• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science and Technology / Fakulteten för naturvetenskap och teknik
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper
  • Redigera dokument
  •   Startsida
  • Faculty of Science and Technology / Fakulteten för naturvetenskap och teknik
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical approximation of mixed dimensional partial differential equations

Sammanfattning
In this thesis, we explore numerical approximation of elliptic partial differential equations posed on domains with a high number of interfaces running through. The finite element method is a well-studied numerical method to solve partial differential equations, but requires alterations to handle interfaces. This can result in either unfitted or fitted methods. In this thesis, our focus lies on fitted methods. From finite element methods, one obtains large linear systems that need to be solved, either directly or via an iterative method. We discuss an iterative method, which converges faster when using a preconditioner on the linear system. The preconditioner that we utilise is based on domain decomposition. In Paper I, we consider this kind of partial differential equation posed on a domain with interfaces, and show existence and uniqueness of a solution. We state and prove a regularity result in two dimensions. Further, we propose a fitted finite element approximation and derive error estimates to show convergence. We also present a preconditioner based on domain decomposition that we use together with an iterative method, and analyse the convergence. Finally, we perform numerical experiments that confirm the theoretical findings.
URL:
https://hdl.handle.net/2077/76317
Samlingar
  • Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper
Fil(er)
Thesis frame (1.255Mb)
Spikblad (250.7Kb)
Datum
2023
Författare
Mosquera, Malin
Nyckelord
Finite element method, mixed dimensional partial differential equation, a priori error analysis, subspace decomposition, preconditioner
Publikationstyp
licentiate thesis
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV