• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • View Item
  •   Home
  • Sahlgrenska Academy / Sahlgrenska akademin
  • Institute of Clinical Sciences / Institutionen för kliniska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diffusion MRI for tumor microstructure imaging using VERDICT modeling

Abstract
VERDICT is a method which uses a mathematical model that provides estimates of microstructural tumor tissue parameters based on diffusion-weighted MRI data. It is a promising imaging method for non-invasive in vivo evaluation of whole-tumor tissue. However, model assumptions may introduce systematic errors in parameter estimates. The aim of this thesis was to assess the use of VERDICT for tumor tissue evaluation and investigate the impact of model assumptions on parameter estimates, as well as to develop and evaluate methods addressing accuracy issues related to some of these assumptions. The standard clinical approach for evaluating tumor treatment response is by measuring changes in gross tumor volume. However, such changes can be slow, and methods sensitive to microstructural changes may detect response earlier. Paper I investigates the use of VERDICT parameters for radiation treatment response assessment and shows that early parameter changes correlate with treatment outcome. Histological analysis remains the gold standard for assessing tumor microstructure, but tumor heterogeneity limits biopsy representativeness. Paper II explores the use of VERDICT for whole-tumor tissue classification as a potential complement to histology. The work shows that multidimensional cluster analysis of VERDICT parameters enables classification of distinct tumor tissue types. Model assumptions can introduce systematic errors in parameter estimates. Paper III investigates the effect of assumptions related to extracellular–extravascular diffu-sion and presents a Monte Carlo-based model which explicitly accounts for diffusion time dependence. Paper IV investigates the impact of including compartment-specific T2 relaxation in the model, in contrast to uniform T2 relaxation across compartments as assumed in conventional VERDICT. These works show that model assumptions can significantly influence parameter estimates and present methods to mitigate their effects. In conclusion, the results of this thesis highlight the importance of accurate model assumptions in VERDICT, and demonstrate the model’s potential for non-invasive, whole-tumor evaluation of tumor tissue in various applications.
Parts of work
I. VERDICT MRI for radiation treatment response assessment in neuroendocrine tumors. Lundholm L, Montelius M, Jalnefjord O, Forssell-Aronsson E, Ljungberg M. NMR in Biomedicine, 2022; 35(6):e4680. https://doi.org/10.1002/nbm.4680
 
II. Cluster analysis of VERDICT MRI for cancer tissue characterization in neuroendocrine tumors. Lundholm L, Montelius M, Jalnefjord O, Schoultz E, Forssell-Aronsson E, Ljungberg M. NMR in Biomedicine, 2025; 38 (6):e70050. https://doi.org/10.1002/nbm.70050
 
III. A Monte Carlo-derived model of extracellular diffusion in solid tumors. Lundholm L, Montelius M, Jalnefjord O, Forssell-Aronsson E, Ljungberg M. Manuscript
 
IV. Effect of echo time on VERDICT MRI parameter estimation in brain tumors. Lundholm L, Jalnefjord O, Montelius M, Laesser M, Olsson Bontell T, Corell A, Jakola AS, Björkman-Burtscher I, Ljungberg M. Manuscript
 
Degree
Doctor of Philosophy (Medicine)
University
University of Gothenburg. Sahlgrenska Academy
Institution
Institute of Clinical Sciences. Department of Medical Radiation Sciences
Disputation
Fredagen den 13 juni 2025, kl. 13.00, Hjärtats Aula, Sahlgrenska Universitetssjukhuset, Blå stråket 5, Göteborg
Date of defence
2025-06-13
E-mail
lukas.lundholm@gu.se
URI
https://hdl.handle.net/2077/85352
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kliniska vetenskaper
View/Open
Abstract (119.2Kb)
Thesis Frame (2.421Mb)
Cover (2.386Mb)
Date
2025-05-20
Author
Lundholm, Lukas
Keywords
cancer
histology
Monte Carlo
radiation therapy
treatment response
clustering
biophysical modeling
Publication type
Doctoral thesis
ISBN
978-91-8115-254-8 (PRINT)
978-91-8115-255-5 (PDF)
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV