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INFLAMMATION AND PROSTATIC CARCINOGENESIS 
– A MORPHOLOGICAL STUDY OF THE HUMAN PROSTATE

Wanzhong Wang
Department of Urology 

Institute of Clinical Sciences 
Sahlgrenska University Hospital 

The Sahlgrenska Academy at Göteborg University 
Göteborg, Sweden 

ABSTRACT: Chronic inflammation has been suggested to be linked to cancers. 
Inflammatory infiltrates are often found in and around foci of prostatic atrophy. These foci, 
called proliferative inflammatory atrophy (PIA), are proposed as precursors of prostate cancer 
(PCa) or prostatic intraepithelial neoplasia (PIN). Up-regulated cyclooxygenase-2 (COX-2) 
may play a role in influencing cell proliferation, differentiation, apoptosis, and angiogenesis. 
In the present studies, we found that COX-2 was overexpressed in the PIA lesions. Epithelium 
in these PIA lesions had high proliferation index and increased level of anti-apoptosis protein 

Bcl-2. The association between COX-2 and the focal chronic inflammation, dominant T-
lymphocytes and macrophages infiltration, was clearly shown. This study suggests that 
chronic inflammation and the related oxidative stress might play crucial roles in inducing 
COX-2 overexpression, which could be involved in the pathogenesis of prostate disorders.  
Transcription factor CCAAT/enhancer-binding protein � (C/EBP�) plays a major role during 
the initial stage of COX-2 transcription. In the present study we report a novel finding that 
C/EBP� was overexpressed in PIA lesions and in relation to COX-2. The data also 
demonstrates that chronic inflammation appeared to play a role in inducing C/EBP�
expression in atrophic prostate epithelial cells.  
Using a similar technique, we investigated COX-2 expression in human PCa tissue and found 
that COX-2 expression correlated with Gleason score. The focal chronic inflammation in the 
cancer areas seems to induce COX-2 expression, since the COX-2 expression was 
significantly related to inflammation density. This study provides the first evidence of a direct 
link between COX-2 and angiogenesis in PCa tissues.  
Morphological transition from PIA to HGPIN and PCa was found in radical prostatectomy 
specimens, although it was not very common. Atrophic epithelial cells are easy to recognize 
and clearly delineated by CK5 and GSTP1 immunostaining. One striking finding of this study 
is that clusters of cells that show nuclear atypia were found in some PIA lesions. Such focal 
atypical epithelial cells fulfil the criteria for HGPIN and expressed both CK5 and GSTP1. 
This study suggests that PIA lesions may develop into HGPIN and prostate cancer directly or 
via some intermediate process. 

Key words: prostate, carcinogenesis, chronic inflammation, atrophy, morphology, 
immunohistochemistry 
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BACKGROUND 

Prostate Gland 

Anatomy 

The prostate is an accessory genital gland with the size and shape of a chestnut. The gland is 

located in the pelvis, inferior to the bladder, where it surrounds the prostatic part of the 

urethra. It consists of 30 to 50 tubuloalveolar glands arranged in three concentric layers: an 

inner mucosal layer, an intermediate submucosal layer, and a peripheral layer containing the 

main prostatic glands 1-3. The glands of the mucosal layer secrete directly into the urethra; the 

other two layers have ducts that open into the prostatic sinuses, located on either side of the 

urethral crest on the posterior wall of the urethra 3.  

The adult prostate gland can be divided into four anatomical zones 4.

• The peripheral zone (PZ): The PZ is located predominantly in the posterior and lateral aspects of 

the gland, extends to the apex variably and anteriorly, and surrounds the central zone towards the 

base. Its ducts open into the distal prostatic urethra. The PZ contains the majority (70%) of the 

glandular tissue in the normal prostate, and represents the most frequent site of prostate cancer 

(PCa) origin. It is also the predominant site for the occurrence of the PCa precursor lesion, 

prostatic intraepithelial neoplasia (PIN), including high grade PIN (HGPIN). This zone is the one 

most susceptible to inflammation 5 .

• The central zone (CZ) contains about 25% of the glandular tissue and is resistant to both 

carcinoma and inflammation. In comparison with the other zones, cells in the central zone have 

distinctive morphologic features: more prominent and slightly basophilic cytoplasm and larger 

nuclei displaced at different levels in adjacent cells. Recent findings suggest that this one 

originates embryologically from the inclusion of mesonephric duct cells into the developing 

prostate.  

• The transitional zone (TZ) contains the mucosal glands. It is composed of lobules of glands with 

shorter ducts compared to those reaching out to the PZ and is often separated from the PZ by an 

indistinct band of collagenous tissue, which becomes more pronounced as the TZ is expanded by 

benign prostatic hyperplasia (BPH). In the young, post-pubertal adult, architectural and histologic 

differences in the glands of the TZ and the PZ are not well defined. The TZ is the exclusively site 

of BPH in the human prostate. In older individuals, the parenchymal cells of this zone frequently 

undergo extensive division and form nodular masses of epithelial cells. Since this zone is in close 

proximity to the proximity to the prostatic urethra, causing difficulty in urination. This condition is 

known as BPH.  

• The periurethral zone contains mucosal and submucosal glands. In later stages of BPH this zone 

may undergo pathological growth, mainly from the stromal components. Together with the 



10

glandular nodules of the transitional zone, this growth causes increased urethral compression and 

further retention of urine in the bladder.  

Histology 

Approximately 70% of the prostate consists of glandular elements, while the remaining 30% 

is a fibromuscular stroma. Normal prostatic gland is composed of three distinct cell types: 

secretory (luminal) cells, basal cells, and neuroendocrine cells. The secretory cells line the 

glandular ducts and have a polarized intracellular organization, which is lost during 

carcinogenesis. The predominant secretory cells are characterized by expression of androgen 

receptor (AR), cytokeratins 8 and 18, CD57, and prostate-specific antigen (PSA). The basal 

cells adjacent to the basal membrane, contain a small number of cells considered the stem 

cells for the prostate gland. They express cytokeratins 5 and 14, CD44, and low levels of AR 
6-8. Neuroendocrine (NE) cells of the prostate are spread among the epithelial cells and are of 

neurogeic origin. NE cells are androgen-independent and express chromogranin A and a 

variety of peptide hormones. NE cells have a role in both prostatic growth and differentiation 

as well as in the exocrine secretory process and pathogenesis of both prostatic cancer and 

hyperplasia 9, 10
. The stromal cells in the prostate gland are composed of both smooth muscle 

cells and fibroblasts.  

The entire duct-acinar system, with the exception of the main lateral ejaculatory ducts, is lined 

by columnar secretory cells, separated from the prostatic stroma by a layer of basal cells 

belonging to the basement membrane 1-3
. 

Secretions  

The ejaculate from the human prostate is a slightly acid (pH 6.5) serous fluid in which several 

major secretory products can be identified, notably acid phosphatase, citrate, zinc, soluble 

fraction proteins, carbohydrates, electrolytes, polyamines, hormones, lipids and growth 

factors 11, 12
.

Up to 57 major protein groups, of which 27 non-serum proteins (i.e. presumably excluded by 

the epithelial cells) have been identified. Major prostatic-specific proteins are prostatic acid 

phosphatase (PAP), PSA, and prostate binding protein (PBP), which are expressed at pubertal 

and adult ages. Proteolysis is the major function of prostate secretion, being rich in 

exopeptidase and endopeptidase. The most extensively studied protease is PSA, also known 

as seminin, seminal protease or chymotrypsin-like protease 3, 13
. 

PSA  
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This enzyme is secreted into the alveoli and is ultimately incorporated into seminal fluid. The 

alveoli secretion is pumped into the prostatic urethra during ejaculation by contraction of the 

fibromuscular tissue of the prostate. The fibrinolysin in the secretion serves to liquefy the 

semen. Normal individuals have a low serum concentration of PSA. Circulating PSA is 

produced by the liver, not by the prostate gland which, in normal individuals, releases PSA 

only into prostatic secretion. However, in prostate cancer, serum concentration of PSA 

increases. In this case, the additional PSA is produced and released into the circulation by the 

prostate gland. Therefore, the elevated levels of PSA are directly related to increased activity 

of the prostate cancer cells. Increased blood levels of PSA, as well as PAP, are used as 

markers of the presence and progression of the disease.  

Prostate Disorders  

There are three pathological processes affecting the prostate gland with sufficient frequency 

to merit discussion: inflammation, benign nodular enlargement, and tumours. 

Prostatitis  

The term prostatitis refers in its strictest sense to histological inflammation of the tissue of the 

prostate gland, although historically the term has been used loosely to describe a set of widely 

differing conditions. 

Incidence and prevalence: Prostatitis can affect men of any age, and it is estimated that 50% 

of men experience the disorder during their lifetime. Prostatitis is the most common 

urological disorder in men over the age of 50 and the third most common disorder in men 

younger than 50. According to the National Institutes of Health (NIH), prostatitis accounts for 

25% of all office visits involving the genitourinary system by young and middle-aged men 14.  

Nonbacterial prostatitis and prostatodynia are the most common diagnoses. Bacterial 

prostatitis (acute and chronic) accounts for less than 5-10% of cases. Acute bacterial 

prostatitis occurs most often in men under age 35, while chronic bacterial prostatitis primarily 

affects men between the ages of 40 and 70.  

Risk factors and causes: Risk factors include bladder outlet obstruction, (e.g., stone, tumour, 

BPH), diabetes mellitus, a suppressed immune system, and urethral catheterization. Some 

sexually transmitted diseases (STDs) increase the risk of developing bacterial prostatitis.  

Bacterial prostatitis is caused by the growth of bacteria normally found in prostatic fluid, such 

as Escherichia coli and Klebsiella. Urine reflux entering the prostate can also cause the 
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condition. There is no known cause of nonbacterial prostatitis or prostatodynia, but atypical 

organisms (e.g., viruses, chlamydial organisms) have been suggested. 

Classification: Prostatitis may be divided into several categories: acute and chronic bacterial 

prostatitis and chronic abacterial prostatitis and granulomatous prostatitis. According to the 

1999 NIH Classification 15, there are four categories of prostatitis: I: Acute prostatitis 

(bacterial); II: Chronic bacterial prostatitis; III: Chronic prostatitis/chronic pelvic pain 

syndrome: Subdivisions of IIIa (inflammatory) and IIIb (non-inflammatory) exist based on 

levels of pus cells in expressed prostatic secretions, but these subcategories are of limited use 

clinically; IV: Asymptomatic inflammatory prostatitis. 

Benign prostatic hyperplasia (BPH) 

BPH refers to the increase in size of the prostate in middle-aged and elderly men. It occurs 

almost exclusively in the transitional and periurethral zones. It is characterized by hyperplasia 

of prostatic stromal and epithelial cells, resulting in the formation of large, fairly discrete 

nodules in the periurethral region of the prostate. When sufficiently large, the nodules 

compress the urethral canal to cause partial, or sometimes virtually complete, obstruction of 

the urethra, which interferes with the urine flow. This leads to symptoms of urinary hesitancy, 

frequent urination, increased risk of urinary tract infections and urinary retention.  

Epidemiology. BPH can be seen in the vast majority of men around the world as they age, 

particularly in men over the age of 70 years. The prevalence of histologically diagnosed 

prostatic hyperplasia increases from 8 percent in men ages 31 to 40, to 40 to 50 percent in 

men ages 51 to 60, to over 80 percent in men older than 80 16.  

Etiology. Androgens (testosterone and related hormones) are considered to play a permissive 

role in BPH 17. Dihydrotestosterone (DHT), a metabolite of testosterone, is a critical mediator 

of prostatic growth and also of BPH. Therapy with 5�-reductase inhibitor markedly reduces 

the DHT content of the prostate and in turn reduces prostate volume. There is growing 

evidence that both estrogens and inflammation play roles in the etiology of BPH 18, 19. 

Histopathology. The hallmark of BPH is nodularity attributable to glandular proliferation or 

dilation and to fibrous or muscular perforation of the stroma. The proportion of these elements 

varies from nodule to nodule, ranging from purely stromal fibromuscular nodules to 

fibroepithelial nodules with glandular predominance. Glandular proliferation takes the form of 

aggregations of small to large to cystically dilated glands, lined with two layers, an inner 

columnar and an outer cuboidal or flattened epithelium, based on an intact basement 

membrane. The diagnosis of BPH cannot usually be made on needle biopsy, as the histology 
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of glandular or mixed glandular-stromal nodules of BPH cannot be appreciated on this limited 

sampling. Two other histological changes are associated with BPH, namely foci of squamous 

metaplasia and small areas of infarction 20, 21.  

Prostate Cancer 

Epidemiology 

PCa remains one of the most common cancers afflicting men today. It is the third most 

common cancer in the world and the most common non-cutaneous malignant neoplasm, as 

well as the second cause of cancer death in men in Western countries, with a world age-

standardised rate of 104 cases per 100, 000 men 22. PCa is responsible for the death of 

approximately 30,000 men per year in the United States 23. In Sweden, approximately 10, 000 

new cases were detected in 2004 and 2,549 men died of PCa (Swedish National Board of 

Health and Welfare). The incidence has increased over the last two decades, with the PCa 

mortality rate remaining unchanged at a level of 59.03 cases per 100,000 men in 2003 in 

Sweden.   

Compared with the high rates in Western countries, PCa has low rates in Asian countries. 

However, with aging populations and increasing use of PSA screening, the incidence of 

prostate cancer in the high-risk countries has risen sharply in the past decade 24. It is revealing 

a more rapid increasing incidence of PCa in Asia than high-risk countries in recent data, such 

as in Japan, Singapore, and even in some Chinese cities, such as Beijing, Shanghai, and Hong 

Kong 24. The age-adjusted incidence rate has risen from 6.6 to 14.4 per 100,000 person-years 

from 1978 to 1997 in Singapore Chinese 24.  

Pathogenesis - the Possible Causes of Prostate Cancer

Less is known about the cause of PCa than about any other common cancer in the human 

body. A number of risk factors for PCa have been proposed, although the findings are often 

weak and controversial. The well-established risk factors include: increasing age, race, and 

family history of PCa. Risk factors that have no been well elucidated include: dietary, obesity, 

physical inactivity, hormonal, occupational, social, smoking, infection and/or inflammation, 

and sexual factors. 

Old age: It is uncertain why PCa is an almost inevitable consequence of old age. Perhaps 

there is breakdown of the immune system. It is also possible that the immune system is 

overwhelmed by an increased number of genetically altered cells in the body which occurs 

naturally with age. The number of altered or damaged cells may increase because of 

progressive failure of the enzymes acting on a cell-by-cell basis to deal with environmental 
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damage such as carcinogens, a high fat diet, and other factors. The cumulative exposure to 

mutagens and carcinogens could influence all of these factors, resulting in cancer. 

Family history and genetics: Heredity appears to be one of the most consistent and strongest 

risk factors for the development of PCa 25
. Genetic studies suggest that a strong familial 

predisposition may be responsible for as many as 5-10% of PCa cases 26. A man's risk is two-

fold higher if one first degree relative such as a father or brother has PCa, and the risk is 5-11 

folds higher if 2 or 3 first degree relatives have PCa. 

Diet: An increased intake of animal fat and possibly red meat has been associated with an 

increased risk of PCa. In contrast, vegetables may protect against PCa. High intake of 

cruciferous vegetables containing the chemoprotective isothiocyanate sulforaphane was 

correlated with a diminished risk of PCa 27. But the relationship is complex and ill-defined, 

perhaps due in part to the influence of diet on the production of sex hormones, including 

increased androgen levels with high fat diets as well as the weak estrogen activity of soy 

compounds in Asian diets 28. Obesity and alcohol abuse may also be risk factors 29. 

Smoking: PCa is one of the few cancers in the human body which has not been strongly 

linked to smoking. 

Male hormones (testosterone):  The prostate requires hormones for growth and development, 

but hormones are also essential for cancer maintenance and growth. However, their role in the 

initiation of prostate cancer is unknown 30. Men whose testicles are never developed or are 

removed, never develop PCa 31. 

Sexual Activity: Investigators have suggested that sexual abstinence may contribute to PCa 

risk, but there is no consistent evidence to support this contention despite multiple studies 32. 

Recent studies suggest that prior sexual practices, exposure to sexually transmitted microbial 

agents and a history of prostatic infection may contribute to the risk of PCa 33.  

BPH: BPH is frequently seen in association with PCa, and there are a number of compelling 

similarities, including increasing incidence and prevalence with age, concordant natural 

history, and hormonal requirements for growth and development. However, no causal 

relationship has been established. 

Infections and inflammations (see below in detail): The cause of inflammation may be 

microbial infection or a noninfective physical, or chemical irritant, or a hormonally induced 

inflammation.  

Molecular pathology  
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PCa, like other types of cancer, is a result of the accumulation of both genetic and epigenetic 

alterations that transform normal glandular epithelium to preneoplastic lesions and then to 

invasive carcinoma. Recent advances in molecular research enable us to understand the 

functions of many of the protein products of oncogenes and tumour suppressor genes in great 

detail.  

Currently, it is difficult to determine whether PCa is caused by the inheritance of one or more 

specific genetic traits. Less than 10% of PCa are inherited; most appear to be sporadic 26. It is 

therefore suggested that the multiple clinical subsets presented may be the effects of different 

genetic mechanisms, and that multiple genetically controlled factors are involved in the 

evolution of sporadic tumours 34
.

Loss of heterozygosity (LOH) and tumour suppressor genes: Cytogenetic studies reveal 

consistent chromosomal abnormalities in particular stages of PCa. Most of these abnormal 

chromosomal regions harbor several important genes involved in tumour development and 

progression. In PCa, chromosomal losses are more common than gains: losses of 

chromosomes 6q, 7q, 8p, 10q, 13q, 16q, 17, and 18q are particularly common events 35-37

(Table 1).  

Table 1. Abnormal chromosomal regions and the candidate genes involved in prostate cancer 
development and progression: 

Abnormal chromosomal regions  candidate genes

Chromosome 6q  Insulin-like growth factor II receptor (IGF2R) 

Cyclin C (CCNC) 

Chromosome 8, 8p23 and 8p12–22 NKX3.1.  

Chromosome 10q24 PTEN 

Chromosome 10q24–25 Negative regulator of c-myc proto-oncogene, MXI1 

Chromosome 11p11.2 Metastasis suppressor gene KAI1 

Chromosome 13q Retinoblastoma (RB) gene 

p15INK4B, p16/CDKN2, p21WAF1 and p27KIP1  

Chromosome 16q22 E-cadherin 

Chromosome 17p13 p53 

Chromosome 17q21.3–22 Metastasis-associated genes, nm-23 H1 and H2 
Data from Lijovic M 35, Karan D 36, De Marzo AM 37, De Marzo AM 38

Oncogenes: Information on the participation of oncogenes in PCa is limited, and the role of 

the expression or amplification of oncogenes remains unclear. c-myc, ras, c-erbB2 (Her-2 neu),

and Bcl-2 have received attention for their properties. 

• c-myc: Several studies have demonstrated increased c-myc expression in PCa and a significant 

correlation to Gleason grade 39.  
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• Ras: The frequency of ras mutations reported in PCa is variable. Mutations in K-, H-, and N-ras

were found in less than 5% of tumours in Western populations but were detected in 26% of 

prostate cancers in Japanese men 40, 41.  

• c-erbB2 (HER-2/neu). There is some controversy over the role of c-erbB2 in PCa. Some studies 

reported c-erbB2 over-expression in PCa and suggested that expression increases as PCa 

progresses to androgen independence 42. Other studies have failed to identify HER-2/neu 

amplification or overexpression in PCa 43.  

• Bcl-2, which encodes an anti-apoptotic protein, is overexpressed in approximately half of prostate 

cancers, particularly in androgen-independent tumours 44.  

DNA methylation: Aberrant epigenetic events such as DNA hypermethylation, DNA 

hypomethylation and histone acethylation have been observed in PCa. Apart from specific 

genetic mutations, recent studies have demonstrated silencing of tumour suppressor genes by 

promoter hypermethylation to be the most common feature in human tumours. Hypermethyla-

tion in the promoter regions of p14ARF, p15INK4b, p16INK4a, glutathione-S-transferase (GST), E-

cadherin and VHL genes has been described in PCa 45
. The most common epigenetic change 

in PCa is hypermethylation of glutathione-S-transferase � (GSTP1), one of the major enzymes 

protecting against reactive oxygen species damage.  

Diagnosis 

Screening by digital rectal examination (DRE), biopsies and imaging: Patients with PCa 

show few early symptoms. Severe symptoms such as hematuria, urinary obstructive and bone 

pain are only present in advanced disease or cancer with metastases. Blood level of PSA, 

prostate palpation, and ultrasound-directed biopsy are the most common combinations of 

diagnostic tools 46. Digital rectal examination and imaging by ultrasound give information 

about the size and shape of the prostate. The most widely accepted indication for prostate 

biopsy is a PSA value in serum greater than 4.0 ng/ml 46. 10-12 cores of tissue from the gland 

under ultrasound guidance can be obtained from a single transrectal prostate biopsy. The 

biopsies are examined by a pathologist and routinely graded to the Gleason system.  

Gleason score 

A widely acknowledged method of grading the aggressiveness of PCa was developed by DF 

Gleason between 1969 and 1974. The Gleason system was based on histopathological data 

from over 4000 PCa biopsies and resections between 1960 and 1975 47-49. Architectural 

patterns seen at low magnification were recorded without preconception and independently 
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correlated with mortality data. Patterns that occurred frequently together and were associated 

with the same outcomes were grouped together, resulting in five grades (Fig 1):  

Fig 1. Gleason grade of prostate cancer
– Grade 1 (well differentiated), circumscribed mass of evenly spaced, closely packed, uniform 

shaped glands, with no evidence of infiltration of the stroma.  
– Grade 2 (well differentiated), some infiltration into the surrounding stroma and more variation in 

gland size and spacing, although this was limited. 
– Grade 3 (moderately differentiated), most common grade with more variation in size, shape, and 

separation of the glands, less defined boundaries, and less intervening stroma. 
– Grade 4 (poorly differentiated), fusion of the glands forming a solid anastamosing network with a 

ragged invasive edge. 
– Grade 5 (undifferentiated), characterised by a complete absence of gland formation with sheets or 

clusters of cells.  

Because of the histological variation within each tumour, two grades, the predominant, or 

primary, grade and the less extensive, or secondary grade, were recorded as the Gleason sum 

score in each case. For consistency, if only one grade was present, this was doubled. The 

primary and secondary grades showed similar correlations with mortality but the sum of these 

two grades showed the strongest correlation with cancer-specific mortality, hence, a low 

Gleason score (� 6) is indicative of a more indolent malignancy with a good prognosis 

whereas a high Gleason score (> 8) is associated with aggressive biological behaviour and an 

increased risk of occult systemic disease.  

Over many years the Gleason system has been shown to be a powerful predictor of prostate 

cancer behaviour and outcome after either prostatectomy 50, 51, radiotherapy, or in patients 

managed with surveillance 52. 

Biomarkers  

There are several groups of established biomarkers, but many of them are still under 

investigation, and a number of new promising markers are being identified by gene 

expression analysis, e.g. hepsin, AMACR, EZH2, cell cycle proteins, autoantibody signature 
53, 54

.  Among them, PSA, AMACR, and established tissue markers HMW (34�E12) and p63, 

which are both basal cell markers, are routinely used in clinical laboratories. A triple antibody 
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cocktail staining, AMACR in combination with p63 and 34�E12, is currently widely used in 

diagnosis of PCa.   

HMW 34�E12: With the advent of immunohistochemistry, 34�E12 has become an often 

useful adjunct in the diagnosis of prostatic adenocarcinoma 55. Specifically, 34�E12 has been 

shown to highlight the sometimes inconspicuous basal cell layer in benign glands and has 

conventionally been considered negative in carcinomatous glands. 34�E12 can occasionally 

be essential in differentiating carcinoma from its many benign mimickers, including adenosis, 

basal cell hyperplasia, and atrophy 56. 

Alpha-methylacyl-CoA-racemase (AMACR): AMACR is a recently discovered tumour 

marker whose expression is significantly upregulated in PCa. It has been shown to be a highly 

sensitive marker for the diagnosis of PCa. The majority of prostatic ductal and cribriform 

acinar carcinomas strongly expressed AMACR 57. Two antibodies, P504S and AMACR-p, 

were usually used for immunohistochemistry 57.   

P63: Basal cell marker. P63 is used as a tool to determine the state of the basal cell layer and 

to distinguish the regions of PIA from those of PIN and PCa 58.  

Alternative Treatments  

Despite recent advances in early diagnosis and treatment, PCa remains the second most lethal 

cancer type for men in the Western World 59, 60. Initially, the majority of prostate cancers are 

responsive to androgen ablation therapy, but most of the tumours eventually progress to the 

androgen-refractory state and then do not respond to hormonal treatment and often develop 

metastatic phenotypes 61. 

Prostatectomy is a surgical approach the treatment of PCa, used to remove all or part of the 

prostate. Typically, men with early-stage disease or cancer that is confined to the prostate will 

undergo radical prostatectomy, or surgical removal of the entire prostate gland plus some 

surrounding tissue 62. 

Radiation Therapy involves the killing of cancer cells and surrounding tissues with directed 

radioactive exposure, and is an initial treatment for PCa. Some forms of radiation therapy can 

also be used in men with advanced or recurrent PCa 63.  

Hormone Therapy is designed to stop testosterone from being released or to prevent the 

hormone from acting on the prostate cells. Hormone therapy plays an important role in men 

with advancing PCa, and it is increasingly being used before, during, or after local treatment 

as well. The majority of cells in PCa respond to the removal of testosterone. But some cells 

grow independently of testosterone, and therefore remain unaffected by hormone therapy. As 
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these hormone-independent cells continue to grow unchecked, over time, hormone therapies 

have less effect on the growth of the tumour. Hormone therapy is therefore not a perfect 

strategy, but remains an important step in the process of managing advancing disease, and is 

likely to be a part of therapeutic regimen at some point in recurrent or advanced PCa 62, 64. 

New Therapies  

Chemotherapy: Systemic chemotherapy may be of value for men with advanced high stage 

PCa who have failed to respond to hormone therapy. However, all chemotherapeutics, either 

as single agents or in combination, are associated with toxicity 65
. Recently, doxetaxel was 

shown to improve survival in hormone refractory PCa 66.

Thermal therapy: Direct application of high temperatures will destroy cancer cells, and this 

method has been exploited with laser therapy, microwave hyperthermia, and electrocautery 

and electrovaparization. These techniques are of proven value for treatment of BPH, while 

none has been shown to be of value in PCa 67.

Gene therapy: Intensive research about the molecular changes in androgen-independent PCa 

led to the identification of several interesting genes, which may be useful as targets for gene 

therapy. In fact, there is a broad range of different gene therapy approaches in the field of PCa, 

some of which have already progressed to clinical evaluation in patients (Phase I/II clinical). 

These agents have aimed to be immunomodulatory (i.e., to stimulate tumour recognition by 

the immune system), to target an oncogene, replace a defective tumour-suppressor gene, or to 

directly lyse tumour cells. The Granulocyte-macrophage colony-stimulating factor (GM-CSF) 

gene-engineered prostate cancer vaccine (Prostate Cancer GVAX® Vaccine) has been used in 

a phase II study of hormone refractory prostate cancer and suggested that the Vaccine delays 

progression and prolongs survival in patients with bone metastatic prostate cancer 68.

Anti-angiogenesis therapy: Several anti-angiogenic agents are currently under investigation 

in clinical trials, and the results are promising 69, 70. One advantage of anti-angiogenic therapy 

over conventional therapy is the low frequency of drug resistant mutations in endothelial cells. 

Current anti-angiogenic strategies target endothelial cells either directly, by inhibiting their 

proliferation and migration or inducing apoptosis, or indirectly, by inhibiting the production 

of angiogenic factors by tumour cells. Therapeutic strategies include the delivery of 

endogenous inhibitors of angiogenesis, agents that prevent the degradation of the basement or 

extracellular membrane, agents that interfere with or block the action of pro-angiogenic 

factors, and small molecule inhibitors of angiogenic factor receptors found in prostate cancer 
71.
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Tyrosine Kinases inhibition: Tyrosine kinases have been implicated in prostate epithelial 

cell transformation and tumour progression. Implicated tyrosine kinases include fibroblast 

growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), and platelet-

derived growth factor receptor (PDGFR). It has been reported that tyrosine kinase inhibitors 

(TKIs) assert their anti-tumour effects against PCa by a hormone-independent mechanism 72
.

The combination of TKIs therapy and anti-hormone therapy can be synergistic 73.  

Androgen receptor (AR) 

Androgens are indispensable for the development and regulation of the male reproductive 

system and are also involved in the development of PCa 74. The effects of androgens are 

mediated through the AR.  

AR, a member of the subfamily of steroid receptors, has a pivotal role in the regulation of 

prostate growth and secretory responses. After binding of its ligand, the AR undergoes a 

conformational change and acquires an active form which regulates transcription of androgen-

responsive genes. Thereby its functional activity is modulated by interactions with receptor-

associated tissue-specific co-regulatory proteins, called co-activators and co-repressors 75, 76.  

It is well known that PCa is driven by androgen. Indeed, neither cancer nor hypertrophy will 

occur in the absence of androgen.  Men castrated before puberty or those with 5�-reductase 

deficiency do not develop PCa 77. Interestingly, high levels of AR are associated with 

aggressive clinicopathologic features and with decreased biochemical recurrence-free survival 

in PCa patients treated with radical prostatectomy 78
. These observations are consistent with 

reports demonstrating that increases in AR mRNA and protein levels are both necessary and 

sufficient to convert PCa growth from the hormone-sensitive to hormone-refractory stages, 

and is dependent on a functional AR ligand-binding domain 79. It may be that activity of AR 

and levels of AR, rather than testosterone, are the driving forces for PCa. It was shown that 

low levels of testosterone was associated with higher androgen receptor density in PCa, as 

well as higher Gleason score 78
.   

AR in androgen-independent PCa 80: Analysis has shown that AR continues to be 

expressed in androgen-independent PCa and that AR signalling remains intact, as 

demonstrated by the expression of the AR regulated gene, PSA. Androgen-independent PCa 

has demonstrated a variety of AR alterations, including AR amplification, AR point mutation, 

and changes in expression of AR co-regulatory proteins 81. These AR changes result in a 

“super AR” that can respond to lower concentrations of androgens or to a wider variety of 

agonistic ligands. There is also evidence that AR can be activated in a ligand independent 
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fashion by compounds such as growth factors or cytokines working independently or in 

combination, such as insulin-like growth factor-1( IGF-1), keratinocyte growth factor (KGF), 

and epidermal growth factor (EGF) 80
.  

AR down-regulation: Studies have shown the AR expression decreased after castration in 

the CWR22 human prostate cancer xenograft model 82. AR expression decreased from 100% 

before androgen deprivation therapy to 88% after ADT, and the loss of AR was associated 

with a tendency to high Ki-67 index (from 17.4% to 26.3%). Reduced expression of AR 

appeared in 20–30% of androgen-independent PCa 83. Methylation of the AR gene promoter 

has been reported in advanced hormone-independent PCa tissue and may be one of the causes 

of AR down-regulation in PCa 84. AR down-regulation is more common in PCa cells. In 

androgen-independent PCa cell lines, such as DU145 and PC3, the loss of AR expression 

often occurs during the clinical evolution of PCa 83, 85. In vivo studies have shown that AR 

mRNA and protein levels in the LNCaP cells could be down-regulated by EGF 86, basic 

fibroblast growth factor (bFGF) 87, and tumour necrosis factor � (TNF�) 88. These results 

suggested that inflammatory cytokines may play roles in the initiation of an androgen-

independent state in PCa through their ability to inhibit AR sensitivity in PCa. Moreover, IL-

1� is also responsible for down-regulation of AR protein expression 89.  

Chronic Inflammation and the Pathogenesis of Neoplasia 

Epidemiology and Clinical Studies

In 1863, Virchow noted leucocytes in neoplasitc tissues and hypothesized that malignant 

neoplasms occurred at sites of chronic inflammation. Virchow reasoned that various "irritants" 

caused tissue injury, inflammation, and increased cell proliferation 90, 91.  

Recently, the association between inflammation and cancer was illustrated in epidemiological 

and clinical studies 90-92. There is increasing evidence supporting the association between

chronic inflammation and cancer development. For instance, the risk of colorectal cancer was 

10-fold greater when associated with inflammatory bowel disease, such as ulcerative colitis

and Crohn's disease 90, 93. Moreover, the control of colitis by certain anti-inflammatory agents 

reduced colon cancer incidence93. Persistent gastric infection with Helicobacter pylori and 

stomach cancer 94, human papillomavirus (HPV) infection and cervical cancer 90,95 are also 

examples of such process.  

The proportion of cancer deaths attributable to infectious agents has been estimated to range 

from 20% to 25% in developing countries and 7% to 10% in more industrialized countries, 
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that meaning about 1.8 million cases of cancer were attributable to infectious agents in the 

year 2000 90-92 (Table 2) 

Table 2. Chronic Infection and/or Inflammation and Human Tumours 

Causal Mechanisms Types of Tumour 
Helicobacter pylori and chronic gastritis Adenocarcinoma of stomach 

Epstein-Barr virus B-cell lymphoma 
Non-Hodgkin lymphoma 
Hodgkin lymphoma 
Nasopharyngeal carcinoma 

Human papillomavirus Anogenital carcinoma 

Oropharyngeal carcinoma 
Hepatitis B or C virus Hepatocellular carcinoma 
HIV/AIDS Non-Hodgkin lymphoma 

Kaposi sarcoma 
Liver flukes (eg, Clonorchis sinensis) Cholangiocarcinoma 
Schistosoma haematobium Squamous carcinoma of urinary bladder 
Gastroesophageal reflux Adenocarcinoma of the distal esophagus and 

gastric cardia 

Ulcerative colitis Adenocarcinoma of the large intestine 
Crohn granulomatous colitis Adenocarcinoma of the large intestine 
Chronic obstructive lung disease Carcinoma of the lung 
Chronic lung infections Carcinoma of the lung 
Chronic diffuse infiltrative lung diseases 
(eg, asbestosis, silicosis) 

Carcinoma of the lung 

Chronic cholecystitis Gallbladder carcinoma 

Inflammatory atrophy of prostate Prostate carcinoma
Data from Balkwill F 90, Coussens LM 91, Schottenfeld D 92

Causes of Inflammation 

The cause of inflammation may be microbial infection, such as Helicobacter pylori in gastric 

cancer, hepatitis B virus (HBV) in hepatocellular carcinoma, or a non-infective physical and/or 

chemical irritant, such as gallstones in gallbladder cancer. In addition, autoimmune and 

inflammatory reactions of uncertain etiology were also be involved (Table 2). 
  

Epidemiologic Support for a Relation between Inflammation and Prostate Cancer  

There is evidence indicating that prostatic inflammation may contribute to prostate growth 

either in terms of BPH or PCa changes and, therefore, several clinical prevention trials for 

neoplasms have focused on antioxidants or anti-inflammatory agents. Several clinical trials 

have demonstrated an association between chronic inflammation, including prostatitis and 

sexually transmitted infections/diseases (STDs), and PCa. 
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Prostatitis: Various epidemiological studies have shown a significant association between 

prostatitis and prostate carcinoma 96-98. A cross-sectional analysis from a prospective cohort 

study of 5821 men aged �65 years found positive associations for a self-reported history of 

prostatitis with a history of PCa 96. Another case-control study investigated 409 cases at 

diagnosis of PCa and 803 control subjects from 1980 to 1996 97
. The odds ratio of PCa in men 

with any type of prostatitis was 1.7, with acute bacterial prostatitis was 2.5, with chronic 

bacterial prostatitis 1.6, and with chronic pelvic pain syndrome 0.9. Therefore, infectious 

prostatitis might be associated with PCa. A meta-analysis of 11 case-control studies revealed 

a statistically significant summary odds ratio of prostate cancer of for ever having had 

prostatitis 98. They found an increased risk of PCa among men with a history of prostatitis 

(OR = 1.6), particularly in population-based case-control studies (OR = 1.8). More recently, 

MacLennan et al.99 analyzed 177 prostate needle biopsies from patients with clinical 

parameters suspicious for malignancy, including 144 patients with and 33 without chronic 

inflammation in the initial biopsies. In repeated biopsies within 5 years, in patients with 

chronic inflammations, 29 new PCa were diagnosed, representing a new cancer incidence of 

20%. In contrast, in 33 patients initially showing no inflammation, PCa was subsequently 

found in 2 (6%).  

However, some studies show no compelling evidence to support the hypothesis that prostatitis 

is a risk factor for PCa97
.�Karakiewicz et al. 100 examined the association between inflamma-

tion and coexistent PCa, as well as HGPIN, in 4,526 patients assessed with systematic 

prostate biopsies. Results showed that men with chronic inflammation exhibited HGPIN 

(2.7% vs. 20.3%, p < 0.01) and PCa (13.6% vs. 43.5%, p < 0.01) less frequently than their 

counterparts without chronic inflammation. In the study, the OR of 0.20 indicated that 

inflammatory aspects on needle biopsy are 80% less likely to appear with coexistent PCa than 

men without chronic inflammation. Similar results were found between inflammation and 

HGPIN (OR = 0.11) 100.  

Goldstraw et al. analyzed the possible confounding factors leading to these different results in 

epidemiologic studies 101: (1), the true incidence of prostatitis or prostatic inflammation is 

uncertain. Men who have prostatitis may have the condition without clinical symptoms; (2), 

symptomatic men with prostatitis are more likely to be screened for PCa or to undergo a 

needle biopsy. Therefore, PCa may be over-diagnosed in this population.  

Sexually transmitted infections/diseases (STDs): STDs have been inconsistently associated 

with PCa, with positive associations being reported with syphilis, gonorrhoea and HPV 

infections in various studies 102. Dennis and Dawson 103 found a greater relative risk of PCa 
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among men with a history of STDs, using both random and fixed-effects models (OR = 1.4; 

17 studies), especially for syphilis (OR = 2.3; six studies). These results indicate an 

association between PCa and STDs, suggesting that infections might represent one 

mechanism through which PCa develops. A similar meta-analysis of 29 case-control studies 

showed a significantly high odds ratio for PCa for any STD (OR = 1.48), gonorrhoea 

(OR = 1.35) and HPV (OR = 1.39) 104. Another study demonstrated that the OR between 

sexually transmitted (most evidence involves syphilis and gonorrhea) prostatic infections and 

PCa was significant (OR = 1.4; p = 0.003) in a meta-analysis 103. 

The causes of prostatic inflammation 

Although various epidemiological studies have shown a significant association between 

prostatitis and prostate carcinoma, the causality in these epidemiological studies is unclear, 

because of potential confounders. There are various potential sources for the initial event, 

including direct infection, urine reflux inducing chemical and physical trauma, dietary factors, 

estrogens, and combinations of two or more of these factors. Furthermore, any of these could 

lead to a disruption of immune tolerance and the development of an autoimmune reaction to 

the prostate.

Infectious agents: Many different pathogenic organisms have been observed to infect and 

induce an inflammatory response in the prostate 38. These include sexually transmitted 

organisms 102, such as Neisseria gonorrhoeae, Chlamydia trachomatis 105, and non-sexually 

transmitted bacteria such as Propionibacterium acnes and those known to cause acute and 

chronic bacterial prostatitis, primarily Gram-negative organisms such as Escherichia coli. 

Although each of these pathogens has been identified in the prostate, the extent to which they 

typically infect this organ varies 38.  

Bacterial DNA sequences were detected in 19.6% of patients with PCa 106. In another analysis 

with prostate samples from organ donors, PCa or BPH, there was a strong association 

between inflammation and positive bacterial 16S rRNA gene PCR findings 107
. Concordance 

between inflammation and positive PCR results suggests that bacteria might often have a role 

in histologically inflammatory prostatitis caused by bacteria detectable through 16S rRNA 107
.

Recently, a study of mouse model of chronic bacterial prostatitis induced by E. coli suggested 

that chronic bacterial prostatic infection and inflammation can lead to neoplastic tissue 

alterations in the prostate: from varying degrees of atypical hyperplasia to severe dysplasia in 

the prostate. In particular chronic inflammation could produce histologic changes similar to a 

PIN lesion 108
.  
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Viruses can also infect the prostate.  Human papillomavirus (HPV), human herpes simplex 

virus type 2 (HSV2), cytomegalovirus (CMV) and human herpes virus type 8 (HHV8) have 

been detected in the prostate 38, 109. How frequently these agents infect the prostate, and 

whether they elicit an inflammatory response, is largely unknown.  

Estrogens: Estrogenic exposures may be another cause of prostate inflammation and PCa. 

Increased levels of estrogens have long been linked to the development of PCa 110. Estrogens 

affect the growth and development of the prostate, by direct effects mediated by estrogen 

receptor (ER)-� in the stroma, and ER-� in the epithelium or through indirect routes 110, 111. 

Brief exposure of rats to high-dose estrogen during the neonatal period result in an “imprinted 

state” or “developmental estrogenization” in which there are developmental defects, including 

a reduction in prostatic growth. This treatment also results in the development of lobe-specific 

inflammation, hyperplasia and dysplasia or PIN 111. Therefore, it is quite plausible that 

chronic inflammation in the adult human prostate might reflect an autoimmune reaction 

caused, at least in part, by estrogens. In adult animals, exposure to estrogens with or without 

DHT also results in prostate inflammation 112, 113. 

Dietary factors: Epidemiological studies have revealed a link between PCa incidence and 

mortality and the consumption of red meat and animal fats 114, 115. One mechanism could be 

related to the formation of heterocyclic amines (HCAs). Exposure of rats to dietary 2-amino-

1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) results in carcinomas of the intestine in both 

sexes, in the mammary gland in females and in the prostate in males 116. More interestingly, a 

processes from atrophy in prostate to HGPIN was observed directly in the atrophic epithelium 
116.  

Urine reflux, chemical, physical trauma and others: Chemical irritation from urine reflux 

has been proposed as an etiological agent for chronic inflammation in the prostate 117. A study 

suggested that in mice the bacterial colonization of the prostate, possibly through the reflux of 

urine into the prostatic ducts of the peripheral zone, could play a role in the genesis of chronic 

inflammation and in prostatic tumorigenesis 38. Urine reflux of injurious chemicals can 

function in conjunction with infectious agents to increase prostate inflammation 118. Another 

manner by which prostate inflammation might occur is the development of corpora amylacea 
119. Corpora amylacea have been proposed to contribute to prostate inflammation, persistent 

infection and prostate carcinogenesis, since they are frequently observed adjacent to damaged 

epithelium and focal inflammatory infiltrates. Intraprostatic spermatozoa is another cause of 

prostate inflammation and is related to prostate atrophy 38,120
.  
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Inflammatory Microenvironment Associated with the Subsequent Development of Cancer 

Chronic inflammation is characterized by sustained tissue damage, damage-induced cellular 

proliferation, and tissue repair. Histopathological features of chronic inflammation include the 

predominance of macrophages and lymphocytes, proliferation of nurturing structurally 

heterogeneous and hyperpermeable small blood vessels, fibrosis, and necrosis 121. The tumour 

inflammatory microenvironment is characterised by the presence of host leucocytes, high 

levels of reactive oxygen and nitrogen species both in the supporting stroma and in tumour 

areas, and inflammatory cytokine network 90, 91.  

Host leucocytes. Macrophages, mast cells, neutrophils, eosinophils, lymphocytes, and 

dendritic cells have been found to be key components in the epithelial-originated tumours 122
.  

• Tumour-associated macrophages (TAM) contribute to tumour development through several 

mechanisms. TAMs release interleukin (IL)-10 and prostaglandin E2 (PGE2), which suppress 

antitumour response 123. TAMs also facilitate tumour growth by releasing angiogenic factors, such 

as VEGF, endothelin-2, and urokinase-type plasminogen activator 121, 124. TAMs produce IL-1, 

which up-regulates VEGF transcription 125. TAMs also facilitate tumour cell invasion and 

metastasis by releasing matrix metalloproteinases (MMP-2 and MMP-9) 126. In addition, TAMs 

induce TNF-� and iNOS, which damage DNA and inhibit DNA repair. Moreover, TAMs release 

epidermal growth factor and other epidermal growth factor receptor family ligands to promote 

tumour cell proliferation and migration 123.  

• Activated mast cells generate angiogenic growth factors, such as VEGF/vascular permeability

factor and bFGF, specific angiogenic regulators histamine and heparin, MMP-9, and mast cell–

specific proteases MCP-4 and MCP-6 127, 128. Therefore, activated mast cells are suggested to be 

involved in tumour angiogenesis, invasion, and metastasis. Inflammatory mast cells also enhance

tumour progression by releasing cytokines and chemokines.  

• Tumour-associated neutrophils enhance tumour angiogenesis, invasion, and metastasis in a 

similar manner to TAMs and mast cells 128. Neutrophils may also play a role in genetic instability

of tumours 128.  

• T-lymphocytes are recruited to tumours by a series of chemokines. At the premalignant lesion 

stage in a skin cancer model, the knockout of T cells resulted in decreased leukocyte infiltration

and reduced levels of MMP-9 129. The increase of CD4+ T cells was consistently positively 

correlated with poor prognosis in both renal cell cancer and colorectal cancer 130.  

• Tumour-associated dendritic cells (TADC) have an immature phenotype with defective ability 

to stimulate T cells 90.  

Reactive oxygen and nitrogen species: Chronic inflammation and the metabolic products of 

phagocytosis are often accompanied by the excessive formation of reactive oxygen and 
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nitrogen species that are potentially damaging to DNA, lipoproteins, and cell membranes. 

Inflammatory cells also release metabolites of arachidonic acid, or eicosanoids, including

prostanoids or prostaglandins and leukotrienes. Cyclooxygenase (COXs) are key enzymes that 

control rate-limiting steps in prostaglandin synthesis.  

Table 3. Key Molecular Players Linking Cancer to Inflammation 

Potential linkers Functions in linking inflammation to cancer 

Cytokines 
IL-6 Promote tumour growth 

TNF-� Induce DNA damage and inhibit DNA repair 

 Promote tumour growth 

 Induce angiogenic factors 

Chemokines Promote tumour cell growth 
Facilitate invasion and metastasis by directing tumour cell migration and promoting 
basement membrane degradation 

NF-�B Mediate inflammation progress, promoting chronic inflammation 

 Promote the production of mutagenic reactive oxygen species 

 Protect transformed cells from apoptosis 

 Promote tumour invasion and metastasis 

 Feedback loop between proinflammatory cytokines 

iNOS Downstream of NF-B and proinflammatory cytokines 
Induce DNA damage and disrupt DNA damage response 

 Regulate angiogenesis and metastasis 

COX-2 Produce inflammation mediator prostaglandins 

 Promote cell proliferation, antiapoptotic activity, angiogenesis, and metastasis 

HIF-1� Promote chronic inflammation 

 Induced by proinflammatory cytokines through NF-�B 

 Enhance the glycolytic activity of cancer cells 

 Contribute to angiogenesis, tumour invasion, and metastasis by transactivating VEGF

STAT3 Activated by proinflammatory cytokines 

Promote proliferation, apoptosis resistance, and immune tolerance 

Nrf2 Anti-inflammatory activity 

Protect against DNA damage 

NFAT Regulate proinflammatory cytokine expression 

  Required in cell transformation 
Date from Lu H 121. HIF-1�, hypoxia-inducible factor-1alpha; STAT3, Signal Transducer and Activator of 
Transcription 3; Nrf2, NF-E2-related factor-2; NFAT, nuclear factor of activated T-cells. 

Inflammatory cytokine network: The cytokine network is rich in inflammatory cytokines 

(lymphokines, ILs, interferons), growth factors, stress proteins, and chemokines, which might 

be produced by the tumour cells and/or tumour-associated leucocytes and platelets, and which 

may directly or indirectly contribute to malignant progression. This cytokine network may 

influence survival, growth, mutation, proliferation, differentiation, and movement of both 
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tumour and stromal cells. Moreover, these cytokines can regulate communication between 

tumour and stromal cells, and tumour interactions with the extracellular matrix 90, 91 (Table3). 

Mechanism of Inflammation and/or Infection and Carcinogenesis of Prostate  

Genetic aspects. Nelson et al. analyzed the molecular basis of the association between 

inflammation and prostate proliferative diseases from a genetic view point 131. PCa has the 

greatest inherited contribution of any common cancer. PCa genes appear to confer increased 

susceptibility to PCa in certain families. The possibility that viral or bacterial infections or 

inflammation might lead to PCa has been linked with the identification of two candidate 

susceptibility genes familial PCa genes 131. RNASEL, which encodes an enzyme that 

degrades viral RNA on viral infection, is linked to PCa in specific families 132 and is 

associated with an increased PCa risk 133. MSR1 encodes subunits of a macrophage-scavenger 

receptor capable of binding bacterial lipopolysaccharides 131. MIC1 gene is a member of the 

TGF� superfamily and is recognized to have an important role in inflammation by regulating 

macrophage activity 131. In a study a series of MSR1 mutations appeared to be linked to PCa 

susceptibility in some families at high risk for PCa 134
.

Oxidative stress: Chronic inflammation can induce proliferative events and posttranslational 

DNA modifications in prostate tissue through oxidative stress. In fact, repeated tissue damage 

and oxidative stress related to this event may provoke a compensatory cellular proliferation 

with the risk of hyperplastic growth or also of neoplastic modifications 135, 136. It is well 

accepted that regions of prostatic inflammation can generate free radicals, such as nitric oxide 

(NO) and various species of oxygen. In particular, macrophages and neutrophil infiltrations 

provide a source of free radicals that can induce hyperplastic or precancerous transformations 

through the oxidative stress to the tissue and DNA 135. The inducible NO synthase (iNOS) is 

the principal factor activating reactive nitrogens that can damage cells 137
. Gradini et al. 138

characterized NOS expression in human prostate tissue and, particularly for iNOS, they found 

an increased immunostaining in the epithelial cells of cases with BPH and more with HGPIN 

and PCa, when compared to normal tissue. NO also enhances COX activity 135.  

Glutathione-S-transferase activity: Normally, prostate tissue is protected by oxidative stress 

reactions, free radicals, and highly reactive oxygen species by the superoxide-dismutase and 

the GST enzymes systems. GST gene methylation produces the loss of this protective enzyme 

system and it could be implicated in the transition from inflammation to preneoplastic lesions 

and therefore to PCa 135. Lee, et al 139 identified GST methylation in nearly 70% of HGPIN 

lesions and in >90% of PCa. 
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COX-2 and Cancer 

Cyclooxygenase 

Cyclooxygenase (COX), also referred to as prostaglandin endoperoxide synthase, is a key 

enzyme in the conversion of arachidonic acid to prostaglandins (PGs) and other eicosanoids. 

It exists as three isoforms, COX-1, COX-2, and COX-3. COX-1 and COX-2 are encoded by 

separate genes located on separate chromosomes 140. They are highly related at the DNA, 

RNA, and protein level. COX-1 and COX-2 consist of 576 and 587 amino acids, respectively, 

and they share approximately 60% primary sequence homology. COX-1 and COX-2 exist as 

integral membrane glycoprotein homodimers and are found on the luminal surfaces of the 

endoplasmic reticulum and nuclear envelope 141, 142. Traditional NSAIDs, such as aspirin and 

ibuprofen, act by inhibiting COX activity.  

Although COX-1 and COX-2 genes are similar, they are under profoundly different 

mechanisms of control and fulfil different physiological functions. COX-1 is essentially a 

“housekeeping gene”, expressed constitutively in most normal tissues and is required for their 

normal physiological function. It is important for mediating various normal physiologocial 

processes, including the preservation of renal blood flow and function, platelet aggregation 

and hemostasis, and cytoprotection of the gastrointestinal mucosa. COX-2, on the other hand, 

is an “immediate to early gene” 143, 144
. It is frequently undetectable at baseline in normal 

tissues, but can be induced in response to mitogenic agents such as growth factors, hormones, 

bacterial endotoxin, tumour promoters, cytokines, hypoxia, and its role has been connected to 

inflammation and carcinogenesis 145. The third form of COX, termed COX-3, has been 

identified. It encodes a protein with a completely different amino acid sequence than COX-1 

or COX-2, and its exact function is still to be determined 146.  

COX-2 expression in human tumours 

Expression of the COX-2 is elevated in a variety of human malignancies and premalignant 

lesions, including colon, head and neck, lung, bladder, stomach, breast, and prostate cancer. In 

colon cancer, for example, several studies reported an inverse correlation between colon 

cancer incidence and regular use of NSAIDs and NSAIDs are known to function by inhibiting 

COX enzyme activity 147, 148. COX-1 levels were not increased in colorectal tumours. In 

contrast, striking COX-2 upregulation was observed in colon cancer and in some adenomas 
149, 150. Increased COX-2 staining correlated with larger polyp size and progression to invasive 

carcinomas as well 149, 150. Treatment with the NSAIDs causes a decrease in the size and 

number of polyps in familial adenomatous polyposis patients 151. Thus, overexpression of 
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COX-2 appears to contribute to colorectal cancer and COX-2 inhibitors are likely to be useful 

chemopreventive agents.  

COX-2 overexpression in gastric cancer is another example. Normal gastric mucosa scarcely 

expresses COX-2.  It has been shown that H pylori infection induces COX-2 mRNA/protein 

levels with the production of PGE2 in gastric premalignant and malignant lesions152-154
. The 

COX-2 expression also correlates with to poor prognostic parameters, tumour size, depth of 

invasion, lymph node metastasis, lymphatic invasion, and angiogenesis 155, 156. COX-2 

expression also correlated with p53 accumulation, indicating that COX-2 is induced by p53-

mediated activation157. 

COX-2 and inflammogenesis of cancer 

There are increasing evidences from molecular, animal, and human investigations support the 

hypothesis that aberrant induction of COX-2 and up-regulation of the prostaglandin cascade 

play a significant role in carcinogenesis, and reciprocally, blockade of the process has strong 

potential for cancer prevention and therapy 158. Supporting evidence includes:  

1) Expression of constitutive COX-2-catalyzed prostaglandin biosynthesis is induced by 

most cancer-causing agents, including mitogens, growth factors, proinflammatory 

cytokines, microbial agents, tumour promoters, essential polyunsaturated fatty acids, 

and other epigenetic factors 158, 159. 

2) COX-2 expression is a characteristic feature of both neoplasms and premalignant 

neoplasms, including in colon cancer and some adenomas 149, 150; in pancreatic 

carcinoma and its pre-malignant lesion, intraductal papillary mucinous adenomas 160; in 

esophageal adenocarcinoma and Barrett’s esophagus, as well as dysplasia 161; in gastric 

cancer and its premalignant lesions153; and in prostate cancer and HGPIN 162-171.   

3) Most of the essential features of carcinogenesis (mutagenesis, mitogenesis, angiogenesis, 

reduced apoptosis, metastasis, and immunosuppression) are linked to COX-2-driven 

PGE-2 biosynthesis 172-175.

4) Animal studies show that COX-2 up-regulation is sufficient to stimulate the 

transformation of normal cells to invasive cancer and metastatic disease 176, 177.  

5) Non-selective COX-2 inhibitors, such as aspirin and ibuprofen, and selective COX-2 

inhibitors, such as celecoxib, reduce the risk of human cancer and precancerous lesions 
178, 179.  

Proposed mechanism for the role of COX-2 in carcinogenesis  
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Multiple lines of compelling evidence support that COX-2 plays a crucial role in 

carcinogenesis. Since COX-2 is a PG synthase, the most obvious consequence of COX-2 

overexpression is increased PG production, and indeed high PG levels have been detected in 

many cancers. PGs are believed to be important in the pathogenesis of cancer because of their 

effects on cell proliferation, angiogenesis, immune surveillance, and apoptosis 171, 180 (Fig 2).  

Fig 2. Schematic representation of roles of COX-2 in carcinogenesis. Adjusted from Chun181, Pruthi171, 
and Zha180

PGs stimulate proliferation. Inappropriate stimulation of cellular proliferation by PGs may 

contribute to tumorigenesis. Enhanced PG synthesis may contribute to carcinogenesis in 

several ways, including direct stimulation of cell growth 172. PGE can stimulate mitogenesis in 

Balb/c 3T3 fibroblasts in synergy with epithelial growth factor (EGF) 172. Both PGE1 and 

PGE2 stimulate proliferation of mammary epithelial cells in the presence of EGF 182, 183
.

Effects on angiogenesis. Tumour angiogenesis includes destabilization of pre-existent blood 

vessels, proliferation of vascular endothelial cells, invasion by endothelial cells into the 

extracellular matrix (ECM) and finally the migration and positioning of endothelial cells. 

COX-2 is known to play an important role in tumour-induced angiogenesis through the 

synthesis of angiogenic PGs such as PGE2, which induces matrix metalloproteinase (MMP) 

and VEGF 184-186. Subsequently, numerous studies showed co-localization of angiogenesis 

factors, such as VEGF, PDGF, bFGF and TGF-� with COX-2 by immunohistochemical 

staining in different cancer types 187. In breast cancer, the density of microvessels was higher 

in patients with COX-2 expression than in those without COX-2 expression 188. Studies of 

colon cancer cell lines co-cultured with vascular endothelial cells demonstrated that COX-2 

supported angiogenesis at multiple steps both directly and indirectly 189. First, COX-2 up-

regulation leads to PGs production, and PGs have distance roles for angiogenesis. Second, 

overexpression of COX-2 in tumour cells directly stimulates the production of angiogenic 
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factors, including VEGF, PDGF, bFGF and TGF-�, from these cells 189, 190. Through these 

angiogenesis mediators and their receptors on the endothelial cells, COX-2 increased vascular 

permeability and induced endothelial cell proliferation and migration. In breast cancer, the 

density of microvessels was higher in patients with COX-2 expression than in those without 

COX-2 expression. COX-2 expression was also associated with the LN metastasis 173. 

COX-2 mediated resistance to apoptosis. The suppression of apoptosis associated with 

COX-2 overexpression could be an important factor in tumorigenesis, although the precise 

mechanistic basis remains uncertain. The first hint came from the observation that NSAIDs 

could induce apoptosis in cultured cell 191
. Since then numerous studies using cultured cells 

and animal models have supported a role for COX-2 in promoting cell survival under 

unfavourable growth condition 192. Several hypotheses have been advanced to account for 

suppression of apoptosis in response to COX-2 overexpression. The ability of PGE2 to inhibit 

apoptosis caused by a selective COX-2 inhibitor, and concomitantly to induced Bcl-2, 

suggests that PG-mediated upregulation of Bcl-2 may suppress apoptosis 192. Multiple 

NSAIDs, including selective COX-2 inhibitors, induce apoptosis in a variety of cells 193. The 

further studies have shown that NSAIDs stimulate apoptosis may via both COX-dependent 

and -independent mechanisms 194.  

Immune suppression. PGs do not act as mitogens for all cell types, and in fact depress 

proliferation of some cells, particularly those immune cells 174, 195
, and thereby contribute to 

the immune suppression. PGE2 inhibits T and B cell proliferation and cytokine synthesis, and 

diminishes the cytotoxic activity of natural killer cells. PGE2 also inhibits the production of 

TNF� while inducing IL-10 production, which itself has immunosuppressive effects 175, and 

inhibit antigen processing by dendritic cell 174. Thus, PG-mediated immune suppression may 

contribute to tumorigenesis, since this may allow tumours to avoid immune surveillance. 

Effects on cell motility and invasiveness. PGs may have effects on cell motility and 

adhesion. COX-2 expression leads to increased tumour invasiveness and adhesiveness to 

extracellular proteins, perhaps by the alteration of cellular dynamics, including increased 

MMP-2 expression and decreased e-cadherin expression 196. Rat intestinal epithelial cells with 

stable overexpression of COX-2 show several altered characteristics including increased 

adhesion to extracellular matrix 197. COX-2 inhibitors have been shown to decrease cell 

migration, cell adhesion, and tumour invasiveness in vitro and in vivo studies 192.  

Transcriptional regulation of COX-2 expression 
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Overexpression of COX-2 appears to be a consequence of both increased transcription and 

enhanced mRNA stability 198. Lipopolysaccharide (LPS) was the first inducer of COX-2 

expression to be identified 199. It is now known that most pro-inflammatory mediators 

stimulate COX-2 transcription via different signaling 198
, including: growth factors, such as 

IGF, TGF� and EGF 181; nitric oxide (NO) and reactive oxygen species (ROS) 200; and several 

pro-inflammatory cytokines such as IL-1 or IFN-� 201. COX-2 protein levels are also regulated 

at a prost-transcriptional level via modulation of the stability of its mRNA. Signals from 

cytokines such as IL-1� and TNF-� affect COX-2 mRNA stability. Hypoxia represents 

another regulator of COX-2 mRNA. It increases its stability most likely via induction of TNF-

� 202 (Table 4).  

Table 4: Regulators of COX-2 expression  

Increased Expression (up-regulators) Decreased Expression (down-regulators) 
LPS p53 
Interleukin-1� Fish oil 
Interleukin-6 Estrogens 
Epidermal growth factor Glycogen synthase kinase 3 
Transforming growth factor-� Glucocorticoids 
Tumor necrosis factor-�  
Ultraviolet B  
Benzopyrene  
Androgens  
Inducible NO synthase  
reactive oxygen species (ROs)   
Wnt 
ras 
src 
Nuclear factor-�B  
cAMP-ERP   

Data from E. Fosslien 187, Turini 203 and Pruthi 171

Glycogen synthase kinase 3 (GSK3) and glucocorticoids represent the most important 

negative regulator of COX-2 transcription. They achieve this effect via inhibition of NF-�B 
204. Wild-type p53 markedly suppressed transcription of COX-2 205.  

NF-�B is a crucial positive regulator of COX-2. NF-�B is activated in response to a wide 

variety of stimuli, such as LPS. A growing body of evidence indicates that NF-�B plays a 

central role in general inflammatory as well as immune responses. The promoter region of 

COX-2 contains two putative NF-�B binding sites. NF-�B has been shown to be a positive 

regulator of COX-2 expression in murine macrophages and human colon adenocarcinoma cell 

lines exposed to LPS 206,207 (Table 4). 
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CCAAT/enhancer Binding Protein Transcription Factors and COX-2 Regulation

The CCAAT/enhancer binding proteins (C/EBPs) are members of the basic region – leucine 

zipper (bZIP) class of transcription factors and play important roles in fundamental cellular 

processes including proliferation, growth arrest, and differentiation in a cell-type specific 

manner. There is a C/EBP binding site on the human COX-2 promoter region and C/EBPs are 

involved in regulating the activity of the COX-2 promoter 208. 

The functions of C/EBPs in the regulation of COX-2 transcription are cell type- specific and 

differentiation stage-specific. Even the same C/EBP isoform displays opposite effects 

depending on the cell type 208-210. C/EBP� is known to be involved in the regulation of cell 

proliferation and differentiation. C/EBP� can induce growth arrest in various cell types, for 

example, inhibits hepatocyte proliferation and also suppresses colony growth in mouse 

fibroblasts 211. Unlike C/EBP�, C/EBP� transcription factor has been shown to play a pivotal 

role in regulating key biological processes, such as cell proliferation, differentiation, and 

apoptosis, which are thought to be crucial in tumourigenesis 208. In mammary epithelial cells 

and hepatocytes primed by the agents causing acute phase response, C/EBP� was 

predominantly expressed, whereas the level of C/EBP� was quite low 212. A few experimental 

data have shown that C/EBP� and NF-�B are the most dynamical transactivators for COX-2 

promoter activation by diverse pro-inflammatory mediators 213. The transfection with C/EBP�

led to increased COX-2 expression in gastric cancer cell lines 214,215. In human tumour, for 

instance, in gastric carcinoma, a positive relationship between the expression of C/EBP� and 

COX-2 has also been reported 216.  

COX-2 Expression in Prostate Cancer 

Epidemiology 

The potential role of COX-2 in PCa has received considerable attention in the last several 

years. As in colon cancer, initial suspicion of the potential role of COX-2 in PCa came in the 

form of epidemiological evidence. Roberts et al. 217 observed in their cohort of 1,362 patients 

that the daily use of nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, 

resulted in lower relative odds of PCa 217. Nelson and Harris noted a decreased relative risk in 

patients on over-the-counter and prescription NSAIDs 218. Interestingly of patients diagnosed 

with PCa those on NSAIDs were noted to be at somewhat lower risk for advanced cancer than 

age matched controls 219. In a recent meta-analysis of 12 published series evaluating NSAID 

use and PCa risk, Mahmud et al. 220 demonstrated that NSAID users have a lower relative risk 
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of PCa development than do nonusers. Patients with a diagnosis of PCa, those who took 

NSAIDs were noted to have a lower risk (risk ratio 0.73) of developing “advanced” PCa 

compared with age-matched controls 219. These findings were recently corroborated by a large 

cohort questionnaire study that examined the association between NSAID use and PCa 

incidence among 70,144 men 221. The results demonstrated that regular NSAID users had an 

18% lower overall risk of PCa and a 33% reduced risk of advanced disease 221. However, 

Langman et al. were unable to identify such a correlation in their British cohort 222
. 

COX-2 mRNA and protein expression in prostate tissues 

In addition to these epidemiological observations, molecular and immunohistochemical 

studies have demonstrated that COX-2 overexpressed in human PCa.  

O’Neill and Ford-Hutchinson 223 firstly analyzed COX-1 and COX-2 mRNA expression in 

various human issues and found the highest levels were detected in the prostate where COX-1 

and COX-2 transcripts were present in approximately equal levels 223. Kirschenbaum et al.168

investigated the COX-1 and COX-2 in the human fetal and adult male reproductive tracts. 

COX-2 was strongly expressed in epithelial cells of both fetal and adult seminal vesicles and 

ejaculatory ducts. No COX-2 was found in the fetal prostate. In BPH samples, COX-2 was 

strongly expressed in smooth muscle cells.  

Evidence that increased COX-2 levels may be important in PCa development comes from 

preliminary results in human and canine prostates 163, 167, 224. Gupta et al. 163 reported that 

COX-2 mRNA level were 3.4-fold higher in PCa tissue compared with the paired benign 

tissue 163. Madaan 167 reported that COX-2 expression in the PCa was significantly different 

from those in BPH and were increased with increasing tumour grade. In contrast, only weak 

to moderate COX-1 expression found in tumour cells and its expression did not correlate with 

tumour grade. Several studies have similarly noted that human PCa overexpresses COX-2 

mRNA and protein compared with benign epithelium, as measured by immunohistochemistry, 

quantitative RT-PCR, and Western blot analysis 163-171. A few reports have shown that COX-2 

expression correlates with PCa stage, grade and progression 163, 164, 166-169. COX-2 expression 

is also increased in PCa lymph node metastasis 163, 164, 166-168, suggesting that in the prostate 

COX-2 may act in tumor promotion and progression 165, 171. Cohen et al. 225 reported that

COX-2 expression is an independent predictor of prostate cancer progression following 

radical prostatectomy. Hormonal therapy may induce the COX-2 expression in PCa as well, 

since one study found that neoadjuvant hormonal therapy induced the expression of COX-2 
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protein in PCa cells 226. COX-2 expression in the epithelial cells of HGPIN to a variable 

degree was also reported 165, 166, 168, 169.  

However, although most such studies have demonstrated increased COX-2 expression in the 

prostatic epithelial cells, some investigators have attributed the increased COX-2 expression 

to the accompanying inflammatory cells found in the neoplastic tissue and not from the cancer 

cells themselves 227. They found that the expression of COX-2 was not elevated in HGPN or 

in established PCa. In limited cases, when staining for COX-2 was observed in PCa, the 

extent of positive staining did not correlate with established clinical and/or pathological risk 

factors-Gleason score or pathological stage. By contrast to the neoplastic tissue, the consistent 

expression of COX-2 protein in PIA lesions was present 227.  

COX-2 expression in prostate cell lines 

In addition to immunohistochemistry and mRNA studies correlating COX-2 expression with 

PCa presence and behaviour, an increasing number of in vitro pharmacological studies have 

likewise implicated COX-2 expression in PCa progression. In PCa cell lines, COX-2 is 

expressed in androgen responsive (LNCaP) and androgen resistant (PC-3) cell lines 228-230. 

Furthermore, exposure of these cell lines to COX-2 inhibitors results in apoptosis induction in 

LNCaP and PC-3 cells in a time and dose dependent manner 184, 228-231. While COX-2 

inhibitors could suppress the proliferation of LNCaP and PC-3 cells, PrSC cells (stromal cells) 

were not affected by COX-2 inhibition 231. TNF� is a strong inducer of COX-2 expression. It 

induced the COX-2 expression both in prostate epithelial cells and stromal cells 232.  

Tjandrawinata et al. provided evidence that increased PG synthesis has both growth-

promoting and positive feedback effects in PC-3 cells. The study suggested that the increased 

expression of COX-2/PGE2 contributes to prostate cancer development and this positive 

feedback activity of PGE2 may be responsible for the existence of COX-2 in these cells as 

compared to the short-life of the inducible COX-2 in other cells 233. 

In COX-2 cDNA transfected LNCaP cells (LNCaP-COX-2), the level of COX-2 mRNA and 

protein and the COX activity was significantly increased. Both cell proliferation in vitro and 

tumour growth rate in vivo were increased.  LNCaP-COX-2 cells also had increased secretion 

of VEGF protein, suggesting that the contribution of COX-2 on PCa progression was partly 

through increased VEGF 184. Another study showed that PC-3 high invasive cells produce 

higher PGE2 than PC-3 low invasive cells and PGE2 may enhance the cell invasion of the 

invasive cells234. Indomethacin, a non-specific COX inhibitor, and NS-398, a specific COX-2 

inhibitor, both inihibited the prostaglandin synthesis and cell invasion 234.  
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Treatment strategies based upon novel molecular targets in inflammatory 

pathways  

New treatment strategies based upon novel molecular targets in inflammatory pathways have 

been suggested and are currently being evaluated in experimental and clinical trials. 

Inflammatory components targeted by these therapies include agents that inhibit or block 

cytokines, NF-�B activity, oxidative damage, or COX-2 (Fig 3) 90, 235.

Fig 3. Possibilities for prevention of prostate cancer. Data from Yegnasubramanian 236, Pruthi237, and Lu 121.  

TNF blockade 

Two TNF antagonists (etanercept, and infliximab) have been licensed for clinical trial in the 

treatment of rheumatoid arthritis and Crohn’s disease 238. There is clinical evidence for these 

actions of the anti-TNF antibody in rheumatoid arthritis joint tissue: inhibition of 

cytokine/chemokine production, reduced angiogenesis, prevention of leukocyte infiltration, 

inhibition of matrix metalloproteases, and improvement of bone-marrow function. All these 

actions would be useful in a biological therapy for cancer.
  

IL-6 antagonism

Monoclonal antibody to IL-6 was given to patients with myeloma. There was evidence of 

biological effect: deceased C-reactive protein, lower IL-6 production, and resolution of low-

grade fever 239. 

Anti-cytokines

A new generation of vaccines directed against cytokine activity could be beneficial in the 

treatment of cancer 240. These new vaccines could be targeted to agents that directly stimulate 

tumour cell growth, such as TGF-� or IL-10, or could remove inappropriate suppression of 

immunefunction by aberrantly expressed cytokines. Clinical trials using vaccines directed 
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against EGF and VEGF in cancer patients have shown some potentially encouraging results. 

Further studies directed at cytokines and inflammatory pathways may further improve the 

potential benefit of these vaccines.  
  

NF-�B inhibition

Therapeutic options directed at inhibiting NF-�B function could possible reduce inflammation 

and subsequent repair processes. Salicylates and corticosteroids are known to inhibit NF-�B 

function 241, but their effects are non-specific. A number of different agents have been 

developed that directly inhibit NF-�B activation by blocking proteasomes, inhibiting normal 

NF-�B activation pathways, or blocking NF-�B transcription. Anti-oxidants have also been 

used as NF-�B inhibitor, since ROS are known to activate NF-�B.  

Anti-oxidants 

The potential role for anti-oxidants is very appealing. Intake of fresh fruit and vegetables 

appears to be inversely correlated with cancer of the esophagus, stomach, and pancreas 242
,

although the specific factors involved remain undefined. A potential protective effect of 

specific vegetable components, suggested by a reduction of urinary ROS excretion, might be 

due to phytochemicals that induce enzymes scavenging electrophiles.  

• Selenium: Epidemiology studies have correlated low selenium with an increased risk of PCa 243-245. 

In addition, a clinical trial of selenium supplementation for the prevention of recurrent 

nonmelanoma skin cancer revealed a decrease in incident PCa, especially in men with low 

selenium at trial entry 246.  

• Vitamin E: Inverse correlations between vitamin E (�-tocopherol and �–tocopherol) and PCa 

risk have also been reported 247. A randomized clinical trial of �-tocopherol and � carotene 

supplementation for the prevention of lung cancer in male smokers showed a 32% decrease in PCa 

incidence and a 41% decrease in PCa mortality in men who received �-tocopherol 248.  

• Lycopene: Lycopene is a carotenoid that is found in a variety of foods, including watermelon and 

tomato, and it has been found in epidemiological studies to be associated with a lower risk of PCa 
29, 249. Consumption of vegetables containing the carotenoid lycopene and high lycopene blood 

levels have been associated with low PCa risk 250. A clinical trial in which men were fed tomato 

based pasta showed a decrease in oxidative genome damage in the prostate 251.  

• Sulforaphane: Consumption of cruciferous vegetables containing isothiocyanates, such as the 

chemoprotective compound sulforaphane, has been reported to reduce PCa risk 27. Preclinical data 

suggest that this micronutrient may decrease the risk of PCa 252. Sulforaphane can act as an 

antioxidant by inducing a plethora of carcinogen detoxification enzymes via a mechanism 

involving the cysteine rich protein Keap1 and the transcription factor Nrf2 253.  



39

NSAIDs and COX-2 inhibitors in prostate cancer  

NSAIDs have been available during the past century for their analgesic and antiinflammatory 

properties. However, it was not until 1971, that Vane JR demonstrated that the anti-

inflammatory effects of NSAIDs occurred through inhibition of the COX enzyme 254.  

Typical NSAIDs (eg, aspirin, ibuprofen) function to nonselectively inhibit both isoforms of 

COX. It is through COX-2-specific inhibition that the antiinflammatory and analgesic 

properties of such medications occur. However, it is the nonselective inhibition of COX-1 that 

produces the well-known side effects of NSAIDs, including gastrointestinal irritation, 

impairment in renal blood flow, and reduced hemostasis 255. 

The discovery of the two different COX isoforms and their unique physiologic properties led 

to the intensive search for drugs to selectively inhibit COX-2 alone - a drug that can achieve 

the antiinflammatory effects of COX-2 inhibition without the toxicities that can result from 

COX-1 inhibition. Such selective COX inhibitors (COXIBs) have since entered mainstream 

medical practice, with approval by the Food and Drug Administration (FDA) of celecoxib in 

1998 and rofecoxib in 1999.  

Celecoxib appeared to be the most effective NSAID at clinically relevant concentrations 

against human prostate carcinoma cells in vitro 256. In vivo studies demonstrated a dramatic 

antitumour effect of selective COX-2 inhibition in nude mice models which injected with PC-

3 cells 228. This effect occurred via a combination of tumour cell apoptosis induction and 

down-regulation of tumour VEGF. In another animal study, celecoxib suppressed progression 

in the transgenic adenocarcinoma of the mouse prostate model 178.  

Potential Clinical Uses of COX-2 Inhibitors: Celecoxib has been evaluated in patients with 

biochemical progression after definitive therapy with beneficial effects 257. This study 

demonstrated a consistent, inhibitory effect on PSA progression in an androgen-independent 

fashion 257
. The results suggest that COXIBs may help delay or prevent disease progression 

after biochemical failure and, perhaps, prolong the time until institution of androgen-

deprivation therapy.  

Perhaps the most important is the potential role of COXIBs in the treatment of hormone-

refractory disease. Preclinical studies have suggested an androgen-independent mechanism 

for the antitumour action of COXIBs in PCa 228. Investigators have shown that inhibition of 

COX-2 may work synergistically with certain chemotherapeutic drugs (eg, docetaxel) to 

inhibit growth in hormone-refractory xenografts 258. 

COXIBs may also play a role as a radiosensitizer in PCa. Wen et al. 259  demonstrated that the 

COX-2 inhibitors enhanced the antitumour effect of radiation in vitro and in vivo in PCa. 
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Another potential application of COXIBs is for bone metastases. A recent investigation has 

demonstrated that COX-2 is overexpressed in a mouse model of metastatic breast cancer and 

that COX-2-derived PGs may contribute to bone osteolysis 260
. Correspondingly, 

administration of NSAIDs inhibited osteolysis due to bone metastases. In a sarcoma-based 

model of metastatic disease, selective inhibition of COX-2 decreased cancer pain, bone 

destruction, and even tumour growth 260. These provocative results warrant further study in 

bone metastases from PCa. 

COX-2 inhibitors in PIN: COX-2 inhibitors were also used for reducing the PIN number in 

transgenic mouse prostate model (TRAMP), which exhibits many similarities to human PCa. 

The results showed that the effectiveness of celecoxib and exisulind in reducing the PIN 

lesions by modulating a cascade of molecular targets involved in COX-2-dependent and -

independent mechanisms 177. 

COX-2 inhibitors have cardiovascular side effects: Although COXIBs offer efficacy while 

minimizing the unwanted side effects that are attributable to COX-1 inhibition, e.g. gastric 

ulceration, COXIBs may invariably cause an imbalance between PGI2 and thromboxane (TX), 

thus indicating that multiple and opposing cardiovascular influences may be operative during 

COX-2 inhibition. McGettigan and Henry performed a meta-analysis of controlled 

observational studies, which including 23 case- or cohort-controlled population studies, to 

compare the cardiovascular risks associated with COXIBs and other NSAIDs. The results 

showed that COXIBs (celecoxib and rofecoxib) have a lower safety profile than NSAIDs 

(naproxen and ibuprofen) 261
. 

Precursor Lesions of Prostate Cancer 

Definition of prostate cancer precursor lesions 

The development of a solid tumour is generally thought to be a multistep process, whereby 

successive genetic events occur in a normal cell to render it increasingly malignant. The 

prototype for this model of carcinogenesis in solid tumours is colon cancer, but similar studies 

have confirmed this model in other diseases including breast and cervical cancers. In PCa, the 

genetic and epigenetic phenomena that are occurring in cancer development are not well 

understood, but there is evidence that premalignant lesions in the prostate may precede the 

development of cancer by many years.  

There are several criteria that should be met in order to consider a prostatic lesion as 

premalignant262: an epidemiological relationship must be revealed, the precursor lesion should 

be present at an earlier age than the cancer, and clear morphological ( for example, cellular, 
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histological, architectural ) similarities should be present. Also, premalignant lesions should 

be close to their presumed malignant equivalents. 
  

HGPIN 

In 1965, McNeal described lesions with possible premalignant features in prostatic epithelium 
263. In 1986, McNeal and Bostwick described the first criteria for the diagnosis of “intraductal 

neoplasia” 264. In 1987, Bostwick and Brawer introduced the term PIN - prostatic intra-

epithelial neoplasia 9
. At the beginning, PIN was categorized into three grades with regard to 

architectural and cytological characteristics, taking into account that the alterations cover a 

continuum. In 1989, the classification was altered to low-grade PIN (LGPIN) and high-grade 

PIN (HGPIN), respectively 265. 

Morphologically, there are four basic patterns of HGPIN: flat, tufting, micropapillary, and

cribriform 266. These patterns often merge with each other. Other than diagnostic utility, these 

architectural patterns have no known clinical significance.  

Several studies indicate that HGPIN is the most likely precursor lesion of PCa 267-270, because 

of the similarities between them: 

1) Age. The frequency and extent of HGPIN lesions increase with age, and this increase is similar to 

the increase in diagnosis of PCa with age 271. 

2) HGPIN is found significantly more frequently in prostates with cancer 264. 

3) Coexistence. HGPIN often coexist with PCa in the same samples 267.  

4) HGPIN is predominantly located in the peripheral zone, the zone in which most clinically 

important prostate tumours are found 271. 

5) Morphological similarities. HGPIN is characterized by cellular crowding and stratification. There 

is inequality in cell and nuclear size. Hyperchromatism is frequently seen with an enlarged nucleus, 

often containing prominent nucleoli lines. These changes are also seen in Gleason grade 1-4 PCa 
272.

6) Histologically, the atypia observed in HGPIN is virtually indistinguishable from that of PCa 

except that in HGPIN the basal membrane is still intact 273. As HGPIN progresses, the likelihood 

of basal cell layer disruption increases. In HGPIN, the basal cell layer is disrupted or fragmented 

as demonstrated by 34�E12. In PCa, there is complete loss of the basal cell layer. 

7) Both in HGPIN and PCa, collagenase type IV expression is increased as compared with normal 

prostate epithelium. This enzyme is responsible for basal membrane degradation and thus 

facilitates invasion 10, 274.

8) HGPIN and PCa share several nuclear properties, such as amount of DNA, chromatin texture, 

chromatin distribution, nuclear perimeter, diameter, and nuclear abnormalities 275. 
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9) Molecular and genetic similarities. Molecular abnormalities in HGPIN are mostly intermediate 

between benign gland and cancer, reflecting an impairment of cell-differentiation and regulatory 

control 276. Several genetic changes encountered in PCa cells can be found in HGPIN 275. Allelic 

loss is common in HGPIN and PCa 273. The frequent 8p12-21 allelic loss commonly found in PCa 

is also found in microdissected HGPIN. Other examples of genetic changes found in PCa already 

existing in PIN include loss of heterozygosity at 8p22, 12pter-p12, and 10q11.2, and gain of 

chromosomes 7, 8, 10, and 12. Alterations in oncogene Bcl-2 expression and replication error 

(RER+) phenotype are similar for HGPIN and PCa 277.  

10) PCa and HGPIN have similar proliferative and apoptotic indices 278. Mitotic figures and apoptotic 

bodies increase progressively from nodular hyperplasia to HGPIN 278. Greater cytoplasmic 

expression of Bcl-2 is observed in HGPIN and PCa than in benign and hyperplastic epithelium 273.  

11) Neovascularization is greater in HGPIN and PCa than in normal prostate. The available data 

indicate that angiogenesis has an important role in the progression of prostate neoplasia 279.  

Atypical adenomatous hyperplasia (AAH)  

Apart from HGPIN, several morphological lesions or conditions have been proposed that may 

act as potential precursor lesions of PCa. These are the morphologically distinct entities of 

atypical adenomatous hyperplasia (AAH), low grade PIN (LGPIN), and focal atrophy 269. 

AAH is a lesion characterized by a proliferation of small acinar structures that mimics 

adenocarcinoma because of histological similarities280. AAH appeared from 0.8% in needle 

biopsy specimens to 7.3% in TURP specimens without cancer 281.  AAH is most often located 

in the transition zone of the prostate in intimate association with BPH 282. It can also be found 

near the apex and in the periurethral area 10, 274. In AAH, the basal cell layer is discontinuous 

and fragmented on 34�E12 cytokeratin immunostaining283. AAH is often associated with low-

grade adenocarcinoma arising in the transition zone 284, since there are morphological 

similarities. Cytogenetic analyses have detected abnormalities of chromosome 8 in very small 

proportions (4 - 7%) of AAH cases 282, 283.  

LGPIN  

LGPIN is quite difficult to recognize, as it has common features with normal and hyperplastic 

epithelium. It has the similar morphology as HGPIN, but most of the cells lacked prominent 

nucleoli. The nuclei are enlarged, vary in size, have normal or slightly increased chromatin 

content, and possess small or inconspicuous nucleoli. More prominent nucleoli, when 

observable, comprise less than 10% of dysplastic cells 267, 285. The basal cell layer normally 

surrounding secretory cells of ducts and acini remains intact 269, 270. The distinction between 

HGPIN and LGPIN is based primarily on the extent of cytological abnormalities (that is, 
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prominence of the nucleoli) and secondarily on the degree of architectural complexity 286, 287. 

Immunostaining studies of microvessel density may help to differentiate HGPIN from LGPIN 
279.  

Prostatic Atrophy  

Atrophy in prostate related to aging and presumably attributed to androgen withdrawal is a 

consistent finding only in patients over the age of 70. There is no explanation for the great 

variation in the rate of involution seen among individuals below 70, but severe debilitating 

disease may produce advanced atrophy even in young men 2, 288
.  

Classification of Prostatic Atrophy 

Atrophy of the prostate is identified as a reduction in the volume of preexisting glands and 

stroma and can be divided into two major patterns: diffuse and focal.  

Atrophy due to aging is characteristically diffuse. In its advanced stage, reduced secretory cell 

volume is usually accompanied by markedly reduced or absent staining for PSA and PAP. 

Diffuse atrophy can also result from a decrease in circulating androgens, most commonly 

produced by ‘‘total androgen blockade,’’ which consists of orchiectomy combined with 

antiandrogens, or luteinizing hormone-releasing hormone agonists combined with 

antiandrogens. This hormonal type of atrophy involves the prostate in a relatively uniform 

manner and shows unique histological features 289, 290
.  

Focal atrophy lesions, by contrast, occur as heterogeneous patches, and contain a 

nonprominent basal cell layer, often attenuated. Although the term “focal” is used to indicate 

that these atrophic areas are limited to specific patches or ‘‘foci,’’ at times these patterns of 

atrophy may encompass very large areas of the prostate, especially in the peripheral zone. 

The biological significance of prostatic atrophy has been an area of interest since at least the 

1930s.  Franks 291 indicated that focal atrophy occurs chiefly in the ‘‘outer’’ portion of the 

prostate, now referred to as the ‘‘peripheral zone’’, and that it increases with advancing age.  

There are several morphological variants of focal prostate atrophy. These were first classified 

in detail by Franks who described four main patterns 291: 1, simple atrophy (SA) with/without 

cyst formation; 2, sclerosing atrophy; 3, post-atrophic hyperplasia (PAH): 3.a, lobular 

hyperplasia; 3.b, sclerosing atrophy with hyperplasia (post-sclerotic hyperplasia); and 4, 

secondary hyperplasia.  

McNeal et al. 2  found that almost all the focal atrophy were consequences of previous 

inflammation. They classified the focal atrophy into two groups: 1), postinflammatroy atrophy, 

2), cystic atrophy.  
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In more contemporary literature, several descriptions of various morphological patterns of 

focal prostate atrophy have been presented. To simplify the classification of these lesions, 

Ruska et al. 292 referred to most of them as SA or PAH. They defined the PAH lesions as the 

crowded focus of small atrophic acini. PAH contained more frequent prominent nucleoli and 

had the highest MIB-1 label index, higher than that in simple SA and benign nonatrophic 

glands. 

Proliferative inflammatory atrophy (PIA) 

De Marzo 293(1999) proposed the term PIA to designate discrete foci of proliferative glandular 

epithelium with the morphological appearance of SA and/or PAH, occurring in association 

with inflammation. The key features of PIA are: the presence of two distinct cell layers; 

mononuclear and/or polymorphonuclear inflammatory cells in both the epithelial and stromal 

compartments; and stromal atrophy with variable amounts of fibrosis. 

In 2006, a new classification was proposed 294: most focal atrophy lesions could be sub-

classified into the following four distinct subtypes: (i) SA, (ii) SA with cyst formation, (iii) 

PAH, and (iv) partial Atrophy. Apart from the definition of PIA, lesions in which the same 

prostate atrophy patterns do not contain increased inflammation were referred to as 

"proliferative atrophy" (PA). A more recent study showed that PIA is a more frequent finding 

in prostate with carcinoma and the simple atrophy was the most common type of PIA 295.  

PIA as a Precursor to HGPIN and Prostate Cancer 

Fig 4. Data from De Marzo et al 38

In 2003, Nelson et al. 131 proposed a model of the transition between PIA to HGPIN and 

prostate cancer. In 2007, De Marzo et al. 38 fulfiled the hypothesis of “injury and 

regeneration”. The morphological process was assumed to start from the initiated stage of the 

“stem cell”, then to intermediate cell differentiation, and at last, to the development of HGPIN 

or prostate cancer (Fig 4) 38. This hypothesis is mainly based on the evidences from 

morphological, cellular, and molecular studies. 
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Proliferation index in PIA 

Cell proliferation is a fundamental aspect in a number of prostatic diseases ranging from 

hyperplasia to neoplasia and can be studied using antibodies directed against nuclear antigens 

expressed in certain phases of the proliferation cycle, such as Ki-67 and PCNA.  

Feneley et al. 296 found the proliferation index of benign acini is consistently lower (0.19-

4.0%) than that of malignant acini (1.6-16%). They found that atrophic lobules showed a high 

proliferation index. Ruska et al. 292 studied the cellular kinetics in prostate needle biopsy 

specimens. Both SA and PAH had higher proliferation ratios and lower apoptosis than the 

nonatrophic glands. PAH lesions have the highest proliferation ratio and lowest apoptosis 292. 

De Marzo 293 noted that in PIA lesions, both basal and secretory-type cells showed an 

elevated Ki-67 staining index. Shah et al. 297 concluded that there was a significant increase in 

nuclear proliferation from normal prostate along a continuum: benign < SA < PAH < HGPIN 

< PCa (P < 0.001).  

Morphological transition between PIA, PIN, and PCa 

Franks considered a specific subtype of PAH (sclerotic atrophy with hyperplasia) as a putative 

neoplastic precursor given its close association with PCa 291. Liavag 298 demonstrated a similar 

topographical association between PAH and PCa. Several recent studies have re-examined the 

role of PAH as a potential neoplastic precursor. Shah et al.297 noted that SA and PAH were 

both frequently found and topographically located near or adjacent to PCa in the peripheral 

zone of the prostate gland. Two other studies examining the topographic location of PAH with 

respect to PCa concluded that PAH is extremely common in the periphery of the prostate 

gland. Putzi and De Marzo 299 identified the two-dimensional topographical relation between 

PIA and PCa. It was described as merging when the neoplastic-appearing epithelium of the 

HGPIN or carcinoma merged directly with PIA within a given acinus or duct. In a study with 

radical prostatectomies, morphological transitions between HGPIN and PIA frequently occur: 

42.5% of the HGPIN lesions were merged with PIA. Carcinoma did not merge with PIA. 

Another more recent study 300 reported that PIA lesions appeared to be directly merging with 

small foci of adenocarcinoma. Twenty five percent of the PIA lesions were found to merge 

directly with HGPIN and 31.3% of the PIA lesions contained at least some cells with 

prominent nucleoli (low-grade PIN). This finding supports a model in which the proliferative 

epithelium in PIA may progress to HGPIN. 

However, it should be noted that not all the pathologists have noted morphologic transition of 

PIA, HGPIN, and invasive adenocarcinoma 301-305 and that not all HGPIN or small carcinoma 
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lesions are associated with atrophy. It is not clear how these parameters are interrelated and 

what intermediates are involved. At the WHO Consensus Conference in Stockholm, it was 

emphasized that no relationship between atrophy and prostate carcinoma or HGPIN has been 

proven 267.  

Phenotype of PIA  

Cell populations in PIA: Based on the expression of keratins, four cell populations can be 

discriminated in the human prostate epithelium. Basal cells express high levels of CK5, CK14, 

p63, and low levels of AR, PSA, CK8, and CK18. Luminal secretory cells lack p63, CK5, and 

CK14, but express high levels of CK8, CK18, AR, and PSA. Additionally, cells have been 

identified with a keratin phenotype intermediate between basal and luminal cells, which co-

express high levels of CK5 and CK18 (CK5/18) as well as hepatocyte growth factor receptor 

c-MET 306, 307.  

Many of the atrophic epithelial luminal cells in PIA are candidates for intermediate cells. van 

Leenders et al. 306 reported that all the atrophic luminal cells are strongly positive for CK8/18. 

About 40% of atrophic luminal cells in PIA lesions expressed CK5. c-MET positive staining 

was present in 44% luminal cell in PIA. The double-staining immunofluorescence also 

showed that luminal cells in PIA often co-expressed CK5 and Ki-67. The results suggested 

that cells phenotypically intermediate between basal and secretory are enriched in PIA lesions.  

GSTP1: GSTs are an important class of enzymes that protect cells against genome damage

mediated by oxidants and electrophiles from inflammation or dietary exposures. There are 

five major families of cytosolic GST isoenzymes. The most extensively studied GST in the 

human prostate is the pi-form of GST (GSTP1). In human prostate, GSTP1 is expressed in 

most basal cells in normal prostate 293, and was lost in HGPIN and PCa, which is associated 

with hypermethylation of the CpG island encompassing the GSTP1 promoter139, 308. 

Methylation changes at this site have been detected in up to 100% of PCa DNA specimens 139, 

308. This suggests that GSTP1 may serve as a “caretaker” gene 309
, the decreased expression of 

which might render prostate cells vulnerable to malignant progression.  

In comparison with the increased expression in basal cells of normal prostate, GSTP1 is not 

usually expressed in normal secretory luminal cells. In contrast, many of the luminal epithelial 

cells in PIA lesions express increased level of GSTP1, although some do not 293
. Nakayama et 

al. 300 hypothesize that some PIA cells may acquire GSTP1 CpG island hypermethylation 

leaving these cells vulnerable to progress to HGPIN and/or PCa. In a study of microdissected 

tissues, GSTP1 CpG island hypermethylation was not detected in normal epithelium or in 
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BPH, but was found in 6.3% of PIA lesions, in 68.8% of HGPIN lesions and in 90.9% of 

adenocarcinoma lesions. It is possible that increased expression of GSTP1 in PIA may result 

from the presence of an ongoing oxidative insult to this tissue, with silencing of GSTP1 

function related to the development of cancer 293.  

Chromosome 8p22 loss and 8 centromere (8c) gain: PIA and HGPIN also share some 

chromosomal changes. Both lesions had significantly higher percentages of chromosome 

8p22 loss than did normal prostate epithelia. Gain of centromere 8 (8c) was also detected in a 

few atrophic lesions 297, 310, 311.  

Bcl-2: In the benign prostate, Bcl-2 immunohistochemical staining was consistently observed 

in the basal layer in the ducts and acini, but was absent in luminal cells 44. In PCa, increased 

Bcl-2 protein levels are associated with high-grade tumours, advanced stage,  metastasis, and 

androgen-independent 312, 313. Baltaci et al. 277 reported detectable Bcl-2 in both LGPIN and 

HGPIN and its absence in normal and BPH prostate tissues. However, in the BPH glands 

within an area of prostatitis, both the basal and luminal cells expressed Bcl-2 indicating that 

inflammation was associated with Bcl-2 expression 314. An inverse relation between Bcl-2 and 

AR was found in many PIA glands 293. There was also a significant relation between Bcl-2 

expression and the type of lesion: PAH lesions show higher overall levels of Bcl-2 than 

lesions not containing PAH 293. 

P27kip1 belongs to the Cip/Kip family, and functions as an important cell cycle gatekeeper.

Down-regulation of p27Kip1 occurs in the vast majority of PCa and reduced levels correlate 

positively with Gleason grade 315, 316. Down-regulation of p27Kip1 was detected in HGPIN 317. 

The absence of p27Kip1 was also reported in PIA lesions 293, 306. 

COX-2: Zha et al.227 reported COX-2 overexpression in PIA lesions. In their study, COX-2 

was not elevated in HGPN or in established PCa. By contrast, there was consistent expression 

of COX-2 protein in PIA lesions.  

P53: Tumour suppressor gene p53 is the most commonly mutated gene in human cancers. In 

common with many other human cancers, p53 mutations are also seen in PCa with a wide 

range of 5-65% 318. 319. In PIN cases, p53 mutation was reported from 5% to 70% 320-324. The 

frequency of p53 mutations in microdissected PAH lesions was 5.3%, which was similar to 

that in HGPIN (4.2%) in the same report 325.  

c-MET: c-MET has been implicated in embryogenesis, tissue reorganisation, and tumour 

progression. c-MET is overexpressed in several human malignancies including prostate 

carcinoma 326-328
.  The c-MET protein was detected in a substantial number of PCa and more 
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often in metastatic growths of prostate carcinoma and in androgen insensitive PCa cell lines 
329, 330. 

Interestingly, levels of c-MET are also raised in some inflammatory lesions, such as ulcerative

colitis and obstructive cholangiopathy 331. In these inflammatory lesions c-MET might be 

involved in cell proliferation, migration, and differentiation as part of a regenerative process. 

In agreement with the stem cell model of Isaacs and Coffey 332, increased expression of c-

MET together with their high proliferative activity supports the concept of intermediate cells 

as putative progenitor cells for prostate carcinogenesis. In a study by van Leenders GJ et al. 306, 

overexpression of c-MET was documented in PIA lesions and it was suggested that PIA is 

enriched with intermediate cells.

P63, a basal cell marker, is used as a tool to determine the state of the basal cell layer and to 

distinguish the regions of HGPIN from PCa 58. In PIA lesions, however, P63 negative and 

P63 positive staining were detected in both the luminal and basal cell layers 333. 

PSCA: Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal 

prostate and associated with human and murine PCa. In normal prostate epithelial cells (PrEC), 

PSCA-positive cells were characterized by a more differentiated morphology and a slower 

proliferative rate than PSCA-negative cells, and expressed CD44, PSA, and AR, but lost 

expression of p63. PSCA may be a unique marker of an intermediate cells 334. 

P16/CDKN2, a cyclin-dependent kinase inhibitor, is frequently altered in prostate cancer 335. 

Increased expression of p16 was also reported in PIA lesions 336. 

AR down-regulation: AR was found to be down-regulated in PIA 293. Although the 

mechanism(s) for the loss of AR expression are not completely understood, it is possibly that 

the local inflammation and its inflammatory microenvironment, including the local high level 

of inflammatory cytokines, initiate a serious of molecular alterations in prostate atrophic 

epithelial cells, including AR down-regulation 88. Very few articles analyzed the down-

regulation of AR in non-malignant prostate epithelial cells.  Bonkhoff noticed that AR status 

and Bcl-2 showed inverse correlation 278.  In vivo studies suggested that inflammatory 

cytokines may play roles in down-regulate AR expression. AR mRNA and protein levels in 

the LNCaP cells could be down-regulated by EGF 86, basic fibroblast growth factor (bFGF) 87, 

and TNF� 88. Moreover, IL-1� is also responsible for down-regulation of AR protein 

expression 89.  
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AIM OF THE STUDY

The main aim of the studies in this thesis was to investigate the association between chronic 

inflammation and the carcinogenesis of prostate cancer, with a specific focus on the role of 

the molecular variation of PIA lesions and the morphological transition between PIA lesions 

and the malignancies in human prostate samples.  

Specific aims of studies 

– To examine the expression of COX-2 in atrophic lesions and to investigate the 

correlation between COX-2 expression, the anti-apoptosis protein Bcl-2, and the 

proliferation state of prostatic epithelial cells, 

– To assess focal chronic inflammation densities and its association with COX-2 

expression in prostatic epithelial cells in PIA lesions, 

– To detect COX-2 expression in human prostate cancer tissues and to assess the 

microvessel density in prostate cancer tissues and the relation to COX-2 expression in 

tumor cells,  

– To elucidate the possible role of focal chronic inflammation in human prostate cancer 

tissues in inducing COX-2 overexpression, 

– To detect the expression of the transcription factor CCAAT/enhancer binding protein 

� (C/EBP�) in PIA lesions and to investigate the association with COX-2 expression, 

focal chronic inflammation, and the epithelial cell proliferation state, 

– To elucidate the morphological transition among PIA, HGPIN, and prostate cancer in 

radical prostatectomy specimens and try to find useful markers to help to detect 

atrophic epithelial cell in malignancy areas.  
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MATERIALS AND METHODS  

Human Materials

Benign Prostatic Hyperplasia (BPH) specimens: Sixty-eight BPH specimens were obtained 

from the Department of Urology, Shandong Provincial Hospital, China. The patients’ ages 

varied between 51 and 82 years (median age 71). All of the tissues were fixed in formalin, 

embedded in paraffin. Serial sections were cut at 4-	m thickness.

Radical prostatectomy specimens: The material consisted of randomly chosen tissue 

samples obtained from radical prostatectomy specimens from 93 patients with prostate 

adenocarcinoma, including 78 cases from the Department of Urology, Sahlgrenska University 

Hospital, Göteborg, and 15 cases from Department of Pathology, Shandong Provincial 

Hospital, China. All the preoperative stages were T1c (n = 78) and T2a (n = 15). None of the 

patients had received prior hormone therapy, chemotherapy, or radiation therapy. The age 

range of the patients was between 52 and 78 years (median age, 65). Specimens were fixed in 

10% buffered formalin, embedded in paraffin.  

Histological Identification  

PIA: PIA lesions were classified into the following types: simple atrophy (SA), postatrophic 

hyperplasia (PAH), or mixed simple atrophy/postatrophic hyperplasia 291-293. The morphologic 

definitions of SA, PAH, and mixed SA/PAH were as below: 

SA: consists of atrophic cells lining acini of relatively normal calibre, having no papillary fronds, 

and where the number of glands per unit area does not appear to be increased relative to normal 

tissue. SA usually involves an entire lobule, although isolated acini may be affected. The acini are 

small and show a lower than normal height of the epithelial cells, and the surrounding stroma may 

or may not show fibrosis.  

PAH: consists of acini that are small and round and appear in a lobular distribution, often 

surrounding a somewhat dilated duct with an apparent increase in the number of small glands as 

compared with normal tissue. Fibrosis may or may not be present in the stroma. When present, the 

proliferation is irregular and can result in distortion of the acinar lumen. 

Mixed lesions: the above patterns are found in the same region, appearing to merge.  

PIN: The identification and classification of HGPIN are based mainly on the cytological 

characteristics of the cells 269, 274. HGPIN is composed of cells with histologic features of 

prostate adenocarcinoma occurring in pre-existing prostatic acini/ducts. Cells are 

characterised with large nuclei of relatively uniform size, increased chromatin content, which 
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might be irregularly distributed, and prominent nucleoli that are similar to those of carcinoma 

cells. The basal cell layer may have frequent disruptions. Four basic patterns of HGPIN, flat, 

tufting, micropapillary, and cribriform, were identified as described by Bostwick et al. 266.  

Lesions with similar morphology, but in which most of the cells lacked prominent nucleoli, 

were classified as LGPIN. The nuclei of cells composing LGPIN are enlarged, vary in size, 

have normal or slightly increased chromatin content, and possess small or inconspicuous 

nucleoli. 

PIA-merging HGPIN: The histological definition of PIA-merging HGPIN was any 

malignant cell with fraction within a single PIA lesion. The periglandular stroma in these 

lesions often showed mononuclear inflammatory infiltrates mainly composed of lymphocytes, 

macrophages, and occasionally plasma cells. At times, mononuclear cells were prominent 

both intraluminally and in the epithelium as well. 

PIA-merging adenocarcinoma (PIA-merging PCa): Any PIA lesion with a fraction of 

carcinoma was considered as PIA-merging PCa. Presence of adenocarcinoma was diagnosed 

according to the criteria of Mostofi and Price 337
.  

Histopathological classification for chronic prostatic inflammation: The histopathological 

classification system  for chronic prostatic inflammation (Nickel et al.) 338 was used to classify 

prostatic inflammation into three grades of severity: mild, moderate, and severe, and three 

inflammation patterns: glandular, peri-glandular, and both peri-glandular and glandular (Table 

5) 

Table 5. The classification of prostatic inflammatory infiltrates (Nickel et al.). 

Feature Details 

Anatomical location Histological pattern 

glandular Inflammatory infiltrates lie within duct/gland epithelium and/or lumens. 

periglandular 
Inflammatory cells lie within prostatic stroma but not centred on prostatic 
glands/ducts and lie � 50 µm from them. 

Extent Tissue area involved in inflammatory cell infiltrates 

focal < 10% 

multifocal 10–50% 

diffuse  > 50% 

Grade Morphological description (typical inflammatory cell density, cells/mm2) 

1/mild 
Individual inflammatory cells, most of which are separated by distinct intervening 
spaces (< 100). 

2/moderate 
Confluent sheets of inflammatory cells with no tissue destruction or lymphoid 
nodule/follicle formation (100–500). 

3/severe 
Confluent sheets of inflammatory cells with tissue destruction or nodule/follicle 
formation (> 500). 
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Antibodies 

The antibodies and conditions used in this study are indicated in Table 6. 

Table 6. Antibodies and conditions. 

Antibody Company Clone, code Dilution 

COX-2 Cayman Chemical Co. PAb, 160126 1:100 

COX-2* NeoMarkers Co. SP21 1:200 

COX-2 blocking peptide Cayman Chemical Co. 360106 10	g/ml 

COX-1 Cayman Chemical Co. PAb, 160110 1:50 

PCNA NeoMarkers Co. PC10 1:200 

AR NeoMarkers Co. Ab-1 1:50 – 1:100 

Ki-67 NeoMarkers Co. MB67 1:100 

Ki-67* NeoMarkers Co. SP6 1:100 

HMW keratin  DAKO Co. 34�E12 1:200 
CK5 Abcam Ltd.  ab24647 1:200 
LMW keratin, CK8 NeoMarkers Co. 35 H11�  1:200 

Bcl-2 NeoMarkers Co. Ab-1 1:100 

CD3 NeoMarkers Co. PS1 Ready to use 

CD3 Abcam Ltd.  PAb 1:25 

CD20 NeoMarkers Co. L26 Ready to use 

CD31 NeoMarkers Co. JC/70A 1:25 

CD68 NeoMarkers Co. KP1 Ready to use 

C/EBP�  Sant Cruz Bio. H-7 1:200 

c-MET Santa Cruz Bio. C-28 1.500 

GSTP1  MBL PAb 1:4000 

p27 NeoMarkers Co. DCS-72.F6 1:200 

P53 Santa Cruz Bio. DO-1 1:100 

P53* NeoMarkers Co.  SP5 1:100 

p63 NeoMarkers Co. 4A4 1:100 

PSCA NeoMarkers Co. PAb 1:200 
Chromogranin A NeoMarkers Co. LK2H10 1:500 

*: Rabbit monoclonal antibody. PAb, polyclonal antibody.  

Immunohistochemistry (IHC)

IHC staining: Two immunohistochemistry systems were used in this study: ABC kit (Vector) 

and EnVision™ system (DAKO Co.).  

COX-2 IHC staining was performed using the ABC kit (Vector).  Briefly, sections were 

rinsed with methyl alcohol-hydrogen peroxide and then microwaved in citrate buffer (pH 6.0) 

to induce epitope retrieval.  Diluted COX-2 primary antibody (1:100) was incubated on slides 

at +4oC overnight and then incubated with biotinylated secondary antibody at room 
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temperature. For localization, avidin-biotin complex was applied at room temperature for 30 

minutes followed by 3,3’-diaminobenzidine tetrahydrochloride (DAB) as the chromagen. 

Slides were counterstained with Mayer hematoxylin. 
  

As a negative control for nonspecific staining, COX-2 blocking peptide was added to the 

diluted COX-2 antibody at a final concentration of 10 μg/ml to the antibody mixture and 

incubated for 1 hour at room temperature before the application of the COX-2 antibody to the 

slides. Then manual IHC staining was performed as described above. 
  

Ki-67 IHC staining was performed with the EnVision™ system. Briefly, after microwaving in 

citrate buffer, the section was incubated with primary antibody at room temperature for 30 

min and then incubated with horseradish peroxidase (HRP) labelled polymer for 30 minutes at 

room temperature.  After washing with PBS buffered, DAB was used as the chromagen under 

the control by microscopy. Slides were then counterstained with Mayer hematoxylin.  

Double IHC staining: In order to accurately evaluate the expression of two reagents in situ, 
double IHC staining was performed with various combinations of antibodies. 

� To detect the COX-2 expression and its association with focal inflammation: COX-2/CD3, 

COX-2/CD20, and COX-2/CD68. 

� To detect the COX-2 expression on different epithelial cell layers: COX-2/34βE12 and COX-

2/CK8. 

� To evaluate the proliferation state: COX-2/Ki67 and COX-2/PCNA. 

� To assess the microvessel density and the local COX-2 expression: COX-2/CD31. 

DAKO EnVision Doublestain System (DAKO Co.) was used in this procedure. Briefly, 

serially consecutive sections at a thickness of 4 µm were treated for epitope retrieval as 

described above. After being incubated with peroxidase block for 5 minutes at room 

temperature, the slides were exposed to the first primary antibody (1:100) and incubated at 

+4oC overnight or 30 minutes at room temperature. The slides were then incubated with 

horseradish peroxidase (HRP) labeled polymer for 30 minutes at room temperature. The first 

antibodies immunostaining was labeled by applying DAB for 1-5 minutes. Next, Doublestain 

Block was added to the slides, 'and the slides were incubated for 3 minutes. Then the slides 

were incubated with the second primary antibody for 30 minutes at room temperature 

followed by application of alkaline phosphatase (AP) labeled polymer for another 30 minutes. 

The second substrate-chromagen solution, Fast Red, was incubated on the slides for 1-5 

minutes. Slides were counterstained with Mayer hematoxylin and cover slipped with DAKO 

Glycergel.   
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Evaluation of IHC staining:  

� COX-2 IHC staining: COX-2 positive staining was identified by the presence of marked diffuse 

brown (DAB) cytoplasm or perinuclear staining in prostate epithelial cells. If any portion of 

epithelia in a prostate gland showed immunoreactivity, then the gland was considered as COX-2 

positive stained. 

� HMW keratin 34�E12 and CK8 both label the cytoplasm of epithelium. In normal prostatic 

acini and ducts, 34�E12 only appears in the basal cell layer and CK8 in luminal cells. Similar to 

34�E12, P63 also only appears in the basal cell layer, but it shows nuclear immunostain instead 

of cytoplasm. 

� CD3, CD20, and CD68 are all expressed in the cytoplasm staining.

� Ki-67 and PCNA are both the proliferation markers, and both show nuclear immunostaining.  

� C/EBP�: C/EBP� is only expressed in the nucleus.  

� AR and p27 are mainly expressed as in nuclear staining and occasionally in cytoplasm. Only 

nuclear staining was evaluated as positive.  

� Bcl-2, GSTP1, PSCA, and c-MET: cytoplasm IHC staining.   

Evaluation of double IHC staining: The two antigens staining in double IHC staining slides 

were identified by color: the first antigen was stained brown (DAB) and the second red (Fast 

Red). For example, in COX-2/CD3 double IHC staining slides, apart from the brown 

immunostaining of COX-2 on prostate epithelium, the T-lymphocytes were labeled with 

cytoplasm red staining. PCNA and Ki-67 immunostaining were identified by the nuclear red 

immunostaining. When only one cell coexisted both the cytoplasmic brown staining for COX-

2 and nuclear red staining for PCNA or Ki-67 were recorded as the PCNA or Ki-67 labelled 

COX-2 positive cell.  

Quantitation of IHC Staining  

� COX-2 IHC staining: Quantitation of COX-2 immunostaining was performed on 5 to 10 ocular 

measuring fields per slide chosen randomly, under a microscope at a power of x200. 

� Proliferation index: PCNA and Ki-67 label counting were performed by counting 10 to 20 

randomly selected microscopic fields at X400 magnification of each slide on COX-2/PCNA and 

COX-2/Ki-67 double IHC staining sections. The labeling index is the percentage of labeled cell 

nuclei over the total number of counted epithelial cell nuclei.  

� Bcl-2: In COX-2/Bcl-2 double IHC staining slides, Bcl-2 labeling was classified into two score 

groups based on the location of the Bcl-2 immunostaining in prostate epithelia: Bcl-2 score I: 
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only the basal cell layer of prostate epithelia stained with Bcl-2; Bcl-2 score II: not only the 

basal cell but also the luminal cell layer were detected with Bcl-2 immunostaining. Similar 

evaluation was also used for GSTP1 and c-MET immunostaining.

� CD3, CD20, and CD68 for chronic inflammation (paper I, II, III, and IV): In COX-2/CD3, 

/CD20, and /CD68 double staining slides, severity of inflammation grades was evaluated by 

counting inflammatory cells in the area around each gland within 50	m 338 .   

� C/EBP�: In each case, 5 to 30 normal-appearing glands and 1-6 PIA lesions were selected at 

random to assess the IHC staining. If any portion of epithelia in a prostate gland showed 

C/EBP� nuclear staining, then the gland was considered positive.  

� AR down-regulation: AR down-regulation was defined as when � 1/3 luminal epithelial cells 

lost the AR nuclear staining or/and � 2/3 luminal epithelial cells had weak AR nuclear staining 

in a single gland compared with the adjacent normal-appearing glands.  

� Microvessel density assessment: Any single endothelial cell or cluster of endothelial 

cells labeled with CD31 was regarded as a single microvessel. The quantification of 

microvessels was performed by counting 20 to 40 randomly selected microscopic fields 

of prostate cancer at 400 x magnification (high power fields, HPF) for each slide. The 

values of the second antigen staining were regarded as inflammatory cell density or 

MVD (/ HPF, 400 x). 

Immunofluorescence 

To determine whether the CK5 positive epithelial cells showed increased proliferative activity 

and decreased p27kip1 expression, double-staining immunofluorescence of Ki-67 and CK5, as 

well as p27Kip1 and K5 was performed. 

Statistics 

Statistical analysis was carried using SPSS for Windows software. The Pearson Chi-Square 

test was used to analyze the significance of COX-2 expression among various kinds, grades, 

and patterns of inflammation, and Bcl-2 expression (paper I). Chi-square test and/or Fisher 

exact test was also used to analyze the differences in C/EBP� expression in relation to 

inflammation grades, COX-2 expression, and AR down-regulation (paper III) and in relation 

to the differences between proportions in paper IV. The Mann-Whitney U test was used for 

comparison of different groups, such as the significance of COX-2 expression, PCNA indices, 

and Ki-67 indices among different groups in atrophic lesions (paper I); COX-2 expression 

IHC score and the relationship with Gleason score, the inflammatory cell density, and MVD 



56

(paper II), and the C/EBP� expression ratio and the relationship with inflammatory cell 

density (paper III), and the comparison of HGPIN and PIA-merging HGPIN among groups 

(paper IV). Spearman rank correlation coefficient test was used to analyze the strength of 

association between the COX-2 IHC score and inflammatory cell density or MVD in paper II.  
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RESULTS AND DISCUSSION 

Over-expression of COX-2 in Prostate Atrophic Lesions of BPH Samples and the 

Relation to Proliferation Index and Association to Apoptosis (paper I) 

COX-2 over-expression and co-expression with CK8 in PIA 

The expression and function of COX-2 in prostate has been the subject of recent multiple 

reports. In general, COX-2 expression in normal prostate tissue is either weak or nonexistent, 

and prostate cancer tissue shows a marked overexpression of COX-2. The results in paper I 

show that COX-2 was overexpressed in the atrophic lesions, both in SA and PAH, in 

comparison with the low COX-2 level in normal prostatic acini/ducts. The double IHC 

staining of COX-2/34βE12 and COX-2/CK8 clearly showed that COX-2 was co-expressed 

with CK8, suggesting the luminal phenotype.   

These results were basically in line with other studies that COX-2 was seldom expressed in 

normal luminal epithelium. Only a few articles studying COX-2 expression in BPH were 

published and the results were contradictory. Furthermore, no consensus has been reached 

concerning which cell types express COX-2 in the prostate and at which stage of the disease 

this expression becomes elevated. Kirschenbaum et al.168 have made a systematic 

investigation of COX-2 expression in both fetal and adult male reproductive tracts, including 

normal prostate and BPH. In prostate, COX-2 was negative in fetal prostate, was strongly 

expressed in the smooth muscle cells and had no expression in the luminal epithelial cells 168. 

However, Madaan reported that COX-2 was constitutively expressed in the luminal cells of 

the BPH samples 167. In the present study, we found that COX-2 immunostaining mainly 

appeared in the atrophy glands (PIA lesions), suggesting that in comparison with the normal 

acini and ducts, the PIA lesions showed a different phenotype. This support the hypothesis 

that such atrophic cells are intermediate cells that have been identified between basal and 

luminal cells and that co-express both CK5 and CK8 as well as hepatocyte growth factor 

receptor c-MET, and lack p63 306. According to the stem cell hypothesis 339, these cells may 

develop into PIN or PCa.  

COX-2 expression and correlation to inflammation in BPH 

Another interesting point made in this study is that COX-2 expression was related to the focal 

chronic inflammation. COX-2 immunostaining was found closely adjacent to the focal 

chronic inflammation, both inside and surrounding the prostate foci. The predominant 
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inflammatory cells are T-lymphocytes and macrophages. These data indicate that focal 

chronic inflammation might play an important role in inducing COX-2 expression in BPH.  

BPH is one of the most common diseases in aging men. Nonetheless, the etiology of BPH is 

far from being completely understood, despite the major efforts made by molecular and 

clinical researchers. Most of the initial research studies focused on hormonal factors, 

considering that advanced age and the presence of functioning testes to be the two best-

established conditions for the development of BPH. There is emerging evidence that prostatic 

inflammation may contribute to prostate growth either in terms of BPH or neoplastic changes. 

The Medical Therapy of Prostatic Symptoms (MTOPS) study showed that men with 

inflammation had a significantly higher risk of BPH progression and acute urinary retention 
340. The use of COX-2 inhibitor in combination with a 5-alpha-reductase inhibitor could 

increase the apoptotic index in BPH tissue 340. Studies have also addressed the correlations 

between inflammation, apoptosis, and the development of prostate cancer 292, 293.

Inflammation is thought to incite carcinogenesis by causing cell and genome damage, 

promoting cellular turnover. In theory, an inflammatory microenvironment may be ideal for 

the development of tumours, owing to up-regulation of various mitogenic, anti-apoptotic and 

angiogenic factors. Increased levels of cytokines in response to inflammation may influence 

cell survival, growth and differentiation. COX-2 is up-regulated by certain mitogens, growth 

factors and cytokines. The potential chemopreventive effects of various anti-inflammatory 

agents, i.e. COX-2 inhibitors and NSAIDs, lend credence to these observations. The role of 

COX-2 in BPH has not been conclusive. However, this study clearly demonstrates that COX-

2 overexpression in BPH exists and is associated with a cascade of other events, including 

increased T-lymphocytes and macrophages. It remains unclear whether or not proinflamma-

tory cytokines induce COX-2 expression, and, if so, the clinical relevance. The role of 

inflammation in the pathogenesis of BPH and disease progression will be an exciting avenue 

of research in the near future. The exact cell biological mechanisms may provide novel 

therapeutic options in the treatment of both BPH and PCa.

COX-2 expression in PIA and the association with increased Bcl-2 level 

Both inflammation and apoptosis are of major interest in understanding the etiology of BPH. 

Bcl-2, an anti-apoptotic factor, is normally detected in the basal cell layer of the prostate 

glands, while no staining is present in luminal cells341. Bcl-2 expression, however, is observed 

in luminal cells in PIN and in prostate cancer, and  its overexpression has been linked to 

chronic inflammation 314. COX-2 overexpression and up-regulation of Bcl-2 are associated 
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with decreased apoptosis 197. Bcl-2 blocks apoptosis, an important step in the pathogenesis of 

prostate cancer, responsible for the decreased response to androgen ablation therapy in 

prostate tumours as compared with normal prostate tissue 44. Interestingly, treatment of 

LNCaP cells with a selective COX-2 inhibitor NS398 caused down-regulation of Bcl-2 

expression 230. It suggests that COX-2 might induce Bcl-2 expression.     

It is known that inflammation is involved in several kinds of cancers, including prostate. 

Specifically, free radicals, predominantly oxygen and nitrogen species, and growth factors are 

assumed to alter protein structure and function, causing lipid peroxidation and gene mutations. 

Pathological, experimental, and epidemiological data support those relationships. The 

increased level of Bcl-2 shows indirectly the anti-apoptosis in PIA cells. In fact, relevant 

pathological evidence has highlighted the role of PIA as a prostate cancer precursor. 

Moreover, a rat prostate model supplied strong evidence that pathogenesis of prostatic 

neoplasia proceeds from inflammation to PIA and then to HGPIN 38, 116.  Rats fed with 2-

Amino-1-methyl-6-phenylimidazo (4,5-b)pyridine (PhIP) showed significant prostate 

inflammation and atrophy and, HGPIN was also observed to develop directly from the 

atrophic epithelium 38, 116. 

Increased proliferation index in COX-2 positive staining PIA

Normally, luminal epithelial cells have a low proliferating index, as compared with the basal 

prostate cells, which was assumed to be the place where prostatic stem cells are located. 

However, in the present study, the COX-2 positive expressing luminal cells showed increased 

proliferating index, which labelled both for Ki-67 and PCNA. Glands with COX-2 positive 

staining had higher a PCNA label index than COX-2 negative glands, and the highest PCNA 

label index appeared in the COX-2 positive cells. Both PAH and SA lesions had higher 

PCNA and Ki-67 label indices than normal glands.  

COX-2 overexpression is assumed to induce the cellular proliferation in various cell lines via 

related prostaglandin (PG) production. Enhanced PG synthesis may contribute to 

carcinogenesis in several ways, including direct stimulation of cell growth. Both PGE1 and 

PGE2 stimulate proliferation of mammary epithelial cells in the presence of EGF 182, 183. 

Treatment of cells with a COX-2 inhibitor could reverse this phenotype 197.  

Overall, in the study of paper I, we conclude that COX-2 is expressed in benign prostate 

tissues, especially in atrophic lesions, and is associated with inflammatory cell infiltration. T-

lymphocytes and macrophages both appear to play important roles in inducing the luminal 
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prostate epithelial cells to express COX-2. These COX-2 positive staining epithelial cells have 

higher proliferation index and increased levels of Bcl-2. This observation, in combination 

with findings from other studies 342, 343, suggest that chronic inflammation and subsequent up-

regulation of COX-2 could be involved in the early pathogenesis of prostate disorders. These 

COX-2 positive expressing epithelial cells may possibly develop further, for instance, to PIN 

or prostate cancer, since these cells have both regeneration and anti-apoptosic phenotypes. It 

is therefore interesting to discuss why COX-2 is up-regulated and how this may influence 

cellular function in prostate epithelial cells. The COX-2 expression in prostate cancer, just as 

the chronic inflammation induced the COX-2 expression in BPH, remained the unanswered 

questions.  

COX-2 Expression in Malignant Prostate Tissues and the Relation to Gleason Score and 

Angiogenesis (Paper II) 

In a previous study we have shown that COX-2 is locally up-regulated in prostate atrophic 

lesions in BPH if T-lymphocytes and macrophages are present. Such COX-2 positive 

epithelial cells had increased levels of Bcl-2 and a higher proliferation index compared with 

COX-2 negative cells 344. In paper II, we tested the hypothesis that COX-2 is associated with 

local chronic inflammation in prostate cancer, and assessed the relationship between COX-2 

and the Gleason score for prostate cancer. In addition, we reported a new finding, that COX-2 

was related to angiogenesis in prostate cancer. This finding confirmed the hypothesis that 

COX-2 contributes to angiogenesis and would support further clinical assessment of anti-

angiogenesis therapy and COX-2 inhibitors, which have already shown promise in various 

trials 345. 

COX-2 expression in PCa and relation to Gleason score 

In this study, COX-2 positive staining tumour cells were detected in 40 of 43 cancer samples. 

The quantitative immunostaining data showed that the majority of cases (65%) had weak 

immunostaining of COX-2, while 28% had the intermediate or strong COX-2 expression. 

There was a significant association between elevated COX-2 expression and Gleason score: 

high Gleason score (> 7) patients had stronger COX-2 immunostaining  (P = 0.002). 

Our finding is generally in line with previous observations, which conclude that there is up-

regulation of COX-2 in prostate cancer. Furthermore, several studies have shown that COX-2 

expression correlated with disease stage, Gleason grade, and progression 163, 164, 166, 167, 346.
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Increased COX-2 expression was also seen in lymph node metastases 165, 171. COX-2 

expression has even been regarded as an independent prognostic indicator 225. 

However, although most such studies have demonstrated increased COX-2 expression in the 

prostatic epithelial cells, some investigators have attributed the increased COX-2 expression 

to the accompanying inflammatory cells found in the neoplastic tissue rather then from the 

cancer cells themselves 227. They found that the expression of COX-2 was not elevated in 

HGPN or in established PCa. In limited cases, when staining for COX-2 was observed in PCa, 

the extent of positive staining did not correlate with established clinical and/or pathological 

risk factors - Gleason score or pathological stage. In contrast to the neoplastic tissue, the 

consistent expression of COX-2 protein in PIA lesions was present 227. To date, however, 

there are few quantitative analyses of COX-2 expression in relation to Gleason score. In the 

present study, the COX-2 positive rate (40/43, 93%) is higher than in any other report. This 

discrepancy can probably be explained by the fact that there is very heterogeneous expression 

of COX-2 in prostate cancer tissues. A detailed quantitative analysis, based on the information 

from each microscopic field instead of the whole slide of each sample, may be the best way to 

interpret such heterogeneous findings.  

COX-2 expression was induced by focal chronic inflammation, especially T-lymphocytes 

and macrophages infiltration 

Although several reports have shown COX-2 overexpression in PCa, none investigated the 

association between COX-2 expression and the focal inflammation in the PCa areas. It is 

known that inflammation and the related oxidative stress plays a crucial role in inducing 

COX-2 expression in inflammatory lesions 121. Based on our first article, stating that focal 

chronic inflammatory cell infiltration, especially the T-lymphocytes and macrophages, 

inducing the COX-2 expression, we hypothesized that the chronic inflammation in the 

prostate cancer areas may also play a role in COX-2 induction. 

COX-2 IHC staining, focally related to chronic inflammation in tumour areas, has heretofore 

not been noted. Foci of chronic inflammation with accumulation of inflammatory cells were 

detected in all 43 prostate cancer samples using double-labeling of COX-2/CD3 or COX-

2/CD68. Quantification of double labeling showed that T-lymphocytes and macrophages were 

noted more often in the COX-2-positive than in the negative staining tumor areas. A higher T-

lymphocyte density was found in COX-positive than in COX-2-negative fields. Further 

analysis also showed that T-lymphocyte density was related to COX-2 expression in both the 

low and high-Gleason score groups. There was also a significant correlation between T-
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lymphocyte density and COX-2 expression score. Statistical analysis showed significant 

correlation between COX-2 IHC expression score and inflammatory cells density. 

Interestingly, COX-2 expression was significantly related to macrophage density in low but 

not in high Gleason score specimens.  

This observation is in line with our previous finding that COX-2 expression in benign prostate 

epithelium is correlated to local chronic inflammation. The mechanism behind this is not fully 

established. It is now known that most pro-inflammatory mediators stimulate COX-2 

transcription via different types of signalling 198, including: growth factors, such as IGF, 

TGF� and EGF 181; nitric oxide (NO) and reactive oxygen species (ROs) 200; and several pro-

inflammatory cytokines such as IL-1 or IFN-� 201. COX-2 protein level is also regulated at 

prost-transcriptional level via modulation of the stability of its mRNA. Signals from cytokines 

such as IL-1�, TNF-� or TLR ligands affect COX-2 mRNA stability. Most of above pro-

inflammatory cytokines are enriched as inflammatory microenvironment component which is 

released by macrophages or activated T-lymphocytes 347. Moreover, in cell co-culture 

experiments, COX-2 is induced by the presence of inflammatory cells 348, and COX-2 protein 

levels are increased in normal prostate cells and prostate cancer cells (PC-3, LNCaP, and 

DU145) after TNF-� stimulation in vitro 170, 232. These studies suggest that local inflammation 

could up-regulate COX-2 in adjacent tumour epithelial cells.  

COX-2 up-regulation contributes to the angiogenesis in prostate cancer 

This study provides the first evidence of a direct link between COX-2 and angiogenesis in 

prostate cancer tissue. CD31 is a myeloid progenitor cell antigen found in endothelial cells. 

This biomarker can be found in all types of endothelial cells and has been used to correlate 

angiogenesis in different stages of cancer 188. The spatial relationship between COX-2-

expressing cancer cells and CD31-positive microvessels was investigated using COX-2/CD31 

double IHC staining. COX-2 protein expression was not detected in endothelial cells. CD31-

positive endothelial cells lining microvessels were noted in all prostate cancers specimens. 

Microvessel density (MVD) was significantly increased in high Gleason score cancer, 

compared with those in low Gleason score cancer specimen. MVD was also significantly 

different between COX-2-negative and COX-2-positive stained areas. This finding confirmed 

previous studies in which COX-2 expression was associated with aggressive disease in 

prostate cancer 163, 164, 166-169, and led to the hypothesis that COX-2 drives increased 

neovascularization. The existence and extent of this relationship is essential in the 

determination of therapeutic modalities for the prevention and treatment of prostate cancer. 



63

Tumour angiogenesis includes destabilization of pre-existent blood vessels, proliferation of 

vascular endothelial cells, invasion of endothelial cells into the extracellular matrix and, 

finally, the migration and positioning of endothelial cells. Recent evidence suggests a role of 

COX in the process of angiogenesis through the synthesis of angiogenic PGs such as PGE2, 

which induce MMP and VEGF 121, 184-186. Numerous studies have shown co-localization of 

angiogenesis factors, such as VEGF, PDGF, bFGF and TGF-�, with COX-2 by 

immunohistochemical staining in different cancer types 187. In some solid tumours such as 

pancreatic cancer, gastric cancer, and endometrial carcinoma, COX-2 was shown to be 

involved in the tumour-associated angiogenesis 349-351. In breast cancer, for instance, the 

density of microvessels was higher in patients with COX-2 expression than in those without 

COX-2 expression 188. Studies of colon cancer cell lines co-cultured with vascular endothelial 

cells demonstrated that COX-2 supports angiogenesis at multiple steps both directly and 

indirectly 189, 190. Through these angiogenesis mediators and their receptors on the endothelial 

cells, COX-2 and PGs increased vascular permeability and induced endothelial cell 

proliferation and migration.  

Clinical trial of COX-2 inhibitor through inhibiting the angiogenesis 

The importance of angiogenesis in tumour metastasis has been well established for over 

30 years 352. In theory, inhibiting angiogenesis might provide a new therapeutic option by 

targeting cancer growth and spread. Several recent articles report a relationship between mean 

MVD and advancing disease in prostate cancer 353, while some reports have negative results 
354, 355. Numerous compounds are examined by the National Cancer Institute (NCI) for their 

potential to prevent or treat cancer. COX-2 inhibitor is currently being tested in both 

prevention and treatment clinical trials. Epidemiological studies have shown that people who 

regularly take NSAIDs, such as aspirin and ibuprofen to treat conditions like arthritis, have 

lower risk of prostate cancer. Celecoxib, a COX-2 inhibitor commonly used to treat arthritis, 

has been shown to inhibit COX-2, and in turn, to reduce the formation, growth, and metastasis 

of several types of experimental cancers. Celecoxib has also been shown to effectively 

decrease tumour angiogenesis and to reduce tumour growth of a variety of experimental 

primary tumours, including colorectal, prostate, and breast cancers 356, 357. 

In summary, the present study raises the possibility that COX-2 may influence tumour 

progression in prostate cancer through mechanisms of the promotion of angiogenesis. The use 

of selective COX-2 inhibitors and angiogenesis inhibitors may play a role in the targeted 

treatment of prostate cancer in the future.  
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Transcription Factor C/EBP� Expression in Atrophic Lesions and the Association with 

COX-2 Expression, and Focal Chronic Inflammation (paper III) 

C/EBP� expression in prostatic atrophic lesions 

COX-2 is a highly inducible enzyme triggering diverse actions on cell functions, including 

proliferation, migration, and DNA damage. COX-2 transcriptional activation by 

proinflammatory mediators has been extensively characterized. COX-2 could be induced by 

several extracellular signals, including LPS 199; nitric oxide (NO) and reactive oxygen species 

(ROs) 200; pro-inflammatory cytokines 358; and growth factors 181.  Activation of C/EBP� and 

in turn phosphorylation of cAMP response element-binding protein (CREB) play a major role 

in the initial stage of COX-2 transcription 359.  

CCAAT/enhancer-binding proteins (C/EBPs) comprise a family of transcription factors with 

at least six members: C/EBP� - C/EBP
. These transcription factors are known to be involved 

in the regulation of cell growth and cellular differentiation of several cell types; control of 

metabolism; inflammatory response; and cellular proliferation 208, 214, 215.  

Several cancer models have shown that C/EBP� may play a role in neoplastic transformation 
360, 361.  Some studies of human cancers showed increased expression of C/EBP� in solid 

tumours related to poor prognosis 360-364. Nevertheless, to the best of our knowledge, there is 

no report dealing with the expression of C/EBP� in human prostate, either in malignant or 

benign tissues. To improve the understanding of the role of C/EBP� in malignant 

transformation of  prostate, we first investigated its expression in benign prostate tissues, 

especially in the possible cancer precursor PIA 293.  We selected prostatectomy samples of 

BPH patients to perform this study, since it was known that the same morphologic patterns of 

atrophy can be seen in any region of the prostate and in and around nodules of BPH 294. It was 

also known that the overexpression of COX-2 in benign and malignant prostate tissues is 

related to local inflammation 344, 365.  

In this study, we have identified a novel finding of C/EBP� expression in benign prostate 

tissues. C/EBP� nuclear immunostaining was occasionally observed as focal or scattered 

among epithelial cells of normal-appearing prostate acini. The appearance of C/EBP� in these 

epithelial cells was usually near the area of inflammation. Only 5% (± 7%) of normal-

appearing acini showed C/EBP� positive staining. In contrast, diffused C/EBP� nuclear 

immunostaining was present in PIA lesions: 81% (±19%) of examined PIA had C/EBP�

immunostaining.  
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Normally, C/EBP� protein is widely expressed in many different tissues, including liver, 

adipose tissue, ovary, and mammary gland. Several studies have shown that C/EBP� is a 

critical mediator of steroid hormone-regulated cell proliferation and differentiation.  C/EBPs 

are involved in the regulation, proliferation and differentiation of the cells in mammary gland. 

Moreover, both C/EBP� and C/EBP� play roles in breast cancer development 212. High 

C/EBP� and C/EBP� protein levels correlated significantly with expression of cell-cycle 

promoters (cyclin D1 and E) and cell-cycle inhibitory proteins (Rb, p27, p16), but with none 

of the established prognostic parameters. In contrast, C/EBP� was statistically related to 

negative estrogen receptor status, high grading, nodal involvement, and high cyclin E and p16 

expression in breast cancer. It was suggested that high C/EBP� expression might be involved 

in tumour progression and indicative of an unfavourable prognosis 212. Studies have also 

shown that C/EBP� is a critical mediator of steroid hormone-regulated cell proliferation and 

differentiation in the uterine epithelium and stroma 366. A study in mice revealed that C/EBP�

is a key mediator of steroid responsiveness in the epithelium and stroma in the mouse uterus 
366. The expression of C/EBP� is rapidly induced in the pregnant uterus at the time of 

blastocyst attachment. The expression of C/EBP� increases further during the decidualization 

phase of pregnancy. Administration of estrogen or progesterone to ovariectomized females 

induced C/EBP� expression in both uterine epithelium and stroma 366.  

In addition, C/EBP� appears to play an important role in promoting cells proliferation, and its 

levels are increased in a number of tumours. C/EBP� is involved in antioxidant- or 

deoxycholic acid-induced apoptosis of colorectal cancer cells. It has been demonstrated that 

the C/EBP� protein is essential for lymphocyte differentiation, and is necessary for the 

antitumour cytotoxicity of murine macrophages. Transfection of C/EBP� to murine 

abdominal resident macrophages significantly enhanced their cytotoxicity to tumour cells. 

Overexpression of exogenous C/EBP� can induce apoptosis in various malignant cells. 

Moreover, Fas-induced apoptosis in mouse hepatocytes is dependent on C/EBP�. 

Nevertheless, until recently, as we know, there have been no reports about the expression of 

C/EBP� in human prostate benign or/and malignant tissues. The role of C/EBP� in human 

prostate development and disorders is entirely unknown.  

C/EBP� expression and its association with local chronic inflammation 

In the present study, C/EBP� tended to be present in foci of chronic inflammation.  Double 

IHC staining of C/EBP� / CD3 and C/EBP� / CD68 confirmed this finding: C/EBP� nuclear 

staining in atrophic epithelial cells was predominantly seen adjacent to the T-lymphocytes and 
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macrophages infiltration areas. C/EBP� expression was associated with the severity of 

inflammation, both in T-lymphocyte and macrophages inflammation.  

It is known that C/EBP� is induced by inflammatory cytokines, such as IL-1, IL-6, and TNF-

� 212. The present results suggest that the local inflammatory cells and its related micro-

environment may induce the C/EBP� over-expression. This hypothesis was supported by 

additional evidence from the C/EBP� expression pattern in normal-appearing acini. C/EBP�

positive immunostaining only appeared in a minority (5%) of normal-appearing prostate acini 

and in most cases this was in areas adjacent to chronic inflammation.  

C/EBP� expression is related to increased COX-2 expression 

COX-2 expression has been identified as induced by several proinflammatory cytokines, and 

it appeared in various inflammatory lesions and tumours, such as PIA and prostate cancer. In 

this study, we noted that C/EBP� expression was closely related to COX-2 expression in 

prostate epithelial cells. Statistical analysis confirmed this observation (p = 0.001). 

Activation of C/EBPs plays a critical role during the initial stage of COX-2 transcription 359. 

COX-2 expression in response to stimulation by proinflammatory mediators is 

transcriptionally regulated through activation of NF-�B, C/EBP�, AP-1, and CREB-2.  

COX-2 seems to be particularly interesting in PIA, since it was believed to be the potential 

target gene for chemotherapy or chemo-prevention of prostate cancer 367. COX-2 inhibitors 

and NSAIDs have been used in the chemoprevention of several cancers. Several laboratory 

and epidemiological studies suggest that COX-2 inhibitors reduce prostate cancer risk or/and 

have antitumour activities by inhibiting COX-2 enzyme 221, 367-369. The present data show the 

correlation between C/EBP� and COX-2 in PIA. It is suggested that C/EBP� may also be 

involved in the regulation of COX-2 in prostate epithelial cells, just as in other cells, such as 

fibroblast, macrophage, endothelium, or gastric cancer cells 363, 370, 371. Recent studies have 

made it clear that aspirin and sodium salicylate at therapeutic concentrations selectively 

suppress the expression of COX-2 and inducible nitric oxide synthase (iNOS) induced by LPS 

and IL-1� through inhibiting C/EBP� activation in macrophage and fibroblast cells 371, 372. It 

may be further speculated that aspirin or NSAIDs and their in vivo metabolites are capable of 

inhibiting the expression of C/EBP� and thereby suppressing COX-2 expression and the 

consequent effects in chemoprevention. Thus, the present study may have clinical 

implications, since it might be suggested that C/EBP� could be a target for chemotherapy or 

chemoprevention for prostate cancer.  
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Morphological transition from PIA to HGPIN, and prostate cancer (paper I, II, and IV) 

Morphological analysis is an important way to investigate the link between prostatic focal 

atrophy and prostate malignancies. In 1954, Franks considered a specific subtype of PAH as a 

putative neoplastic precursor, given its close association with PCA 291. Several recent studies 

have re-examined the role of focal atrophy as a potential neoplastic precursor and have 

identified a strong topographic association between atrophy and prostate cancer and/or 

HGPIN 297, 299, 300.  

Recently, a rat prostate model supplied strong evidence that the pathogenesis of prostatic 

neoplasia proceeds from inflammation to PIA and then to HGPIN.  Rats fed 2-Amino-1-

methyl-6-phenylimidazo (4,5-b)pyridine (PhIP) showed significant inflammation and atrophy 

of the prostate and, HGPIN was later observed to develop directly from the atrophic 

epithelium. 

It should be noted that not all the pathologists have noted morphologic transition of PIA, 

HGPIN, and invasive adenocarcinoma 301-305 and that not all HGPIN or small carcinoma 

lesions are associated with atrophy. It is not clear how these parameters are interrelated and 

what intermediates are involved. At the WHO Consensus Conference in Stockholm, it was 

emphasized that no relationship between atrophy and prostate carcinoma or HGPIN has been 

proven 267. Thus, additional studies are required to more fully understand the relation between 

focal atrophic lesions and cancer development in the prostate.  

In the study with 50 radical prostatectomy specimens of prostate adenocarcinoma, we 

identified HGPIN and carcinoma lesions and tried to determine how often they merged with 

PIA.  

Presence of PIA-merging HGPIN 

Among the total of 1,188 HGPIN lesions from all the 50 cases specimens, 17% (198/1,188) 

were detected as merging with PIA. According to the subtypes of prostatic atrophy, the 

majority were simple or mixed atrophy.  One interesting observation was that the distribution 

of PIN patterns in PIA-merging HGPIN lesions was different from the usual histological 

pattern of HGPIN, tufting HGPIN, in most of the slides: flat pattern was the dominant subtype 

PIN in PIA-merging HGPIN lesions. The reason may be that the flat pattern of HGPIN is 

often composed of luminal cells with atypical nuclei in ducts and acini with minor 

architectural changes and is difficult to identify in H&E stained slides even at high 

magnification 373, however, it is easy to recognize by means of the CK5 or GSTP1 
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immunostaining. Another possible interpretation may be that in the PIA-merging HGPIN, the 

flat subtype is probably the earliest type of HGPIN, since it had somewhat similar architecture 

as in SA, except for the prominent nucleoli and the absence of CK5 and GSTP1. 

CK5 and GSTP1 immunostaining as possible markers for atrophic epithelium 

At the beginning of this study, four antibodies, CK5, GSTP1, c-MET, and C/EBP�, were 

tested for selecting possible markers in detecting the atrophic epithelium. The results showed 

that both CK5 and GSTP1 could be used as markers for the atrophic epithelium, where it is 

difficult to distinguish it from other components on the routine H&E stained slides.  

Although a few reports have confirmed the development of PIA to HGPIN 268, 293, 300, there are 

also numerous contradictory reports 301, 303. How to recognize the atrophic fraction in such 

lesions is a crucial question, since it is difficult to detect a tiny atrophic fraction in HGPIN 

lesions in the ordinary H&E stained slides. The present study showed that by means of CK5 

and GSTP1 IHC immunostaining, it was easier to detect the atrophic epithelial cells in PIA-

merging HGPIN or PIA-merging PCa lesions, especially in a lesion that has made the 

transition into malignancy. CK5, a basal cell marker, appeared in the luminal cells of PIA 306, 

374, and was absent in both HGPIN and prostate cancer. GSTP1 protein was normally 

expressed in basal epithelium and was absent in most luminal epithelial cells. In PIA lesions, 

strong anti-GSTP1 staining was seen in most of the atrophic epithelial cells. Absence of 

GSTP1 expression is common in HGPIN lesions and prostate cancer cells. These results 

suggest that both CK5 and GSTP1 are suitable markers for detecting and recognizing the 

atrophic epithelial cells in various lesions.   

Presence of PIA-merging PCa 

In morphological studies, atrophic lesions have been noted near early carcinoma lesions 299, 

and, at times, to have merged with adenocarcinoma 300, 375. The present work adds evidence 

that there is a direct transition from PIA to prostate carcinoma. Fourteen (28%) of the samples 

were found to have small foci of PIA-merging PCa. By means of CK5 or GSTP1 

immunostaining, it was easy to recognize the atrophic epithelial cells in these lesions. The 

contrast image of GSTP1 in the atrophic epithelium and prostate cancer cells demonstrates the 

GSPT1 hypermethylation in malignant cells. This finding supports the hypothesis that some 

prostate atrophy lesions may directly give rise to carcinoma, as has previously been suggested 
291, 300, 376.  

Cluster of atypical epithelial proliferation
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One striking finding in this study is that clusters of atypical epithelial proliferation were found 

in some PIA lesions, where a focal dominant chronic inflammation exists. These cluster cells 

appeared to grow in a budding pattern in the luminal layer. Cells were variable in size and 

shape, showed eosinophilic or basophilic cytoplasm, had enlarged nuclear with 

hyperchromasia, and contained severe nuclear atypia with frequent prominent nucleoli. The 

latter fulfil the criteria for the diagnosis of HGPIN. Architecturally, such lesions maintain a 

normal-appearing or atrophic architecture and a continuous basal cell layer. These lesions 

were usually surrounded by various degrees of chronic inflammation. Like the epithelium in 

other PIA lesions, such clusters of atypical epithelia also showed increased immunostaining 

for CK5 and GSTP1, from weak to moderate immunostaining intensity. Since there were no 

previous data concerning this, we examined these lesions to determine how frequently it 

appeared. Five cases with 16 clusters of atypical epithelia proliferation lesions were found 

from 50 prostatectomy specimens. 

Such focal atypical epithelial cells, although they were few in isolated PIA lesions, have 

fulfiled the criteria for HGPIN after routine light microscopic examination. We thereby 

postulated that a HGPIN lesion might develop from these clusters of atypical epithelial cells, 

meaning that some PIA lesion may develop directly into HGPIN. It is suggested that these 

cluster of cells may be a consequence of regenerative proliferation after the activation of 

“stem cells” or their progeny, the intermediate cells, by chronic stress.  

In summary, morphological transition from PIA to HGPIN and carcinoma were occasionally 

found in 50 prostatectomy specimens. CK5 and GSTP1 are useful markers for detecting and 

recognizing the atrophic epithelial cells in these lesions. Considering the findings in this study, 

we hypothesize that the transition from PIA to HGPIN and prostate cancer may go through 

pathways with and without an intermediate morphological stage of low grade PIN.  
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CONCLUSIONS 

The results from the studies included in the current thesis show that: 

� COX-2 is overexpressed in prostate PIA lesions. 

� The epithelium of these COX-2 positive immunostained glands has high proliferation 

index and increased Bcl-2 protein level. 

� Transcription factor C/EBP� is expressed in PIA lesions and is correlated to COX-2. 

� The COX-2 expression was positively associated to Gleason score and the 

angiogenesis in prostate cancer. 

� Focal chronic inflammation, predominantly T-lymphocytes and macrophages infiltration, 

plays an important role in inducing COX-2 expression both in benign and malignant 

prostate tissues. 

� Morphological analysis supported the hypothesis that PIA could develop into HGPIN 

and/or prostate cancer directly or indirectly. 

Fig 5. Cellular and molecular model of transition from PIA to HGPIN and prostate cancer.  

L, luminal epithelium; B, basal epithelium; M, macrophage; T, T-lymphocyte; PIA, proliferative 
inflammatory atrophy; LGPIN, low grade prostatic intraepithelium neoplasia; HGPIN, high grade 
prostatic intraepithelial neoplasia; PCa, prostate cancer. b-c, transition from PIA to HGPIN; b-d, 
transition from PIA to PCa.  
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