IONIZATION OF LARGE MOLECULES WITH SHORT LASER PULSES

Mikael Kjellberg

Akademisk avhandling för avläggande av filosofie doktorsexamen i fysik vid Göteborgs universitet. Avhandlingen försvaras vid en offentlig disputation kl. 10:00 den 26:e mars 2010 i sal Kollektorn, MC2, Chalmers tekniska högskola, Göteborg.

Fakultetsopponent: Professor David Rayner
NRC Steacie Institute for Molecular Sciences
Ottawa, Canada

Examinator: Professor Dag Hanstorp
Institutionen för fysik, Göteborgs universitet

Huvudhandledare: Docent Klavs Hansen
Institutionen för fysik, Göteborgs universitet

Avhandlingen försvaras på engelska. Avhandlingen finns tillgänglig vid institutionen för fysik, Göteborgs universitet.

GÖTEBORGS UNIVERSITET

Institutionen för fysik
Göteborgs universitet
412 96 Göteborg
Sweden
IONIZATION OF LARGE MOLECULES WITH SHORT LASER PULSES

Mikael Kjellberg
Department of Physics
University of Gothenburg
412 96 Gothenburg, Sweden

Abstract

The decay dynamics of fullerenes and polyaromatic hydrocarbons (PAH) after femtosecond-laser excitation have been studied experimentally by electron momentum mapping and mass spectrometry. The electron spectra of fullerenes and large PAH-molecules were found to be exponentially decreasing with energy without any distinct peaks outside the photon energy. This is interpreted as a statistical electron emission from a transient hot, highly excited, electron system where vibrations are still cold. The smooth electron distributions observed were shown not to be due to tunneling ionization. The photoelectron distributions showed a prolongation along the laser field polarization axis, which was interpreted as field-assisted thermal ionization. For the smallest molecule in the study, anthracene, a transition to atomic like, above threshold ionization, was observed. Molecular fusion of clusters of fullerenes, formed at liquid nitrogen temperature, after fs-laser excitation has also been studied. Products of up to five fused molecules were observed. The mass spectra are the results of several processes including multiple ionization, evaporation of intact fullerenes and post-fusion C2 evaporation.

Keywords: Photoelectron spectroscopy, Momentum mapping imaging, thermal ionization, above threshold ionization, molecular fusion, fullerenes, polyaromatic hydrocarbons, femtosecond-laser.