• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Faculty of Science and Technology / Fakulteten för naturvetenskap och teknik
  • Department of Physics / Institutionen för fysik
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • View Item
  •   Home
  • Faculty of Science and Technology / Fakulteten för naturvetenskap och teknik
  • Department of Physics / Institutionen för fysik
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning from Data and Physics for Multiscale Modeling of Woven Composites

Neural Networks for Predicting the Mechanical Behavior of Woven Composites with Limited Data and Physical Insights

Abstract
Developing new composite materials with enhanced properties relied on a long trial-and-error process, requiring extensive mechanical testing and deep knowledge about fundamental phenomena and constituent interactions. While analytical micromechanical models have successfully predicted the effective properties of heterogeneous materials with idealized microstructures, computational methods and increased computing power have made it possible to overcome simplifying assumptions. This allows for considering realistic microstructures with complex behaviors and interactive effects of multiple scales on the effective composite behavior. Despite these advances, simulations of complex multiscale heterogeneous materials, like woven composites, and the transitions from microscale to macroscale still demand significant computational resources, making their integration into fast, practical user codes a persistent challenge. Data-driven surrogate models based on neural networks address the computationally demanding challenge but often suffer from high data requirements, limited interpretability, and poor extrapolation capabilities. This dissertation explores the intersection of multiscale material analysis and neural networks, aiming to develop a generalized model that can infer woven composites' meso- and macroscale behavior from general load conditions and micromechanical constitutive properties. Several neural network-based surrogate models are designed to serve as efficient alternatives to conventional homogenization techniques, enabling fast and scalable predictions across scales for both elastic and elasto-plastic conditions. A key focus of this work is to lower the barriers to applying deep learning in multiscale material modeling. To achieve this, strategies are investigated to reduce the required training data while maintaining high-fidelity representations of time-dependent material behavior. Additionally, efforts are made to embed fundamental material constitutive laws directly into neural network architectures. This approach not only follows computational homogenization for woven composites but also enables extrapolation beyond training data while enhancing the explainability of path-dependent network predictions. Given the interdisciplinary nature of these contributions, the thesis includes introductions that provide the necessary theoretical background for a deeper understanding of the appended papers.
Parts of work
Ghane, E., Fagerström, M., and Mirkhalaf, M.* A multiscale deep learning model for elastic properties of woven composites, International Journal of Solids and Structures, vol. 282, p. 112452, 2023. DOI: https://doi.org/10.1016/j.ijsolstr.2023.112452
 
Ghane, E., Fagerström, M., and Mirkhalaf, M.* Recurrent neural networks and transfer learning for predicting elasto-plasticity in woven composites, European Journal of Mechanics-A/Solids, vol. 107, p. 105378, 2024. DOI: https://doi.org/10.1016/j.euromechsol.2024.105378
 
Ghane, E.*, Fagerström, M., and Mirkhalaf, M. Multi-fidelity data fusion for in-elastic woven composites: combining recurrent neural networks with transfer learning, Composites Science and Technology, 2025. https://doi.org/10.1016/j.compscitech.2025.111163
 
Ghane, E.*, Maia, M. A., Rocha, I. B. C. M., Fagerström, M., and Mirkhalaf, M. Multiscale analysis of woven composites using hierarchical physically neural networks, arXiv preprint, arXiv:2503.04901, 2025. DOI: https://doi.org/10.48550/arXiv.2503.04901
 
Degree
Doctor of Philosophy
University
Univeristy of Gothenburg
Institution
Department of Physics ; Institutionen för fysik
Disputation
Onsdagen den 23 den 23,05,2025 kl. 13:00 i PJ Salen, Institutionen för fysik, Origovägen 6, Göteborg
Date of defence
2025-04-23
E-mail
ehsan.ghane@gmail.com
URI
https://hdl.handle.net/2077/85666
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
View/Open
Thesis (2.381Mb)
Cover (562.2Kb)
Spikblad (97.66Kb)
Date
2025-04-03
Author
Ghane, Ehsan
Keywords
Woven composites, Multiscale modeling, Data-driven surrogate, Physics-encoded Neural networks
Publication type
Doctoral thesis
ISBN
978-91-8115-217-3 (PDF)
978-91-8115-216-6 (PRINT)
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV