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Abstract:

Heckman’s two-step procedure (Heckit) for estimating the parameters in linear 
models from censored data is frequently used by econometricians, despite of the 
fact that earlier studies cast doubt on the procedure. In this paper it is shown that 
estimates of the hazard h for approaching the censoring limit, the latter being 
used as an explanatory variable in the second step of the Heckit, can induce 
multicollinearity. The influence of the censoring proportion and sample size 
upon bias and variance in three types of random linear models are studied by 
simulations. From these results a simple relation is established that describes 
how absolute bias depends on the censoring proportion and the sample size. It is 
also shown that the Heckit may work with non-normal (Laplace) distributions, 
but it collapses if h deviates too much from that of the normal distribution. Data 
from a study of work resumption after sick-listing are used to demonstrate that 
the Heckit can be very risky. 
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1. Introduction 

When studying the relation between a dependent variable *Y and a set of 
explanatory variables it sometimes occurs that a large proportion of the 
observations falls on aY * , and no observations are found below the known 
constant a. The consequences of this are that standard conditions for efficient 
estimation of the parameters are violated. This may be termed the problem of 
border-observations. One way to deal with the latter is to use the fact, or just 
make the assumption, that it has originated from censoring of some latent 
variables. (According to Kruskal and Tanur (1978) data are censored if 
observations are measured only in some interval, while observations outside the 
interval are counted but not measured). The relation between *Y and the latent 
variables can be expressed in several ways, the simplest being the Tobit model 
(Tobin, 1958) 

aYa
aYY

Y
if,
if,*                                                        (1) 

The Tobit model was later generalized by Heckman who introduced a further 
latent variable to take account of selection effects (Heckman 1976, 1979). 
Consider e.g. the variable *Y = ‘Number of sick-listed days per person’ where 
many observations are zeros. To deal with the problem of border observations at 
a = 0 one may introduce the latent variable Y = ‘State of health’ which can be 
measured in several ways (cf. e.g. Hansson et al, 2004). For those interested in 
the actual and private budgetary consequences of sick-listening there is no 
reason to include selection effects because the zeros are true zeros. However, 
persons with zero sick-listed days may be different from others in several 
respects. E.g. in a Swedish study women with extremely low household incomes 
returned to work after sick-listening earlier than others and after 90 days nearly 
all had returned (Bergendorff et al. 2001, p. 33). For those interested in studying 
the potential outcome that would follow if incomes were changed, it seems 
natural to take account of the selection effect that derives from household 
income. The problem of choosing a proper model for the censoring in the latter 
case may be termed the selection-effect problem and is separated from the 
border-observation problem mentioned above. A clarifying discussion on the 
problem of border observations and selection effects has been given by Dow 
and Norton (2003).  
   Objections may be raised against introducing a latent variable, the meaning of 
which may be unclear, such as ‘State of health’ but this gives anyhow a simple 
solution of a complicated problem. The introduction of a latent variable in the 
selection-effect situation is even more delicate, especially if it is generally stated 
that the two latent variables has a bivariate normal distribution (cf. e.g. Flood 
and Gråsjö, 2001). In the latter paper simulation studies were performed that 
showed that the simple Tobit model can be as good as more sophisticated 
selection-effects models, and sometimes even better. In this paper only the 
censoring in Eq. (1) is studied. 
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   Eq. (1) contains two types of data, counting data and observations on Y. When 
Y depends on explanatory variables in a regression relation it is possible to find 
the Maximum Likelihood (ML) estimates of the parameters by using both types 
of data under suitable assumptions, such as linearity of the regression and 
normality (Rosett and Nelson, 1975, Nelson, 1984). The computational 
difficulties involved in solving the ML equations led Heckman (1976, 1979) to 
propose a simple two-step method (Heckit). Although it was originally designed 
for censoring due to selection effects in cross-sectional data, it can be used for 
data free from selection effects and for panel data. The Heckit requires in a first 
step an estimate of a censoring proportion p from counting data. This in turn 
gives estimates of the hazard (h) for approaching a (or inverse Mills ratio). In a 
second step the parameters in the linear model are obtained by regressing the 
observations  on the explanatory variables and on estimates of h.
   It is peculiar that the Heckit never seems to have been used by biostatisticians, 
although problems with censoring occur frequently in this area. Also pure 
statisticians seem to have ignored the procedure. It is typical that in a recent 
PhD thesis in statistics including four papers on the subject, the Heckit is not 
mentioned (Karlsson, 2005). But, among econometricians the Heckit is still 
popular despite of the fact that an extensive amount of Monte Carlo studies casts 
doubt on the procedure. (See Puhani, 2000 for an overview). But, from these 
studies it is hard to find guide lines which can be used in practice    
    Heckman’s two-step procedure involves several critical moments. It is the 
aim of this paper to clarify the following issues: (i) Which are the properties of 
the estimated hazard that is used later in the second step? (ii) Which are the 
properties (bias and variance) of the regression estimates obtained with three 
different linear models? Furthermore, is it possible to adjust for the bias? In 
earlier studies the performance of the Heckit estimators have been compared 
with other alternatives such as the Tobit ML estimator and several 
semiparametric estimators (Kim and Lai, 2000, Lee, 1996, Newey, 2001 and 
Powell, 1994). This paper will focus only on the Heckit. The aim is to find 
simple guide lines for when the Heckit works and when it does not. 
    

2. Notations, assumptions and some theoretical results

Let tjY  denote an observation on the latent variable from the j:th subject at time 
t, j=1,…,n and t=1,…,T. For cross sectional data the index t is omitted The 
observations for each subject are represented by a transposed vector 

Tjjj YY ...1
'y and it is assumed that the latter are independent over the j’s. The 

problem considered is to estimate a linear regression function xx ttjYE ,

where tx is a vector of p explanatory variables possibly depending on t, when 
observations are obtained only in the interval ),(a and it is known how many 

observations that fall below a. The function x is written x '
t  where  is a 

vector of regression coefficients.  
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2.1 Three linear models with different random structures 

Consider the following models, where random variables are denoted by capitol 
letters, fixed values by small letters and parameters by Greek symbols. 

tjjtjtjtjtjtjtjttj UAYcUAYbUYa bxxx ''' )(,)(,)(   (2) 

Here the sU tj ' are independent and identically distributed (iid) disturbances with 

mean 0 and variance 2
U . jA  is a random intercept that is specific for the j:th

subject with mean 2 varianceand A , while jb is a vector of random regression 

coefficients specific for the j:th subject with mean and variance 2
rB for the 

r:th component. All s'ands' jjA b are iid and tjU  is independent of jA

and jb . The latter two may be correlated with 
rABrjj BACov ),( . All 

random variables are assumed to be normally distributed. 
   The models in Eq. (2) have been widely used (see e.g. Swamy, 1971 and 
Hsiao, 2003) and have been termed (a) Gauss-Markov (GM), (b) Error 
Components Regression (ECR) and (c) Random Coefficient Regression (RCR), 
just to mention a few names. The GM-model is intended for cross-sectional data 
or panel data without within-subject correlations. ECR- and RCR models are 
intended for panel data. Tests for uncensored data in order to establish a proper 
random structure have been suggested by several authors (see e.g. Honda, 1985, 
Lundevaller and Laitila, 2002, Hsiao, 2003), but no such test seems to have been 
suggested for censored data. 
   The Heckit requires that the censored variable is normally distributed. This 
can be tested by Pearson’s chi-square statistic or the likelihood-ratio statistic 
also called the deviance, provided that data can be sorted by the explanatory 
variables. For each combination of the latter, the observed proportion of 
censored observations are compared with the estimates of the corresponding 
theoretical proportion xp defined by 

)( xx uaYPp tj , with 
x

x
x v

au  where )( tjYVvx               (3) 

These tests are supplied by several statistical packages such as SAS (SAS 
Online Guide, 2006). 
    Below it is shown that the performance of Heckman’s estimation procedure is 
dependent on the magnitude of the standardized variable xu rather than on x or
x . In order to simplify the simulation studies (Sect. 3) it was therefore decided 
to consider just one explanatory variable, that was chosen as t, t=1,…,T, so the 
expressions in Eq. (2) simplifies to 

tjjjtjtjjtjtjtj UtBAYcUtAYbUtYa )(,)(,)(        (4) 
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with variances )(2),(),()( 2222222 cttbaYV BABAUAUUtj and 

covariances )()(),(),(0),( 222 csttsbaYYCov BABAAtjsj .

2.2 Results on expectations of censored variables 

2.2.1 Normally distributed censored variables  
Let  be the density of a standardized normal variable and consider the function  

)1/()( xxx puh                                                          (5) 

This is often referred to as the inverse Mills ratio. Since xh  is the limit of 

aYaaYP tjtj ),(1  as 0  it can be interpreted as the hazard for 

approaching the censoring limit a for a given vector tx . The behaviour of xh as a 

function of xu is seen in Figure 1. Notice that xh is roughly linear when xu is
large. From the inequality xxxx uuhu /1 (Gordon, 1941), it follows that 
the asymptotic slope for large xu is 1. In Figure 1 the range of xu is from -2 to 2. 
The latter corresponds to a range of the censoring proportion from 2.3 % to 97.7 
% and this will cover most situations that occur in practice.  

Figure 1. The solid line is the hazard in Eq. (5) (normal observations). The three 
dotted lines are the hazards for Laplace distributed observations (cf.  Section 
2.2.2) with v = 0.5 (upper curve), v =1.0 and v =5.0 (lower curve). 

    The expectation of the 'tjY s that are found above a is related to x  in the 
following way (Johnson et al, 1994) 

xxx hvaYYE tjtj                                             (6) 
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As Heckman noticed, the latter relation makes it possible to obtain estimates of 
the parameters in x  by regressing aYY tjtj on the explanatory variables and 

on the estimated hazard. The expectation of the observed variable *
tjY  can 

finally be obtained by putting Eq. (6) into the obvious relation 

)1(*
xx paYYEpaYE tjtjtj                                   (7) 

   All these results are based on the assumption of normality of the censored 
variables and the two-step procedure described above would therefore be termed 
normal-Heckit. Below (Sect.3) it will be found that, if the normal-Heckit is 
applied to data that are not normally distributed, it may collapse.  

2.2.2 Non-normally distributed censored variables: The Laplace distribution 
   Under normality assumptions the hazard xh  is separated from x  in Eq. (6) in 
an additive way.  For other distributions this decomposition is seldom possible. 
Consider e.g. the case when the tjY ’s in the GM model (4a) has the Laplace (or 

double exponential) distribution with the following density )(cdfand)( yFyf :

0if),exp(
0if),exp(

2
1)(

zz
zz

yf
0,2/)exp(
0,2/)exp(1

)(
zz
zz

yF , with xy
z .

The expectation and variance of tjY  is 22andx , respectively (cf. Johnson et
al, 1994). The normal density and the Laplace density are both symmetric 
around x  but compared to the normal density the Laplace density has a sharper 
peak at x and longer tails. In terms of xu defined in Eq. (3), the hazard for 
approaching the censoring limit a is 

0for,
0for,1)2exp(2

1

1-

x

xx
x

u
uuh                               (8) 

This function is shown in Figure 1 for v = 2 = 0.5, 1.0 and 5.0. When 
0xu the hazard is increasing and for some values of v the hazard is rather 

close to that of the normal distribution. For 0xu the hazard is completely 
different and is identical to the hazard of the exponential distribution with a 
constant level. It also follows that 

xxxx

x

x

x aah
a

dyyyfdyyyf
aYYE a

tjtj for)(
)/)(exp(

2
11

)()(
2          

x

x

aa
a

dyyyf
aYYE a

tjtj for,
)/)(exp(

2
1

)(
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In the last expressions xx hand can not in general be expressed in separate 
terms as in Eq. (6). Only when a equals x  they have the same structure. 
   Thus, if the normal-Heckit is applied to data where the censored variable in 
fact is Laplace distributed, estimates can be expected to be very unreliable for 
two reasons. First, estimates of the hazard are uncertain since the form of the 
hazard is incorrectly specified and second, the hazard is not additively separated 
from x , so the regression relation is incorrectly specified in Heckman’s second 
step.

2.3 Heckman’s two-step procedure 

The first step in Heckman’s procedure is to estimate the hazard in the definition 
(5), and this in turn requires the estimates of xp  or xu  in Eq. (3). The most 
basic way to estimate xp is to count the number of observations that falls below 
a for a given tx  out of a total of xn . This suggests the estimator 

)ˆ(ˆ thisfromandatnsobservatioProportionˆ 1
xxx x puap t      (9a) 

The estimator of the hazard that is based on Eq. (9a) will be termed  semi-
parametric. In practise the latter is only feasible when the model has a small 
number of explanatory variables, each with a limited state space. Alternatively 
one can perform a probit analysis that fits the relation in Eq. (3) to data. In this 
way one gets estimators of  xx vva /and/)(  (being of less value when 

xv is unknown), but also of xx up and ,

        analysisprobitfromuandp ˆˆ xx                                   (9b) 

The latter estimator will be termed probit-based. The essential difference 
between the two types of estimators is that the one in (9b) makes full use of the 
normality assumption, while that in (9a) only uses the normality assumption for 
estimating the numerator in the definition (5).  The estimates of and  are 

finally obtained in the second step by regressing aYY tjtj  on tx  and on the 

estimated hazard xĥ .
   In Figure 1 xh  is roughly linear for large values of xu , say xx uh ,
where )1,0( and 0 . Putting this into Eq. (7) and using Eq. (3) gives 

)1()1( 'xx ttjtj avaYYE                      (10) 

From this it is obvious that estimates of and can be seriously biased by 
performing the second step in Heckman’s procedure since one is estimating the 
slope vector )1(  rather than . Provided that )1( is estimated without 
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bias, it follows that  can be interpreted as the relative bias of the -
components. If  is known this can be used to adjust for the bias when 
estimating  by simply dividing the estimate by )1( . An example of this will 
be given in Section 4.3 

2.4 Specific problems to be considered 

The theoretical exposition above raises some questions that will be dealt with in 
the next section: 
(i) Which are the properties of the semi-parametric and the probit-based 
estimates of the hazard under normal- and non-normal distributional 
assumptions? (ii) For which range of xu -values, or alternatively for which 
censoring proportions, are estimates obtained by Heckman’s procedure reliable? 
(iii) Under which of the three random structures, GM, ECR and RCR, are 
estimates obtained by Heckman’s procedure reliable? 

3. Monte Carlo simulations 

3.1 Design of the simulation study 

Data were generated according to the three models in (4) with ttjYE )(

t , t = 1,2,3,4 and 2vYV tj with 22
Uv  for GM data and 22

U

2
A  for ECR data. For RCR data the variance depends on t, 2)( ttjYV

2222 2 BABAU tt . The censoring limit was a = 0 and the Heckit was 
studied within the ranges IuIuIu ttt 2,0and1,1,0,2 0 .
     For GM and ECR data the parameters were 30,10  and 2/3v
(=15, 45). For Iut 4  (=40, 120) yielding 3/)82( tut . For 

0Iut 2/5  (=25, 75) yielding 3/)52( tut , and for Iut

 (=10, 30) yielding 3/)1(2 tut . The expected proportion censored 
observations was : 0.22 for .for78.0andfor50.0, 0 IuIuIu ttt

     For ECR data two sets of variance components were used  
200)25,(and25),200( 2222

AUAU giving 15v , and furthermore 

1772)253,(and253)1772,( 2222
AUAU  giving 45v . Since 2

tv
depends on t in the RCR model it is not possible to find parameter values such 
that tjYV is exactly the same as for the GM- and ECR data. The following 
parameter choices made the results for the RCR model roughly comparable with 
the former models: ,200,25,10 22

AU 102
B . For Iut ,

45.18AB , so tv  varied between 14.1 and 15.4 and for Iut , AB

55.31  with tv varying between 11.5 and 13.1.      
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    Simulations were also performed to study the performance of the normal-
Heckit when in fact the observations with GM data were Laplace distributed. 
Three cases were considered: (i) 25.0,5.0v , (ii) 5.0,1v , (iii)

5.2,5v . For Iut 4  giving 2/)4(tut , t=1,2,3,4). For 

Iut  giving 4,3,2,1,2/)1( ttut . The hazards for these three 
values of v are shown in Figure 1. 
     Estimates of tt up and  that are required in order to estimate the hazard th  in 
the first step of Heckman’s procedure were obtained from probit analysis. Based 
on the results from a preparatory study of the bias of the estimated hazard 
outlined below, the sample sizes were chosen as n = 100 and 400 when studying 
bias and variance of the and  estimates. All simulations were performed 
with 10,000 replicates, using random number functions and procedures in SAS 
version 9.1. A computer program is available from the author on request. 

3.2 The estimated hazard 

The bias of the estimated hazard th  was studied at t = 1, 2, 3, 4 when data were 
generated by the GM model with normally distributed disturbances. For both 
estimators in (9a) and (9b) the bias decreased rapidly with increasing n. For 
small n, the bias could be substantial, especially for Iut  and t = 4. However, 
it was concluded that for practical purpose when estimating th , the bias could 
be ignored when n is 100 or larger. The same conclusions were drawn about the 
variances of the th  estimates. Here the probit-based estimator had a slightly 
smaller variance and the variance decreased more rapidly than the bias with 
increasing n. A similar pattern was obtained for the ECR and RCR models. So, 
under normality assumptions the probit-based estimator is at least as good as the 
semi-parametric estimator, and for n=100 or larger the influence from bias can 
be ignored and the variance remains small. 
   Now, consider the case when the disturbances are Laplace-distributed. The   
absolute relative bias was smallest for 1v With increasing n the bias persisted 
and the variance decreased. The latter was more than five times larger for n =
100 than for n = 400. The results show that both proportional-based and probit-
based estimators of the hazard can be seriously biased if the hazard is far from 
that of the normal and this can not be compensated for by increasing n.
    In the sequel, when the properties of estimates of and are studied under 
normality, n is chosen as 100 and 400. From the results above it follows that 
possible biases of the estimates can not be caused by poor estimates of the 
hazard in the first step in the Heckit, but purely on the fact that xx hand  in Eq. 
(6) are both linear which in turn leads to the structure in Eq. (10). 
      Since the Heckit is so closely tied up with normality it was furthermore 
studied whether two commonly used tests of normality for censored data, 
Pearson’s chi-square and maximum likelihood-ratio (SAS Online Guide, 2006), 
were able to detect deviations from normality. When the observations were 
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Laplace distributed (v = 0.5, 4,25.0 ) it was found that the p-values 
of both tests were roughly the same. However, for n=100 only 20 % of the p-
values were below 0.10 (the recommended significance level) and 36 % were 
below 0.20. For n=400, 58 % of the p-values were lower than 0.10 and 72 % 
were lower than 0.20. It is beyond the scope of this paper to go into details 
about these tests, but it is clear that the powers of the tests are unsatisfactory low 
when the alternative to the normal distribution is that of Laplace and 400n .

3.3 Estimates of  and 

Tables 1a and 1b summarize the properties of the and estimates when the 
Heckit was applied to GM data. Both bias and variance of the estimates 
increased as the range of the tu values moved upwards, and decreased with 
increasing n. Especially for Iut , bias and variance were considerable, up to 
15 times larger than for Iut . As expected, both bias and variance was larger 
for 30  than for 10  since the former value makes )( tjYV larger. 
However, it is interesting that the absolute relative bias turned out to be 
independent of the magnitude of  for given n and a given range of tu .

Table 1a.  Relative bias (%) with the GM model. 

Relative bias of ˆ Relative bias of ˆ

n I 0I I I 0I I
-10 100 5 28 71 3 6 61 

 400 0.3 4 53 4 8 51 
-30 100 5 29 70 3 5 60 

 400 0.6 5 50 4 4 50 

Table 1b. Variances with the GM-model. 

Variance of ˆ Variance of ˆ

n I 0I I I 0I I
-10 100 19 128 289 19 27 84 

 400 2.9 34 270 3.7 5.9 88 
-30 100 163 2282 3316 166 298 1188 

 400 26 392 2033 34 65 679 
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Similar results, when the Heckit was applied to ECR data, are seen in Tables 2a 
and 2b. Bias and variance were roughly the same as for the GM data. For 

0and IuIu tt  bias and variance of the -estimator were larger when the 

ratio 22 / UA  is large. As for the GM model, the absolute relative bias seemed 
to be roughly independent of the magnitude of .

Table 2a. Relative bias (%) with the ECR-model. The first and second figures 
represent the cases when 22 / UA  is small and large, respectively. 

Relative bias of ˆ Relative bias of ˆ

n I 0I I I 0I I
-10 100 6,  14 33,  36 69,  61 2, 2 5,  11 71,  90 

 400 0.5,  2 6,   5 53,  51 4,  3 8,   8 55,  77 
-30 100 6,  12 32,  33 67,  60 2,  2 5,  10 67,  90 

 400 0.4,  1 6,  16 53,  47 4,  3 8,  9 57,  73 

Table 2b. Variances with the ECR-model. The upper and lower figures in the 
cells represent the cases when 22 / UA  is small and large, respectively. 

Variance of ˆ Variance of ˆ

n I 0I I I 0I I
-10 100 29  

97
161 
 196 

298 
291 

24
29

23
30

135 
411 

 400 3.6 
14

43
89

233 
179 

4.0
4.1

4.7 
9.7 

93
250 

-30 100 228  
708

1286 
1683 

3581 
2159 

194
235

222 
229 

1310 
3165 

 400 34 
142

504 
993 

3851 
2071 

37
39

45
107 

1446 
3012 

Tables 3a and 3b show the pattern for the RCR data. Compared with the results 
in the Tables 1 and 2, bias and variance are smaller. 

Table 3a. Relative bias (%) with the RCR-model.  

Bias of ˆ Bias of ˆ

N I I I I
100 -5 46 4 57 
400 -5 30 5 53 
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Table 3b. Variances with the RCR-model. 

Variance of  ˆ Variance of ˆ

n I I I I
100 1.7 230 3.6 33 
400 0.34 212 0.91 34 

   From Tables 1-3 it is concluded that the Heckit works quite well for Iut ,
(22 %  censored) and is less good when 0Iut  (50 % censored), especially 
regarding bias of the  estimator. For Iut  (78 % censored), Heckman’s 
procedure is very poor but seems to perform slightly better with RCR data.  
   In Section 2.3 it was noticed that the absolute relative bias when estimating 
the -components can be expressed by  in Eq. (10). Since  in Tables 3-5 is 
roughly independent of the magnitude of  and thus also of  and only 
dependent on n and on the censoring proportion p, it is challenging to search for 
a relation that describes how  depends on n and p. From the results in Tables 1 
and 2 (GM- and ECR data) the following relation was established, 

np                                                    (11) 

where = 0.1966 (GM), 0.1791 (ECR with 22 / UA small), 0.1324 (ECR with 
22 / UA large). The constant was determined by fitting the linearized version 

of Eq. (11) to the estimates obtained in Tables 1-2 by ordinary least squares. 
The coefficient of determination )( 2R ranged from 99.3 % to 99.8 %. The 
relation in Eq. (11) is illustrated in Figures 2a,b. From Figure 2a it is concluded 
that when n = 1000 or larger the censoring proportion p has less impact on the 
magnitude of  as far as p is below 50 %. E.g. n = 1000 and p = 0.5 gives 

01.0 . If the censoring proportion is small, say below 20 %, then Figure 2b 
tells us that the absolute relative bias can be ignored for sample sizes above 250. 
However, for large p and small n the absolute relative bias can be substantial. 
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 (a) 

(b)

Figure 2. Illustration of the dependency of the absolute relative bias  (Theta) 
on p and n in Eq. (11) when 1966.0 (GM-model). (a) The upper to the 
lower curves show the dependency for n =50, 100, 400 and 1000. (b) The upper 
to the lower curves shows the dependency for the censoring proportions p
=0.78, 0.50 and 0.22.     

 Since  can be estimated from data by means of Eq. (11) it is possible to 
remove a great part of the bias by dividing the estimate obtained from the 
second step in the Heckit by )1( (cf. Eq. (10)). This was also confirmed in 
simulation experiments where the absolute relative bias was about three times 
smaller after the adjustment. A similar adjustment for bias when estimating 
requires an estimate of v . Although v  is an estimable parameter in the second 
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step of Heckman’s procedure, the estimates of the latter seems to be extremely 
unreliable. In the simulation study the estimates of v had a serious negative bias 
and the variances of the v-estimates were 5-15 times larger than the variance 
of ˆ . For this reason no attempt was made to adjust for bias of the parameter. 
   The (normal-)Heckit estimates of  and  was furthermore studied when 
the disturbances in fact were Laplace distributed using the parameters  v = 0.5, 
1.0, 5.0. The corresponding hazards are shown in Figure 1. For Iut  it is 
concluded from Table 4a that for given n the absolute relative bias of the 
estimates are roughly the same for the three values of v. Whith increasing n
much of the bias persists and the variances are reduced. A comparison between 
Table 4a and Table 1a for Iut shows that absolute relative bias is very much 
the same for n = 100. The difference is that in Table 1a, where the Heckit is 
applied to normally distributed observations, the bias is reduced much more for 
n = 400. The normal-Heckit seems yet to be surprisingly robust for Laplace 
distributed observations provided that 0tu . On the other hand, for 0tu  it 
is seen from Table 4b that the normal-Heckit collapses with Laplace distribute 
data.  

Table 4a Relative bias (%) and variance of estimates obtained by the normal-
Heckit when in fact the data are Laplace distributed with Iu .

n v Relative 
bias of ˆ

Variance 
of ˆ

Relative 
bias of ˆ

Variance 
of ˆ

 -0.25 0.5  5 0.02 4 0.01 
100 -0.5 1.0  5 0.07 5 0.04 

 -2.5 5.0  6 3.20 5 1.85 
 -0.25 0.5  3 0.00 5 0.00 

400 -0.5 1.0  3 0.01 5 0.01 
 -2.5 5.0  2 0.18 5 0.18 

Table 4b Relative bias (%)and variance of estimates obtained by the normal-
Heckit when in fact the data are Laplace distributed with Iu .

n v Relative 
bias of ˆ

Variance 
of ˆ

Relative 
bias of ˆ

Variance 
of ˆ

 -0.25 0.5 94 1.09 36 0.50 
100 -0.5 1.0 100 2.33 41 1.43 

 -2.5 5.0 101 45.42 41 41.54 
 -0.25 0.5 97 0.30 38 0.33 

400 -0.5 1.0 99 1.14 40 0.96 
 -2.5 5.0 100 13.90 42 14.74 
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   It is interesting to compare these results with those obtained by Paarsch 
(1984). Here the normal-Heckit was applied to Laplace distributed observations 
using two sets of parameters: 101,,94.2 v  giving tu

10/)94.2( t  for t = 0,1,…20 and )294.0,706.1(tu  (25 % censoring) and 
sameand10 vand  giving 10/1 tut  and )1,1(tu  (50 % 

censoring). For n = 100 the relative bias of the -estimator was found to be 32 
% (25 % censoring) and 68 % (50 % censoring). Although these figures were 
based on simulations with only 100 replicates, they agree well with the results in 
this paper. 

3.4 Comparison between the efficiency obtained with censored and uncensored 
data 

When data are censored it is obvious that some information is lost when 
estimating the parameters. Although this is inevitable it may be of some interest 
to compare the variances in Tables 1-3 with those that are obtained with 
uncensored data. Such a comparison may be considered to be of purely 
academic interest, but one reason for doing it is to set up a standard that allows 
for comparisons between the normal-Heckit and alternative methods. Let the 

optimal estimator of
n

j
jOPT

1

ˆˆbedatauncensored with , where j
ˆ

tttY ww / with 
T

t

T

t
ttjtjtY ttwYYttw

1

2

1
)(),)(( (cf. Rao, 1965, Ch. IV in 

Swamy, 1971 and Ch. 3 in Hsiao). Then  ttUOPT nwV /ˆ 2 for the GM and 

ECR models, and nwV ttUBOPT //ˆ 22 for the RCR model. From this 

one obtains the relative efficiency )ˆ(/)ˆ(100RE HeckOPT VV , where 

)ˆ( HeckV is the variance of ˆ  obtained from the Heckit and is determined from 
the simulations. For 0Iut and Iut  the relative efficiency is below 1 % for 
all three models. But for Iut , RE is 11.0 % when n=400  and 8.8 % when 
n=100 for the RCR-model, compared with RE of 3.4 % (n=400) and 2.4 % 
(n=100) for the GM-model. Also from this point of view, Heckman’s procedure 
seems to produce the best estimates when it is applied to the RCR-model.  

