• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Faculty of Science and Technology / Fakulteten för naturvetenskap och teknik
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper
  • View Item
  •   Home
  • Faculty of Science and Technology / Fakulteten för naturvetenskap och teknik
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical approximation of mixed dimensional partial differential equations

Abstract
In this thesis, we explore numerical approximation of elliptic partial differential equations posed on domains with a high number of interfaces running through. The finite element method is a well-studied numerical method to solve partial differential equations, but requires alterations to handle interfaces. This can result in either unfitted or fitted methods. In this thesis, our focus lies on fitted methods. From finite element methods, one obtains large linear systems that need to be solved, either directly or via an iterative method. We discuss an iterative method, which converges faster when using a preconditioner on the linear system. The preconditioner that we utilise is based on domain decomposition. In Paper I, we consider this kind of partial differential equation posed on a domain with interfaces, and show existence and uniqueness of a solution. We state and prove a regularity result in two dimensions. Further, we propose a fitted finite element approximation and derive error estimates to show convergence. We also present a preconditioner based on domain decomposition that we use together with an iterative method, and analyse the convergence. Finally, we perform numerical experiments that confirm the theoretical findings.
URI
https://hdl.handle.net/2077/76317
Collections
  • Licentiate Thesis / Licentiatuppsatser Institutionen för matematiska vetenskaper
View/Open
Thesis frame (1.255Mb)
Spikblad (250.7Kb)
Date
2023
Author
Mosquera, Malin
Keywords
Finite element method, mixed dimensional partial differential equation, a priori error analysis, subspace decomposition, preconditioner
Publication type
licentiate thesis
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV