) belongs to the set. Finally it is easily seen that if \(f(x)\) is a limit of functions in this set, the function \(f(x)\) also belongs to the set, since limits of sequences of nonnegative numbers are non-negative.

Q.E.D.
In order to be able to write things shorter we introduce the scalar product notation
\[(f, g) = \sum_{k=1}^{n} f(x_k)g(x_k) \]
and the norm notation
\[||f|| = (f, f)^{-\frac{1}{2}} \]
for functions defined on \(\{x_k: k = 1, 2, \ldots, n\} \).

In the minimization problem, where we should find \(\alpha_k \geq 0 \) for \(k = 1, \ldots, n-1 \) and \(\alpha_0 \) to minimize
\[||f - \sum_{k=0}^{n-1} \alpha_k f_k|| \]
we typically have some positive \(\alpha_k = s \), while the others are equal to 0.

Denoting
\[I = \{k^2 1: \alpha_k > 0\} \cup \{0\} \]
we can write the approximating function
\[\sum_{K \in I} \alpha_k f_k(x) \]
Then we can formulate the following lemma on a characterisation of the solution to the minimization problem.

Lemma 2. The function
\[\sum_{K \in I} \alpha_k f_k(x) \]
is the solution to the minimization problem if and only if
(i) \((f-\sum_{k\in I} a_k f_k, f_j) = 0\) \(\forall j \in I\)

and

(ii) \((f-\sum_{k\in I} a_k f_k, f_j) \leq 0\) \(\forall j \notin I\)

Proof

Denote

\[M = \| f - \sum_{k\in I} a_k f_k \| \]

and suppose first that

\[\sum_{k\in I} a_k f_k \]

is the solution. Then we can not have

\[(f-\sum_{k\in I} a_k f_k, f_j) = k_j \neq 0 \text{ for } j \in I \]

since then

\[\| f-\sum_{k\in I} a_k f_k - \epsilon f_j \|^2 = M^2 - 2\epsilon k_j + \epsilon^2 \| f_j \|^2 \]

is smaller than \(M^2\) for some small positive or negative \(\epsilon\). Further we can not have

\[(f-\sum_{k\in I} a_k f_k - f_j) = k_j > 0 \text{ for } j \notin I \]

because then

\[\| f-\sum_{k\in I} a_k f_k - \epsilon f_j \|^2 = M^2 - 2\epsilon k_j + \epsilon^2 \| f_j \|^2 \]

is smaller than \(M^2\) for some small positive \(\epsilon\).

Thus the solution must satisfy (i) and (ii). On the other hand if (i) and (ii) are satisfied, we have a local minimum, and there is only one local minimum, the global one.

Q.E.D.
This characterisation lemma is closely related to the stepwise method to find the solution. The method consists of two parts, the exclusion part and the inclusion and substitution part.

The aim of the exclusion part is to find an index set \(I_0 \) such that

\[
(f - \sum_{k \in I_0} a_k f_k, f_j) = 0 \quad \forall j \in I_0
\]

and \(a_k \geq 0 \quad \forall j \in I_0 \setminus \{0\} \).

This is obtained by successive elimination.

Exclusion part of estimation procedure:

First write

\[
f = \sum_{k \in \{0, \ldots, n-1\}} a_k f_k
\]

Let \(I_0^{(1)} \) be the index set consisting of 0 and all \(k \geq 1 \) such that \(a_k \geq 0 \). Next make a least square approximation of \(f \) by the sum

\[
\sum_{k \in I_0^{(1)}} a_k^{(1)} f_k
\]

Again exclude indices corresponding to \(a_k^{(1)} < 0 \), let \(I_0^{(2)} \) be the index set consisting of 0 and all \(k \geq 1 \) such that \(a_k^{(1)} \geq 0 \), and make a least square approximation of \(f \) by the sum

\[
\sum_{k \in I_0^{(2)}} a_k^{(2)} f_k.
\]

This is continued until we find an index set \(I_0 \) such that the least squares approximation

\[
\sum_{k \in I_0} a_k f_k
\]
of \(f \) has coefficients \(a_k \geq 0 \) for all \(k \geq 1 \) in \(I_0 \).

