WORKING PAPERS IN ECONOMICS

No 449

Pursuing the Wrong Options? Adjustment Costs and the Relationship between Uncertainty and Capital Accumulation

Stephen R. Bond, Måns Söderbom and Guiying Wu

May 2010

ISSN 1403-2473 (print)
ISSN 1403-2465 (online)
Pursuing the wrong options? Adjustment costs and the relationship between uncertainty and capital accumulation

Stephen R. Bond, Måns Söderbom and Guiying Wu

February 2010

Abstract

Abel and Eberly (1999) show that the effect of uncertainty on long run capital accumulation is ambiguous in a real options model with irreversible investment. We show that a higher level of uncertainty tends to reduce expected capital stock levels in a model with strictly convex adjustment costs. Simulations suggest that this negative impact of uncertainty on capital accumulation may be substantial. We also provide some intuition for this result.

JEL Classification: E22, D92, C15

Key words: Uncertainty, real options, adjustment costs, capital accumulation.

Acknowledgement: We thank the ESRC for financial support. Söderbom gratefully acknowledges financial support from Handelsbankens Forskningsstiftelser.
1 Introduction

The recent literature on uncertainty and capital accumulation has focused on the effects of ‘real options’ associated with irreversible investment (e.g. Dixit and Pindyck, 1994; Abel and Eberly, 1996). The focus has been primarily on short run mechanisms; for example it has been shown that, at a higher level of uncertainty, risk neutral firms are less likely to invest in response to a positive demand shock. Long run effects have been analyzed by Abel and Eberly (1999; henceforth AE). They show that, in a dynamic model with complete irreversibility, the sign of the effect of demand uncertainty on expected long run capital stock is theoretically ambiguous. In this paper we study the effects of uncertainty on long run capital accumulation in a model with quadratic adjustment costs, a framework that has been the bedrock of investment modelling for a long time (e.g. Summers, 1981; Hayashi and Inoue, 1991; Abel, 2002). We find that a higher level of uncertainty tends to reduce the expected long run capital stock in the presence of quadratic adjustment costs, and that this effect may be substantial.

2 Investment Model

Our model is a discrete version of that presented in AE, modified to allow for quadratic adjustment costs. The firm produces output using capital and labor according to a Cobb-Douglas production function with capital share β and labor share $(1 - \beta)$. Output is sold in an imperfectly competitive market with constant price elasticity of demand $-\eta$, while factor markets are perfectly competitive and factor prices constant. Optimal investment is defined as the solution to a dynamic
optimization problem defined by the stochastic Bellman equation

\[V(X_t, K_t) = \max_{I_t} \left\{ \frac{h}{1 - \gamma} X_t^\gamma (K_t + I_t)^{1-\gamma} - I_t - G(I_t, K_t) \right\} + \frac{1}{1+r} E_t \left[V(X_{t+1}, K_{t+1}) \right] \],

where \(V(\cdot) \) is the value function, \(X_t \) is a demand shock parameter, \(K_t \) is capital, \(t \) is time, \(h \) is a positive constant, \(\gamma = (1 + \beta (\eta - 1))^{-1} \), \(I_t \) is investment, \(G(I_t, K_t) \) is an adjustment cost function, \(r \) is the discount rate and \(E_t \) is the expectations operator.\(^1\) Following AE, we assume that capital does not depreciate and that the demand parameter evolves according to a geometric Brownian motion, written in discrete time as \(\ln X_t = \ln X_{t-1} + \mu + \varepsilon_t \), with \(\varepsilon_t \sim \text{iid} \ N(0, \sigma^2) \) and \(\ln X_0 = 0 \). The parameter \(\sigma^2 \) measures the level of demand uncertainty and we follow AE in specifying \(\mu = \mu - 0.5\sigma^2 > 0 \), so that the expected level of demand \(E[X_t] = X_0 e^\mu t \) does not depend on the level of uncertainty.\(^2\) Defining \(K_t^R \) as optimal capital under reversible investments and no adjustment costs, the outcome variable of interest is

\[\kappa(t) = \frac{E_0 \{K_t | X_0 = 1\}}{E_0 \{K_t^R | X_0 = 1\}} , \]

where \(E_0 \{K_t | X_0 = 1\} \) is the expected capital stock under either irreversibility or quadratic adjustment costs.\(^3\) We study the effect of changes in uncertainty on \(\kappa(T) \) as \(T \to \infty \). Since the expected level of demand is kept constant, \(E \{K_t^R | X_0 = 1\} \) is invariant to \(\sigma \). The sign of \(d\kappa(T)/d\sigma \) therefore signs the effect of a mean-preserving change in uncertainty on the expected long run capital level under irreversibility or adjustment costs.

\(^1\) Labor is a flexible input that is optimized out. The purchase price of capital is normalized to 1. The parameter \(h \) depends on \(\eta, \gamma \) and the wage rate. See Abel and Eberly (1999) for further details.

\(^2\) The condition \(\mu - 0.5\sigma^2 > 0 \) needs to hold for the marginal revenue product of capital to have a nondegenerate ergodic distribution. All our results reported below are based on models satisfying this condition. See Abel and Eberly (1999) for further discussion.

\(^3\) It is straightforward to show that \(E_0 \{K_t^R | X_0 = 1\} = \left[h (1 + r) / r \right]^{(1/\gamma)} e^\mu t \).
AE focus on the case where investment is completely irreversible. In the model above this is equivalent to specifying the adjustment cost as $G = 1_{I_t<0} |I_t|$, where $1_{I_t<0}$ is a dummy variable equal to one if investment is negative and zero otherwise. Negative investment thus always generates zero resale revenues, hence the firm will never reduce its capital stock. Using the analytical formulae derived by AE, we show in the upper panel of Figure 1 (which replicates Figure 1 in AE) how $\kappa(T)$ varies with $\mu = 0.029$, $\eta = 10$, $\beta = 0.33$, and $r = 0.05$, which we refer to as our benchmark calibration. The effect of uncertainty on expected capital is small and the sign is ambiguous.\footnote{Larger effects can be obtained by altering the parameter values (see footnote 18 in AE). We return to this issue below.}

2.1 Quadratic Adjustment Costs

We specify the quadratic adjustment cost function as $G(I_t, K_t) = 0.5b_q (I_t/K_t - c)^2 K_t$, where b_q measures the slope of marginal adjustment costs and c denotes the rate of investment associated with zero adjustment costs. With this adjustment cost function we cannot derive an analytical expression for $\kappa(T)$ in the current modelling framework. We therefore use numerical methods and construct a simulated counterpart to Figure 1 in AE, based on simulated data on long run capital stocks for hypothetical firms.\footnote{For the simulations we use large enough samples so as to result in very low standard errors. For details on the procedure, and additional results, see the Online Appendix available at www.soderbom.net/bsw_appx10.pdf. This appendix also contains results showing that we can replicate Figure 1 closely using our numerical methods. This suggests there are no major errors in our code.} The lower panel in Figure 1 plots simulated $\kappa(T)$ at different values of the uncertainty parameter σ for $b_q = 0.5$ and $b_q = 3.0$ and benchmark values of the other parameters in the model.\footnote{Estimates of the quadratic adjustment cost parameter b_q vary substantially in the literature. Investment-Q regressions typically imply very high values of b_q (usually in excess of 10; see e.g. Hayashi and Inoue, 1991), while estimates based on simulated moments are much lower (between 0.4 and 3.9 according to Eberly, Rebelo and Vincent, 2008; close to zero according to Cooper and Haltiwanger, 2006, and Bloom, 2009). Our selected values of b_q thus fall somewhere in between. The parameter c is set to $\exp(\mu) - 1$, which is equal to the optimal investment rate.} For reference, we also show in

....
this graph $\kappa(T)$ under irreversibility. With quadratic adjustment costs, the expected capital stock falls monotonically as we consider higher levels of demand uncertainty. With the current calibration, uncertainty matters much more with quadratic costs than under irreversibility. For example, evaluated at $\sigma = 0.15$, in the model with low quadratic costs expected capital is 7% lower than in the absence of uncertainty; for high quadratic costs the difference is 20%. These results stand in sharp contrast to those generated by the real options model, where capital is 1\% higher at $\sigma = 0.15$ than under certainty.

The relationship between $\kappa(T)$ and σ is not independent of the other parameters in the model. Indeed, larger effects can be obtained for the real options model, and the result obtained above that higher levels of uncertainty has larger negative effects on expected long run capital with quadratic adjustment costs than under irreversibility is certainly not general.\footnote{For example, there must exist an arbitrarily low value of b_q for which the uncertainty effects are smaller with quadratic costs than under irreversibility.} Given how influential the real options framework has been in shaping current ideas as to how uncertainty impacts capital accumulation, it is of interest to compare the magnitude of the uncertainty effects in this framework to those obtained with quadratic costs across a reasonably wide range of parameter values. We therefore vary σ between 0.06 and 0.24, μ between 0.02 and 0.047, η between 5 and 20, and r between 0.03 and 0.07 and, for each set of parameter values, compute $\kappa(T)$ for the investment models introduced above.\footnote{The parameter η affects the value function (1) through γ and h.} Spatial constraints prevent us from reporting all the results, these can be found in the Online Appendix. Table 1 summarizes them, showing means, minima and maxima of $\kappa(T)$ as well as summary statistics of the differences in $\kappa(T)$ across the different models. For the real options model the average of $\kappa(T)$ is 1.0, indicating that on average, across the different parameter

