• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Graduate School
  • Master theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning in Portfolio Optimization: A Comparative Study of Hierarchical Risk Parity and Traditional Allocation Methods

Abstract
The Hierarchical Risk Parity (HRP) is an asset allocation technique, using clustering algorithms and machine learning to obtain and optimize the return and risk of a portfolio. This report evaluates the HRP approach in relation to more conventional allocation techniques used for decades, such as the minimum variance, equal weight and inverse variance. The context of the portfolio technique comparison is conducted in the Swedish stock market, more specifically the OMX Stockholm GI index. The time frame of the reports is taking account of the last 20 years, a time period that has experienced several financial crises, recessions and depressions, such as the financial crisis in 2008 and the covid crisis in 2022. All industries in the OMX index have been evaluated, in addition with sector specific and crisis specific analyses. The results, aligning with existing previous research in the field of HRP of Lopez de Prado (2016), indicate numerous advantages with the HRP approach. In several areas existing the HRP has outperformed conventional optimization methods in following areas, such as robustness, risk reduction, return increment. The HRP advocates and provides an optimal balance between risk mitigation and return, even in the circumstances of crises and sector specific environments.
Degree
Master 2-years
Other description
MSc in Accounting and Financial Management
URI
https://hdl.handle.net/2077/89411
Collections
  • Master theses
View/Open
AFM 2025-4.pdf (3.733Mb)
Date
2025-08-21
Author
Olsson, Alexander
Akkaya, Johannes
Keywords
Hierarchical Risk Parity
Machine Learning
Asset Allocation
Risk Diversification
Investor Welfare
Portfolio Management
Series/Report no.
2025:4
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV