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ABSTRACT 

 

The extracellular neurochemistry determines normal brain function and the faith of neurons 
after insults such as stroke. This thesis concerns the effect of extracellular events related to 
intense neuronal stimulation and stroke, i.e. over-activation of glutamate-receptors and 
dramatically decreased extracellular Ca2+-concentrations, on efflux of neurotoxic and 
neuroprotective substances. The use of cultured slices of rat hippocampus enabled parallel 
analysis of efflux in combination with determination of delayed nerve cell death after brief (5 
min) overactivation of NMDA-receptors or omission of extracellular Ca2+ for 15 min. Efflux 
by NMDA-receptor stimulation was selective and dominated by N-acetylaspartate, the 
antioxidant glutathione, phosphoethanolamine, taurine and hypotaurine. The efflux induced 
by concentration at and above 60 µM NMDA was paralleled by delayed neurotoxicity 24 h 
later. The efflux pathway is still unknown but does not appear to involve hemichannels, the 
Ca2+-calmodulin dependent kinase II or NO-synthesis.  
 
Efflux activated by omission of extracellular Ca2+ for 15 min caused an efflux pattern from 
cultured slices that was dominated by glutathione but lacked N-acetylaspartate, indicating 
efflux originating from glial cells. This efflux was blocked by gap junction blockers, 
carbenoxolone, flufenamic acid and endothelin-1, which indicated efflux from activated so 
called hemichannels (half gap junctions). The involvement of hemichannels was further 
strengthened by the inhibitory effect of a mimetic/blocking peptide for Cx43, the major 
connexin-protein in astroglial cells. Inhibitors of other putative channels, the P2X7-receptor 
and pannexin hemichannels, were without effect. Volume regulated channels were probably 
not involved as hypertonic medium did not reduce the efflux stimulated by omission of 
extracellular Ca2+. The efflux was mainly of glial origin as cultured slices in which neurons 
had been degenerated showed similar efflux pattern by omission of Ca2+. These results 
together showed that omission of extracellular Ca2+ activate opening of glial connexin 
hemichannels. Omission of extracellular Ca2+ did not induce delayed nerve cell death as long 
as glutamate uptake was intact. However, using glutamate uptake blockers revealed that 
opening of glial hemichannels resulted in glutamate efflux which caused delayed 
neurotoxicity and efflux of N-acetylaspartate, i.e. effects similar to that induced by NMDA-
receptor overactivation. In another set of experiments the efflux induced by Ca2+-omission 
from primary astroglial cultures was characterized. Using inhibitors for P2X7-receptors, gap 
junctions and connexin hemichannels demonstrated efflux of the neuroprotective substance 
adenosine via connexin hemichannels. It was also shown that curcumin, an agent which 
activate a transcription factor which in turn induce transcription of a multi-fold of antioxidant 
genes, dramatically increase both efflux and intracellular levels of glutathione.  
 
The main finding of the work is that opening of astroglial connexin hemichannel cause efflux 
of neuroprotective substances. However, opening of hemichannels in conditions with reduced 
capacity for glutamate uptake, such as stroke, can cause additional neurotoxicity.  
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

 
Hjärnan är det mest komplexa biologiska struktur vi känner till och dess funktion är till stora 
delar fortfarande okänd. En sak vet man dock, den normala hjärnans funktion är till stor del 
beroende av den kemiska sammansättningen av den vätska som finns i det extracellulära 
utrymmet, det vill säga i mellanrummet mellan cellerna i hjärnan. Även om det oftast är 
nervceller man förknippar med hjärnans funktion, är det faktiskt en annan celltyp det finns 
flest av, nämligen astrocyterna. Astrocyter tillhör en grupp celler som går under benämningen 
gliaceller. Ordet glia kommer från det grekiska ordet för lim och länge trodda man att 
astrogliacellerna var ”limmet” som höll ihop nervcellerna. Idag vet man att astrocyter fyller 
många fler funktioner än så. Det har till exempel visats sig att astrocyterna kan hjälpa till att 
förse nervcellerna med näring och att de kan känna av och svara på ändringar i 
nervcellsaktivitet runt sig. En speciell egenskap som astrocyterna har, är att de är 
sammankopplade i stora nätverk med hjälp av så kallade gap junction. Dessa kanaler, som 
utgörs av proteiner vid namn connexiner, möjligör transport av många viktiga ämnen och 
signalmolekyler mellan cellerna. Det finns även connexinkanaler som inte binder samman 
celler utan öppnar sig ut mot det extracellulära utrymmet. Dessa halva gap junctions kallas för 
hemikanaler.     
 
Denna avhandling fokuserar på hur den extracellulära kemin påverkas av situationer som kan 
uppkomma vid stroke och vid intensiv neuronal signalering, närmare bestämt överaktivering 
av glutamatreceptorer i hjärnan och låga halter av extracellulärt kalcium. Vi har genom 
studier på odlade hjärnskivor visat att stimulering av glutamatreceptorer av NMDA-typ ger ett 
kraftigt utflöde av antioxidanten glutation, den neuronspecifika aminosyran N-acetylaspartat 
och ett flertal andra aminosyror. Stimulering av NMDA-receptorer orsakade en fördröjd skada 
på neuronen i hjärnskivorna och graden av cellskada 24 h efter försöket korrelerade intressant 
nog med utflödet av glutation och N-acetylaspartat. När vi utsatte de odlade hjärnskivorna 
eller odlade astrocyter för drastiskt reducerade kalcium-nivåer extracellulärt fann vi återigen 
ett utflöde av glutation och flera aminosyror. Däremot ökade inte utflödet av N-acetylaspartat 
från hjärnskivorna, vilket tyder på att utflödet främst kommer från astrocyterna. Behandlingen 
orsakade ingen cellskada. Däremot när hjärnskivorna utsattes för minskat extracellulärt 
kalcium samtidigt som astrocyternas glutamat-återupptagsmaskineri hämmats, orsakade 
behandlingen en cellskada som liknade den som uppkom 24 h efter stimulering av NMDA-
receptorerna. En kraftig ökning av de extracellulära glutamatkoncentrationerna kunde också 
påvisas. Utflödet som orsakades av låga extracellulära kalciumnivåer blockerades av 
antagonister mot gap junction kanaler och beror till största sannolikhet på öppning av halva 
gap junctions, hemikanaler. 
 
Frisättning av glutation har visat sig ha nervskyddande egenskaper. Det är möjligt att 
hemikanalsöppning och frisättning av glutation kan vara ett sätt att hjälpa neuronen att klara 
sig under situationer av oxidativ stress. Vi har visat att man kan öka både de intracellulära 
mängderna och frisättningen av glutation med hjälp av curcumin som finns i gurkmeja. 
Astrocyterna frisätter även ett annat ämne med skyddande egenskaper vid lågt extracellulärt 
kalcium, nämligen adenosin. Dessa resultat leder till slutsatsen att hemikanalsöppning kan ha 
en skyddande effekt på nervceller genom att förse dem med glutation och adenosin. Om 
astrocyternas funktion däremot är störd och de inte kan ta upp glutamat lika effektivt som 
normalt, kan hemikanalsöppning och glutamatutflöde leda till överaktivering av NMDA-
receptorer och nervcellsdöd.  
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INTRODUCTION 

 

Cellular organisation of the central nervous system 

The brain is the most complex biological structures we know about today. It is composed of 

several different cell types, all of which are vital to the proper function of the brain. There are 

two classes of cells in the brain, nerve cells and glia cells. Neurons constitute the main 

signalling units, but the most abundant cells in the brain are the glia cells. 

 

The glial cells can be divided into three different classes with diverse functions. The 

oligodendrocytes are the myelin-producing cell, responsible for insulating the axons and 

ensuring a fast and correct signal transmission. The microglia are the immunocompetent cells 

of the central nervous system (CNS) and can be described as sensors of pathological events 

(Kreutzberg 1996). Normally, microglia reside in a resting state and are engaged in 

monitoring the extracellular space. They can rapidly become activated in response to changes 

in their microenvironment caused by for instance viral and bacterial infections and physical 

injuries (Raivich 2005). Pathological activation of microglia has implicated in a wide range of 

conditions such as cerebral ischemia, Alzheimer's disease, prion diseases and multiple 

sclerosis, for review see (Nakamura 2002).   

 

Astrocytes 

The third class of glial cells consists of the most abundant cells in the brain, the astrocytes. 

They are estimated to represent over 50% of the total cell number in the cerebral cortex of 

mammals (Bass et al. 1971; Tower and Young 1973). Astrocytes were named after the stellate 

structure revealed by staining for the astrocytic cytoskeletal protein glial fibrillary acidic 

protein (GFAP). Recent studies using microinjection of dye into single astrocytes have 

uncovered a rather different appearance. In fact, astrocytes are more bush-like than star-

shaped, with many fine protrusions arranged in specific domains. These microdomains are 

arranged with minimal overlap between different astrocytes (Bushong et al. 2002; 

Wilhelmsson et al. 2004).   

 

The word glia originates from the greek word for glue and the glial cells was originally 

described as the cement that holds the neurons together in the brain. Now it is known that the 

astrocytes perform an array of different functions in the brain and the list of functions 

assigned to astrocytes is growing rapidly. The astrocytes in the brain do not constitute one 
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homogenous population. Instead, several studies suggest the existence of subpopulations of 

cells with different electrophysiological characteristics, glutamate receptor expression and gap 

junction coupling (Matthias et al. 2003; Steinhauser et al. 1992; Wallraff et al. 2004).  

 

The astrocytic network 

Astrocytes have been shown to form large networks via gap junctions (Binmoller and Muller 

1992; Dermietzel et al. 1991; Fischer and Kettenmann 1985; Rouach et al. 2002a). Due to the 

extensive gap junctional coupling between these cells, it has been suggested that astrocytic 

functions should be viewed from the perspective of groups of communicating cells instead of 

single cells acting on their own (Giaume and McCarthy 1996). Functions assigned to this 

network include transport of energy substrates from the blood-brain interface to the brain 

parenchyma (Giaume et al. 1997; Morgello et al. 1995) and propagation of Ca2+-waves. 

Intracellular Ca2+-oscillations are a vital part of the astrocytes intra- /intercellular signalling 

system and can be elicited either spontaneously (Aguado et al. 2002; Parri et al. 2001) or by a 

number of triggering factors including mechanical stimuli and activation of metabotropic 

glutamate receptors (Chen et al. 1997; Deitmer et al. 1998; Venance et al. 1997; Zur Nieden 

and Deitmer 2006). The intracellular Ca2+-oscillations is propagated in the astrocytic network 

either by diffusion of the intracellular second messenger molecule inositol triphosphate 

(Sanderson et al. 1994) or by an extracellular pathway triggered by for example connexin 

dependent  ATP-release (Cotrina et al. 1998). These Ca2+-oscillations functions as the 

molecular mechanism for integration within the astroglial syncytium and between glial and 

neuronal circuits. Ca2+-signals travelling within astrocytes can for instance link neuronal 

activity to local circulation by triggering release of vasoactive compounds from astrocytic 

end-feet on to brain capillaries (Mulligan and MacVicar 2004; Zonta et al. 2003).     

 

A role in the dissipation and homeostasis of K+ ions has also been suggested as a main 

function of the astroglial syncytium (Orkand et al. 1966; Rose and Ransom 1997; Walz 2000). 

The importance of gap junctions in K+ buffering have however been questioned since mice 

lacking coupled astrocytes still show a large capacity for K+ redistribution (Wallraff et al. 

2006).  

 

Astrocytes form contacts with microvessels in the brain via specialized structures called 

perivascular endfeet. These structures are an important part in the formation and regulation of 

the blood brain barrier as thoroughly reviewed by Abbott (Abbott 2005). The endfeet express, 
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for instance, the potassium channel Kir 4.1 and the water transport channel aquaporin 4 

(AQP4), proteins that presumably take part in the process of activity dependent volume 

regulation (Nagelhus et al. 2004; Price et al. 2002).  

 

Astrocytes are in contact with both the brain vasculature and the neurons and appear to take 

an active part in supplying energetic metabolites to neurons in several different ways. The 

astrocytes have, in light of their extensive intercellular coupling, been suggested to operate as 

an metabolic syncytium by sharing their glucose and energetic intermediates, including lactate 

(Tabernero et al. 1996). This metabolic network is regulated by the gap junctional 

permeability of the cells and with that, factors that affect gap junctional coupling also affects 

metabolic trafficking (Giaume et al. 1997).   

 

Chemical interaction between astrocytes and neurons 

Glutamate and glutamine 

The extracellular concentration of glutamate must be kept under strict control to avoid over- 

activation of glutamate receptors which can result in excitotoxicity, i. e. nerve cell death 

following uncontrolled ion influx via glutamate receptors. Astrocytes, which have their 

processes closely wrapped around glutamatergic synapses, reduces the extracellular glutamate 

concentration by an efficient up take machinery consisting of at least two glutamate 

transporters. The glutamate transporters predominantly expressed by glia are GLAST/EAAT1 

and GLT-1/EAAT2, for review see (Gegelashvili and Schousboe 1998), with GLT-1 being 

the dominant transporter in the mature brain (Guillet et al. 2002). A large proportion of the 

glutamate is then converted to glutamine by the astrocyte specific enzyme glutamine 

synthetase (Martinez-Hernandez et al. 1977). Since glutamine is not neuroactive, it can be 

released to the extracellular space where it serves as a primary neuronal glutamate precursor 

(Broer and Brookes 2001).  In addition to preventing excitotoxic damage to the neurons, this 

rapid removal of extracellular glutamate is important to keep the signal to noise ratio high 

during glutamatergic signalling.   

 

Astroglial glutamate transporters usually operates to clear the extracellular space of 

glutamate, but during periods of elevated extracellular K+ the transporters can reverse their 

operation and instead release glutamate (Szatkowski et al. 1990). Reversal of glutamate 

carriers is thought to contribute substantially to the extracellular glutamate that accumulates 

during severe brain ischemia (Rossi et al. 2000).  
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Lactate 

Another mechanism by which astrocytes contribute to neuronal metabolism is described by 

Magistretti and co-workers and is coupled to astrocytic glutamate uptake. In short, glutamate 

uptake, stimulated by neuronal firing, causes the intracellular Na+ levels to increase due to the 

fact that glutamate is cotransported with Na+. The increase in intracellular Na+ activates the 

Na+ / K+ -ATPase and the pump fuelled by ATP provided by membrane-bound glycolytic 

enzymes triggers glycolysis, i.e. glucose utilization and lactate production (Pellerin and 

Magistretti 1994). Lactate is then released from the astrocytes, presumably via the 

monocarboxylate transporter MCT-1, and taken up by the neurons via MCT-2 (Broer et al. 

1997). The neurons metabolize the lactate into pyruvate that enters the mitochondria to serve 

as an energy fuel.  

 

Glutathione  

Glutathione (γ-Glu-Cys-Gly) is the major water soluble antioxidant in the brain. Its reducing 

capacities was described in already 1921 (Hopkins 1921) and the tripeptide structure was 

resolved almost decade later by Ben Nicolet (Nicolet 1930). It is present in the brain in 

millimolar concentrations and is distributed among all cells type. Glutathione exists in a 

reduced form (GSH) and an oxidized, dimeric form (glutathione disulfide, GSSG). In the 

brain, the predominant form is reduced glutathione with a ratio of 99:1 (GSH:GSSG) (Cooper 

et al. 1980; Folbergrova et al. 1979).   

 

Synthesis of glutathione  

In the cells, glutathione is synthesized in two steps by the action of two consecutive enzymes. 

First glutamate and cysteine is linked to form the dipeptide γ-glutamylcysteine (γ-GluCys). 

This step is carried out by γ-GluCys-synthetase. In the next step γ-GluCys is combined with a 

glycine in a reaction catalyzed by glutathione synthetase to form glutathione. Both of the 

enzymes in the process use ATP as a cosubstrate. Synthesis of glutathione is regulated by a 

feedback loop where glutathione inhibits the γ-GluCys-synthetase, thus ensuring that 

synthesis and consumption is in balance (Richman and Meister 1975). The transcription of the 

enzymes involved in glutathione synthesis is controlled by the nuclear factor E2-related 

factor-2 (Nrf2), which in turn can be activated by dietary compounds such as curcumin, 

sulforaphane and resveratrol (see further below). 
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Extracellular glutathione  

Glutathione is present in the extracellular space in concentrations in the low micromolar range 

(Yang et al. 1994) and it has been shown in co-culture experiments that presence of astrocytes 

can increase neuronal glutathione (Bolanos et al. 1996). Glutathione synthesis depends on the 

intracellular availability of its building blocks, glutamate, glycine and cysteine. These amino 

acids are not present at high concentrations outside the cells due to the fact that both 

glutamate and glycine are neurotransmitters and that cysteine in high concentrations can have 

neurotoxic effects (Janáky et al. 2000). Glycine also functions as a co-agonist of the NMDA-

receptor and potentiates NMDA-receptor mediated responses (Johnson and Ascher 1987). 

Since astrocytes and neurons preferentially use different substrates for their glutathione 

synthesis astrocytes are able to support the neuronal synthesis by exporting glutathione. 

Astrocytes prefer to use glutamate and cystine as glutathione precursors, in contrast to 

neurons that rely on extracellular cysteine and glutamine (Dringen and Hamprecht 1998; 

Dringen et al. 1999; Kranich et al. 1998; Kranich et al. 1996; Sagara et al. 1993). This 

differential use of precursors makes it possible for astrocytes to produce glutathione without 

competing for substrate with the neurons and then release it to the extracellular space. In the 

extracellular space, glutathione is converted by the ectoenzyme γ-Glutamyl transpeptidase to 

the dipeptide CysGly and a γ-Glutamyl peptide (Meister et al. 1981; Tate and Meister 1974). 

Data suggest that the CysGly dipeptide generated by γ-Glutamyl transpeptidase activity serves 

as a precursor for neuronal glutathione synthesis (Dringen et al. 1999), but whether it is the 

dipeptide itself that is taken up by the neurons or if it is hydrolyzed in the extracellular space 

by a neuronal ectopeptidase to cysteine and glycine is not fully known. Astrocytes also 

contribute with the other substrate for neuronal glutathione synthesis by their release of 

glutamine. 

 

Glutathione as an antioxidant 

Glutathione is a very important of the cellular defence against accumulation of reactive 

oxygen species. It can react directly with radicals such as superoxide radical anions, nitric 

oxide or hydroxyl radicals via non-enzymatic processes (Clancy et al. 1994; Singh et al. 1996; 

Winterbourn and Metodiewa 1994). It can also function as an electron donor in the reduction 

of peroxides, a reaction catalyzed by glutathione peroxidases (Chance et al. 1979). The final 

product of oxidation of glutathione is glutathione disulfide (GSSG). Glutathione disulfide is a 

substrate for the enzyme glutathione reductase. This enzyme transfers electrons from NADPH 

to GSSG, thus regenerating glutathione.  
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Glutathione as a neuromodulator 

Glutathione is considered as a possible neurohormone (Guo et al. 1992; Janaky et al. 1999) 

based on the fact that it is present in the extracellular space and that it binds specifically to 

extracellular receptors in the brain (Guo and Shaw 1992; Lanius et al. 1994), which appear to 

be linked to Na+ ionophores as glutathione causes Na+-dependent depolarization in the 

neocortex in vitro (Shaw et al. 1996). It has also been shown that glutathione is an 

endogenous ligand of glutamate receptors with capability of modulating central excitability 

(Ogita et al. 1995; Regan and Guo 1999; Steullet et al. 2006). With these data in mind, 

glutathione might be added to the list of glia-derived transmitters as have been suggested for 

glia-derived glutamate, D-serine and ATP/adenosine (Martin et al. 2007; Miller 2004; Vesce 

et al. 2001; Volterra and Steinhauser 2004).  

 

Glutathione in redox regulation 

The redox state of a cell is determined by the balance of its oxidizing components and its 

reducing equivalents. It is important for the cell to keep the concentrations of reactive oxygen 

species, free radicals and other oxidants low to avoid oxidative damage to proteins, lipids and 

nucleic acids. However, below their toxic threshold, reactive oxygen species, free radicals and 

other oxidants may have signalling functions, for review see (Gabbita et al. 2000). This often 

includes oxidative changes of kinases and phosphatases, which in turn may affect 

transcription factors leading ultimately to a changed expression profile. One example of such 

oxidation-mediated signalling is the Nrf2-ARE system discussed in a section below. 

 

Glutathione and the Nrf2-ARE system 

The production of reactive oxygen species is an inevitable consequence of cellular 

metabolism and can lead to DNA damage and protein and lipid oxidation. To counteract these 

deleterious effects, animal cells have developed several defence mechanisms including phase 

II detoxification enzymes and antioxidant proteins. The antioxidant responsive element (ARE) 

is a regulatory element found in the promoter regions of several genes encoding so called 

phase II detoxification enzymes and antioxidant proteins, including NAD(P)H, quinine 

oxidoreductase, glutathione-S-transferases and glutamate-cysteine ligase (Mulcahy et al. 

1997; Rushmore et al. 1990).  
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The cytosolic transcription factor Nrf2 is under normal conditions kept in an inactive state by 

binding to the cytoskeleton-associated protein Keap1 (Itoh et al. 1999; Kobayashi et al. 2002). 

The interaction between Nrf2 and Keap1 can be antagonized by electrophilic agents 

suggesting that the Nrf2-Keap1 complex is capable of sensing oxidative stress (Itoh et al. 

1999). Once released from the inhibition by Keap1, Nrf2 is translocated from the cytosol to 

the nucleus where it binds to the ARE-sites (Alam et al. 1999; Moi et al. 1994). Keap1 also 

have an important role in terminating the Nrf2 mediated transcription. Keap1 has been shown 

to translocate into the nucleus independently of Nrf2 and terminates transcription by escorting 

Nrf2 out of the nucleus (Sun et al. 2007). In the cytosol, Keap1 targets Nrf2 for proteosomal 

degradation by binding to it and recruiting the complex into the E3 ubiquitine-ligase complex 

for ubiquitination (Stewart et al. 2003; Sun et al. 2007). This intricate signalling system is 

highly conserved in vertebrate cells (Kobayashi et al. 2002). 

 

Glutathione and Nrf2 activating agents 

Several plant derived substances have been shown to activate the Nrf2-ARE system. Keap1 is 

rich in cysteine residues, which contain sulfhydryl groups (Itoh et al. 1999), and therefore it is 

likely that the mechanism of many of the Nrf2 inducers act by separating Nrf2 from Keap1 by 

reacting with these cysteine residues. Curcumin, the bioactive component of turmeric 

(Curcuma longa), have been shown to potently induce Nrf2-mediated transcription (Balogun 

et al. 2003). In the same study, similar effects were seen by another natural antioxidant, 

caffeic acid phenetyl ester (CAPE). Both these substances contain electrophilic, unsaturated 

carbonyl groups that are capable of reacting with thiols and curcumin is able to relieve 

inhibition mediated by Keap1 in a coexpression model (Balogun et al. 2003). Two other plant 

derived Nrf2 inducers are resveratrol, found in grapes, and sulforaphane, found in broccoli 

(Chen et al. 2005; Kraft et al. 2004; Thimmulappa et al. 2002). Both sulforaphane and 

curcumin have been proven efficient when it comes to reduce cellular damage after ischemic 

insults, a condition known to cause increased levels of oxidative stress (Al-Omar et al. 2006; 

Wang et al. 2005; Zhao et al. 2006).        

   

Transport of glutathione by multidrug resistance proteins 

Multidrug resistance proteins (Mrps) are ATP-driven export pumps that mediate export of 

organic anions (Kruh and Belinsky 2003). Mrps fulfil several essential transport functions, 

depending on the expressing cell type. Typical Mrp substrates include glutathione-S-

conjugates, glutathione disulfide (GSSG), conjugates of glucuronate cyclic nucleotides and 
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nucleotide analogues (Homolya et al. 2003; Konig et al. 1999; Kruh and Belinsky 2003). 

There is substantial evidence for expression of Mrp1 (Decleves et al. 2000; Hirrlinger et al. 

2001) and Mrp3-5 (Ballerini et al. 2002; Hirrlinger et al. 2002a) in astrocytes, both in vivo and 

in cultures. In astrocytes Mrp1 but not Mrp5, have been shown to mediate export of GSH and 

GSSG (Hirrlinger et al. 2001; Hirrlinger et al. 2002b; Minich et al. 2006).  

 

Adenosine 

Adenosine is a neuromodulator with many effects in the brain. It has been shown to increase 

in the extracellular space during pathological conditions such as epileptic activity (Dunwiddie 

1999), hypoglycemia  and hypoxia /ischemia (Hagberg et al. 1987; Rudolphi et al. 1992; 

Schubert et al. 1994). Most of the effects of adenosine are conveyed via 4 main receptor 

subtypes in combination with different intracellular transducing pathways (Fredholm et al. 

2001) that in turn have effects on diverse targets, from ion channels to gene transcription. The 

experiments so far have mainly been focused on effects of adenosine on neurons and its 

neuroprotective actions via presynaptic A1 adenosine receptors (Arrigoni et al. 2005; Fowler 

1990). Ischemic preconditioning involves adenosine signalling and the reduction in ischemic 

injury was found to be mediated by A1-receptor activation (Heurteaux et al. 1995). During 

hypoxia, astrocytes have been shown to release adenosine. This downregulates the synaptic 

activity via the A1 adenosine receptor, a mechanism proposed to be neuroprotective during 

transient hypoxia (Martin et al. 2007). 

 

Recent studies suggest that not only neurons, but glial cells as well, are affected by activation 

of adenosine receptors. For example, astroglial reactivity that follows different disorders can 

be induced via activation of A2a receptors (Brambilla et al. 2003). Likewise microglial 

activation and production of cytokines such as TNF-α can be reduced via these receptors 

(Boucsein et al. 2003).  

 

N-acetylaspartate 

The amino acid derivative N-acetylaspartate is a substance first discovered in the brain of rats 

in 1956 (Tallan et al. 1956). It is a divalent anion at physiological pH and is mainly located in 

the central nervous system with small amounts detected in the peripheral nervous system. The 

highest concentration (up to 10 mM) is found in mammalian and avian brain while the 

concentrations in the peripheral nervous system and retina are five-fold lower (Miyake and 

Kakimoto 1981; Nadler and Cooper 1972). It has been shown to be located primarily in 
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neurons, but a small fraction is found in oligodendrocytes (Koller and Coyle 1984; Moffett et 

al. 1991; Nadler and Cooper 1972). The concentrations of N-acetylaspartate increase 

uniformly throughout the brain and the peripheral nervous system during development 

(Florian et al. 1996; Koller and Coyle 1984; Miyake and Kakimoto 1981; Tallan 1957). The 

function of N-acetylaspartate in the brain is elusive, but several theories and suggestions have 

been made. These suggestions include functions as a myelin precursor  (D'Adamo et al. 1968; 

D'Adamo and Yatsu 1966), energy substrate (Mehta and Namboodiri 1995), neuromodulator 

and/or neurotransmitter (Akimitsu et al. 2000), N-acetylaspartylglutamate precursor (Baslow 

2000) and osmoregulator (Baslow 2002). In spite of the lack of conclusive functional data, it 

is interesting to note that the levels of N-acetylaspartate have been shown o be decreased after 

stroke, in Alzheimer´s disease, multiple sclerosis and Huntington´s disease as well as a 

number of other neuropathologies (Tsai and Coyle 1995). Efflux of N-acetylaspartate has 

been reported in microdialysis studies after anoxia (Sager et al. 1999). N-acetylaspartate 

efflux has also been detected after depolarisation and in hypoosmotic medium (Davies et al. 

1998; Taylor et al. 1994), but the efflux pathways have not been resolved. 

 

Efflux pathways that contribute to extracellular neurochemistry 

Ca2+ -dependent vesicular release 

Vesicular release of glutamate and other transmitters is the main release pathway in neurons. 

Vesicular release of transmitters from glial cells has been a more controversial topic. 

However, Ca2+-dependent release of glutamate have been reported from both cultured 

astrocytes and acute hippocampal slices (Bezzi et al. 1998; Parpura et al. 1994). In addition, 

recent findings show that glutamate can stimulate exocytotic release of ATP from cultured 

astrocytes (Pangrsic et al. 2007). Intracellular elevation of Ca2+ was shown to be sufficient 

and necessary to cause glutamate release (Parpura et al. 1994). Incubation of the cells with 

either the Ca2+-chelator BAPTA (Araque et al. 1998; Bezzi et al. 1998), or thapsigargin 

(Araque et al. 1998), an inhibitor of a Ca2+- ATPase specific for internal stores, led to a 

reduction in the evoked release of glutamate indicating that Ca2+ release from internal stores 

is the predominant source of Ca2+ in this type of release. Ca2+-dependent release is in neurons 

mainly associated with SNARE-dependent vesicular release and there is evidence of such a 

release machinery in astrocytes as well. Astrocytes express SNARE proteins known to 

mediate exocytosis such as synaptobrevin II, syntaxin I and cellubrevin (Parpura et al. 1995) 

as well as vesicular glutamate transporters (VGLUTs) and vacuolar H+-ATPase (Fremeau et 

al. 2002). 
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Swelling induced opening of anion-channels 

Several different anion channels have been linked to swelling induced release of amino acids, 

inorganic anions and ATP. The most studied of these channels are the volume-regulated anion 

channels (VRACs), a type of anion channel found in essentially all cells. Although the 

channels, also termed volume-sensitive outwardly rectifying (VSOR) Cl-
 channels or volume-

sensitive organic osmolyte and anion channels (VSOAC),are well characterized biophysically, 

the molecular identity of these proteins is still not known (Nilius and Droogmans 2003; 

Okada 2006). The most uniform feature of these channels is the characteristic outwardly 

rectifying chloride current that develops in cells swollen by exposure to hypotonic media, for 

references see (Jentsch et al. 2002; Okada 1997; Strange et al. 1996). Astrocyte swelling have 

been shown to cause efflux of glutamate, aspartate and taurine via VRACs (Kimelberg et al. 

1990) and this has led to a hypothesis stating that this efflux reduce intracellular osmolarity 

and thereby swelling via water efflux. However, this process can contribute to excitotoxicity 

during pathologies characterized by marked astrocytic swelling, such as stroke and closed 

head trauma (Feustel et al. 2004; Kimelberg 1995). The intracellular pathways regulating the 

activity of these channels are poorly understood, but a recent study suggest the involvement of 

ATP and two protein kinase C (PKC) isoforms in regulating VRAC function and efflux of 

glutamate from cultured astrocytes (Rudkouskaya et al. 2008). 

 

P2X7 receptors 

Astrocytes express a multitude of receptors and among them are purine receptors of the P2X7-

type (Kukley et al. 2001).  P2X7 receptors are activated by extracellular ATP and upon 

activation, they open large channels (North and Surprenant 2000). These channels are 

permeable to substances up to 900 Da, but the permeability characteristics of P2X7-receptors 

seem to vary with the expressing cell type. In some cell types the receptors allows only 

passage of smaller molecules or exhibit ion selectivity (Markwardt et al. 1997; Soltoff et al. 

1992; Surprenant et al. 1996). It has been shown that activation of  P2X7-receptors can result 

in release of ATP from C6 glioma cells (Suadicani et al. 2006) and glutamate from cultured 

astrocytes (Duan et al. 2003). Another feature of the P2X7-receptors is the response 

amplification observed in low divalent cation medium (Bianchi et al. 1999; North and 

Surprenant 2000). Recent studies suggest a close association of P2X7-receptors and pannexin 

hemichannels (Locovei et al. 2007; Pelegrin and Surprenant 2006). This could in part explain 

the very different permeability characteristics seen in different P2X7 expressing cell types.      
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Connexin hemichannels 

Hemichannels or connexons are the terms used for unpaired gap junction channels. They are 

composed of hexamers of connexin subunits and in their open state they connect the 

intracellular space of the cell with the extracellular surroundings. The connexin gene family 

consists of 20 members in rodents (Willecke et al. 2002) and the most prevalent form in 

vertebrate tissues is Cx43 (Goodenough et al. 1996). In mammalian brain at least eight 

connexins have been identified and the predominant astroglial forms are Cx43 and Cx30 

(Nagy and Rash 2000; Rouach et al. 2002a; Theis et al. 2005). The major oligodendroglial 

connexin is Cx32 (Nagy and Rash 2000)  and microglia have been reported to express Cx36 

(Dobrenis et al. 2005) and Cx43 (Eugenin et al. 2001). The latter form of connexin is, 

however, only detected after microglial activation by interferon-γ and lipopolysaccharide or 

tumor necrosis factor-α (TNF-α) (Eugenin et al. 2003; Eugenin et al. 2001) and is not detected 

when microglia is co-cultured with astrocytes (Faustmann et al. 2003; Rouach et al. 2002b).  

 

Connexin hemichannels have a large pore diameter (~ 1,2 nm) that allows diffusion of 

substances up to 1 kDa. Substances that have been shown to pass through connexin 

hemichannels include several cytosolic metabolites and signalling molecules, such as ATP, 

glutamate, glutathione, prostaglandin E2 and NAD (Bruzzone et al. 2001; Cherian et al. 2005; 

Cotrina et al. 1998; Rana and Dringen 2007; Stout et al. 2002; Ye et al. 2003). In a recent 

study, glucose and glucose derivatives was added to the list of substances that permeate Cx43 

channels, as shown by uptake of a fluorescent glucose-derivate (Retamal et al. 2007a).  

 

Since connexin hemichannels are large, relatively unselective pores that connect the cytosol to 

the extracellular space, uncontrolled and/or prolonged opening of such channels could have 

detrimental effects on cell survival. The opening of such channels must therefore be strictly 

regulated. A number of regulatory mechanisms have been found, including closure by high 

concentrations of extracellular divalent cations, in particular Ca2+ (Contreras et al. 2003; 

Valiunas and Weingart 2000). Opening probability is increased by positive membrane 

potentials (Contreras et al. 2003), metabolic inhibition (Contreras et al. 2002; John et al. 

1999), reduced cellular redoxpotential (Retamal et al. 2006; Retamal et al. 2007b) and, most 

recently, the proinflammatory cytokines TNF-α. and IL1-β (Retamal et al. 2007a). 

Intracellular pH is another factor influencing the opening of hemichannels. Intracellular 

acidification causes closure of hemichannels (Trexler et al. 1999) and the mechanism behind 
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this effect is a direct pH-dependent effect on the C-terminus of the Cx43 subunit (Duffy et al. 

2004; Hirst-Jensen et al. 2007).  

 

Both hemichannels and gap junction channels consisting of Cx43 are regulated by 

phosphorylation and it seems like the Cx43 subunits exist in three different states, non-

phosphorylated, Cx43-P and Cx43-PP (Cooper and Lampe 2002). Phosphorylation of 

connexin has been suggested to close hemichannels and this suggestion is supported by a 

recent study that shows the involvement of PKC in regulating size selectivity in Cx 

hemichannels (Bao et al. 2007). 

 

Pannexin hemichannels 

The most recent player in the field of efflux pathways from astrocytes are pannexin 

hemichannels or pannexons.  Pannexins were discovered to be the mammalian orthologs of 

the invertebrate gap junction protein innexin (Baranova et al. 2004; Panchin et al. 2000) and 

have been proposed to be able to form gap junction channels (Bruzzone et al. 2003; Vanden 

Abeele et al. 2006). Connexin and pannexin show no sequence homology, but share several 

structural features (Panchin et al. 2000). The tissue expression of pannexin and connexin 

overlap considerably (Baranova et al. 2004; Bruzzone et al. 2003; Ray et al. 2005). 

   

One feature that distinguish pannexin hemichannels from their connexin counterpart is that 

pannexin channels have been shown to lack gating by extracellular Ca2+ (Bruzzone et al. 

2005). Whether the pannexins are regulated by phosphorylation like the connexins is not 

known. However, both pannexin (Panx) 1 and 3 have been shown to be N-linked 

glycosylated, a post-translational modification not reported for any of the connexins (Penuela 

et al. 2007). The presence of complex carbohydrates on the extracellular-loop regions of these 

pannexins can be predicted to interfere with formation of intercellular channels. This, taken 

together with the failure to form robust intercellular channels when transiently expressed in 

N2A cells (Penuela et al. 2007) and lack of evidence of gap junction formation other than in 

the paired oocyte  expression system, point towards other functions for the pannexins than 

those of the connexins. One suggestion is that rather than being a redundant system of gap 

junction proteins, they exert a physiological function as hemichannels (Dahl and Locovei 

2006) . Hemichannels composed of pannexins is mechanosensitive and can mediate efflux of 

ATP and interleukin-1β (Bao et al. 2004; Pelegrin and Surprenant 2006). Opening of Panx1 



 21

hemichannels have also been implicated in the neuronal death after ischemia (Thompson et al. 

2006).  

 

Voltage dependent anion channels (VDACs) 

The presence of large conductance anion channels (>400 pS) have been described in the 

plasma membrane of cultured astrocytes (Sonnhof 1987) and cultured rat Schwann cells 

(Bevan et al. 1984) that resembles the type of voltage-dependent anion channels found 

predominantly in the outer mitochondrial membrane. At least one type of plasmalemmal 

VDAC (BR1-VDAC) have been identified on astrocytes in situ in bovine brain (Dermietzel et 

al. 1994). VDACs have been shown to release ATP after cell swelling (Sabirov et al. 2001), 

but seems to not be involved in the swelling-induced release of excitatory amino acids 

(Abdullaev et al. 2006). 

 

NMDA-receptor mediated anion efflux 

Microdialysis studies have shown that during certain pathological conditions, such as 

ischemia, deep hypoglycaemia and prolonged epilepsy, the efflux of the anionic amino acid 

phosphoethanolamine increase (Hagberg et al. 1985; Lehmann 1987; Sandberg et al. 1986b). 

In an in vitro setup this efflux was shown to be parallel to efflux of another organic anion, 

glutathione, and was found to be dependent on NMDA-receptor activation and extracellular 

calcium (Wallin et al. 1999). The pathway mediating this efflux is not known.    

 

Cystic fibrosis transmembrane conductance regulator (CFTR)  

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-gated Cl--

channel that belongs to the ATP binding cassette protein superfamily. It is expressed in 

cultured astrocytes (Ballerini et al. 2002) and has been associated with facilitated extracellular 

transport of ATP (Schwiebert 1999). Function of the CFTR in CNS is poorly understood, but 

this channel type is permeable to larger organic anions as well as Cl- and has been suggested 

to mediate export of glutathione in airway epithelial cells (Linsdell and Hanrahan 1998). An 

interesting discovery is the interaction between gap junction communication and CFTR 

activation (Chanson et al. 1999; Chanson and Suter 2001). 
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AIMS 

 

The extracellular neurochemistry determines normal brain function and the faith of the 

neurons after insults such as stroke. This thesis concerns the effect of extracellular events 

related to intense neuronal stimulation and stroke, i.e. over-activation of NMDA-receptors 

and dramatically decreased extracellular Ca2+-concentrations, on cellular efflux pathways of 

neurotoxic and neuroprotective substances.  

 

The specific aims of the thesis were: 

 

I: To investigate the temporal and chemical efflux profiles caused by NMDA-receptor over-

activation and reduced extracellular Ca2+-concentrations from cultured hippocampus slices. 

 

II: To investigate the cellular origin of the efflux by analysis of the neurospecific amino acid 

N-acetylaspartate and by using neurodegenerated cultured hippocampus slices and primary 

astrocyte cultures. 

 

III: To investigate if hemichannels are involved in the stimulated efflux.  

 

IV: To investigate if hemichannel opening by reduced extracellular Ca2+-concentrations is 

neurotoxic  

 

V: To investigate how basal and stimulated efflux of glutathione relate to changes in 

intracellular levels 
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METHODS 

 

Organotypic hippocampus cultures (Paper I and II) 

Organotypic cultures of hippocampal tissue were prepared using the interface method 

according to Stoppini (Stoppini et al. 1991). In brief, hippocampi of eight to nine days old 

Sprague-Dawley rat pups were dissected and cut in 400 µm thick slices using a McIlwain 

tissue chopper. The slices were transferred to a Petri dish containing Gey´s balanced salt 

solution with 0.45 g/l of D-glucose. Four slices were put on a porous membrane insert 

(Millicell CM; Bedford, MA, USA) in 6-well plates with 1.3 ml culture medium. Slices were 

cultured for 12-14 days at 36 ºC in a humidified atmosphere containing 5% CO2 and 95% air. 

Culture medium, 1.2 ml, was changed twice a week. Slice cultures with a low number of 

neurons were prepared by incubating slice cultures with 300 µM NMDA for 24 h three to four 

days prior to efflux experiments. The slices were cultured in medium containing Basal 

medium Eagle and Earl’s basal salt solution (50 and 20 %, respectively), horse serum (23 %), 

penicillin/streptomycin (25 U/ml), L-glutamine (1 mM) and D-glucose (41.6 mM). 

 

Comments: 

Organotypical hippocampal cultures can be kept alive, with preserved cytoarchitecture, for 

several weeks (Bahr 1995; Gahwiler et al. 1997). This stability makes the model suitable for 

studies of prolonged events (i.e., days to weeks) such as synaptogenesis, excitotoxicity and 

slow degenerative processes associated with aging and age-related disorders. Aditionally, it is 

easy to gain access to the cells with different pharmacological tools. The cultured slices have 

been shown to resemble the adult in vivo hippocampus in many aspects. For instance, they 

maintain their glutamate receptors and other synaptic components such as synaptophysin and 

NCAMs as well as structural and cytoskeletal components for at least up to 30 days in culture 

(Bahr et al. 1995). However, in some aspects they show a more immature/different phenotype 

than in vivo. It has been shown that they retain a more immature pattern of lactate 

dehydrogenase isozymes (Schousboe et al. 1993) and this might suggest an incomplete 

transition from anaerobic to aerobic glycolysis. They also lack the developmental increase in 

N-acetylspartate seen in vivo (Baslow et al. 2003). Concerning the glial cells in the cultured 

slice it is important to note that the astrocytes do not retain their layer-specific distribution 

(Derouiche et al. 1993) as shown by staining for glutamine synthetase. In vivo, the staining is 

layer-specific and perisynaptic with the highest immunoreactivity found in well-defined 

termination zones of glutamatergic hippocampal afferents. This distribution is not present in 
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cultured hippocampal slices, which might indicate that the laminated organisation of 

glutamine synthetase expression is in the hippocampus is dependent on neuronal activity. The 

oligodendrocytes have a distribution and phenotype corresponding to the in vivo situation 

(Berger and Frotscher 1994).        

 

Primary astrocyte cultures (Paper III and IV) 

Primary cultures of astrocytes were prepared from the hippocampi of newborn (P1-P2) 

Sprague-Dawley rats as described previously (Hansson et al. 1984; Nodin et al. 2005). In 

brief, the rats were decapitated and the hippocampi were carefully dissected. The tissue was 

mechanically passed through a nylon mesh (80 µm mesh size) into culture medium consisting 

of minimum essential medium (MEM) supplemented to the following composition: 20% (v/v) 

fetal calf serum, 1% penicillin-streptomycin, 1.6 times the concentrations of amino acids and 

3.2 times the concentration of vitamins (in comparison to MEM), 1.6 mM L-glutamine, 

7.15 mM glucose and 48.5 mM NaHCO3. The cells were grown in 35 mm wells at 37°C in a 

humidified atmosphere of 95% air and 5% CO2. The medium was changed after three days in 

culture and thereafter three times per week. Cells were used after 14–19 days in culture when 

a confluent monolayer had been formed. For the efflux experiments the cells were cultured in 

35 mm Petri dishes. 

 

Comments: 

Primary cultures are cell cultures prepared directly from animal tissues. The cells are 

harvested from newborn animals and it is therefore important to recognize that the results 

obtained using these cultures probably reflect the immature phenotypes of the cells. The cells 

are grown in medium which contains fetal bovine serum, containing an undefined mixture of 

growth factors, which may also influence the cells to retain their immature properties. In the 

case of astroglial cell cultures, the degree of reactivity must also be considered. The 

preparation of the cell cultures does, in itself, resemble a traumatic injury and may therefore 

induce a much higher degree of reactivity than what is exhibited by cells in situ.  

 

The benefits of using primary cultures of astrocytes are many. Since the cells grow in 

monolayers, it is easy to access all cells when drugs are added to the incubation medium. It is 

a clean system where the results reflect the properties of a single cell type. However, to get 

reproducible results, it is important to make sure that the cells are in a confluent state before 

they are used in experiments and that the contamination of microglia is low.   
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HPLC-analysis of glutathione and amino acids (Paper I, II and IV)  

Glutathione and amino acids were determined using o-phtaldialdehyde (OPA) derivatization 

and fluorescence detection essentially as described earlier (Lindroth and Mopper 1979; 

Sandberg et al. 1986a). A solution of β-mercaptoethanol, Na2-EDTA and NaN3 (final 

concentration 20, 1 and 5 mM respectively) was added to the samples and standards to keep 

GSH in its reduced form as well as to prevent bacterial growth. The OPA-solution was 

prepared weekly and consisted of OPA (40 mg) dissolved in methanol (400 µl), β-

mercaptoethanol (40 µl), borate buffer (2.0 ml, 0.8 M, pH 12) and H2O (1.6 ml). Every two 

days β-mercaptoethanol (10 µl) was added to the solution. Amino acids were derivatized (25 

µl of sample mixed with 25 µl OPA solution) in the autosampler before injection. The amino 

acid derivatives were separated on a Nucleosil C18 column (200 x 4.6 mm; Macherey-Nagel, 

Germany) with a mobile phase consisting of NaH2PO4 (50 mM, pH 5.28) and methanol in a 

gradient from 25-95 % methanol. A flow rate of 1 ml/min was used. Detection was carried out 

by excitation at 333 nm and emission over 418 nm.  