Note. It might happen that we end up with \(I_0 = \{ 0 \} \). The exclusion part of the procedure is not necessary, we could always skip it and start the inclusion and substitution step with \(I_0 = \{ 0 \} \). But generally the exclusion part would give us a rough estimate, which is a good starting point in the inclusion and substitution part. In very simple cases it might also hit the solution directly. For instance if the function \(f \) itself is nondecreasing and convex, we would get \(I_0 = \{ 0, 1, \ldots, \ldots, n-1 \} \).

Inclusion and substitution part of the estimation procedure.

A. The index set \(I_0 \) is such that

\[
(f - \sum_{k \in I_0} a_k f_k, f_j) = 0 \quad \forall j \in I_0
\]

and

\[
a_k \geq 0 \quad \forall j \in I_0 \setminus \{ 0 \}.
\]

Calculate for each \(j \notin I_0 \) the "projection"

\[
\rho_j = (f - \sum_{k \in I_0} a_k f_k, f_j) / ||f_j||
\]

Aa. If \(\rho_j \leq 0 \quad \forall j \in I_0 \), the sum \(\sum_{k \in I_0} a_k f_k \) is the solution to the minimization problem.

Ab. If \(\rho_j > 0 \) for some \(j \in I_0 \) continue to B.
B. Let \(m \) be the index corresponding to the maximal \(\rho_j \) (or one of the maximal \(\rho_j : s \) if there are several).
Let \(\beta_k \) for \(k \in I_0 \cup \{ m \} \) be the constants minimizing
\[\| f - \sum_{k \in I_0 \cup \{ m \}} \beta_k f_k \| . \]

Ba. If \(\beta_k \geq 0 \ \forall k \in I_0 \cup \{ m \} \) start again from A with \(I_0 \) substituted by \(I_0 \cup \{ m \} \) and constants \(\beta_k \) for \(k \in I_0 \cup \{ m \} \).

Bb. If \(\beta_k < 0 \) for some \(k \in I_0 \cup \{ m \} \), calculate \(\varepsilon_k = a_k \beta_k \) and \(\varepsilon^* = \min_{k \in I_0 \cup \{ m \}} \varepsilon_k < 1 \). Then in the sum
\[\sum_{k \in I_0 \cup \{ m \}} (1 - \varepsilon^*) a_k + \varepsilon^* \beta_k f_k \]
at least one coefficient equals 0. Let \(I_1 \) be the index set of the non-zero coefficients, and let
\[\gamma_k = (1 - \varepsilon^*) a_k + \varepsilon^* \beta_k, \quad k \in I_1. \]
Further let \(\gamma_k \) for \(k \in I_1 \) be the constants minimizing
\[\| f - \sum_{k \in I_1} \gamma_k f_k \| \]
If \(\gamma_k \geq 0 \ \forall k \in I \) start again from A with \(I_0 \) substituted by \(I_1 \).

If \(\gamma_k < 0 \) for some \(k \in I_1 \) calculate new \(\varepsilon_k = \gamma_k / (\gamma_k - \rho_k) \)
\(k \in I_1 \) and \(\varepsilon^* = \min_{k \in I_1} \varepsilon_k < 1 \) and repeat Bb until only positive coefficients are obtained. Then start from A again.

Note. In each "cycle" of the Bb part of the procedure, the sum of squares of errors will strictly decrease.
In each "complete cycle" including A we will start anew with a "presolution", with a smaller sum of squares of errors than in the previous case, with positive coefficients in a least squares solution for a new set of indices. Since there is a finite number of possible choices of indices, the procedure will converge to the solution in a finite number of steps. In A is contained
a check step where we stop when we have found the solution as characterized in lemma 2. The inclusion of the index m corresponding to the function with the greatest "positive correlation" with the error in A made for intuitive reasons. It ought to be good for improving the solution as much as possible, and thus ought to give fast convergence.

