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1 INTRODUCTION 
 

In the 1920s, Walter A. Shewhart and co-workers at Bell Telephone laboratories 
developed the first versions of a modern control chart. In 1931 Shewhart 
published his famous book “Economic Control of Quality of Manufactured 
Product” (Shewhart (1931)). The same year he gave a presentation of the new 
technique to the Royal Statistical Society. This stimulated interest in the UK. The 
technique was used extensively during World War II both in the UK and in the 
US. In the 1950s, W. E. Deming introduced the technique in Japan. The success in 
Japan spurred the interest in the West, and further development started. 

The need is great for continual observation of time series with the aim of 
detecting an important change in the underlying process as soon as possible after 
it has occurred. The statistical methods suitable for surveillance differ from the 
standard hypothesis testing methods. Also the criteria for optimality differ from 
those used for ordinary hypothesis testing. Evaluations and optimality criteria are 
important in order to choose which surveillance method to use for a specific 
purpose. For example, different requirements apply for short-term high-risk 
situations as compared to long-time low-risk ones.  

Examples of broad surveys and bibliographies on statistical surveillance are 
found in the following papers: Zacks (1983) points out that surveillance is a 
central problem of statistical inference, linking together different areas of 
statistical theory. Yashchin (1993) discusses the relation between “Engineering 
Process Control” where the corrective formula is important and “Statistical 
Process Control”, SPC, where the detection of the abrupt change is the main aim. 
Woodall and Montgomery (1999) and Stoumbos et al. (2000)  concentrate on SPC 
but stress that a cross-fertilization with the mathematical statistical literature on 
change-point analysis would be fruitful. Frisén (2003) gives a survey with 
concentration on the link between methods and optimality criteria. The two 
discussion papers Lai (2001) and Lai (2004) contain important contributions on 
recent and new challenges, especially on asymptotic optimalities of generalized 
likelihood ratio methods for surveillance. 

Although industrial applications are still important, new applications have come 
into focus. Such new applications are described in Section 0. The Shewhart 
method, described in Shewhart (1931), is simple and certainly the most commonly 
used method for surveillance. In Section 3 the Shewhart method is described. 
Moreover, a description is made of the most commonly discussed case in the 
literature, that of a shift in the mean of a normal distribution. This case is used in 
Section 4 and 5 to illustrate some measures for evaluations and some optimality 
criteria. In Section 6 we describe the need for developments after the Shewhart 
method and the optimality of the followers. Most methods are optimal in some 
respect. One of the methods described is the full likelihood ratio method, LR. The 
LR method corresponds to the use of the posterior probability of a change and 
fulfils important optimality criteria. This method, then, can be used as a 
benchmark for the Shewhart method as well as other methods, since they all can 
be expressed by partial likelihoods. In Section 7 we demonstrate some relations 
between the Shewhart method and other methods for surveillance derived from 
different optimality criteria. We can thus present stochastic properties of the 
Shewhart method derived from its relation to other methods which have known 
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optimality properties. In Section 8 the use of the Shewhart method and its 
followers is discussed with regard to some more complicated situations, like 
multivariate surveillance, more complicated models and more complicated 
changes. Section 9 contains some concluding remarks. 

 

 

2  THE NEED FOR SURVEILLANCE IN NEW AREAS 
 

Shewhart gave his suggestions motivated by the needs in industrial quality 
control. He was at that time a researcher with Bell Laboratories and recognized 
that no matter how precise a manufacturing process was, in the real world it could 
never produce exactly the same output each time. Thus statistical methods are 
necessary to judge how much information we have about a possible change from 
the target. Comments on the role of statistical quality control in industry are given 
in the paper by Banks (1993) and the connected discussion. In industry new 
applications such as management problems, described for example by Pettersson 
(2004), have been of recent interest. Moreover, Tartakovsky and Veeravalli 
(2002) described how surveillance can be used to detect targets in multichannel 
and multisensor distributed systems as well as to build systems for early detection 
of intrusions in computer networks. 

Shewhart recognized the fact that his method is general and that its application 
is not restricted to manufacture. Applications in quite different areas have come 
into focus lately and have influenced the theoretical research on methods and 
evaluations. In recent years, there have been a growing number of papers in 
medicine, environmental control, economics and other areas dealing with the need 
for methods for surveillance.  

A very recent and very important issue is the surveillance for bioterrorism. The 
increased interest in surveillance methodology in the US which has followed the 
9/11 terrorist attack is notable. Kaufmann et al. (1997) stated that the delay of one 
day in detection and response to an epidemic due to a bioterrorist attack can result 
in the loss of thousands of lives and millions of dollars. In the US, several new 
types of data are now being collected, such as nurse hotline calls, poison center 
calls and over-the-counter sales of health remedies. New types of systems to 
analyze the data and meet the demand for surveillance have been developed 
recently. A review of some of these systems is given by Lober et al. (2002). The 
surveillance for bioterrorism can be done for example by public health 
surveillance or environment control.  

Monitoring for detection of changes in public health is described for example 
by Sonesson and Bock (2003). In public health a quick detection is beneficial both 
at an individual level and to society. The timely detection of various types of 
adverse health events is an important issue. In the US there have been national 
conferences focused on the surveillance in public health. These conferences have 
been organized each of the last three years, and the CDC (Centers for Disease 
Control and Prevention) now has information on methodological issues of 
surveillance and displays an annotated bibliography on its website. The detection 
of outbreaks of infectious diseases such as SARS and Avian influenza (“bird flu”) 
has been of recent interest. The CDC website gives guidelines for “Influenza 



 4

A(H5N1) and SARS: Interim Recommendations for Enhanced U.S. Surveillance, 
Testing, and Infection Controls”. Systems for data collection which can be used 
for surveillance have recently been built also in Asian countries (Chuc and Diwan 
(2003)). Monitoring of mortality rates in primary care in order to detect serious 
causes such as the serial killing by Shipman or less serious but important health 
care defects is treated for example by Aylin et al. (2003). Methods for post 
marketing surveillance of adverse effects of drugs are described for example by 
Andrew et al. (1996). The new systems for automatic registration of health events 
make new kinds of surveillance systems possible. 

The technical advancements with continual registrations of the status of a 
patient for example in intensive care motivate new kinds of surveillance systems. 
One example is the surveillance of the fetal heart rate during labor described by 
Frisén (1992). An abnormality, caused for example by a lack of oxygen due to the 
wrapping of the umbilical cord around the neck of the fetus, might occur at any 
time. Detection has to take place as soon as possible after the event has occurred 
to ensure that a rescue action, such as a Caesarean section, is successful. 

Needs for environmental control are described for example in the book edited 
by Barnett and Turkman (1993). Surveillance technique used for monitoring of 
biodiversity is described for example by Pettersson (1998). Järpe (2001) describes 
monitoring for detection of increased radiation caused by a possible nuclear plant 
disaster. The spatial clustering of various forms of cancer might be associated 
with environmental hazards. Warning systems for a natural disaster such as a 
tsunami are also of recent interest.  

Applications in economics, especially the surveillance of business cycles, are 
treated for example by Andersson et al. (2004) and Andersson et al. (2005). 
Predicting the future state of the economy is important both to governments and to 
businesses. The changes between periods of recession and expansion can be 
predicted by monitoring leading indices. Systems for surveillance of threats to the 
financial stability of society have recently been of interest. 

The aims in financial trading agree well with the demand on timeliness in 
surveillance. Shiryaev (2002) demonstrated that there might be an arbitrage 
opportunity when change points occur. Lam and Yam (1997) claimed to be the 
first to use methods for statistical surveillance as financial trading rules. Schmid 
and Tzotchev (2004) suggest an advanced system and state that the applications of 
surveillance methods in finance have been scarce up to now. Statistical 
surveillance as a financial trading strategy is described  and reviewed for example 
by Bock et al. (2004) 

 
 

3 THE SHEWHART METHOD AND THE STATISTICAL 
SURVEILLANCE PROBLEM 

 
Shewhart (1931) presented the method which later got the name “the Shewhart 
method”. This method is very simple and very popular in industrial quality 
control. It is still without doubt the most commonly used method of surveillance 
and now used for a variety of applications. Detailed descriptions are found in 
many textbooks like Wetherill and Brown (1991) and Ryan (2000). 

We will first specify the general surveillance problem. We denote the process 
by Y = {Y(t): t = 1, 2, . .}, where Y(t) is the observation made at time t. The 
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random process that determines the state of the system is denoted by μ(t). At each 
decision time, s, we want to discriminate between two states of the monitored 
system: the in-control state D(s) and the out-of-control state C(s). To do this, we 
can use only the observations up to time s,  

sY = {Y(t);t s}≤ . 
An alarm statistic, p(Ys), is based on these observations. With a control limit, 
G(s), we have the time of an alarm  

A st = min{s; p(Y )>G(s)} . 
Depending on the application, the time, τ, of the change can be regarded either 

as an unknown parameter or as a random variable with the probabilities 
. How τ is regarded, govern the appropriate evaluation of the 

stochastic properties of methods. When τ is regarded as a random variable, the 
intensity, , of a change is defined as 

(t) = P(τ=t)π

(t) = P(τ=t|τ t)ν ≥(t)ν , which is usually 
assumed to be constant over time.  

Depending on the application, different types of in-control and out-of-control 
states are of interest. One interesting case is when  and 

. 
D(s) = {τ>s}

C(s) = {τ s}≤
For the Shewhart method, an alarm is triggered as soon as an observation 

deviates too much from the target. The observed value can be transformed so that 
Y is the deviation from the target. Only the last observation, Y(s), is considered in 
the Shewhart method. For the one-sided case an alarm is triggered at 

tA = min{s; Y(s) > G},  
where G is a constant. For the two-sided case the alarm statistic is |Y(s)|. The 
method can be regarded as performing repeated significance tests and the 
constant, G, is usually chosen to correspond to a certain significance level in the 
separate tests. The observation Y(s) could be a derived variable. Often the mean 
of several observations at the same time point is used. The Shewhart method is 
then referred to as the X -chart. 

The change to be detected and the stochastic properties of the process differ 
depending on the application. Several interesting cases will be described in 
Section 8. Until then, however, we will use a simple standard situation whenever a 
specification is necessary. This is in order to first concentrate on the general 
questions. Like in most studies in literature we have a step change, where a 
parameter changes from one constant level to another constant level. A shift in the 
mean of a normally distributed variable from an acceptable value μ0 (say zero) to 
an unacceptable value μ1, but otherwise iid, is used for specification. We have μ(t) 
= μ0 for t= 1, . . , τ-1 and μ(t) = μ1 for t= τ, τ+1 and onwards. For clarity, when 
suitable, standardization to μ0=0 and σ=1 is used and the size of the shift after 
standardization is denoted by μ. The case μ>0 is described here. The case μ<0 is 
treated in the same way.  

 
 

4 EVALUATIONS OF SYSTEMS FOR SURVEILLANCE  
 

Quick detection and few false alarms are good properties. When monitoring is 
used in practice, knowledge about the properties of the method is important. 
Otherwise it is hard to know to what degree an alarm indicates a change. In 
applied work evaluation by several measures may be necessary.  
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Using a constant probability of exceeding the alarm limit for each decision 
time means that we have a system of repeated significance tests. This may work 
well also as a system of surveillance and is often used. The Shewhart method has 
this property.  

When we study the stochastic properties of a method for surveillance the 
stochastic framework is important. Different measures are in focus depending on 
this. It makes a difference whether the time, τ, of the change is regarded as an 
unknown parameter or as a random variable with the probabilities . 
A third view is to regard these probabilities as priors for parameters in a Bayesian 
framework. Here, τ is regarded as an ordinary stochastic variable, and a 
frequentistic framework is used.  

(t) = P(τ=t)π

Different error rates and their implications for a system of decisions were 
discussed by Frisén and de Maré (1991). Illustrations of some of the measures 
mentioned below are found in the computer program by Frisén and Gottlow 
(2003). Formulas for numerical approximations of some of the measures are 
available in the literature. 

4.1 False Alarms 
The most commonly used measure of the false alarm rate is the average run 
length, ARL0 = , where AE(t | D( ))∞  denotes the case where no change ever D( )∞

0occurs. The limit G for the Shewhart method for a fixed ARL  is calculated by the 
relation: P(Y(s)>G| μ(s)=μ0)=1/ARL0.  

Another measure is the false alarm probability, PFA = P(tA<τ). This is the 
probability that the alarm occurs before the change and is relevant if τ is regarded 
as a random variable. In theoretical work, the standard procedure is to assume that 
τ is geometrically distributed, implying a constant intensity. The relation between 
the PFA and the ARL0 is different for different methods, as demonstrated by 
Frisén and Wessman (1999). Thus, comparisons between methods can give 
different results depending on whether the value of the PFA or the ARL0 is fixed. 

0The Shewhart method is favoured by a fixed ARL . 
Chu et al. (1996) and others advocate monitoring methods which have a fixed 

(asymptotic) probability of any false alarm during an infinitely long surveillance 
period.  

 An
lim P(t n | D( ) 1

→∞
α = ≤ ∞ < . 

For some applications, this might be important because a strict significance test is 
the objective. In that case, ordinary statements for hypothesis testing about, for 
example, size and power can be made. However, the price for this additional 
feature is high as the detection ability of methods with this property declines 
rapidly with the value of time τ of the change. The expected delay of the detection 
of a change will be very large, as pointed out by Pollak and Siegmund (1975) and 
Frisén (2003). A demonstration of the drawbacks is also made by Bock (2004) by 
a simulation study.  

4.2 Delay of the Alarm 
The expected delay from the time of change, τ=t, to the time of alarm, tA, is 

ED(t) = E[max (0, tA-t) | τ=t] 
The ED(t) will typically tend to zero as t increases. However, the conditional 
expected delay for a specific change point τ 

CED(t) = E[tA-τ | tA ∃τ=t ] = ED(t) / P(tA ∃ t) 
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has a positive asymptote for most methods. Some extreme methods which have 
very good ARL properties, but for which CED(t) tends to infinity when t 
increases, are discussed by Frisén and Sonesson (2005b). The CED is constant for 
the Shewhart method. For other methods it is generally not the same for early 
changes as for late ones. The overall expected delay, with respect to the 
distribution of τ, is of interest if the application requires that τ should be regarded 
as a random variable. We have 

ED = E[ED(τ)], 
where the expectation is with respect to the distribution of τ. A measure which is 
related to CED(t) and ED(t) is the Mean Time to Detection  

MTD(t)  = E[tA-t| τ=t]. 
This is used in the literature on signal detection (see for example Gustavsson 
(2000)). The expected value, with respect to the distribution of τ, differs from ED 
and there is no simple relation to the ED optimality described in Section 5. 

The most commonly used measure of the delay is ARL1 (see for example Page 
(1954) and Ryan (2000)). It is the average run length until detection of a true 
change (that occurred at the same time as the surveillance started). The part of the 
definition in the parenthesis is seldom spelled out. Note that  

1ARL =ED(1)+1. 
For some situations and methods the properties are about the same regardless of 
when the change occurs, but this is not always true, as illustrated by Frisén and 
Wessman (1999). Gan (1993) advocates that the median run length be used 
instead of the average. However, the main issue is that only the case τ=1 is 
considered. 

Sometimes there is a limited amount of time available for rescue actions. The 
Probability of Successful Detection suggested by Frisén (1992) measures the 
probability of detection with a delay time no longer than a specified value, say d  

A APSD(d, t) P(t d | t t)= − τ < ≥ τ = . 
This measure is a function of both the time of the change and the length of the 
interval in which the detection is defined as successful. It has been used for 
example by Petzold et al. (2004) in connection with a monitoring system for 
pregnancies. Even if there is no absolute limit for the detection time it may be 
useful to describe the ability to detect the change within a certain time limit. This 
has been done by Marshall et al. (2004) in connection with monitoring of health 
care quality.   

4.3 Predictive Value 
The appropriate action at an alarm differs depending on whether we are sure that 
there has been a change or we just have a low suspicion. The predicted value, PV, 
is the probability that a change has occurred when the surveillance method signals 
(Frisén (1992))  

A APV(t) P( t | t t)= τ ≤ = . 
Some methods have a constant PV. Others have a low PV at early times but a 
higher one later. In such cases, the early alarms will not motivate the same serious 
action as later alarms.  
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5 OPTIMALITY CRITERIA 
 
In order to relate the Shewhart method to optimal followers, we will first describe 
and discuss some optimality criteria in surveillance. We will use the measures of 
the previous section to formulate some criteria and illustrate them by the standard 
case. 

5.1 Minimal Expected Delay, ED 
The minimal expected delay of a motivated alarm is a natural criterion. Shiryaev 
(1963) suggested a very general utility function. It was demonstrated by Frisén 
(2003) that the ED expression plays an important role. The gain of an alarm 
should be a linear function of the value of the delay, tA-τ, and the loss associated 
with a false alarm can be an arbitrary function of the same difference. The utility 
can be expressed as U= E{u(τ, tA)}, where 

A A
A

1 A 2

h(t -τ) if  t <τ 
u(τ,t )=

a (t -τ)+a else
⎧
⎨
⎩

 

Girshick and Rubin (1952), motivate the utility function from incomes and costs 
at industrial production. When a false alarm causes the same cost of alerts and 
investigations irrespectively of how early the false alarm is, then the function h(tA- 
τ) is a constant (say b), and we have 

U= b P(tA<τ) + a  ED + a1 2 . 
Thus, we will have maximal utility if we have a minimal expected delay for a 
fixed probability of a false alarm. This is the ED criterion.  

A variant of this utility function, based on exponential penalty, is suggested by 
Poor (1998) since an exponential penalty for the delay might be more relevant 
than a linear one for e.g. financial decisions. Beibel (2000) derives how his leads 
to a different optimal weighting of the observations.  

The ED criterion has the advantage of including changes occurring at different 
time points. On the other hand, this might be experienced as a disadvantage when 
the intensity is unknown. In practice, however, there should be some knowledge 
available to influence the choice of method. Shiryaev (1963) treated the case of a 
constant intensity. Frisén and Wessman (1999) demonstrated that a non-
informative intensity often is good enough. The risk of optimization for the wrong 
shift size, which the ED-criterion shares with other criteria, might be of greater 
concern. However, Andersson (2004) gave examples of large effect of 
misspecification of a not geometric distribution of the change point,. 

5.2 Minimax  
While the ED criterion uses the average delay after a change, it is also natural to 
look at the worst case and consider the minimax of the expected delay. It is related 
to the ED criterion as several possible change times are considered. However, 
instead of an expected value, which requires a distribution of the time of change, 
the worst value of CED(t) is used.  

Lorden (1971) uses a still more pessimistic criterion, the “worst possible case” 
based not only on the worst value of the change time, but also on the worst 
possible outcome Yτ-1 before the change occurs. This criterion is pessimistic since 
it is based on the worst possible circumstances. Lorden (1971) studied the 
asymptotic properties but Moustakides (1986) demonstrated that the CUSUM 
method, described in Section 6, provides a solution to the finite criterion. The 
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merits of studies of this criterion have been thoroughly discussed for example by 
Yashchin (1993) and Lai (1995). Shiryaev (1996) and Moustakides (2004) has 
studied minimax optimality of the CUSUM method for continous time. 

Minimax methods based not on the delay, but on a function of the delay, has 
been studied by e.g. Poor (1998). This leads to different optimal weighting of the 
observations.  

5.3 ARL 
In statistical process control optimality is often stated as minimal ARL1 for a fixed 
ARL0. ARL1 and ARL0 are expectations under the assumption that the change 
affects either all or none of the observations.  

Advantages of the ARL criterion are that it is very well known, widely used, 
simple and that no assumption of a distribution for the time of change is used. The 
ARL has been questioned as a formal optimality criterion by Frisén (2003) since 
some clearly inferior methods fulfill the criterion. For some (but not all) methods 
there is a correspondence to the minimax criterion.  

5.4 Steady state ARL 
The CED will for most (but not all) methods converge to a constant value. This 
asymptote is sometimes named the “steady state ARL” (Srivastava and Wu 
(1993)). This criterion concerns only the properties long after start. This is the 
opposite to the usual ARL which measures the behavior immediately after start. 
An advantage of this criterion is that it does not require any assumption of the 
intensity of the change. 

5.5 Relations to Timeliness 
For some applications optimality is not timeliness as such, but some measure 
related to timeliness. As an example, this is the case for financial transactions. The 
return of buying an asset at t = 0 and selling it at time t is 

r(t) = Y(t) - Y(0) 
where Y is a function of the price.  

The expected return E[r(tA)] is maximized when E[Y(tA)] is maximized. This is 
achieved when we sell at the time, τ, of the peak. The return is measured along the 
price scale whereas the measures above are measured along the time scale. If 
E[Y(t)] is linear on each side of the peak, then the relation is simple (Bock et al. 
(2004)). 
 
 

6 THE FOLLOWERS AND THEIR OPTIMALITY 
PROPERTIES  

 
The work by Shewhart has inspired much further research. Modifications 
motivated by applications to more complicated situations than the one described 
in Section 3 will be described in Section 8. Numerous modifications of the 
Shewhart method have been suggested even for the simple standard situation of 
Section 3. This simple situation is considered in this section whenever a specific 
distribution is needed. Here we will describe only some important and principally 
different methods. The Shewhart method utilizes only the last observation in spite 
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of the fact that previous observations are available in the chart. Improvements in 
performance can be made by utilizing also other available observations.  

The Shewhart method has no parameters to adjust except the alarm limit. Some 
followers are very flexible. The parameters can be chosen to make the method 
optimal for the specific conditions (for example the size of the change or the 
intensity of changes). In one way or another, many recent methods for 
surveillance are based on likelihood ratios. Thus, we will start by describing the 
full likelihood ratio method as it is a benchmark for other methods which, in 
different ways, are composed by partial likelihoods.  

6.1 The Likelihood Ratio Method, LR 
The full likelihood ratio for two states C and D is 

f (y  | C) /f (y  |D). Ys s Ys s
At decision time s for a specified value, t, of the time of the change, this statistic is 
a weighted sum of the partial likelihoods  

 Ys s Ys sL(s, t) f (Y | t) / f (Y | D(s)).= τ =  
The alarm set consists of those Ys for which the full likelihood ratio exceeds a 
limit. When the event to be detected at decision time s is C(s)={τ≤s} with the 
alternative , the time of an alarm for the LR method (Frisén and de 
Maré (1991)) is 

D(s)={τ>s}

s

s

s
Y s

A
t=1Y s

f (y |C(s)) P(τ>s) Kt =min{s; > } min{s; w(s,t) L(s,t)>G(s)}
f (y |D(s)) P(τ s) 1-K

⋅ = ⋅
≤ ∑  

where K is a constant, w(s,t) is a weight and G(s) is an alarm limit. The LR 
method is optimal with respect to the criterion of minimal expected delay and also 
a wider class of utility functions (Frisén and de Maré (1991)). 

The time of an alarm can equivalently be written as the first time the posterior 
probability of state C exceeds a fixed level  

A st =min{s; P(C(s)| Y =y )>K}s . 
Shiryaev (1963) and Roberts (1966) suggested a method, now called the 

Shiryaev-Roberts method, for which an alarm is triggered at the first time s, so 
that 

s

t 1

L(s, t) G
=

>∑ , 

where G is a constant. The Shiryaev-Roberts method can be derived as the LR 
method with a non-informative prior for the distribution of τ. It can also be 
derived as the LR method when the change-point intensity, ν, tends to zero. A 
valuable property of the LR method is an approximately constant predictive value 
for the standard case described in Section 3 (Frisén and Wessman (1999)). Thus 
early and late alarms have the same interpretation of.  
 

6.2 Window Methods 
The Shewhart method is the most extreme window method since the window has 
size one. A special case of the likelihood ratio method with C={τ=s-d} is 

L(s, s-d) > G,   
where G is a constant and d is a fixed window width. For the standard case of 
normally distributed variables described in Section 3 this will be a moving 
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average. Thus optimal properties of error probabilities of the LR method carries 
over to the moving average method. 

Sometimes, as in Lai (1998), advanced methods such as the GLR method are 
combined with a window technique in order to ease the computational burden. 

6.3 Exponentially Weighted Moving Average Methods 
A variant of a moving average method which does utilize all information is the 
EWMA method which was suggested by Roberts (1959). The alarm statistic is an 
exponentially weighted moving average,  

λ λZ  = (1- )Z + Y(s), s=1, 2, ... s s-1

where 0< ≤1 and Zλ 0  is the target value, which is normalized to zero. If 8 is near 
zero, all observations have approximately the same weight. If λ=1, the EWMA 
method reduces to the Shewhart method. The asymptotic variant, EWMAa, will 
give an alarm at  

tA = min{s: Z >GΦs Z}, 
where G is a constant and Φ is the asymptotic standard deviation of ZZ s. For the 
EWMAe version of the method, the exact standard deviation is used. For EWMAa 
the asymptotic is used. EWMAe can be regarded as a repeated significance test 
with a constant size. However, in a surveillance system the error probabilities are 
more complicated because of the repeated decisions. A comparison between the 
EWMAa and the EWMAe methods, for the standard case of Section 3, can be 
found in Sonesson (2003), where it is concluded that the EWMAa version is 
preferable for most cases. EWMAe give more frequent alarms at the first time 
point for the same ARL0. CED(1) (and thus ARL1) is best for EWMAe. However, 
since many of the alarms at time 1 are false for EWMAe, the predicted value of an 
alarm at tA=1 is low. For larger values of t, EWMAa has better CED(t) than 
EWMAe. 

The choice of  is important, and the search for the optimal value of λ  has 
been of great interest in literature. Small values of 

λ
λ  result in good ability to 

detect early changes, while larger values are necessary for changes that occur 
later. The statistic of the EWMA method is linear with respect to the observed 
values. It is of interest to compare the statistic with that of a linear approximation 
of the LR statistic for the standard situation of Section 3. The value of λ which 
makes the EWMA method identical to a linear approximation of the LR was 
determined by Frisén (2003). The conclusion was that when  

2λ = 1-exp(-μ /2)/(1-ν) , 
the EWMA method is approximately optimal with respect to the minimal 
expected delay. This was confirmed by a simulation study by Frisén and Sonesson 
(2005b).  

6.4 The CUSUM Method 
The CUSUM method was first suggested by Page (1954). The alarm condition of 
the method can be expressed by the partial likelihood ratios as 

tA = min{s; max(L(s, t); t=1, 2,.., s) > G}, 
where G is a constant. 

The CUSUM method satisfies the minimax criterion of optimality described in 
Section 5.  

 
 



 12

7 THE OPTIMALITY OF THE SHEWHART METHOD  
The followers have many good properties. Still, the Shewhart method is by far the 
most commonly used one. Thus, it is of special interest to determine the situations 
for which this method is the best choice. The simple standard situation of Section 
3 is considered in this section whenever a specific distribution is needed.  

 
7.1 Immediate Detection 
First we will see that the Shewhart method is a special case of the full likelihood 
ratio method which implies some optimality properties. Sometimes it is important 
to detect a change directly after it has happened. In such cases the state to be 
detected and the alternative at decision time s are  

C(s) = { τ = s},  D(s) = { τ > s}. 
Frisén and de Maré (1991) proved that in the case of the simple situation of 
Section 3, with a shift in the mean of a normal distribution, the likelihood ratio 
method reduces to the Shewhart method. This can also be seen by expressing the 
likelihood ratio method as in Frisén (2003) with the alarm statistic  

s

t=1
w(s,t) L(s,t)⋅∑   

and the weights  
w(s, t)=P(τ=t)/P(τ≤s). 

With C = { τ = s} we have w(s, s)=1 and all other weights zero. The alarm set can 
be expressed by the condition 

L(s, s) > G, 
where G is a constant. This expression can be a used as a definition of a 
generalized Shewhart method. In the case of a shift in the mean of the normally 
distributed variable Y, this is the usual Shewhart expression with alarm at 

tA = min{s; Y(s) > G} 
Thus, for this situation the Shewhart method has the optimality properties of the 
full likelihood ratio method. The Shewhart method fulfils the ED criterion when 
C(s)={τ=s}. We also have minimal error probabilities for each decision time s 
(Frisén and de Maré (1991)). 
 
7.2 Large Shifts 
Frisén and Wessman (1999) proved, for the standard situation, that when the LR 
method is optimized for a shift size that tends to infinity, it converges to the 
Shewhart method. Thus, for large shifts, the Shewhart method has the same 
optimality as the LR method. It is thus ED-optimal for large shifts. 

The Shewhart method can also be seen as a special case of the EWMA method. 
As mentioned in Section 6, the EWMA method is approximately ED-optimal if  

2λ = 1-exp(-μ /2)/(1-ν) . 
This tends to 1 when µ tends to infinity. However, the EWMA method with λ = 1 
is the Shewhart method. Also the relation to the EWMA method supports the ED-
optimality of the Shewhart method for large shifts.  

The relation to the CUSUM method gives further insight into the optimality of 
the Shewhart method. Frisén and Wessman (1999) proved, for the standard 
situation, that when the CUSUM method is optimized for a shift size that tends to 
infinity, it converges to the Shewhart method. Thus, for large shifts, the Shewhart 
method is minimax optimal.  
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7.3 Comments 
The optimality results given above for large shifts and for immediate detection 
both support the same conclusion. The Shewhart method is to be chosen when a 
large change – which has to be detected immediately – is of main concern. In 
some applications, however, the two results may also be of interest separately.  

For small shifts the situation is quite different, as demonstrated for example by 
the simulation study by Frisén and Sonesson (2005b). By the ARL- and ED-
criteria, the Shewhart method performs poorly for small shifts.  

The minimax criterion gives a relative favor to the Shewhart method. This is 
because the CED is constant. For other methods the CED is better than the worst 
CED for most of the possible change points, but this will not give any advantage 
with the minimax criterion. 

 
 

8 THE SHEWHART METHOD AND ITS FOLLOWERS AT 
COMPLICATED SITUATIONS  

 
When the states (between which the change occurs) are completely specified, the 
likelihood ratio method with its good optimality properties can be used. Pollak 
and Siegmund (1985) point out that the martingale property (for continuous time) 
of the Shiryaev-Roberts method makes it more suitable for adaptation to 
complicated problems than the CUSUM method. On the other hand, Lai (1995) 
and Lai (1998) point out that the good minimax properties of generalizations of 
the CUSUM method make the CUSUM suitable for complicated problems.  

8.1 Gradual Changes  
Most of the literature on surveillance treats the case of an abrupt change. 
However, in many cases the change is gradual, for example at the outbreak of a 
contagious disease or in the price of a financial asset. It may be hard to model 
exactly the shape of the rise and the decline, or even to estimate the baseline 
accurately. Then, the timely detection of a change in monotonicity is of interest. 
Frisén (2000) suggested surveillance that is not based on any parametric model 
but only on monotonicity restrictions. This surveillance method was described and 
evaluated by Andersson (2002) and Andersson (2004). It is developed for cyclical 
processes with the aim to detect a turn (peak or trough) as soon as possible. 
Instead of the full likelihood, the maximum likelihood ratios over the class of all 
monotonic or unimodal functions, respectively, are used. The maximum 
likelihood estimator of μ under the monotonicity restriction is described for 
example by Robertson et al. (1988). The maximum likelihood estimator under the 
unimodality restriction was given by Frisén (1986). 

Arteaga and Ledolter (1997) compare several procedures with respect to ARL 
properties for several different monotonic changes. One of the methods suggested 
in that paper is a window method based on the likelihood ratio and isotonic 
regression techniques. In most cases, comparisons between window statistics are 
inefficient for the detection of gradual changes (Järpe (2000)). If a simple method 
is necessary, then the Shewhart method might be preferred at gradual changes. 
Yashchin (1993) discusses generalizations of the CUSUM and EWMA methods 
to detect both sudden and gradual changes. 
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8.2 Change between Unknown Parameters 
The Shewhart method does not involve the size of the change as a parameter. This 
may be convenient since the value after a change is seldom known, but it can also 
be seen as a disadvantage since the possibility to optimize for a certain size is lost. 
However, false alarm properties will remain even if the size of the change is not 
known. The shift size is required only to design the method to be as powerful as 
possible. 

To control false alarms is usually more important than to optimize the 
detection ability. Knowledge of the in-control parameters is important. Often 
these are estimated and used as a plug-in value in the method. The estimated 
baseline will affect the performance of the method. Kramer and Schmid (2000) 
study modifications and residuals for the Shewhart method to keep the false alarm 
rate under control in spite of the estimation of parameters. Albers and Kallenberg 
(2004) conclude that for the Shewhart method the sample size of the estimate has 
to be very large. Andersson et al. (2005) make the same conclusion for other 
methods. 

One way to avoid the problem of unknown parameters is to transform the data 
to invariant statistics. Frisén (1992) and Sullivan and Jones (2002) use the 
deviation of each observation from the average of all previous ones. The 
comparison between two windows statistics is another usual transformation. 
Gordon and Pollak (1997) use invariant statistics combined with the Shiryaev-
Roberts method to handle the case of an unknown pre-change mean of a normal 
distribution. Krieger et al. (2003) use invariant statistics combined with the 
CUSUM and Shiryaev-Roberts methods for surveillance of change in regression 
from an unknown pre-change mean. 

When both the baseline and the increase at a change are unknown, we aim for 
the detection of a change to a stochastically larger distribution. Bell et al. (1994) 
suggested a nonparametric method geared to the exponential distribution. Baron 
(2000) proposes a method based on histogram density estimators to detect any 
change in distribution. The nonparametric maximum likelihood method above, 
designed for detection of a change from monotonicity, also avoids the problem of 
unknown parameters by using only the monotonicity properties. 

The problem of unknown parameter values can be handled by a statistic, 
which is based on the maximum difference (measured for example by the 
likelihood ratio) between the baseline and the changed level. The GLR method 
(Lai (1995) and Lai (1998)) uses the maximum likelihood estimator. For the GLR 
method, the alarm statistic is formed by maximizing over possible values of the 
parameter value. Kulldorff (2001) used the same technique for detection of 
clustering in spatial patterns. Hawkins and Zamba (2005) use the GLR technique 
for monitoring variance. Lai (1998) proved a minimax result for a variant of GRL 
suitable for autocorrelated data. Lee and Lee (2004) study the limiting distribution 
when the maximum likelihood estimation is used in the CUSUM method. 

The MLR method suggested for example by Pollak and Siegmund (1975) 
involves priors for the unknown parameters. Priors are also used by Radaelli 
(1996) for the Sets method and by Lai (1998) for the CUSUM method.  

8.3 Events 
Most of the theory on surveillance is derived for normally distributed data, but 
also discrete processes are of interest for many applications. Cardinal et al. (1999) 
describe the problems of using methods for continuous variables when studying 
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observations which are based on count data. A bibliography of surveillance by the 
Shewhart method and other methods for attribute data is given by Woodall 
(1997).  

In the study of events the case of a Poisson process is of special interest. 
Sometimes the exact time of the event is not known or convenience may require 
that only the numbers of events in fixed intervals are recorded. This number is 
usually assumed to be Poisson distributed. A direct analogue to the methods for 
the normal case is achieved by comparing the recorded number of events in each 
time period with the expected number. For the Shewhart method an alarm is given 
as soon as this difference is large. Lucas (1985) described the Poisson CUSUM 
method and Borror et al. (1998) the Poisson EWMA. Sonesson and Bock (2003) 
derived the likelihood ratio method.  

When using the continuous exponentially distributed time between events, the 
Exponential CUSUM can be constructed (see for example Lucas (1985) and Lee 
and Lee (2004)). In contrast to the Poisson CUSUM, the Exponential CUSUM is 
not based on an initial reduction of the information. Exponential EWMA was 
described by Gan (1998). Sonesson and Bock (2003) derived the LR method 
based on the exponentially distributed time intervals between events. For the same 
situation, Kenett and Pollak (1996) gave the Shiryaev-Roberts method and made a 
comparison with the Shewhart method.  

8.4 Multivariate Surveillance 
Multivariate surveillance is needed in many areas. Sometimes measurements are 
obtained not only in time but also at various locations. The inferential problems 
involved in spatial surveillance are multivariate. Another example is the 
syndromic surveillance in public health where several symptoms are routinely 
recorded (see Lawson and Rodeiro (2004)). In several papers by Schmid and co-
workers, multivariate economic surveillance is studied. An example is Sliwa and 
Schmid (2005) where the autocovariance and cross-covariance structures of 
financial assets in the Eastern European stock markets are monitored. Reviews of 
multivariate surveillance are given for example by Woodall and Montgomery 
(1999) and Sonesson and Frisén (2005). 

There are some distinctly different approaches to handling multivariate 
surveillance. One approach is to reduce dimensionality. This can be done for 
example by using the principal components instead of the original variables, as 
proposed and discussed for example in Kourti and MacGregor (1996) and 
Scranton et al. (1996).  

Another approach is to use scalar accumulation, where the components of the 
vector of observations are transformed into a scalar statistic for each time point 
before the accumulation over time. For example, the first step can be to calculate a 
spatial statistic for each time. Then, this statistic can be monitored in time by 
univariate surveillance. Wessman (1998) proved that when all the variables 
change at the same time, a sufficient reduction to univariate surveillance exists. 
Originally, the Hotelling T2 statistic was used in a Shewhart approach. This is 
sometimes referred to as the Hotelling T2 control chart. For multivariate binomial 
data, Lu et al. (1998) proposed a method based on a weighted sum of the number 
of adverse units for each of the components for each time point. The surveillance 
method used for this weighted sum was a Shewhart one. Other applications of 
Shewhart methods are made for example by Runger (1996) and Kang and Albin 
(2000). 
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A third approach is to use parallel univariate surveillance methods for each 
component variable and trigger an alarm if any of the univariate methods exceeds 
its limit in accordance with the union-intersection principle. Sometimes the 
Bonferroni method is used to control a false alarm error, see Alt (1985). As an 
example, in spatial surveillance one can make parallel surveillance of each 
location and make a general alarm when there is an alarm for any of the locations. 
This approach was used by Kulldorff (2001) for different cluster sizes and cluster 
locations.  

Another approach is the vector accumulation approach. Here the alarm statistics 
of the parallel surveillance methods for each component variable are combined 
into a general alarm statistic. Lowry et al. (1992) proposed a multivariate 
extension of the univariate EWMA method, referred to as MEWMA, and 
demonstrated that this is an improvement on the Shewhart method applied to the 

2χ -statistic. In both the vector and the scalar accumulation approaches, the 
correlations between the variables are used in the transformation. Rosolowski and 
Schmid (2003) and Sliwa and Schmid (2005) use the Mahalanobis distance to 
measure the distance between the target values and the actual values together with 
vector accumulation.  

Still another approach is to handle the multivariate nature of the observational 
vector and the different time points simultaneously while aiming at satisfying 
some global optimality criterion. Järpe (1999) suggested an ED-optimal likelihood 
ratio surveillance method of clustering in a spatial log-linear model. If the 
alternatives are completely specified, general techniques to achieve minimax 
optimality can be found in Lai (1995).  

Optimality is always complicated in multi-dimensional cases. No approach will 
be uniformly optimal for all kinds of changes. The multivariate methods can be 
evaluated by modifications of the measures and criteria described above. For 
example, Wessman (1999) suggested a generalization of the ARL measure to 
allow for the possibility of different change times for different variables. Control 
of the false discovery rate is of interest when conclusions are made about several 
variables and is used for example by Wong et al. (2003). 

8.5 Dependency Structures 
Four ways to treat the case of time dependent observations are discussed in Frisén 
(2003) and Frisén and Sonesson (2005a): 1) using the ordinary method and 
studying the robustness, 2) modifying the method with wider alarm limits based 
on the correct variance, 3) using the residuals from a time series model, or 4) 
deriving the method by optimality criteria for the full model.  

Schmid and co-workers used all approaches with a focus on the modified and 
residual approaches. They studied the Shewhart and other methods for AR, 
ARCH and GARCH models (for example Schmid (1995), Schmid and Schöne 
(1997), Kramer and Schmid (1997), Severin and Schmid (1999), and Schipper and 
Schmid (2001)). In many of these papers, case studies are made on stock market 
data. A review is given in Knoth and Schmid (2004). 

Liu and Tang (1996) suggested a nonparametric bootstrap-based generalization 
of the Shewhart method which does not require independent observations.  

Petzold et al. (2004) derived the full likelihood ratio method for a MA model 
and compared it to a Shewhart method. 
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9 CONCLUDING REMARKS 
 
The pioneering work by Walter Shewhart has inspired a new area of statistical 
development. The sequential character of the decision situation – without any 
fixed hypotheses – has been recognized in many applications. The availability of 
timely data and the need for timely decision-making have increased, and new 
applications have become important. 

The issue of keeping calculations simple is less important now than it was when 
Shewhart suggested his method. Instead, the requirement of efficiency has 
increased. Optimality in surveillance is not a simple issue. There is a great 
difference between surveillance and hypothesis testing in this respect. Several 
criteria, which take care of the special features of a surveillance system, have been 
suggested. Some are suitable when the time of the change is considered as a 
random variable while others are suitable when it is considered as an unknown 
parameter. Some criteria require knowledge of a certain parameter such as the 
intensity of changes. The possibility to evaluate a method for a specific situation 
should not necessarily be seen as a disadvantage even though it is hard to exactly 
specify which situation is of most interest. 

In spite of the good properties of the followers, the Shewhart method is 
probably still the one most commonly used in practice. The followers to the 
Shewhart method offer the possibility to optimize for the size of the shift and 
some also for the intensity of shifts. By studying how the Shewhart method is 
related to these optimal methods it can be concluded that the Shewhart method is 
well suited for quick detection of large shifts. As regards smaller shifts, different 
optimality criteria favor the Shewhart method to varying degrees. However, the 
Shewhart method is not the prime choice for small long-term changes. 

Complicated situations, which are present in many important applications, have 
been studied for the Shewhart method and others. 
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