 

Comments: 

Precolumn derivatization of the sample with o-phtaldialdehyde allows fluorescence detection 

of glutathione and amino acids, making the method highly sensitive. However, the 

derivatization with o-phtaldialdehyde is limited to primary amines and can therefore not be 

used to analyze secondary amino acids such as proline. This method does not discriminate 

between oxidised and reduced glutathione due to the addition of β-mercaptoethanol in the 

reagent solution. However, the main part of the glutathione released after NMDA stimulation 

have been shown to be in the reduced form (Wallin et al. 1999) and the reduced form have 

also been found to be predominant in the brain (Cooper et al. 1980; Folbergrova et al. 1979).  

 

HPLC-analysis of purine catabolites (Paper III) 

Chromatography of purine catabolites was performed using a HPLC pump coupled to a UV 

detector. All separations were performed at room temperature. Sample injection was made 

using an autosampler. Analysis of purine catabolites were carried out as described earlier 

(Hagberg et al. 1987). In brief, samples were run on a column (ACE 5 C18; 4.6 mm in 

diameter, 150 mm in length) packed with C18 coated particles (5 µm). Sample volumes of 40 

µl were injected and the purine catabolites were eluated with a buffer containing 94 % 10 mM 
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NH4H2PO4 (pH 5.50) and 6% methanol. The UV-absorbance was measured at 254 nm. 

Identification of the peaks was carried out by adding known amounts of each compound to the 

samples. Quantification was determined by external standardisation and standards were run at 

three different concentrations. The resulting linear standard curve (peak area vs. 

concentration) was used to calculate the concentration in the samples. Standards were run 

before and after each sample set.  

 

Comments:  

The advantage of this method is that it is a straight forward, isocratic method and it does not 

require any special sample preparation. However, the disadvantage to this method is that it is 

based on UV absorbance which is less sensitive than, for example, fluorescence detection. 

Another disadvantage is that many of the drugs used in these studies also absorb in the UV 

range of the spectrum, which may complicate analysis. 

 

HPLC-analysis of N-acetylaspartate (Paper I and II) 

Separation of N-acetylaspartate was carried out at room temperature using a TSK-GEL ODS-

80T column (250 x 4.6 mm; 5µm particle size Tosoh, Tokyo, Japan). The mobile phase 

consisted of 50 mM NaH2PO4 (pH 2.15) and was degassed with N2 before use. The flow rate 

was 1 ml/min and N-acetylaspartate was detected by absorbance at 210 nm. To improve the 

peak shape, the samples were mixed with HCl (0.2 M) in a ratio of 6:1 (sample/HCl) prior to 

injection. Sample injection volume was 90 µl. The N-acetylaspartate peak was identified and 

quantified using external standards and by the addition of known amounts of N-

acetylaspartate to the samples. 

 

Comments: 

The most commonly used method for HPLC-based analysis of N-acetylaspartate is that 

described by Koller and co-workers (Koller et al. 1984). However, this method is not optimal 

for detection of N-acetylaspartate in buffers with high K+ and therefore, a reversed-phase 

method developed to function in saline sample buffers was used (Tranberg et al. 2005). One 

drawback with this method is the low pH of the buffer needed to keep N-acetylaspartate 

neutral. Low pH, in combination with the fact that pure aqueous buffers are not recommended 
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for silica columns, can increase the rate of silica hydrolysis. This, in turn, may greatly shorten 

the lifespan of the column. 

     

Efflux protocol for slice cultures (Paper I and II) 

The slices were incubated for 30 minutes in serum-free medium followed by another 30 

minutes period of incubation in ACSF before the beginning of the efflux experiments. The 

efflux experiments were carried out by transferring the inserts with the slices to a 6 well plate 

kept in a water-bath set at 36 ºC (for details see (Tranberg et al. 2004). The atmosphere inside 

the plate was kept at 60 % O2, 35 % N2 and 5 % CO2 by directing a flow of gas into a water 

filled container inside the plate and performing the incubation with the lid on. All solutions 

were equilibrated with a gas-mixture of 60 % O2, 35 % N2 and 5 % CO2 (Pomper et al. 2001). 

The efflux experiments were carried out by incubating the slices with ACSF (400 µl) on top 

of the membrane for 5 min. The fluid was then removed and filtered before immediate HPLC 

analysis or storage in – 20 °C (maximally two weeks). This incubation procedure was 

repeated 9 times (45 min in total) with Ca2+ omission during the 5, 6 and 7th incubation 

periods (20-35 min). All inhibitors were present during the second 30 minutes preincubation 

period and the whole incubation period (50 min in total before Ca2+ removal). After the 

experiments, the slices were cultured in culture medium with added propidium iodide (PI). 

When NMDA-stimulation was used instead of Ca2+- omission, 60 µM NMDA was added 

during the fifth incubation. 

 

Fig 1. Time scale of efflux experiments in combination with analysis of delayed nerve cell death in cultured 

hippocampal slices. (PI, propidium iodide)  

 

Efflux protocol for primary cell cultures (Paper III and IV) 

The efflux protocol for the primary cell cultures resembles the protocol for the organotypical 

slices with a few modifications. The cells were incubated in ACSF for 30 minutes before the 

start of the experiment. Inhibitors used in the experiments were added during this incubation. 
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The experiments were carried out by incubating the cells with ACSF or ACSF/ 0Ca2+ (400 µl) 

for 10 min. The fluid was then removed and filtered before immediate HPLC analysis or 

storage in – 20 °C (maximally two weeks). The incubation procedure was repeated 7 times 

(70 min in total) with Ca2+ removal occurring during the fourth and fifth incubation period. 

All inhibitors were present during a 30 min preincubation period and the whole incubation 

period (60 min in total before Ca2+ removal). All solutions were equilibrated with a gas-

mixture containing 5 % CO2 to reach a pH of ~7.4. Thereafter, all solutions were put in an 

incubator in a humidified atmosphere of 95% air and 5% CO2 at 36.5 ºC for at least 30 min. 

After the seventh incubation, the cells were scraped in to 800 µl of 0.3 M HClO4 and 

sonicated. After centrifugation at 11000 g the supernatant was removed and filtered 

(Acrodisc, 0.2 µm, Pall Corporation, Ann Arbor, MI, USA). 

 

Comments on the efflux models: 

These protocols for measuring efflux offer an easy way of measuring release of substances 

from cells and slice cultures and it offers an opportunity to measure both efflux and delayed 

cell death. It is easy to gain access to all of the cells when using cell cultures. However, when 

it comes to slice cultures attention must be paid to ensure that the incubation time is long 

enough to let inhibitors and other drugs penetrate the slice. It is also difficult to assess whether 

it is possible to gain access to the inner part of the slice or if the resulting efflux originates 

from the outer cell layers only. An additional drawback with this method is the low temporal 

resolution that, in combination with the large incubation volume used in the experiments, 

makes it difficult to follow quick changes in efflux rates.  

 

Determination of intracellular concentrations of glutathione and amino acids: (Paper IV)   

Intracellular glutathione and amino acids were extracted after the efflux experiments by 

addition of 400 µl of 0.3 M HClO4 to the wells. The cells were scraped off the bottom of the 

well and the samples were sonicated. After centrifugation at 11000 g the supernatant was 

removed and filtered (Acrodisc, 0.2 µm, Pall Corporation, Ann Arbor, MI, USA). The 

supernatant was used to determine the cellular content of glutathione and amino acids.  
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Evaluation of cell toxicity 

Propidium iodide uptake assay (Paper I and II) 

To evaluate cell toxicity in the slice cultures, we used propidium iodide uptake as a 

measurement of cell death. Propidium iodide is a cell impermeable dye that becomes 

fluorescent when it binds to DNA. It does not enter cells with intact plasma membranes and 

therefore the amount of fluorescence can be correlated to the amount of cell damage. 

Propidium iodide was added (final concentration of 2 µM) to the slice cultures 24 h prior to 

the efflux experiment. Before starting the experiments, the slices were photographed using a 

digital camera (Olumpus DP50) coupled to an inverted fluorescence microscope (Olympus 

IX70) equipped with a rhodamine filter. Photographs were captured using Studio Lite and 

View Finder Lite software (Pixera Corporation, Los Gatos, USA). To calculate cell death in 

the slices, the slices were photographed again 24 h after the experiments and the photographs 

were converted to grayscale. Then the CA1, CA3 areas and part of the background (~ 10 % of 

total) were encircled and the fluorescence intensity of each area was measured by Scion 

Image software (Scion Corporation, Frederick, MI, USA). The fluorescence intensities 

obtained in slices before the efflux experiments were subtracted before calculation as 

described earlier (Tranberg et al. 2004). The fluorescence intensity measured 24 h after 

adding 300 µM NMDA to the culture medium was used as a value of maximal nerve cell 

death (Vornov et al. 1998). Histologic degeneration has been shown to be limited to neurons 

24 h after NMDA exposure and consistent with the PI staining (Vornov et al. 1991). The 

fluorescence intensity in incubated slices above that of controls (i.e. non-incubated slices), 

was expressed as the percentage of maximum fluorescence intensity. The formula used for 

calculating the percentage of maximum fluorescence intensity was as follows: 

 

Fluorescence intensity (% of max) = ((Incubated – Control) / (Max – Control)) * 100 

 

where 

Incubated = the fluorescence intensity in incubated slices 24 h after the efflux experiments,  

Max = fluorescence intensity in slices subjected to 300 µM NMDA for 24 h,  

Control = fluorescence intensity of non-incubated slices 24 h after the efflux experiments. 

  

The observed cell death after NMDA-treatment correlated well with a decrease in the 

neuronal amino acids GABA and N-acetylaspartate. 
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Comments:   

The use of propidium iodide as a marker of cell death has been thoroughly evaluated and has 

been found to correlate well with other methods of cell death determination (Noraberg et al. 

1999). This method allows for an analysis of the regional differences in vulnerability in the 

hippocampus, since fluorescence in the different layers of hippocampus can be calculated 

separately.  

 

However, uptake of propidium iodide has also been used to measure channel/pore opening in 

the plasma membrane (Hur et al. 2003; Kondo et al. 2000). This could possibly lead to an 

over-estimation of the cell death when used in an experimental paradigm that includes 

opening of channels in the membrane. In the studies in this thesis, this has been avoided by 

excluding the propidium iodide during the experimental conditions that facilitates channel 

opening and by subtracting the pixel intensity of the slice-photos taken before incubation from 

the photos taken after the experiment.       

 

Lactate dehydrogenase-release assay (Paper III and IV) 

To evaluate cell toxicity in primary astrocyte cultures during the efflux experiment, lactate 

dehydrogenase (LDH) release was measured and analyzed using the cytotoxicity detection kit 

(Roche Diagnostics, Germany). This colorimetric assay measures the activity of lactate 

dehydrogenase, a cytosolic enzyme, which is released by cells with damaged plasma 

membranes. The amount of enzymatic activity detected in the culture supernatant correlates to 

the amount of lysed cells. The percentage of cytotoxicity was calculated as follows: 

 

Cytotoxicity (%) = (sample LDH amount – background control) / (total LDH amount – 

background control) * 100 

 

where  

sample LDH amount =  absorbance in culture supernatant 

background control = absorbance in culture medium 

total LDH amount = absorbance in sample where all cells have been lysed with Triton X-100 

(2%) + sample LDH amount   
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Comments: 

Lactate dehydrogenase is a cytosolic enzyme that is present in large amounts in the cells and 

is easily released upon damage of the plasma membrane. It is a relatively stable enzyme and 

the use of 96-well plates and a plate reader allows for the rapid screening of a large number of 

samples. The spontaneous release of lactate dehydrogenase is lower than for other enzymes 

used in cytoxicity assays (Korzeniewski and Callewaert 1983). It has also been shown to 

correlate well with other methods of assessing cell toxicity/viability such as propidium iodide 

uptake (Noraberg et al. 1999). 

   

Protein determination 

Protein content in the cell cultures was measured using the bicinchoninic acid method (Smith 

et al. 1985). Determination of the protein content in the slices were carried out as described by 

(Whitaker and Granum 1980). In both cases, bovine serum albumin was used as standard.   

 

Statistics 

All data were expressed as mean ± SEM and p values >0.05 were considered statistically 

significant. When multiple values were compared, ANOVA followed by Tukeys post hoc 

tests were used.   
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SUMMARY OF RESULTS 

 

Paper I: NMDA-receptor mediated efflux of N-acetylaspartate: physiological and/or 

pathological importance? 

In this paper, an efflux protocol allowing investigation of changes in the extracellular 

chemistry in hippocampus cultures in parallel with measurement of delayed nerve cell death 

24 h later is presented. Organotypical hippocampus cultures, grown on porous membranes, 

are incubated with artificial cerebrospinal fluid on top of the membrane in 5 min fractions 

(Paper I, Fig. 1). Incubating the slices with fluid on top of the membrane, instead of below, 

speeds up diffusion of released substances, NMDA and inhibitors. Stable efflux rates were 

obtained incubating the slices in a gas mixture containing 60 % O2 / 5% CO2.    

 

Using this setting, incubation of cultured hippocampal slices in artificial cerebrospinal fluid 

containing 60 µM NMDA for 5 min caused a pronounced delayed efflux of glutathione, N-

acetylaspartate and phosphoethanolamine. Addition of NMDA also generated an increased 

efflux of taurine and hypotaurine, while the efflux rates of amino acids such as glutamate, 

aspartate and asparagine remained unchanged (Paper I, Fig. 2). The efflux peaked after 

NMDA was omitted form the medium and lasted throughout the remaining sample period (25 

min).  

 

Incubation of slices in the NMDA-receptor antagonist MK-801 (30 µM) completely abolished 

the efflux. Both addition of kainate (300 µM) and incubation in high K+ (50 mM) failed to 

generate a significant efflux of N-acetylaspartate. The NMDA-induced efflux of N-

acetylaspartate, glutathione and amino acids was totally dependent on extracellular Ca2+ 

(Paper I, Fig. 4). 

 

Transient application of NMDA (30 µM and above for 5 min) caused a delayed neurotoxicity, 

detected by propidium iodide staining. The cell damage increased gradually with time, 

reaching significant cell damage in the CA1 area after 8 h. Treatment with 300 µM kainate for 

5 min induced an injury similar to treatment with 60 µM NMDA while incubation in high K+ 

(50 mM) for 5 min was non-toxic after 24 h (Paper I, Fig. 5).   
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Additional data on NMDA-receptor mediated efflux 

 
 

Fig 2a: Efflux of glutathione induced 

by 5 min incubation in 60 µM NMDA 

was greatly enhanced by 

carbenoxolone (CBX), but not by 

endothelin-1 (ET-1). NMDA was 

applied for 5 min (10-15 min, see 

arrow). Star mark significant difference 

from treatment with 60 µM NMDA for 

5 min.  
b: Incubation with CBX also generated 

an increase in cell damage 24 h after 

NMDA application. This increase in 

delayed cell death was not observed by 

treatment with ET-1 

 

 

 

 

The efflux of glutathione is likely neuronal as it is paralleled by N-acetylaspartate. The 

pathway for efflux is still unknown but it is not likely to be due to opening of connexin or 

pannexin hemichannels as neither carbenoxolone nor endothelin-1 reduced efflux. 

Interestingly, carbenoxolone potentiated both the efflux and the cellular damage induced by 

brief NMDA exposure.  

 

Since the NMDA-receptor mediated efflux was dependent of Ca2+-influx, the slices were 

incubated with KN-93 (10 µM) to investigate the involvement of Ca2+/calmodulin-dependent 

kinase II (CaMKII). The slices were also incubated with L-NG-Nitroarginine methyl ester (L-

NAME, 100 µM), an inhibitor of neuronal NO-synthase in an attempt to pinpoint the 

signalling pathway downstream of NMDA-receptor activation. Neither of the two inhibitors 

showed any significant effect on the efflux.  
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Fig 3. Inhibitiors of CaMKII (KN-93) 

or NO-synthase (L-NAME) did not 

alter the glutathione efflux stimulated 

by NMDA-receptor activation in 

cultured hippocampal slices. NMDA 

was applied for 5 min, see arrow. Star 

mark significant difference from 

treatment with 60 µM NMDA for 5 

min.  
 

 

Paper II: Stimulated efflux of amino acids and glutathione from cultured hippocampal slices 

by omission of extracellular Ca2+: likely involvement of connexin hemichannels  

Incubation of cultured hippocampus slices for 15 min in artificial cerebrospinal fluid (ACSF) 

without added Ca2+ generated an increase in the efflux rates of glutathione, 

phosphoethanolamine, taurine and hypotaurine while the efflux of glutamate and valine 

remained unchanged (Paper II, Fig. 1 and 2). If both major divalent cations (Ca2+ and Mg2+) 

were omitted from the incubation medium, the efflux of glutathione and amino acids was 

dramatically increased. In addition to the increased efflux, omission of both Ca2+ and Mg2+ 

elicited an efflux of glutamate, which was not detected after omitting Ca2+ alone (Paper II, 

Fig. 3).  

 

The efflux induced by Ca2+ omission was inhibited by several different types of gap 

junction/hemichannel blockers including endothelin-1 and the Cx43 mimetic peptide Gap26, 

but the pannexin mimetic peptide 10Panx1 did not affect on the increased efflux rates (Paper 

II, Fig. 5). Inhibition of P2X7-receptors also failed to decrease the efflux induced by Ca2+ 

omission (Paper II, Fig. 6).  

 

To address the cellular origin of the efflux, experiments were carried out on slice cultures that 

had undergone extensive neurodegeneration. Efflux from these slices was unchanged 

compared to that from normal slice cultures, indicating that the detected efflux is of non-

neuronal origin (Paper II, Fig. 7).    
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Incubation in ACSF without added Ca2+ for 15 min did not affect the viability of the slice 

cultures. However, Ca2+ omission in combination with inhibited glutamate uptake resulted in 

increased extracellular glutamate and delayed cell damage (Paper II, Fig. 8). The pattern of 

cell damage correlates well with the pattern obtained after NMDA-receptor over activation, 

observed in paper I, and is most likely a result of extracellular glutamate causing over-

activation of NMDA-receptors. 

 

Paper III: Stimulated efflux of adenosine via astroglial connexin hemichannels 

The main result in this study was the finding that astrocytes in culture release adenosine after 

15 minutes of stimulation with Ca2+- free artificial cerebrospinal fluid (Paper III, Fig. 1b). An 

increased efflux was also detected for hypoxanthine while the efflux rates of xanthine and 

inosine were not significantly altered (Paper III, Fig. 1). The increased extracellular levels of 

adenosine was not due to extracellular breakdown of ATP, since incubation with an 

ectonucleotidase inhibitor (ARL 67156, 50 µM) did not significantly reduce the extracellular 

adenosine concentration (Paper III, Fig. 2b).  

 

As in paper II, the efflux induced by Ca2+ omission was blocked by gap junction inhibitors, 

but not by blocking P2X7-receptors (Paper III, Fig. 2b). 

 

Paper IV: Characterization of glutathione efflux from astroglial connexin hemichannels 

This study focus on efflux of glutathione from primary astrocyte cultures and effects of 

different extracellular Ca2+ concentrations, prolonged depolarisation and changed intracellular 

glutathione concentrations. The efflux profile after Ca2+ omission was similar to the efflux 

from cultured hippocampus slice presented in paper II, except for glutamate efflux that was 

increased in the astrocyte cultures (Paper IV, Fig. 1). As in paper II and III, the stimulated 

efflux by omission of Ca2+ was not affected by the P2X7-receptor inhibition (Brilliant Blue G, 

100 nM), but inhibited by the gap junction blocker carbenoxolone (100 µM) and the Cx43 

mimetic peptide Gap26 (300 µM) (Paper IV, Fig. 2). 

 

The threshold concentration of Ca2+ for inducing stimulated efflux was found to be 0.1 mM as 

glutathione efflux was observed at 0.1 mM Ca2+ but not at 0.2 or 0.3 mM Ca2+. Depolarisation 

of the cultured cells by 50 mM K+ alone or in combination with 0.1 mM Ca 2+ did not 

significantly change the efflux of glutathione stimulated by 0.1 mM Ca2+ (Paper IV, Fig. 3).  
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Both the basal and stimulated efflux of glutathione could be increased by adding curcumin 

(30 µM) to the culture medium. Curcumin is a potent activator of the transcription factor Nrf2 

which in turn stimulates the transcription of a number of antioxidant genes. Inhibition of the 

glutathione synthesis with buthionine sulfoximine (BSO) led to the opposite effect, i.e. a 

marked reduction of the basal and stimulated efflux after Ca2+ omission in addition to the 

lowered intracellular levels of glutathione (Paper IV, Fig. 4). 
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DISCUSSION 

 

Efflux routes  

The results presented in this thesis are based on analysis of the extracellular neurochemistry. 

Elevated concentrations are interpreted as reflecting mainly efflux, although reduced uptake 

may contribute to increased levels of some substances (see further below). This assumption is 

based on the fact that all analysed substances have a high intra- to extracellular ratio. The first 

part of the results concerns a mainly neuronal efflux pathway mediated via activation of the 

NMDA-receptor and the second part deals with an efflux of astroglial origin elicited by 

reduced extracellular Ca2+ concentrations.  

 

The different efflux profiles- what comes out and what doesn´t? 

In paper I we showed that NMDA-receptor activation elicited an efflux dominated by the 

neuronal amino acid derivate N-acetylaspartate, glutathione, phosphoethanolamine and 

taurine and hypotaurine while increased efflux was not detected for amino acids such as 

glutamate, asparagine and aspartate. To exclude the possibility that the efflux was merely a 

consequence of plasma membrane disruption, the efflux pattern after NMDA-receptor 

stimulation was compared to that of cells treated with water for 5 min. Incubation with water 

caused a massive efflux of glutamate and at least ten more UV absorbing peaks were detected 

showing that NMDA-mediated efflux is selective compared to membrane burst.      

 

Omission of extracellular Ca2+ was similar to the NMDA-receptor activation in that it also 

caused an increased efflux of glutathione, phosphoethanolamine, taurine and hypotaurine 

from cultured hippocampal slices (paper II). However, unless both Ca2+ and Mg2+ were 

omitted from the incubation medium, no efflux of N-acetylaspartate could be detected. No 

increased glutamate efflux was observed after Ca2+ -omission in the slices, but when primary 

astrocyte cultures were subjected to reduced extracellular Ca2+-concentrations, a pronounced 

glutamate efflux could be detected (paper IV). The use of a glutamate uptake blocker, L-trans-

pyrrolidine-2,4-dicarboxylate (PDC), in the incubation medium of the slices resulted in 

elevated extracellular glutamate levels (paper II). This indicates that glial cells in the slice do 

release glutamate in response to reduced extracellular Ca2+-concentrations, but that the uptake 

machinery is efficient enough to prevent elevated extracellular concentrations in the slice 

model. When incubating the slices with another glutamate uptake blocker, DL-threo-β-

benzyloxyaspartic acid (TBOA), extracellular glutamate was only increased when both Ca2+ 
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and Mg2+ were omitted. This apparent discrepancy is not easy to explain, but it may relate to 

the different pharmacotoxic profiles of the uptake blockers (Martin et al. 2005). Due to the 

fact that PDC is a transportable inhibitor of glutamate uptake, it can be argued that the 

increase in extracellular glutamate is caused by heteroexchange (Waagepetersen et al. 2001). 

In our slice system, however, heteroexchange is not likely to be the cause of glutamate efflux 

during Ca2+ -omission as no effect was observed on baseline glutamate levels when the slices 

were incubated in PDC.  

 

In primary astrocyte cultures, a significant efflux of adenosine was also detected after 

omission of extracellular Ca2+. This efflux was not significantly reduced by inhibition of 

ectonucleotidase activity by incubation with ARL-67156, indicating that the detected increase 

in extracellular adenosine not primarily originates from extracellular breakdown of ATP.     

 

NMDA-receptor mediated efflux is not likely to be a hemichannel mediated process. 

The pathway mediating the NMDA-receptor activated efflux, presented in paper I, is still 

elusive, but highly interesting as this efflux correlated well with neurotoxicity 24 h later. The 

efflux is dependent on Ca2+ influx via NMDA-receptors since both addition of the NMDA-

receptor blocker MK-801 and omission of extracellular Ca2+ from the medium inhibited the 

efflux. In an earlier study performed by our group, the efflux of glutathione after NMDA-

receptor activation was abolished when the protein kinase C inhibitor polymyxin B was added 

to the slices (Wallin et al. 2003). However, other protein kinase inhibitors such as 

staurosporine or H9 showed no effect indicating that the effect of polymyxin B was not due to 

inhibition of protein kinase C. Polymyxin B has been reported to affect not only protein 

kinase C but also Ca2+-activated K+-channels and calmodulin (Hegemann et al. 1991; Varecka 

et al. 1987; Weik and Lonnendonker 1990). In the same study, it was shown that inhibition of 

calmodulin attenuates the efflux after NMDA-receptor activation. Calmodulin stimulates 

several enzymes including Ca2+/calmodulin dependent kinase II (CaMKII), calcineurin and 

neuronal NO-synthase (Abu-Soud et al. 1994; Walters and Johnson 1988). Inhibition of two 

of the downstream enzymes in the calmodulin signalling pathway, neuronal NO-synthase and 

CaMKII, however, proved to have no effect on the NMDA-receptor mediated efflux of 

glutathione (Fig. 3).  

 

Efflux of amino acids have been reported after opening of VRACs (Kimelberg et al. 1990). 

The efflux pattern generated by hypoosmotic medium is, however, different from both efflux 



 39

types described in this thesis in that the predominant compound released during hypoosmotic 

conditions is taurine. To test for the possibility of efflux being induced by cell swelling, both 

experimental paradigms were carried out in hyperosmotic medium (120 and 240 mM 

sucrose). Since incubation in hyperosmotic medium did not block neither the NMDA-receptor 

mediated efflux nor the efflux induced by Ca2+ -omission, it is unlikely that swelling induced 

efflux contributes to the observed changes in extracellular composition.  

 

A potential candidate for mediating the NMDA-receptor activated efflux is the pannexin 

hemichannel (see section in introduction). A recent study, using acutely isolated hippocampal 

neurons, has shown that ischemia opens a type of channel with pharmacological and 

electrophysiological characteristic of pannexin hemichannels (Thompson et al. 2006). 

Pannexin-1 is expressed in pyramidal neurons and pannexin hemichannels are capable of 

mediating efflux of substances in the same size range as connexins (Bao et al. 2004; Bruzzone 

et al. 2005; Bruzzone et al. 2003).  

 

However, blocking putative connexin and/or pannexin hemichannels in the slices using 

carbenoxolone or endothelin-1 did not inhibit the efflux elicited after NMDA-stimulation (Fig 

2a). Addition to the incubation medium of carbenoxolone, which potently inhibits both 

connexin and pannexin channels (Bruzzone et al. 2005; Davidson and Baumgarten 1988; 

Goldberg et al. 1996; Locovei et al. 2007), did instead increase the efflux drastically. 

Incubation with carbenoxolone during the efflux experiment (75 min in total) also increased 

the delayed cell death in the slice 24 h after the NMDA-stimulation. Whether this effect is 

related to blocking gap junctions/hemichannels in the slice or not is unknown. Carbenoxolone 

has been shown to accelerate NMDA-induced cell death in co-cultures of hippocampal 

neurons and astrocytes (Zundorf et al. 2007). Although carbenoxolone is supposed to lack 

effects on neuronal excitability according to one study (Kohling et al. 2001), it has been 

shown to cause an increase in action potential threshold in cultured neurons (Rouach et al. 

2003). Other reports show effect of carbenoxolone on several ion channels and receptors 

including voltage-gated Ca2+-channels (Armanini et al. 2003; Salvi et al. 2005; Vessey et al. 

2004). Conclusions from results obtained with carbenoxolone as the only gap 

junction/hemichannel blocker must therefore be drawn with caution.  

 

Glutamate-receptor induced opening of Ca2+ -dependent chloride channels permeable for 

larger substances such as acetate and methanesulphonate has been demonstrated in cultured 
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cortical neurons (Backus and Trube 1993). These channels could potentially be the mediators 

of the NMDA-receptor mediated efflux, but due to a lack of specific pharmacological tools 

the contribution of Ca2+ -dependent chloride channels has not yet been evaluated. 

 

Evidence in support of connexin hemichannels as the mediators of efflux stimulated by 

Ca2+-omission. 

The efflux induced by Ca2+-omission is, as shown in paper II, strictly dependent on the 

absence of extracellular divalent cations. Omission of both major divalent cations (Ca2+ and 

Mg2+) from the incubation medium, however, caused a dramatic enhancement of the 

glutathione efflux. When Ca2+ was substituted by Mg2+ in the incubation medium, no 

increased efflux of glutathione could be detected. These results of the cation dependency fit 

well with other studies on regulation of connexin hemichannels by extracellular divalent 

cations (Ebihara et al. 2003; Ye et al. 2003).  

 

Other pieces of evidence supporting the theory that connexin hemichannels are the channels 

responsible for the efflux induced by Ca2+-omission comes from the inhibitory effects of a 

battery of gap junction/hemichannel inhibitors. In paper II to IV, we show that the 

conventional gap junction/hemichannel blocker carbenoxolone and flufenamic acid blocks the 

efflux while the structural analogue of carbenoxolone, glycyrrhizic acid, have no effect. In 

addition to the conventional blockers the endogenous peptide endothelin-1, which has been 

shown to inhibit gap junction coupling by acting on the intrinsic signalling pathways 

(Blomstrand and Giaume 2006; Blomstrand et al. 1999; Blomstrand et al. 2004), blocks the 

efflux to a similar extent as carbenoxolone and flufenamic acid.  

 

The use of connexin and pannexin mimetic/blocking peptides allowed us to further 

characterize the efflux pathway. Connexin mimetic peptides were originally designed to 

mimic the docking gate of gap junction channels and were used in attempts to define the 

functional domains of different connexins (Dahl et al. 1994). The Gap26 peptide contains 

amino acids 64-76 of the first extracellular loop of Cx43 and has been shown to specifically 

inhibit hemichannels when applied for 30 min at 0.25mg/ml (~160 µM) (Braet et al. 2003; 

Leybaert et al. 2003). Gap junction blocking effects by mimetic/blocking peptides are 

achieved first after prolonged incubation periods, if they are achieved at all (Leybaert et al. 

2003; Wang et al. 2007). It is speculated that this might be because the peptides interfere with 

the formation of new gap junction channels rather that blocking already existing ones (Evans 
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and Boitano 2001). The connexin mimetic Gap26 peptide has in several other studies shown 

to inhibit hemichannel mediated processes such ATP efflux induced by Ca2+-omission from 

endothelial cells in cornea (Gomes et al. 2005) and dye uptake induced by oxygen-glucose 

deprivation in cardiac myocytes (Shintani-Ishida et al. 2007). The use of the pannexin 

mimetic peptide, 10Panx1, is based on the same principles as the use of the connexin mimetic 

peptides. It is a ten amino acids long peptide that has been used to potently inhibit P2X7-

mediated dye uptake without altering other aspects of P2X7- receptor activation in several cell 

lines including 1321-N1 astrocytes transfected with a rat P2X7 expression vector (Pelegrin 

and Surprenant 2006). In our case the effects of the peptides were clear-cut both in the 

cultured slices and in the primary astrocyte cultures. The connexin mimetic peptide, Gap26, 

inhibited the efflux as efficient as the other gap junction/hemichannel blockers used. In 

contrast to the effects of Gap26, incubation with the pannexin mimetic peptide 10Panx1 did 

not significantly affect the efflux elicited by Ca2+-omission. 

 

Pannexin channels are only weakly affected by flufenamic acid and they are not regulated by 

external cations (Bruzzone et al. 2005). The finding (paper II) that efflux was induced by 

omission of extracellular Ca2+, robustly blocked by flufenamic acid and unchanged by the 

pannexin mimetic peptide, indicate that pannexin hemichannels are less likely candidates for 

mediating the efflux of glutathione and amino acids caused by reduced extracellular Ca2+-

concentrations.   

 

Purine receptors of the P2X7-type are ionotropic receptors activated by ATP. These receptors 

show response amplification in solutions with low concentrations of divalent cations (Bianchi 

et al. 1999; North and Surprenant 2000) and there have been reports on possible cross-

reactivity with conventional gap junction/hemichannel blocking agents (Suadicani et al. 

2006). Therefore it was important to evaluate P2X7-receptor involvement in the efflux caused 

by reduced extracellular Ca2+-concentrations. Two different P2X7-receptor inhibitors, 

oxidized ATP and Brilliant Blue G, were employed in the efflux experiments in paper II to IV 

and neither of them inhibited the efflux of glutathione. Strangely, in the slice studies, we 

found a slight, but significant, potentiation of the efflux both by incubation with the P2X7-

receptor agonist 3-O-(4-benzoylbenzoyl)ATP (BzATP) and by the antagonist oxidized ATP. 

The stimulating effect of the antagonist is confusing, but effects on transporter functions by 

oxidized ATP have been reported previously and can not be ruled out as possible explanations 

for the observed change in efflux (Henke et al. 1998). No potentiating or inhibitory effects by 
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P2X7-receptor inhibition using BBG were observed in the primary astrocyte cultures (paper 

III and IV). Overall the data strongly favour that P2X7-receptor activation is not involved in 

the efflux pathway stimulated by omission of extracellular Ca2+.  

 

In conclusion, astroglial hemichannels are the most plausible candidates for mediating the 

efflux stimulated by a reduction in extracellular Ca2+-concentrations. This interpretation is 

supported by the fact that astrocytes express high levels of Cx43 while the pannexin 

expression in the hippocampus is localized mainly to post synaptic structures (Huang et al. 

2007; Zoidl et al. 2007).  

 

Possibility of combined efflux pathways 

Omission of both Ca2+ and Mg2+ caused an efflux of N-acetylaspartate from cultured slices, as 

observed after NMDA-receptor stimulation (paper II). Interestingly, efflux of N-

acetylaspartate was also observed when omission of extracellular Ca2+ was combined with the 

glutamate uptake blocker PDC. During both of these situations the extracellular glutamate 

concentrations increase most likely due to hemichannel opening. A likely scenario is that the 

increased extracellular glutamate levels activate NMDA-receptors in the slice and thereby 

initiates the NMDA-receptor mediated efflux described in paper I. This could explain why the 

increased efflux of N-acetylaspartate is not observed during Ca2+-omission only.  

 

During efflux mediated by Ca2+-omission in the slices, there was a small residual efflux after 

blocking the hemichannels with carbenoxolone (paper II). This residual efflux was not 

observed in the slices that had undergone neuronal degeneration caused by prolonged 

NMDA-treatment (paper II) or in the astrocyte cultures (paper IV) which indicates a neuronal 

component of the efflux induced by Ca2+-omission that is not mediated by connexin or 

pannexin hemichannels. This putative neuronal efflux pathway is unknown but it should be 

pointed out that reduction in extracellular Ca2+ can have effects on other transport pathways. 

For example, it has been demonstrated that omission of extracellular Ca2+ elevates 

extracellular taurine by interaction with the carrier system (Molchanova et al. 2005). 

 

During which physiological/pathological circumstances are these efflux pathways activated? 

One fundamental issue concerning hemichannel opening in vivo is if extracellular Ca2+ -

concentrations can be reduced to levels that stimulate opening. 
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In the mammalian brain, external Ca2+-concentrations range between 1.5 to 2.0 mM (Hansen 

1985). The intracellular concentrations, on the other hand, are as low as 50-100 nM which 

creates an outside-to-inside gradient of 15000-40000:1. Activation of processes that causes 

Ca2+-entry into the cells, for instance activation of receptors permeable to Ca2+, can cause 

dramatic fluctuations in extracellular Ca2+-concentrations. As an example, ionophoretic 

application of glutamate in rat motor cortex generates a decrease in extracellular Ca2+ from a 

baseline level of 1.25 to 0.08 mM (Pumain and Heinemann 1985). This decrease is most 

likely caused by a translocation of Ca2+ from the extracellular space into the cytosol and was 

found to be mostly due to voltage-dependent Ca2+-channels. During anoxia, the external Ca2+ 

levels in murine cortex have been reported to drop down to 0.06 mM (Hansen and Zeuthen 

1981). From computer-based simulations it seems likely that physiological activity can 

generate changes in extracellular Ca2+ well within the limits of what has been used to open 

connexin hemichannels in vitro (Egelman and Montague 1999). This is supported by the 

development of new Ca2+-sensitive electrodes, which shows that earlier techniques for 

measuring extracellular Ca2+ -concentrations greatly underestimates the earlier reported 

changes in Ca2+- concentrations (Fedirko et al. 2006). In our studies, we find significant efflux 

of glutathione after incubating astrocyte cultures in 0.1 mM Ca2+, but this concentration did 

not cause efflux in the slice model.  

 

A plausible explanation for the discrepancy of extracellular Ca2+-thresholds observed in our 

studies is that the astroglia cells in the monolayer are directly subjected to the new Ca2+-

concentrations in the ACSF whereas it takes time to reduce the Ca2+-concentrations in the 

interior of the cultured slice. It is therefore likely that the Ca2+-concentrations inside the slice 

are considerably higher than in the incubation medium which may give a falsely high 

threshold for stimulation of hemichannel opening. 

  

There are several studies presenting evidence of connexin hemichannels opening under 

physiological cicrcumstances (Bruzzone et al. 2001; Kamermans et al. 2001; Plotkin and 

Bellido 2001). For example, expression of Cx43 was shown to regulate cell volume in 

response to fluctuations in extracellular physiological Ca2+ (1.8 to ≤ 1.6 mM) in an otherwise 

isoosmotic situation (Quist et al. 2000). One interesting finding in this context is that both 

carbenoxolone and endothelin-1 significantly reduced the basal efflux of glutathione (paper 

II), which may be indicative of hemichannel activity under physiological concentrations of 

extracellular Ca2. 
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Localized fluctuations in Ca2+ in the vicinity of signalling glutamatergic neurons 

In brain, the extracellular space is confined to narrow clefts of 20-50 nm width located 

between the densely packed neurons and glial cells (Vanharreveld et al. 1965). In acute 

hippocampus slices stimulation of the Schaeffer collaterals have been shown to generate 

decreases in extracellular Ca2+ of about -0.15 mM in standard artificial cerebrospinal fluid 

(Fedirko et al. 2007). These data indicates that in the extracellular space surrounding active 

synapses calcium concentrations can drop fast and may, highly speculative, facilitate 

hemichannel opening in an activitydependent manner.  

 

Possible physiological/patophysiological roles of efflux mediated by Ca2+-omission.   

In paper II, we show that the combination of reduced extracellular Ca2+ with inhibition of the 

glial glutamate transporters caused a delayed cell damage with the characteristic pattern of 

excitotoxic injury. The combination of low extracellular Ca2+ and impaired glutamate uptake 

occur in vivo for example during anoxia as discussed above (Hansen and Zeuthen 1981). 

Indeed, opening of neuronal hemichannels have been proposed to participate in the 

neurodegenerative process in excitotoxicity (Thompson et al. 2006). The use of hemichannel 

specific antagonists (the mimetic peptides may be the best choice available) in vivo would be 

very interesting in order to evaluate the isolated contribution of hemichannels and not the 

combined effect of both hemichannels and gap junctions, as is the case with the use of most 

antagonists and connexin knock out animals. 

 

Astrocytic export of glutathione is proposed to be a mechanism through which astrocytes can 

support neurons with antioxidants (Dringen et al. 1999). This efflux has mainly been 

attributed to multidrug resistance proteins, in particular mrp-1 (Hirrlinger et al. 2001; 

Hirrlinger et al. 2002b). Efflux of glutathione via hemichannels, as shown in paper II and IV 

and by Dringen and coworkers (Rana and Dringen 2007) may be one additional efflux 

pathway.  

 

In paper III, we present evidence of hemichannel mediated increase in the extracellular levels 

of another neuroactive compound, adenosine, in addition to glutamate and glutathione. 

Adenosine is a neuromodulatory compound which reduces glutamate release via presynaptic 

A1 receptors (Arrigoni et al. 2005; Fowler 1990). The extracellular levels of adenosine have 

previously been thought to mainly originate from extracellular breakdown of ATP, but in 
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paper III we showed that the increase in extracellular adenosine stimulated by Ca2+ -omission 

was insensitive to inhibition of ectonucleotidase activity. The efflux of adenosine showed the 

same characteristic features as the efflux of glutathione induced by Ca2+ -omission, i.e. it is 

blocked by extracellular divalent cations, carbenoxolone and Gap26, while inhibition of  

P2X7-receptors have no effect on the efflux. Unfortunately, it was not possible to evaluate the 

effect of the pannexin mimetic peptide in this setup due to interference with the UV-

absorbance detection method.  

 

From a functional point of view it is interesting to relate these results to a recent report from 

Nedergaard´s group concerning a putative function of hemichannels. In that study, it was 

demonstrated that extracellular adenosine, suggested to originate from efflux of ATP via 

Cx43 hemichannels, is a key factor by which hypoxic preconditioning may reduce 

excitotoxicity under stroke-like conditions (Lin et al. 2008).  

 

Can these pathways be manipulated? 

Since efflux of both glutathione and adenosine can have neuroprotective functions in the brain 

it would be attractive to elevate the efflux in situations which encompass neurodegeneration, 

i.e. after stroke and in Parkinson´s and Alzhemiemer´s diseases. Enhancing the efflux of 

glutathione has proven neuroprotective in vitro, presumably through the glutathione shuttling 

mechanism described in the introduction (Dringen et al. 1999). In paper IV, we show an 

increased efflux of glutathione from cultured astrocytes after treatment with curcumin, a 

substance that  increase the transcription of several key enzymes in the cellular antioxidant 

defence system via the transcription factor Nrf2 (Balogun et al. 2003).  

 

Some of the most potent Nrf2 activators known are plant-derived compounds present in our 

everyday food. The substance used in paper IV, curcumin, is for instance the active ingredient 

of turmeric (Curcuma longa) and another potent Nrf2 activator, sulphoraphane, is found in 

broccoli. In addition to inducing expression of enzymes in the glutathione synthesis chain, 

Nrf2 activation has been shown to upregulate some components in the glutathione efflux 

pathways, including the multidrug resistance protein-1 (Hirrlinger et al. 2002b; Shih et al. 

2003). The efflux pathway stimulated by Ca2+-omission does, however, not seem to be 

upregulated as the efflux rates of phosphoethanolamine and glutamate are unchanged by 

curcumin treatment (paper IV). 
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Fig. 4 A schematic drawing showing the 

the mechanism by which curcumin can 

increase the synthesis and export of 

glutathione (GSH) via the Nrf2/KEAP 

pathway. The astroglial contribution to the 

“GSH shuttle”; i.e. GSH export via 

hemichannels and multidrug resistance 

proteins (MRP) and extracellular 

degradation of GSH by γ-

glutamyltranspeptidase (γ-GT) is depicted 

to the left 

 

 

 

Nrf2 mediated stimulation of glutathione synthesis and efflux offer interesting possibilities 

when it comes to finding new therapeutic strategies for dealing with the consequences 

oxidative insults. Several studies have already confirmed the protective effects of curcumin 

and sulphoraphane administration in experimental ischemia and increased oxidative load (Al-

Omar et al. 2006; Wang et al. 2005; Zhao et al. 2006). From a therapeutic standpoint, it is 

promising that the protective effects of curcumin could be achieved even when the substance 

is administred 24 h after the injury (Al-Omar et al. 2006). The glutathione stimulating effect 

of curcumin could also have implications for Parkinson´s disease, a condition thought to at 

least partially depend on oxidative stress caused by glutathione depletion (Jagatha et al. 2008).        

 

Are functional hemichannels only an artefact due to culturing?  

Most of the studies on hemichannel function have been carried out in primary cultures, 

connexin expressing cell lines or in Xenopus oocytes. The most common criticism against the 

concept of functional hemichannels has been the lack of evidence of functional connexin 

hemichannels in more in vivo-like preparations. Our study on hemichannel-mediated efflux in 

cultured hippocampus slices is a step in the direction of unravelling the question of whether 

functional hemichannels are present in tissues as well as in cell cultures. Further evidence of 

this is presented by Ransom and coworkers who showed hemichannel activity in CNS white 

matter by measuring glutamate release from acute preparations of optic nerve (Ye et al. 2003). 

A recent in vivo-study on astroglial control of blood flow suggests the involvement of Cx43 

channels in the vasodilation signalling conduit after cortical neuronal activation (Xu et al. 
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2008). Even though no definite conclusions on the contributions of gap junctions and 

hemichannel respectively is drawn in this study, it is interesting to note that the incubation 

time of the mimetic peptides used is not sufficient to cause inhibition of gap junctions which 

would suggest effect on hemichannels primarily (Leybaert et al. 2003). To fully address the 

question of whether functional hemichannels are present in vivo, better and more selective 

pharmacological tools are needed. The use of connexin knock out animals presents many 

opportunities to study connexin functions, but the risk of affecting the entire transcriptome by 

knocking out connexin function complicates the interpretation of data obtained with such 

animals (Kardami et al. 2007).  
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CONCLUSIONS 

 

I: NMDA-receptor activation causes a Ca2+-dependent efflux of glutathione, N-

acetylaspartate, phosphoethanolamine and taurine, which can be correlated to the amount of 

delayed cell death in cultured hippocampus slices. The efflux pathway is still unknown.  

 

II: Reduced extracellular Ca2+ -concentrations stimulate efflux of glutathione, glutamate, 

PEA, taurine, hypotaurine and adenosine from astrocytes in primary cultures and cultured 

hippocampus slices.  

 

III: Efflux mediated by reduced extracellular Ca2+ -concentrations occurs through connexin 

hemichannels.  

 

IV: The NMDA-receptor mediated efflux is most likely a pathologic response while the 

hemichannel-mediated efflux might have signalling and supportive functions. 

 

V: The efflux of glutathione from astrocytes can be enhanced by activation of the nrf-2/ARE-

mediated transcription signalling pathway. 
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