Show simple item record

dc.contributor.authorPochekai, Mykola
dc.date.accessioned2024-10-22T12:38:59Z
dc.date.available2024-10-22T12:38:59Z
dc.date.issued2024-10-22
dc.identifier.isbn978-91-8069-959-4 (PRINT)
dc.identifier.isbn978-91-8069-960-0 (PDF)
dc.identifier.urihttps://hdl.handle.net/2077/83361
dc.description.abstractHodge theory, in its broadest sense, encompasses the study of the decomposition of cohomology groups of complex manifolds, as well as related fields such as periods, motives, and algebraic cycles. In this thesis, ideas from Hodge theory have been incorporated into two seemingly unrelated projects, namely mathematical mirror symmetry and combinatorics. Papers I-II explore an instance of genus one mirror symmetry for the complete intersection of two cubics in five-dimensional projective space. The mirror family for this complete intersection is constructed, and it is demonstrated that the BCOV-invariant of the mirror family is related to the genus one Gromov-Witten invariants of the complete intersection of two cubic. This proves new cases of genus one mirror symmetry. Paper III defines Hodge-theoretic structures on triangulations of a special type. It is shown that if a polytope admits a regular, unimodular triangulation with a particular additional property, its $\delta$-vector from Ehrhart theory is unimodal.sv
dc.language.isoengsv
dc.relation.haspartPaper I. Pochekai, M. Geometry of the mirror models dual to the complete intersection of two cubics, https://doi.org/10.48550/arXiv.2311.15103sv
dc.relation.haspartPaper II. Eriksson, D., Pochekai, M. Genus one mirror symmetry for intersection of two cubics in P^5, https://doi.org/10.48550/arXiv.2410.08897sv
dc.relation.haspartPaper III. Pochekai, M., Chow rings of unimodular triangulations, https://doi.org/10.48550/arXiv.2303.07218sv
dc.subjectHodge theorysv
dc.subjectmirror symmetrysv
dc.subjectperiodssv
dc.subjectPicard-Fuchs equationsv
dc.subjectcombinatorial Hodge theorysv
dc.subjectEhrhart theorysv
dc.titleHodge Theory in Combinatorics and Mirror Symmetrysv
dc.typeText
dc.type.svepDoctoral thesiseng
dc.gup.mailpochekai@chalmers.sesv
dc.type.degreeDoctor of Philosophysv
dc.gup.originUniversity of Gothenburg. Faculty of Science.sv
dc.gup.departmentDepartment of Mathematical Sciences ; Institutionen för matematiska vetenskapersv
dc.gup.defenceplaceDen 14 november 2024 kl. 13 i Pascal, Institutionen för matematiska vetenskaper, Chalmers tvärgata 3, Göteborg.sv
dc.gup.defencedate2024-11-14
dc.gup.dissdb-fakultetMNF


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record