
This work has been digitized at Gothenburg University Library. All printed texts have been OCR-processed and converted to machine readable text. This means that you can search and copy text from the document. Some early printed books are hard to OCR-process correctly and the text may contain errors, so one should always visually compare it with the images to determine what is correct.
QUATERNARY POLLEN BIOSTRATIGRAPHY IN THE BRITISH SECTOR OF THE CENTRAL NORTH SEA

Sten Ekman
QUATERNARY POLLEN BIOSTRATIGRAPHY IN THE BRITISH SECTOR OF THE CENTRAL NORTH SEA

Akademisk avhandling

som för avläggande av filosofie doktorsexamen vid Geovetenskapliga sektionen, Göteborgs Universitet, kommer att offentliga förvaras fredagen den 2 juni 1997 kl 10.00 i Stora hörsalen, Geovetarcenrum, Göteborgs Universitet.

Fakultetsopponent: Docent Ann-Marie Robertsson, Kvartärgeologiska Institutionen, Stockholms Universitet

Sten Ekman, Geovetenskapliga Institutionen, Geovetarcenrum, Göteborgs Universitet, S-413 81 Göteborg, Sverige
Quaternary pollen biostratigraphy in the British sector of the central North Sea

Sten Ekman

Department of Geology, Earth Sciences Centre,
University of Göteborg, S-413 81 Göteborg

ABSTRACT

Quaternary sediment sequences from the Fladen Ground and the Devil's Hole area in the British sector of the central North Sea are investigated on their pollen content. The sequences are correlated on the basis of pollen biostratigraphy, with reference taken to existing borehole and seismic data.

The Early Pleistocene sediment sequences are correlated with the pollen-based Dutch composite stratigraphy where a good correlation with the geomagnetic polarity time scale exists. Comparisons are drawn between existing palaeoenvironmental reconstructions from marine microfossil data from the sequences and the Dutch pollen stratigraphy. The borehole sequences are interpreted as younger than the Olduvai geomagnetic event as massulae of the freshwater fern Azolla filiculoides, a species that did not appear before that event, is present in a reversed polarity sequence. Considerable freshwater influx at the base of the pollen profiles can probably be related to delta progradation from the south during Early Pleistocene times. Indications of glaciofluvial influx in the upper part of this freshwater-influenced interval are correlated with the Menapian stage. An hiatus in the Devil's Hole vicinity separates the Menapian interval from sediment of Bavel Interglacial age. During the earlier phase of the succeeding Linge Glacial strong fluvial discharge at first influenced the Devil's Hole area after which calm arctic to high arctic marine conditions prevailed in a depositional environment influenced by meltwater from the British ice sheet. The pollen data from the later part of the Linge glacial in the Devil's Hole area indicates glaciofluvial influences from the Scandinavian ice sheet.

The most pronounced influence of reworked pre-Quaternary sediments in the Middle Pleistocene sediment sequences is identified in an upper interval, rich in pre-Neogene palynomorphs, and in a lower interval, rich in Neogene palynomorphs. This change can be related to Middle Pleistocene glacial periods. The pollen content in the younger interval indicates a British provenance, possibly correlated with the Saalian stage. The pollen content in the older interval indicates derivation from the Scandinavian ice sheet, and may correlate with the Elsterian stage. The pollen stratigraphies between these two intervals reflect a vegetation transition from dwarf shrub heaths and peatlands towards boreal forests, possibly followed by a return to a more open landscape. This pollen stratigraphical succession is best preserved in the Devil's Hole sequences. In the Fladen Ground the upper part of the sequence may have been glacially eroded. The Devil's Hole sequences are probably underlain by deltaic deposits of the Cromerian Complex and earlier.

Biostratigraphical and AMS 14C core data from Late Weichselian to Early Holocene Devil's Hole area sediment indicate accumulation from c. 15.7 14C ka BP on an erosional surface on overconsolidated Saalian sediment. When the lower part of the Late Weichselian sediment accumulated the area was c. 40 m lower than present. This interpretation is based on two assumptions; 1) that the sediment is now about 20 m above that of global sea level at the time of deposition and 2), that the marine microfaunal content reflects a water depth of about 20 m at that time. Crustal downflexure caused by Late Weichselian glacial loading of the core area is considered as the most plausible explanation. Indications of a regressive minimum within Late Weichselian marine microfaunas c. 12 14C ka BP in age probably reflects local isostatic rebound exceeding global eustatic rise.

Keywords: Bavelian, biostratigraphy, Cromerian Complex, delta sediment, Elsterian, glacial isostasy, glaciomarine sediment, Late Weichselian, Menapian, North Sea, Pleistocene, pollen, Saalian, stage 7.
Sten Ekman

QUATERNARY POLLEN BIOSTRATIGRAPHY IN THE BRITISH SECTOR OF THE CENTRAL NORTH SEA
Quaternary pollen biostratigraphy in the British sector of the central North Sea

Sten Ekman

Department of Geology, Earth Sciences Centre, University of Göteborg, S-413 81 Göteborg

ABSTRACT

Quaternary sediment sequences from the Fladen Ground and the Devil's Hole area in the British sector of the central North Sea are investigated on their pollen content. The sequences are correlated on the basis of pollen biostratigraphy, with reference taken to existing borehole and seismic data.

The Early Pleistocene sediment sequences are correlated with the pollen-based Dutch composite stratigraphy where a good correlation with the geomagnetic polarity time scale exists. Comparisons are drawn between existing palaeoenvironmental reconstructions from marine microfossil data from the sequences and the Dutch pollen stratigraphy. The borehole sequences are interpreted as younger than the Olduvai geomagnetic event as massulae of the freshwater fern Azolla filiculoides, a species that did not appear before that event, is present in a reversed polarity sequence. Considerable freshwater influx at the base of the pollen profiles can probably be related to delta progradation from the south during Early Pleistocene times. Indications of glaciofluvial influx in the upper part of this freshwater-influenced interval are correlated with the Menapian stage. An hiatus in the Devil's Hole vicinity separates the Menapian interval from sediment of Bavel Interglacial age. During the earlier phase of the succeeding Linge Glacial strong fluvial discharge at first influenced the Devil's Hole area after which calm arctic to high arctic marine conditions prevailed in a depositional environment influenced by meltwater from the British ice sheet. The pollen data from the later part of the Linge glacial in the Devil's Hole area indicates glaciofluvial influences from the Scandinavian ice sheet.

The most pronounced influence of reworked pre-Quaternary sediments in the Middle Pleistocene sediment sequences is identified in an upper interval, rich in pre-Neogene palynomorphs, and in a lower interval, rich in Neogene palynomorphs. This change can be related to Middle Pleistocene glacial periods. The pollen content in the younger interval indicates a British provenance, possibly correlated with the Saalian stage. The pollen content in the older interval indicates derivation from the Scandinavian ice sheet, and may correlate with the Elsterian stage. The pollen stratigraphies between these two intervals reflect a vegetational transition from dwarf shrub heaths and peatlands towards boreal forests, possibly followed by a return to a more open landscape. This pollen stratigraphical succession is best preserved in the Devil's Hole sequences. In the Fladen Ground the upper part of the sequence may have been glacially eroded. The Devil's Hole sequences are probably underlain by deltaic deposits of the Cromerian Complex and earlier.

Biostratigraphical and AMS 14C core data from Late Weichselian to Early Holocene Devil's Hole area sediment indicate accumulation from c. 15.7 14C ka BP on an erosional surface on overconsolidated Saalian sediment. When the lower part of the Late Weichselian sediment accumulated the area was c. 40 m lower than present. This interpretation is based on two assumptions; 1) that the sediment is now about 20 m above that of global sea level at the time of deposition and 2), that the marine microfaunal content reflects a water depth of about 20 m at that time. Crustal downflexure caused by Late Weichselian glacial loading of the core area is considered as the most plausible explanation. Indications of a regressive minimum within Late Weichselian marine microfaunas c. 12 14C ka BP in age probably reflects local isostatic rebound exceeding global eustatic rise.

Keywords: Bavelian, biostratigraphy, Cromerian Complex, delta sediment, Elsterian, glacial isostasy, glaciomarine sediment, Late Weichselian, Menapian, North Sea, Pleistocene, pollen, Saalian, stage 7.

ISSN 1400-3813

A18 1997
Quaternary pollen biostratigraphy in the British sector of the central North Sea

Sten Ekman

INTRODUCTION

Stratigraphical information from the North Sea basin is important for understanding the palaeoenvironmental development of northwestern Europe. Besides unravelling the evolution of this epeiric sea itself, these data can provide links between onshore stratigraphies in the UK and continental northwestern Europe and between these onshore records and more complete, but condensed, deep ocean records (Long et al., 1988; Gibbard et al., 1991; Funnell, 1995). The understanding of such correlations between continental and marine records is crucial for achieving a comprehensive view of Global changes (Veldkamp and van der Berg, 1993).

For the correlation of onshore and offshore stratigraphies, pollen analysis can be a useful tool because: 1) pollen and spores derived from terrestrial vegetation are the most common microfossils occurring in both continental and ocean sediments (Mudie, 1982) and, 2) several studies from various marine settings have demonstrated a close correspondence between pollen assemblages from modern continental margin sediments and vegetation zones onshore (e.g. Muller, 1959; Hooghiemstra, 1988; Heusser, 1988; Mudie and McCarthy, 1994).

Pollen assemblages in the North Sea are of mixed origin and call for careful interpretation because of reworking, mainly by glaciers, and transport by water from widely differing regions and river systems. Nevertheless, palynological data from Quaternary North Sea sediments can be used to make palaeoenvironmental interpretations and stratigraphical correlations. In the present study, Quaternary sedimentary sequences from the British sector of the central North Sea (Fig. 1) have been analysed for their pollen content and subsequently correlated with onshore sequences, in particular the pollen-based Dutch composite stratigraphy (cf. Zagwijn, 1985; De Jong, 1988). Comparisons are drawn between palaeoenvironmental reconstructions from the onshore sequences and palaeoenvironmental reconstructions from the North Sea sequences, which are based on pollen in addition to marine microfossil data.
The dissertation is based upon the following six papers:

Reference to the papers are made by using roman numericals, which also apply to the papers as appendixes. Paper I, II and III are reprinted by the permission of Elsevier.

Fig. 1. Sampling sites of investigated borehole sequences
Paper I concentrates on the relation between the biostratigraphy of a vibrocore from the Devil's Hole area and Late Weichselian glacial isostasy. Papers II, III and IV provide detailed descriptions of the pollen content of Early and Middle Pleistocene sediment from BGS boreholes 81/26, 81/29 and 81/34 respectively. Papers V and VI provide reviews of the pollen stratigraphies of Middle and Early Pleistocene central North Sea sequences and propose models over the palaeoenvironmental development in the central North Sea.

In addition to a short summary of the six papers on which this thesis is based, I will here give a general view of the development of the North Sea Basin and discuss the usefulness of pollen studies in the marine environment. This will serve as a background for readers not familiar with the area, and will facilitate the understanding of the complexities discussed in the individual papers.

MODERN BATHYMETRY AND OCEANOGRAPHY IN THE NORTH SEA

The North Sea is an epeiric sea between the British Isles and Continental Europe extending approximately from 51° N to 62° N and from 4° W to 12° E (Fig. 1). The shelf edge between Scotland and Norway provides the northernmost limit of the North Sea where it meets the North Atlantic and in the south the English Channel connects with the North Sea. The definition of the central North Sea used here is the area between 56° N and 58° N (c.f. Stoker et al., 1985). The investigated and discussed Fladen Ground borehole sites are considered part of this area, even if their exact positions are just north of 58° N.

The water depth in the North Sea is at maximum c. 50 m south of c. 54° N, i.e. south of the Dogger Bank (Moodley and van Weering, 1993). North of the Dogger Bank (i.e. north of c. 56° N), the North Sea deepens successively to about 180 m at the shelf edge north of Scotland (McCave et al., 1977). The deepest part of the North Sea (750 m), however, is along the southern and southwestern Norwegian Coast, where the Skagerrak and the Norwegian Channel together form an elongated (c. 900 km) and rather narrow (80-90 km) basin (Van Weering, 1981).

Large seasonal temperature variations and a lack of seasonal stratification characterises the southern North Sea. In the central and northern North Sea seasonal stratification is present and in the northern North Sea the bottom temperatures and salinities reflect that of the Atlantic water in the Norwegian Sea (Sejrup and Knudsen, 1993).
The North Sea is intermediate between seas with a circulation mainly determined by internal dynamics (e.g. the Mediterranean) and coastal regions of the open sea (cf. Sverdrup et al., 1942). A dominant feature in the dynamics of the modern North Sea is tidal motion (Otto et al., 1990). Where tidal flow is weak as is generally the case north of 54°N, wind stress is an important factor (Eisma and Kalf, 1987). The dominating residual circulation pattern in the North Sea is anticlockwise and the North Sea functions as a mixing-bowl of fresh and oceanic water (Otto et al., 1990). A strong southward flux of warm and saline Atlantic waters enters the northern North Sea (Fig. 2) along: 1) the western slope of the Norwegian Channel, 2) along the western part of the basin east of the Shetland Isles and, 3) mixed with coastal waters along eastern Scotland (cf. Svendsen et al., 1991). This northern influx provides 90% of the North Sea water budget and additional contributors are the English Channel (c.9%) and the Baltic Sea and river runoff (Otto, 1976).

The residual circulation along the British coast, where a mean southerly flow occurs, is somewhat diffuse compared to that along the continental coast where the northerly current is strong and quite restricted up to the Skagerrak, where it meets the deeper North Atlantic inflow (Otto et al., 1990). The outflow from the North Sea is predominantly northwards along the Norwegian coast, where a mixture of oceanic and
continental water is transported by the Norwegian Coastal Current to the Norwegian Sea.

Recent sediment accumulation in the North Sea occurs mainly along the eastern margin of the basin (the Wadden Sea, the German Bight, the Skagerrak, the Kattegat and the Norwegian Channel), i.e. along the principal transport direction of suspended matter (Eisma and Kalf, 1987; de Haas et al., 1996). Of fine-grained sediments presently delivered to the North Sea, 50-70% reaches the Skagerrak (Longva et al., 1996), of which a part is transported as suspended load by the Norwegian Coastal Current to the Norwegian Channel and the Norwegian Sea (de Haas et al. 1996). Less than 10% of the organic carbon in recent Skagerrak sediment have a local primary production source (cf. de Haas, 1996).

PRE-QUATERNARY DEVELOPMENT OF THE NORTH SEA BASIN

The creation of the North Sea basin was initiated by a secondary rift system simultaneously with the Mesozoic rifting in the North Atlantic which separated Europe from North America (Ziegler and Louwerens, 1977). Isostatic adjustment to sediment loading and stretching events during the rifting were the main reasons for the subsidence of the North Sea area from Early Cretaceous time onward (cf. Kooi et al., 1991). This subsidence formed a sedimentary basin which had approximately the same areal extent as that of North Sea today. The floor of the initial sedimentary basin is now at a maximum depth of about 3500 m along the former rift zone (cf. Veenstra, 1970, Gibbard, 1988).

The North Sea subsidence was interrupted during mid-Miocene times by regional stresses generated by continental convergence of the Alpine orogeny (Glennie, 1990), also responsible for creating the template for the modern drainage pattern in North West Europe (cf. Gibbard, 1988). Subsequent relaxation of this stress system allowed subsidence to proceed and, in turn, the development of one of the worlds major delta systems in the southern part of the North Sea basin between late Miocene (c. 10 Ma) and late mid-Pleistocene times (Zagwijn, 1989; Cameron et al., 1993b). The resultant sedimentary infill is shallow marine (littoral and epineritic) and continental (coastal plain and deltaic) in character (Zagwijn, 1989).

North Sea depocentres during the Neogene were in marine nearshore environments proximal to the growing deltas (Zagwijn, 1989). Probably due to rapid tectonic subsidence of the German Bight and Ringkøping-Fyn High the Miocene deltaic deposits are primarily restricted to the German and Danish sectors of the North Sea (Cameron et al., 1993a). An extensive delta developed in that area at the mouth of
an ancient river system which drained the Baltic region and the northern lowlands of
Northwest Europe until the Menapian (Bijslma, 1981; Gibbard, 1988). The Miocene
delta construction in the eastern part of the North Sea basin caused considerable
expansion of coastal lowland area and widespread peat formation, which now is
reflected by huge deposits of Miocene brown coal and brown coal sands (Gibbard,
1988; Zagwijn, 1989). The thickest Pliocene deltaic deposits are found in the central
Dutch sector of the North Sea (Cameron et al., 1993) related to continuous growth of
the delta from the proto river Rhine (Zagwijn, 1989).

QUATERNARY DEVELOPMENT IN THE NORTH SEA REGION

While the overall development of the North Sea basin during the Tertiary is
characterised by subsidence rates more or less in accordance with the post-rift
development of rifted continental margins (Sclater and Christie, 1980), a unusually
rapid sedimentation characterises the Quaternary (Kooi et al., 1991). This results in
Quaternary sediment thicknesses locally up to 1000 m along the former rift zone
(Caston, 1977). This indicates an extremely high rate of local subsidence, about ten
times the mean Tertiary rate, possibly due to stress changes associated with North
Atlantic plate reorganisation (Cloething et al., 1990).

Biostratigraphical divisions of the Quaternary are based on the result of
interpreted environmental changes since the short duration of the Quaternary hampers
biozonations based on the appearance and extinction of species (cf. Shotton, 1973). As
the Quaternary is characterised by an oscillating climate, climatic fluctuation has
provided the most suitable basis for its subdivision and the definition of various
(climatic) stages. The most complete records of these fluctuations are oxygen isotope
stratigraphy from deep-sea cores (e.g. Shackleton et al., 1991). However, the deep-
sea record is normally very condensed, giving poor temporal resolution. More detailed
records, although representing shorter time periods and bounded by unconformities,
are present in terrestrial and shelf environments. Of the onshore records in
northwestern Europe the most complete stratigraphy over the cyclic fluctuations
between warm temperate (interglacial) and cold climatic conditions, is the
palaeobotanical record from the Netherlands on the southeastern margin of the North
Sea (Fig. 3, e.g. Zagwijn, 1985, 1989; De Jong, 1988). The most complete British
onshore stratigraphy is compiled from East Anglian sequences on the southwestern
margin of the southern North Sea (e.g. West, 1961, 1980). The correlation between
the UK and Dutch stratigraphies is not completely satisfactory but it is clear that the
East Anglian stratigraphy is discontinuous in comparison with the Dutch composite
stratigraphy, and lacks records covering the interval from c. 1.7 to 0.6 Ma (cf. Gibbard, 1991; Funnell, 1995, 1996). One possible reason for this is that the British side of the southern North Sea has been an area of net uplift during the Pleistocene (Boulton, 1992; Bridgland and D’Olier, 1995) in contrast to the progressive isostatic downwarping along the former rift zone extending from the North Sea into the Netherlands.

It is common practice in Northwest European stratigraphic work (cf. Van Voorthuysen et al., 1972; Zagwijn, 1989) to place the Quaternary-Tertiary boundary at the point of the first arrival of cold conditions (Prætiglian in the Dutch stratigraphy) somewhat after the boundary between the Matuyama and Gauss geomagnetic epochs (c. 2.6 Ma, Valet and Meynadier, 1993). Associated with the deforested and permafrost conditions during the Prætiglian and succeeding Early Pleistocene cold stages is the extinction of 'Tertiary-relict' plant taxa (Zagwijn, 1960; Van der Hammen, 1971; West, 1980). The younger age for the Plio-Pleistocene boundary, just below the top of the Olduvai geomagnetic event at c. 1.8 Ma (Hilgen, 1991), given in a later redefinition (cf. Aguirre and Pasini, 1985) is not applied here. The lowermost Pleistocene sediment in the central North Sea is affected by salt movement and faulting (Gatliff et al., 1994).

From marine sediments of Tiglian age (c. 2.4-1.7 Ma), from the southern North Sea (Cameron et al., 1984) and East Anglia (Zalasiewicz et al., 1991), palaeoclimatic signals of various microfossil groups are in conflict. The pollen assemblages indicate oceanic grass heath, herbaceous communities of open habitats, park tundra and boreal forest, similar to those of British Early Pleistocene cold stages. Lithological, palaeomagnetic and malacological data are consistent with such a correlation (Zalasiewicz et al., 1991). In contrast, foraminiferal assemblages indicate temperate conditions, and dinocyst assemblages warm-temperate to subtropical conditions. Inferred explanations include: a) reduced forest cover due to leaching and impoverishment of soils (Cameron et al., 1984), b) reduced forest cover due to increased drought or seasonality of rainfall (Zalasiewicz et al., 1991), c) mixing of pollen of different provenance and redeposition offshore (Long et al., 1988), d) a much slower response to climatic deterioration of the North Sea during the Early Pleistocene compared to the Late Pleistocene (Zalasiewicz et al., 1991), e) non-deposition during maximum climatic deterioration due to marine regression (Cameron et al., 1984), f) Atlantic water masses flowing much farther north in the Early Pleistocene than now (Cameron et al., 1984; Zalasiewicz et al., 1991). A more marked gradient of oceanity/continentality across Europe during the Tiglian than presently, indicated by pollen (West, 1961), may reflect a such warm temperate water mass at British latitudes (Cameron et al., 1984). Reported from East Anglian sites are
Fig. 3. The pollen-based Quaternary stratigraphy from the Netherlands and its relation to the palaeomagnetic time scale (not to scale). Age in Ma. Hol = Holocene, Bru = Bruhnes, Mat = Matuyama, Jar = Jaramillo, Old = Olduvai.
additionally marine sediments of (late) Tiglian age from which foraminiferal assemblages agree with pollen assemblages in indicating cold conditions (cf. West et al., 1980).

During the Eburonian (c. 1.7 Ma) or somewhat earlier, the coalescence of deltas from the Rhine, Meuse, Scheldt and the comparatively minor British rivers caused a swing of delta advance, from west or south-west to a north-westerly direction (cf. Zagwijn, 1979; Cameron et al., 1993a; Gatliiff, et al., 1994). Climatic fluctuation appears not to have been a dominating controlling factor of the growth of this single delta-system (cf. Gatliiff et al., 1994).

Pronounced southern withdrawal of vegetation belts during cold stages occurred from the Menapian (c. 1.15 Ma, cf. Funnell, 1996) onward, reflected in Dutch pollen profiles by successive immigration of tree taxa in the following temperate stages (De Jong, 1988). This indicates considerably more severe climate during the cold stages from the Menapian onward. In agreement with this are lithological studies of the 'Complex of Hattem' in the Netherlands (Lüttig and Maarleveld, 1961; Zandstra, 1971, 1983) which indicate that NW European glaciations of regional extent appeared during the Menapian (Bijlsma, 1981), probably for the first time during the Quaternary. During this Early Pleistocene stage and following Bavelian and Cromerian Complex glacial stages, some marginal sediment source areas of the North Sea basin became glaciated (e.g. Rueegg and Zandstra, 1977; Gibbard; 1988; Boulton, 1992) and at some time(s) also parts of the North Sea basin (cf. Stoker and Bent, 1985; Sejrup et al., 1987, 1994). These glaciers reaching the shelf were not able to hinder deposition of sediments in the North Sea delta, however (Gatliff et al., 1994). During the Bavelian, the strong 100 000 year cycle of glacial and interglacials was initiated (cf. Boulton, 1992; Funnell, 1995).

Almost the whole North Sea basin south of 56° N had developed into a wetland complex of delta top sediment in early Cromerian Complex times (Gatliff et al., 1994). This fluvi-deltaic plain is named Ur-Frisia (Cameron et al., 1992) and the delta top lithofacies is strongly diachronous, from Tiglian in age in the south to Cromerian Complex in age in the north (Cameron et al., 1992; Funnell, 1995). The rivers Thames and Rhine probably coalesced to the same river valley on the (Ur-Frisia) fluvi-deltaic plain (Bridgland and D'Olier, 1995), which ranked in size with the modern Ganges/Brahmaputra, Mekong and Yangtse-Kiang deltas (Cameron et al., 1993a). It is considered a major silt source for loess deposits present in adjoining areas onshore (Gibbard, 1988).

Reduction of fluvial sediment input during the Cromerian Complex caused decay of the delta (Gibbard, 1988; Cameron et al., 1993a). Widespread invasions of ice across the basin itself occurred during the following Elsterian (Anglian in the UK),
Saalian (Wolstonian) and Weichselian (Devensian) glacial stages. Intervals of marine transgressions over the former delta plain and the development of strongly tidal marine conditions similar to the modern occurred between the glacial stages (cf. Cameron et al., 1993a,b).

There are currently different opinions as to whether the Elsterian glacial stage (as well as the Anglian stage, cf. Boulton, 1992) correlates with stage 8 (e.g., Linke et al., 1985; Sejrup and Knudsen, 1993), stage 10 (e.g., de Jong, J.; 1988; Veldkamp and van der Berg, 1993) or stage 12 (e.g., Rousseau et al.; 1992; Funnell, 1995) in the δ¹⁸O stage scale. The British and Scandinavian ice sheets are interpreted to have coalesced during the Elsterian stage due to an advance of the latter ice across the North Sea basin which ultimately stopped growth of the already decaying delta (Gibbard, 1988, 1995). As a consequence northward river drainage into the North Atlantic was blocked and a large ice-dammed lake developed in the southern North Sea and in adjacent areas of the Netherlands and Germany; eventual catastrophic discharge of this lake into the English Channel, due to breaching of the Weald-Artois anticline, has been proposed as a mechanism for the formation of the Strait of Dover (Gibbard, 1988, 1995; Smith, 1992).

The sculpturing of the onshore landscape by the Elsterian ice was fundamentally different from that of subsequent glaciations and in southern ice marginal areas it is characterised by a net-like system of deep channels (Ehlers et al., 1984). Features such as ice-pushed ridges, tongue-shaped basins, lodgement tills and glacially transported erratics are in the lowlands of Northwest Europe scarce or absent from the Elsterian but rather common during the subsequent glaciations (Zagwijn, 1989).

Major incisions similar to the Elsterian channels onshore are present in the North Sea. Based on seismic studies, three major incision episodes are distinguished (Holmes, 1977), of which the oldest was the most significant (Cameron et al., 1987). These episodes have been correlated with the Elsterian, Saalian and Weichselian (Stoker et al., 1985). The incisions are boat-shaped in plan, with an irregular thalweg (e.g. Gatilff et al., 1994) and usually considered to have been formed by glacial processes, such as subglacial meltwater under pressure (Boulton and Hindmarsh, 1987) or jökulhlaup (Wingfield, 1990). Because of their shape, the term 'scaphiform' has been proposed as a descriptive nongenetic term (Cameron et al., 1992).

The maximum glacial extent of the Saalian ice in the North Sea and British Isles are poorly known and there is active debate whether the British and Scandinavian ices coalesced (Gibbard, 1988, 1995) or not (Cameron et al., 1993b). A colourful debate concerning the maximum glacial extension in the North Sea during the Weichselian stage (cf. paper I), based mainly on the distribution of major incisions,
glacial diamiction and ice pushed ridges but also shore displacement curves, is also currently active (cf.; Ehlers and Wingfield, 1991; Cameron et al, 1993b; Lambeck, 1993; Sejrup et al., 1994).

SEISMOSTRATIGRAPHICAL FORMATIONS

The investigated sequences form four seismostratigraphical formations (Stoker et al., 1985), the Aberdeen Ground, Ling Bank, Fisher and Forth formations (Fig. 4).

Different stratigraphies have been established to the north and south of 56° N in the British sector of the North Sea and full integration between them has yet to be achieved (cf. Gatliif et al., 1994). The deltaic sediments north of 56° N are grouped into the Aberdeen Ground Formation in contrast to south of 56° N where the deltaic sequence is subdivided into several formations. This because of increasing difficulties basinwards to recognise individual deltaic formations in seismic profiles (Gatliif et al., 1994). The Early and Middle Pleistocene Aberdeen Ground Formation is the oldest defined Quaternary formation in the British sector of the central North Sea where it forms a wedge-shaped unit thinning markedly to the west but is at least 130 m thick in the Devil's Hole area (Stoker et al., 1985). In that area the formation is interpreted to have accumulated in a delta front setting, periodically as rapid deceleration of argillaceous silts and silty fine sands (possibly during hypopycnal flow) and periodically as mud deposition from suspension in a lower energy environment (Stoker and Bent, 1987). In the Fladen Ground, the formation predominantly accumulated as sublittoral muds in a broad marine basin and additionally contains glacigenic sediments (Sejrup et al., 1987; Andrews et al., 1990). The boundary between the Bruhnes and Matuyama geomagnetic epochs (c. 0.78 Ma, Valet and Meynadier, 1993), i.e. the Early-Middle Pleistocene boundary, as well as the Jaramillo geomagnetic event (c. 0.99-1.07 Ma), have been recognised in the Aberdeen Ground Formation (Stoker et al., 1983; Sejrup et al., 1987).

The maximum thickness of the Ling Bank Formation is about 100 m where it infills deep erosive features. The erosion surface at the base of this Middle Pleistocene unit is highly irregular in the northern part and comparatively planar in the southern part of the British sector of the central North Sea (Stoker et al., 1985). Sediment from this formation has been recovered in a few boreholes.

The Fisher Formation is up to 90 m thick in the eastern part of the British sector of the central North Sea but generally does not exceed 6 m in thickness and occurs rarely in the western part (Gatliif, 1994). This formation is interpreted as Saalian in age and occurs above a planar erosion surface which cuts across the Ling
Fig. 4. Schematic section illustrating the relationships of seismostratigraphical formations in the British sector of the central North Sea in a transect from West to East. Horizontal distance c. 100 km. Total sediment thickness c. 250 m.

Bank and Aberdeen Ground formations. The top of the unit is generally more irregular and associated erosional features are usually infilled by sediment of the Coal Pit Formation and the Forth Formation. The Coal Pit Formation, which is Middle and Late Pleistocene in age, is not represented in the investigated cores.

The Forth Formation crops out over most of the British sector of the central North Sea where it forms the uppermost Quaternary unit. This unit is usually not more than 20 m thick although the maximum thickness exceeds 150 m in deep erosive features in the Devil's Hole area (Stoker et al., 1985; Gatliiff et al., 1994). The formation is interpreted as Late Weichselian to early Holocene in age.

POLLEN AND SPORE TAPHONOMY IN THE MARINE ENVIRONMENT

It is essential to identify the main pathways by which pollen and terrestrial spores reach marine depositional sites. Based on such a description, temporal variations in marine
pollen assemblages related to changes in terrestrial vegetation composition can be distinguished from those related to sedimentary pathways, e.g., river drainage and current directions (Mudie, 1982). During transport, pollen grains and spores behave in principal as part of the fine silt and clay fraction. As a result, their distribution in sediment becomes facies dependent, although water and air may sort some taxa selectively by size or density (e.g. Cameron et al., 1983). One way to identify potentially important sources of pollen and spore input to the North Sea is therefore to define the main processes by which silt and clay are supplied to the area.

According to mud budgets constructed for the North Sea (McCave, 1973; Eisma and Kalf, 1979, 1987), the most important sources at present are:

- the North Atlantic, the English Channel, and the Baltic Sea.
- large rivers, of which the Rhine is the most important
- sea floor erosion
- atmospheric fall-out
- the erosion of non-resistant muddy cliffs.
- marine organic production (i.e., irrelevant considering the input of terrestrial pollen and spores and freshwater algae)

The connection of the North Sea with the English Channel did not exist during most of the Pleistocene. Prior to the latest transgression of the Strait of Dover in the early Holocene (cf. Jelgersma, 1979), the Southern Bight of the North Sea was a quiet, shallow embayment of low tidal amplitude; following transgression it attained the present state of strong tidal action with a mean amplitude of 2 m (cf. Scourse and Austin, 1995). Since this transgression, non-depositional conditions have been prevalent in most of the southern and central North Sea. The transfer of energy between the English Channel and the North Sea increases the erosional rate of the sea floor (cf. Eisma and Kalf, 1987) and is important for the circulation pattern in the North Sea which forces mud to pass through and off the southern part to enter the Jutland Current (Erlenkeuser and Pederstad, 1984). This situation is unrepresentative for most of the Cenozoic, since huge amounts of argillaceous Cenozoic sediments of various ages are present in the basin since the Miocene (although considerable hiatus are present also) during which the connection between the North Sea and the English Channel has been very limited (cf. Cameron et al., 1993a,b). Therefore it would be misleading to calibrate Pleistocene pollen stratigraphical investigations against the modern depositional patterns of pollen in the North Sea. During the Pleistocene, the North Sea - English Channel connection may have existed only during the Early and Middle Tiglian and the Eemian, as indicated by malacological data (Meijer and Preece, 1995). This opinion and that of a breach of the Weald-Artois anticline during the
Elsterian (Gibbard, 1988, 1995) are considered not to be mutually exclusive interpretations (Bridgland & D'Olier, 1995; Meijer and Preece, 1995).

Mud transported by inflowing North Atlantic water masses (predominantly in relatively turbid water above the thermocline) is presumably very poor in pollen, as estimated from other regions (cf. Mudie and McCarthy, 1994).

The influx from the Baltic Sea is presently between Denmark and Sweden into the Skagerrak and further with the Norwegian Current along the Norwegian Channel. Except for periods characterised by extensive glaciations, this path may have been prevalent since the Menapian (when the ancient Baltic River disappeared), which suggests a low input of mud from the Baltic Sea to the British sector of the central North Sea.

According to mud budgets for the North Sea, the present input from erosion of cliffs, e.g., Mesozoic formations along the coast of Yorkshire and parts of southern England and cliffs of till at the coast of Holderness and East Anglia (cf. Pantin, 1991), is considerably lower than the fluvial and aeolian input (McCave, 1973; Eisma and Kalf, 1979, 1987). The eroded coastal cliffs may furthermore be poor in palynomorphs or may only contain pre-Quaternary forms. In a somewhat broader perspective, the erosion by waves, wind, mass movements, tidal processes and ocean currents can not compete with the erosional intensity of regional glaciations. Reworking of sediment during periods characterised by extensive glaciation of the North Sea and adjoining areas is considered responsible for the thick Middle and Late Pleistocene mud deposits in the north and central North Sea (Cameron et al., 1987).

Essential information about pollen-spore taphonomy in marine settings, based on quantitative analyses of pollen-spore distribution patterns in recent marine sediment, has been reported from various regions. The main pathway of the dominant pollen transport to the ocean in most of the studied areas is interpreted to be fluvial discharge from major rivers (cf. Mudie, 1982), since:

- the pollen content in suspended sediment from some large estuaries is more similar to that of the watershed region than that of the shoreline vegetation (cf. Muller, 1959; Groot, 1966).
- *Pinus* pollen is concentrated in plumes on the seabed offshore major rivers (Cross et al., 1966; Heusser and Balsam, 1977).
- rivers contain high concentrations of pollen, even in arid regions (Heusser, 1978).
- pollen samplers on ships at sea have captured no or very low numbers of pollen grains (Muller, 1959; Faegri and Iversen, 1964).

However, in regions with a principal offshore wind direction and few large rivers aeolian pollen transport to the ocean can be more important than fluvial transport. This situation pertains along the western North Atlantic coast between c.
38° -55° N (Mudie, 1992; Mudie and McCarthy, 1994) and off Northwest Africa (Melia, 1984; Hooghiemstra, 1988). In the nearshore region (0.1-5 km from the coastline) along the western North Atlantic coast the annual pollen input is estimated to be derived from fluvial (56*10^{12} grains cm^{-2}), aerial (24*10^{14} grains cm^{-2}), marine tides (365 grains cm^{-2}) and recycling (12 grains cm^{-2}) (Mudie and McCarthy, 1994). In this area the pollen-spore concentrations are approximately one order of magnitude lower than corresponding average values for the vegetation formations bordering the coastline (Mudie 1982). Farther offshore (5 km offshore to the shelfbreak), pollen and spore concentrations decrease more gradually with distance from land (Mudie, 1982). The data indicates that pollen-spore abundance decreases offshore exponentially and that annual influx occurs regardless of proximity to large rivers (Mudie, 1982; Mudie and McCarthy, 1994). The input from ice rafting is considered negligible in this region, which is not the case in the Arctic Ocean pack-ice belt, where river runoff is considered the main source of ice-rafted detritus (Mudie and Matthiessen, 1988).

The fresh-water discharge of the Orinoco river, northernmost South America is comparable to that of the combined North Sea/Baltic System in contributing more than 2% of the total world run-off to the ocean, (cf. Baumgartner and Reichel, 1975; Otto et al., 1990). Offshore the Orinoco delta the pollen depositional pattern, as offshore eastern Canada, indicates gradually decreasing pollen concentrations with distance from land (Muller, 1959). Offshore Orinoco, however, the large delta acts as the major pollen transport agency by its discharge of water (Muller, 1959). In sediment from the fluvio-deltaic plain, the pollen assemblages show an over-representation of pollen from local swamp vegetation due to restricted transport facilities. The offshore pollen assemblages, however, are characterised by a uniformly mixed supply (Muller, 1959).

Polymodal pollen distribution patterns are recognised along the NE Pacific coast of US, where as off the Orinoco river, pollen concentrations clearly reflect the influence of fluvial input of pollen (Heusser, 1978; 1988). In the NE Pacific Ocean pollen concentrations are lower on the shelf, higher on the slope and rise and minimal in the basins, indicating pollen bypass of the outer shelf. Nevertheless, continental slope sediments off California contain pollen assemblages reflecting vegetation formations onshore and comprise lower pollen concentrations by a factor of 10 than sediments off the mouths of major rivers, or by a factor of 100 in estuaries and other sedimentary basins onshore (Heusser, 1988).

The calculated modern fluvial input of mud to the North Sea is of greater importance than the aeolian input (McCave, 1973; Eisma and Kalf, 1979, 1987) and it appears most likely that during most of the Quaternary the bulk of pollen and spores was transported to the North Sea by fluvial discharge.
The depositional situation in the North Sea during a large part of the Quaternary is potentially favourable for making correlations between onshore and central North Sea pollen data. The majority of the fluvial pollen load from large rivers settles near the river mouths and during the Cenozoic massive delta expansion occurred in the North Sea (Zagwijn, 1979, 1989). Sediment carried by the Rhine and the Meuse is an essential part of both the deltaic deposits in the North Sea (e.g. Cameron et al., 1993b) and the fluvial deposits in the Graben areas of the Netherlands (Doppert et al., 1975), in which the Dutch composite stratigraphy is based. During the later part of the Early Pleistocene and early part of the Middle Pleistocene the depocentres of the Great European Delta prograded northwards to a position within the central North Sea (cf. Gibbard, 1988; Cameron et al., 1993a; Funnel, 1996). The evidence that pollen assemblages in sediment offshore fluvial outlets is a reflection of the whole catchment area rather than only the shoreline vegetation (cf. Muller, 1959; Groot, 1966) further increases the potential for pollen-based regional marine-terrestrial correlations.

During transport, pollen taxa may be sorted due to different size or density. Identification of these differences in behaviour is of importance when interpreting marine pollen assemblages. For instance, pollen from *Picea* and *Pinus* are well adapted to long-distance transport by wind and water. Their frequency in recent shelf and slope sediments nevertheless reflects that of the main tree species onshore (Mudie and McCarthy, 1984). Both marine distribution patterns (Mudie, 1982) and a positive correlation of pine pollen abundance with precipitation and stream runoff (Heusser, 1988) suggest that *Pinus* are selectively transported seaward particularly in fluvial discharge from large rivers. Poaceae, Cyperaceae, Asteraceae, *Quercus*, *Abies*, *Alnus* and *Betula* tend to decrease abruptly beyond coastal waters and to maintain relatively low, somewhat irregular values on the slope and rise (cf. Mudie, 1982; Heusser, 1988).

During glacial periods, reworked palynomorphs incorporated in glacial and glaciofluvial sediment dominate onshore as well as offshore pollen assemblages. This precludes attempts to evaluate the contemporaneous vegetation. However, the pollen data can help to detect the source of the glacigenic sediment supply. Earlier studies of North Sea sediment have proved that it is possible to make a subdivision of pollen assemblages rich in reworked pre-Quaternary palynomorphs and from that an interpretation of the sediment source (Zagwijn and Veenstra, 1966).

Pollen spectra with high values of pre-Neogene palynomorphs from Quaternary North Sea sediment are considered to reflect a British origin (Zagwijn and Veenstra, 1966). Such spectra are reported from marine sediment from East Anglia (West et al., 1994) and the British sector of the southern (Cameron et al., 1984) as well as the central North Sea (Jansen et al., 1979a; Ekman, 1994). High frequencies of pre-
Neogene forms are also present in glacial sediments with erratic assemblages of British origin exemplified by a diamicton from the Fladen Ground (Sejrup et al., 1987; Ekman & Scourse, 1993) and in boulder clay deposits from the Dogger Bank area (cf. Zagwijn and Veenstra, 1966).

Assemblages with high amounts of Neogene taxa have been attributed to glacial erosion by the Scandinavian ice, e.g. of Miocene Brown Coal Sands in the German Bight (Zagwijn and Veenstra, 1966). In the Netherlands and Northwest Germany fine-grained glacigenic deposits onshore e.g. of the Saalian and the Elsterian are characterised by rather high amounts of reworked Neogene pollen (Van Gijzel et al. 1959; Polak, 1963; Menke, 1968; Zagwijn, 1973) while Pre-Neogene palynomorphs are underrepresented (De Jong, 1981).

QUATERNARY POLLEN BIOSTRATIGRAPHY IN THE CENTRAL NORTH SEA - SHORT SUMMARY OF PAPERS

Paper I is a study of Late Weichselian to Early Holocene glaciomarine and marine sediments in a 6-m-long British Geological Survey vibrocore (56+01/170). The sediments are from the Devil's Hole area (Fig. 1) and belong to the Forth Formation (Fig. 4; cf. Stoker et al., 1985). Besides the foraminiferal, pollen and AMS 14C data presented in the study, amino acid (Knudsen and Sejrup, 1993) and ostracod data (Penney, 1990) exist for the core.

The sediment accumulation began c. 15.7 14C ka BP (extrapolated from the sedimentation rate based on the overlying AMS dates) on an erosional surface on overconsolidated Saalian sediment (cf. Stoker et al., 1985; Jensen and Knudsen, 1988). When the lower part of the core (facies 1) accumulated the core area was c. 40 m lower than present. This interpretation is based on two assumptions; 1) that the sediment is now about 20 m above that of global sea level at the time of deposition (cf. Fairbanks, 1989), and 2), that the marine microfaunal content reflects a water depth of about 20 m at that time (Fig. 5). Crustal downflexure caused by Late Weichselian glacial loading of the core area is considered as the most plausible explanation. Glacial overriding would also explain the overconsolidation of, and the erosional surface on, the underlying Saalian sediment, and the absence of Weichselian sediment older than about 15.7 14C ka BP at the core site.

Indications of a regressional minimum within the marine microfaunas at 50 cm depth in the vibrocore (just below an unconformity with a minimum age of about 12.1 14C ka BP) suggest that the Devil's Hole area was glaciated during the...
Fig. 5. 14C ages ($\pm 2\sigma$) from core 56+01/170 and the estimated age of its base (15.7 \ (+0.9) \ ^{14}$C ka BP) compared with the Barbados sea-level curve (Fairbanks, 1989). The position of the borehole shows that in comparison with the sea-level curve the sediment at core base must have been at least 20 m lower to allow marine sedimentation. In addition, foraminiferal and ostracod data (in the box) indicate a water depth of approximately 20 m during deposition. Thus, the seabed must have been ca. 40 m lower than at present. This is interpreted as an effect of previous glacial loading.

Weichselian (cf. Jansen, 1976; Ehlers and Wingfield, 1991; Cameron et al., 1993b). The fall in sea level at that time probably reflects that local isostatic rebound exceeded the global eustatic rise (cf. Fairbanks, 1989). The uppermost 10 cm of sediment contains an interglacial pollen flora correlated with onshore pollen assemblages from the Boreal Chronozone (sensu Mangerud et al., 1974).

Paper II presents a pollen stratigraphy, subdivided into eight pollen assemblage zones (I-VIII), from the 200 m deep BGS borehole 81/26 from the Fladen
Ground (Figs. 1 and 6). Pollen stratigraphical data support previous interpretations of this core based on a multidisciplinary study (Sejrup et al., 1987), including foraminiferal, chemical and grain-size analysis and amino acid and palaeomagnetic measurements. Pollen zones II to IV, which occur below the Bruhnes/Matuyama boundary are interpreted to correlate with the Bavelian complex and possibly two interglacial stages within that, the Bavel and Leerdam interglacials. A pronounced peak of the Early Pleistocene dinocyst *Habibacysta tectata* (Harland, 1995) in zone II, was erroneously determined as the nymphaeid taxon *Brasenia*. *Habibacysta tectata* is interpreted to have occurred most abundantly during mild - to cool-temperate conditions (cf. Head, 1994). Pollen zones V to VIII indicate predominantly cold conditions.

Paper III describes the palynomorph content of Early and Middle Pleistocene sediments from the 140 m deep BGS borehole 81/29 from the Devil's Hole area, taken at the same time and site as the vibrocore presented in paper I (Fig. 1). The pollen stratigraphy is subdivided into eight pollen assemblage zones (A-H). The Early Pleistocene sequence in 81/29 is interpreted as predominantly of Bavelian age and is correlated with the pollen stratigraphy from borehole 81/26 (paper II); it also supports a previous foraminiferal correlation (Jensen and Knudsen, 1988). The overlying Middle Pleistocene sequence in 81/29 reflects a climatic amelioration of interstadial or interglacial status. Pollen assemblages from Saalian sediments in the uppermost part of the core indicate that the site of 81/29 received a strong influx of reworked material of British origin.

In **paper IV** a pollen stratigraphy from the 229 m deep BGS borehole 81/34 from the Devil's Hole area is presented (Fig. 1), in which twelve pollen assemblage zones are identified (1-12). The observation of massulae from *Azolla filiculoides* in sediment with reversed polarity at the base of 81/34 indicates an age younger than the Olduvai geomagnetic event for the entire sequence. The Early Pleistocene sediments were at least partly deposited in the vicinity of a river outlet and can be correlated either with the Eburonian or the Menapian cold stage and with the Bavel interglacial and the Linge glacial within the Bavelian stage in the Dutch stratigraphy. The Middle Pleistocene sequence contains an interval rich in *Abies, Picea* and *Pinus*, probably deposited during the end of either Cromerian Complex interglacial IV (Noordbergum) or possibly the Holsteinian. The uppermost 80 m of the core contains high frequencies of pre-Quaternary and deteriorated palynomorphs indicating extensive glacial or glaciofluvially reworked sediment.
Fig. 6. Pollen percentage diagram, 81/26.
Fig. 7. Pollen-based correlations of Middle Pleistocene sediments in the Devil's Hole sequences 81/29 and 81/34 and the Fladen Ground sequences 81/26 and TP1-4. A and B intervals are characterised by a pollen composition rich in pre-Neogene respectively Neogene palynomorphs and interpreted to indicate the influence of glacial debris eroded by the British respectively Scandinavian ice sheet. C intervals are characterised by high to relatively high values of non-arboreal pollen (NAP) and/or spores from mosses and ferns indicating an open landscape. D intervals are clearly dominated by pollen from boreal tree taxa indicating cool-temperate climatic conditions. The uppermost A intervals are possibly of Saalian age and the B intervals of Elsterian age.
In paper V two Middle Pleistocene sequences from the Fladen Ground, 81/26 and TP1-4 (Jansen and Hensey, 1981), and two from the Devil's Hole area (81/29 and 81/34) are correlated on the basis of pollen biostratigraphy (Figs. 1 and 7). The pollen stratigraphies are compared, with reference taken to existing borehole and seismic data. The result (Fig. 7) is an attempt to generalise the schematic Middle Pleistocene stratigraphy of the central North Sea. The most pronounced influence of reworked pre-Quaternary sediments is identified in an upper interval, rich in pre-Neogene palynomorphs, and in a lower interval, rich in Neogene palynomorphs. This change can be related to Middle Pleistocene glacial periods. The pollen content in the younger interval (Fig. 7) indicates a British provenance, possibly correlated with the Saalian stage. The pollen content in the older interval indicates derivation from the Scandinavian ice sheet, and may correlate with the Elsterian stage. The pollen stratigraphies between these two intervals reflect a vegetational transition from dwarf shrub heaths and peatlands towards boreal forests, possibly followed by a return to a more open landscape. This pollen stratigraphical succession is best preserved in the Devil's Hole sequences. In the Fladen Ground the upper part of the sequence may have been glacially eroded. The Devil's Hole sequences are probably underlain by deltaic deposits of the Cromerian Complex and earlier.

In paper VI the Early Pleistocene parts of the 81/29, 81/34 and 81/26 pollen profiles are correlated through pollen biostratigraphy and with reference to pre-existing palaeomagnetic data. The profiles are also correlated with the pollen-based Dutch composite stratigraphy where a good correlation with the geomagnetic polarity time scale exists. Comparisons are drawn between existing palaeoenvironmental reconstructions from marine microfossil data from the profiles and from the Dutch pollen stratigraphy (Fig. 8). The Devil's Hole sequences are interpreted as younger than the Olduvai geomagnetic event as massulae of the freshwater fern *Azolla filiculoides*, a species that did not appear before that event (Gibbard et al., 1991, cf. Bertelsen, 1972), is present in a reversed polarity sequence. Similar maximum age interpretation can be drawn for the Fladen Ground borehole. Considerable freshwater influx at the base of all three pollen profiles can probably be related to delta progradation from the south during Early Pleistocene times. In the Devil's Hole sequences, elevated frequencies of pre-Quaternary spores are also registered in the upper part of this freshwater-influenced interval, indicating onshore erosional activity, probably glaciation. This interval is interpreted as of Menapian age, a stage during which increased delta progradation in the North Sea and the first Quaternary regional glaciation occurred in NW Europe. An hiatus in the Devil's Hole vicinity separates the
Fig. 8. Suggested model for environmental changes in the central North Sea during the late part of the Early Pleistocene in NW Europe. * = interpretations based on the pollen content.

Menapian interval from a sequence correlated with the latest part of the Bavel interglacial (Bv5) i.e., in the upper part of the Jaramillo geomagnetic event (cf. Zagwijn and De Jong, 1984). Marine microfossil assemblages in the latter interval indicate subarctic-arctic conditions (Harland, 1988; Jensen and Knudsen, 1988; Penney, 1990; Knudsen and Sejrup, 1993) and in the Fladen Ground sequence a pollen
flora indicates extensive glacial reworking. The succeeding Linge Glacial is present above the Bavel interval. During the earlier phase of this glacial stage strong fluvial discharge at first influenced the Devil's Hole area after which calm arctic to high arctic marine conditions prevailed, as indicated by the marine microfossil data (Jensen and Knudsen, 1988; Penney, 1990) in a depositional environment influenced by meltwater from the British ice sheet. The later part of the Linge glacial in the Devil's Hole area contains pollen spectra indicating glaciofluvial influences from the Scandinavian ice sheet and foraminiferal assemblages indicating ameliorated climatic conditions (Jensen and Knudsen, 1988).

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor Dr. Lars Ronnert, Göteborg, and my assistant supervisor Dr. James Scourse, School of Ocean Sciences, Bangor (UK), for inestimable support during the thesis work and in particular considerable improvements of all text written in this thesis. The empathic and emphatic help given on a daily basis by Lars has been invaluable for the thesis work reaching an end. James Scourse's deep knowledge concerning Quaternary marine shelf science, pollen stratigraphy and Northwest European stratigraphy has been most valuable for the thesis work. Thank you!

My North Sea studies started as an initiative by Dr. Per Wedel and his support has helped me to keep going. Dr. Karen Luise Knudsen, University of Aarhus, introduced me to Quaternary North Sea stratigraphy and the many problems related to the study of this topic. Initially my advisor was Dr. Krister Svedhage who previously had taught me, as undergraduate student, the basics of pollen analysis. Per Karlsson made the foraminiferal analysis in paper I and chose not to be an emboider of fame as a co-author. Dr. Rodney Stevens has taught me a lot concerning the nomadic life and burial manners of clay- and silt-sized particles. Mats Nyborg, Jonas Hellsbom and Eva Anckar have cured malfunctioning computers. During a visit to Harleem, The Netherlands, Dr. J. De Jong, Rijks Geologisch Dienst, shared with me parts of his long experience of Northwest European (including North Sea) pollen stratigraphy, providing a frame for my future studies. To all these persons I am very grateful. There are furthermore many others that have contributed with both time and knowledge than those mentioned here or in the separate papers and on a daily basis the discussions with colleagues at the department have been of high importance. Thank you.

The Department of Geology at University of Göteborg and previously also at Chalmers University of Technology have provided the practical prerequisites for the
work especially concerning instrumental equipment. Professor Sven Åke Larson and Professor emeritus K.-Gösta Eriksson have, as heads over the department, supported my work through the years.

Financial support has been provided by the University of Göteborg (doctoral research scholarship), the Swedish Natural Science Research Council, Adlerbertska fund of Research, Paul and Marie Berghaus' donationsfund, and the Th. Nordström's foundation.

I wish to express my gratitude to the British Geological Survey for placing the investigated core material at my disposal.

It is my happiness to inscribe this thesis to my loved wife Ingrid and sons Anton and Nils. The two latter have greatly improved my simultaneous capacity. Thank you.

REFERENCES

Bijslma, S. 1981. Fluvial sedimentation from the Fennoscandian area into the North-West European Basin during the Late Cenozoic. *Geologie en Mijnbouw* 60, 337-345.

De Jong, J. 1988. Climatic variability during the past three million years, as indicated by vegetational evolution in northwest Europe with emphasis on data from the Netherlands. *Philosophical Transactions of the Royal Society of London B* 318. 603-617.

På grund av upphovsrättsliga skäl kan vissa ingående delarbeten ej publiceras här. För en fullständig lista av ingående delarbeten, se avhandlingens början.

Due to copyright law limitations, certain papers may not be published here. For a complete list of papers, see the beginning of the dissertation.