\underbrace{\text{values,}}
values considered, the expected long run capital stock is not different from what it would be under reversible investment. The lowest value of $\kappa(T)$ is 0.80, which is obtained for $\sigma = 0.24$, $\mu = 0.029$, $\eta = 20$, $r = 0.03$. Hence, in this particular case, eliminating uncertainty altogether would increase the expected long run capital stock by 25%. For the quadratic costs models the lowest values of $\kappa(T)$ are obtained at the same combination of parameter values as for the real options model. In this case we obtain $\kappa(T) = 0.66$ for $b_q = 0.5$ (the associated standard error is 0.005) and $\kappa(T) = 0.24$ (standard error 0.0005) for $b_q = 3.0$. These imply much larger uncertainty effects than for the real options model. Subtracting $\kappa(T)$ obtained under real options from $\kappa(T)$ with quadratic costs, we find that this is always negative.\footnote{This can be inferred from the table by noting that the maximum of the difference is negative, both for $b_q = 0.5$ and for $b_q = 3.0$.} Hence, for all the parameter values that we consider, and with complete certainty as the reference point ($\sigma = 0$), uncertainty results in lower levels of expected capital under quadratic costs than with irreversibility.

Some intuition as to why higher uncertainty leads to lower expected long run capital stock in the presence of quadratic adjustment costs can be gained by rewriting the value of the firm so as to more explicitly highlight the user cost of capital:

$$V_t = K_t + \max_{\{K_{t+1}\}} \sum_{s=0}^{\infty} \left(\frac{1}{1+r}\right)^s E_t \left\{ \frac{h}{1-\gamma} X_{t+s}^{\gamma} K_{t+s+1}^{1-\gamma} - u_{t+s+1} \cdot K_{t+s+1} \right\} - 0.5b_q ((K_{t+1} - K_t) / K_t - c)^2 K_t,$$

where $u_{t+s+1} = (1+r)^{-1} \left[r + 0.5b_q (I_{t+s+1}/K_{t+s+1} - c)^2\right]$ is interpretable as the implicit rental cost of capital. All else equal, higher uncertainty will increase the variability of future investments, thereby raising expected values of u_{t+s+1}. Thus, for this model the negative association between uncertainty and capital accumulation documented above can be interpreted as arising due to the positive effect of uncertainty on the user cost of capital.
3 Conclusions

A widely held view amongst economists and practitioners is that uncertainty has important negative effects on capital accumulation. In tune with this, the real options model predicts that the response of investment to demand shocks is weakened by higher uncertainty. However, as established by Abel and Eberly (1999), the model does not accord with the intuition that uncertainty has a negative effect on long run capital accumulation. In this paper we have investigated the effects of uncertainty on long run capital accumulation using a quadratic adjustment costs framework. Across a wide range of parameter values we have found these effects to be consistently negative, and often much larger than in the real options model, even if the marginal adjustment cost parameter b_q is low. Quadratic adjustment costs were the bedrock of investment models in the 1980s, and still feature as an important component of investment models in recent papers (e.g. Cooper and Haltiwanger, 2006; Bloom, 2009; Eberly, Rebelo and Vincent, 2008). The evidence is clear that quadratic costs cannot account for certain patterns in micro datasets, e.g. lumpy and intermittent investment. Our analysis indicates, however, that quadratic costs may deliver predictions that square better with the notion that uncertainty hampers long run capital accumulation than the real options framework.

References

Figure 1: The Long Run Effect of Uncertainty on Capital Accumulation

Complete Irreversibility (Benchmark Abel-Eberly Case)

Comparison: Irreversibility and Quadratic Adjustment Costs

Note: The results for the model with irreversibility are based on the analytical expressions derived in Abel and Eberly (1999). The results for the models with quadratic adjustment costs are obtained by means of numerical methods and simulations.
Table 1. Evaluation of $\kappa(T)$ at different levels of uncertainty, market power, demand growth and discount rate. Summary statistics.

<table>
<thead>
<tr>
<th></th>
<th>Real options model</th>
<th>Quadratic adjustment costs</th>
<th>Differences compared to real options model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>$b_q = 0.5$</td>
<td>$b_q = 3.0$</td>
</tr>
<tr>
<td></td>
<td>0.999</td>
<td>0.927</td>
<td>0.774</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.797</td>
<td>0.663</td>
<td>0.242</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.133</td>
<td>0.996</td>
<td>0.986</td>
</tr>
<tr>
<td>Standard Dev</td>
<td>0.053</td>
<td>0.070</td>
<td>0.203</td>
</tr>
<tr>
<td>Observations</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
</tbody>
</table>

Note: σ varies between 0.06 and 0.24; η between 5 and 10; μ between 0.02 and 0.047; r between 0.03 and 0.07. Not all permutations of parameter values are considered, see Online Appendix for details. Cases for which $\mu - 0.5\sigma^2 \leq 0$ (see footnote 2), or $r \leq \mu$ (non-converging value function), are excluded from the analysis.