The procedure we have given here is easily modified for other similar problems. For instance, if we want to fit a nonincreasing convex function to data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n\) we use instead the function system

\[
\begin{align*}
 f_0(x) &= 1 \\
 f_k(x) &= \begin{cases}
 x_k - x & \text{for } x \leq x_k \\
 0 & \text{for } x > x_k
 \end{cases} \\
 &\text{for } k = 2, 3, \ldots, n-1
\end{align*}
\]

and

\[
 f_n(x) = x_n - x.
\]

If there are several observations for some \(x_k\) we just use a function system with functions corresponding to all different values \(x_k\). The observation in a point is the mean of all \(y_k\) with the same \(x_k\) and in the scalar product we use weights equal to the number of observations in the different points.

For problems with shifting curve characteristics, there are two cases, which are especially simple. If we want to fit to data \((x_1, y_1), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n\) a function which is first nonincreasing convex and then nondecreasing convex, we can use the function system of the first problem in this section. But now there are no sign restrictions of the coefficients of neither \(f_0(x)\) nor \(f_1(x)\). The modification of the procedure for this case is trivial.

A similar solution is obtained for the problem of fitting a function which is first nondecreasing concave and then nonincreasing concave.
The problem of fitting a sigmoid curve, which is first nondecreasing convex and then nondecreasing concave is not so simple.

3. Two simple examples

In order to illustrate how the estimation procedure works, we will show the steps in detail for two simple examples. Our first example is a very simple one, used by Holloway (1979).

Example 1. Fit a convex function (by least squares) to the data

\[
\begin{align*}
x_k & \quad 2 \quad 4 \quad 6 \quad 9 \quad 10 \\
y_k & \quad 10 \quad 2 \quad 6 \quad 4 \quad 8 \\
\end{align*}
\]

When we make an approximation in form of a linear combination of \(f_0, f_1, f_2, f_3, f_4 \) there are no restrictions on the coefficients of \(f_0 \) and \(f_1 \) in this case.

After writing

\[
f = 10 - 4f_1 + 6f_2 - \frac{8}{3} f_3 + \frac{14}{3} f_4
\]

we exclude \(f_3 \), which has negative coefficient.

Fitting a linear combination of \(f_0, f_1, f_2, f_4 \) by least squares we get

\[
f \approx 10 - 3.37f_1 + 3.69f_2 + 2.84f_4
\]

The coefficients of \(f_2 \) and \(f_4 \) are positive, and the scalar product of \(f_3 \) and the error is negative. Thus we have the solution already at the end of the elimination part of the procedure.

This example was almost too simple. Also the next one is simple, but it is complicated enough to get also inclusion steps.

Example 2. Fit a nondecreasing convex function by least squares method to the data

\[
\begin{align*}
x_k & \quad 1 \quad 3 \quad 5 \quad 9 \quad 10 \quad 11 \quad 14 \quad 15 \\
y_k & \quad 3 \quad 5 \quad 4 \quad 5 \quad 7 \quad 10 \quad 11 \quad 14 \\
\end{align*}
\]
After writing
\[f = 3 + f_1 - 1.5f_2 + 0.7f_3 + 1.75f_4 + f_5 - \frac{8}{3}f_6 + \frac{8}{3}f_7 \]
we exclude \(f_2 \) and \(f_6 \), which have negative coefficients. The least squares fit with a linear combination of \(f_0 \), \(f_1 \), \(f_3 \), \(f_4 \), \(f_5 \) and \(f_7 \) becomes
\[f \approx 3.5 + 0.25f_1 - 0.125f_3 + 2.7981f_4 - 2.0769f_5 + 1.8462f_7. \]
Thus we next exclude \(f_3 \) and \(f_5 \). The least squares fit with a linear combination of \(f_0 \), \(f_1 \), \(f_4 \) and \(f_7 \),
\[f \approx 3.3991 + 0.3149f_1 + 0.8404f_4 + 1.1508f_7 \]
has positive coefficients for \(f_1 \), \(f_4 \) and \(f_7 \). This terminates the elimination part of the procedure. The error turns out to be negatively correlated with \(f_2 \), \(f_5 \) and \(f_6 \) but positively correlated with \(f_3 \). The least squares fit with \(f_3 \) included becomes
\[f \approx 3.50 + 0.25f_1 + 0.1161f_3 + 0.7768f_4 + 1.1786f_7 \]
which has positive coefficients for \(f_1 \), \(f_3 \), \(f_4 \) and \(f_7 \). It is not necessary to eliminate some other functions when \(f_3 \) is included. The error appears to have negative correlations with \(f_2 \), \(f_5 \) and \(f_6 \), which terminates the whole procedure. After a calculation including 3 least squares approximations we got the solution in the following table

<table>
<thead>
<tr>
<th>(x_k)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{f})</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.9643</td>
<td>7.1071</td>
<td>8.25</td>
<td>11.6786</td>
<td>14.0</td>
</tr>
</tbody>
</table>

In a procedure involving calculation for all possible subsets of variables \(f_1 \), \(f_2 \), \(f_3 \), \(f_4 \), \(f_5 \), \(f_6 \), \(f_7 \) would need 64 calculations of least squares estimates.

4. Consistency

In this paper we have no intention to treat the more intricate statistical properties of the estimates. We will only give a simple consistency property.
Theorem. Suppose that the mean of a random variable, \(Y \) is a strictly increasing and convex function \(\mu(x) \) of \(x \) on the set \(\{x_k; k=1,2,\ldots,n \} \), and that \(Y \) has a variance for all \(x_k, k=1,2,\ldots,n \). Suppose further that we make \(N_k \) observations of \(Y \) at \(x_k \) and that all \(Y \)'s are independent. Then the proposed estimator is uniformly consistent for estimating \(\mu(x) \) for \(x \in \{x_k; k=1,2,\ldots,n \} \) when

\[
\min_{1 \leq k \leq n} N_k \to \infty
\]

Proof. Because \(\mu(x) \) is strictly increasing and convex there exists \(\delta_0 \) such that all functions \(\mu^*(x) \) satisfying

\[
|\mu^*(x) - \mu(x)| < \delta_0 \quad \forall x \in \{x_k; k=1,2,\ldots,n \}
\]

are also strictly increasing and convex. But by the Chebychev inequality and the Boole inequality there exists for each \(\varepsilon > 0 \) and \(\delta > 0 \) a number \(N(\varepsilon, \delta) \) such that

\[
P\left(|\bar{Y}_k - \mu(x_k)| < \delta \quad \forall k=1,2,\ldots,n \right) \geq 1 - \varepsilon
\]

when \(\bar{Y} \) is the mean of at least \(N(\varepsilon, \delta) \) observations at \(x_k \). If the mean function (taking value \(\bar{Y}_k \) in \(x_k \)) is itself strictly increasing and convex the procedure will estimate \(\mu(x_k) \) by \(\bar{Y}_k \). Thus if

\[
\min_{1 \leq k \leq n} N_k \geq N(\varepsilon, \delta)
\]

and \(\delta \leq \delta_0 \) the estimate \(\hat{\mu}(x) \) will satisfy

\[
P\left(|\hat{\mu}(x_k) - \mu(x_k)| < \delta \quad \forall k=1,2,\ldots,n \right) \geq 1 - \varepsilon
\]

Q.E.D.
References

Illustration of example 2
The following figures show the successive steps in the estimation procedure

Starting approximation
All functions used

Second approximation
Functions f_2 and f_6 excluded

Third approximation
Also functions f_3 and f_5 excluded

Fourth and final approximation.
Function f_3 included
RESEARCH REPORT

1985:1 Frisén, M: The forgotten assumption in the superpopulation model.

1985:2 Guilbaud, O: Stochastic order relations for one-sample statistics of the Kolmogorov-Smirnov type.

1985:3 Frisén, M: Unimodal Regression.