4. Using the Heckit for analysing recurrence of lower back problems among 
sick-listed men

4.1 Background 

In 1993 the International Social Security Association initiated the Work 
Incapacity and Reintegration project, primarily because of high levels of 
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expenditure on sickness in many industrialized countries (Hansson and 
Hansson, 2000). In the Swedish part of the project sick-listed men and women 
due to lower back or neck problems were followed during 2 years. One purpose 
of the study was to analyze the effects of commonly practiced medical 
interventions upon work resumption. The Swedish data base also contains 
information about the person’s health during a further 2-year period after the 2-
year follow-up. Results from this post follow-up period have not been published 
elsewhere. Of special interest was to study the number of sick-listed days during 
the post follow-up due to the same diagnosis as in the follow-up. 

4.2 The post follow-up 

Data from the post follow-up will be used to illustrate some undesirable 
consequences of the Heckit. n = 203 men with unspecified lower back diagnoses 
who had returned to work within the follow-up period were observed during the 
post follow-up. Men with specific back diagnoses (about 10 % of all cases, 
Bergendorff et al. 2001, p. 46) were excluded since these had back surgery and 
were thereafter free from back problems with the same diagnosis. The 
dependent variable of interest is DAYS = ‘Number of sick-listed days during the 
post follow-up due to the same diagnosis as in the follow-up’. One important 
explanatory variable was EQT = ‘Value on EuroQol Thermometer scale’, 
obtained at the end of the 2-year follow-up. The latter is a health-related quality 
of life measure obtained from a visual scale on which the respondent is asked to 
mark his health from 0 (worst function) to 100 (best function) (Hansson et. al., 
2005). The variable EQT was negatively associated with DAYS. Another 
explanatory variable was STATE1Y (= 1 if the person had returned to work 
within 1 year during the previous follow-up, and = 0 otherwise). Rather 
unexpectedly, there was a significant positive association between not returning 
to work within 1 year and DAYS = 0 (p-value= 0.01, Chi-square test). In fact, 
89 % (31/35) of those who did not return within 1 year had zero days during the 
post follow-up period, while the corresponding figure for those who returned 
within 1 year was 68 % (115/168). No further explanatory variables, such as 
demographic and socio-economic factors, work environment, co-morbidity and 
treatment received, were found to be associated with DAYS. 
   The major part of the observations are found on the border DAYS = 0, and it 
is obvious that the standard conditions for performing a regression analysis, 
such as normality or at least symmetrically distributed disturbances, are 
violated. Therefore, a latent variable Y is introduced such that 

0if,
0if,0

YY
Y

DAYS

and Y is a variable that is related to a person’s state of health. It is assumed that 
for the th:j person, jj UEQTYSTATEY 21 1 , j = 1,…,203. 
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4.3 Applying Heckman’s two-step approach 

Below the data is analyzed by the Heckit and in order to clarify the different 
steps they are numbered (i)-(iii).

(i) Estimation of xh in (5) by means of probit analysis  
The probit model is  

EQTYSTATEuuYPp j 210 1,0 xxx

where vvv /,/,/ 22110 . The fit of the model was tested by 
Pearson’s chi-square statistic and the Maximum Likelihood Ratio (MLR) 
statistic, giving the p-values 0.33 and 0.20, respectively, so the probit model 
should not be rejected at the 10 % level. The estimates that were obtained from 
the probit analysis were 0148.0ˆ,1037.1ˆ,5649.0ˆ

210 . The observed 
censoring proportion was 146/203 = 0.72. Much of the u-range is located to the 
part where the hazard is roughly linear, especially for STATE1Y = 0, where 

xu ranges from 0.56 to 2.04. The range of the xu -values indicates that the 
Heckit may give unreliable estimates (cf. Section 2.3).  

(ii) Regressing 0jj YY on 'x = (STATE1Y, EQT) and xh
The estimated regression relation in Eq.(6), by using OLS, is 

xhYYE jj
ˆ3095EQT37.5-STATE1Y278835630ˆ           (12) 

Here all estimated coefficients are significantly different from zero at the 5 % 
level as judged by two sided t-tests. 

(iii)Calculation of expected number of sick-listed days during the post follow-
up, according to Eq.(7). 
The expected number of sick-listed days is )ˆ1(0ˆ)(ˆ

xpYYEDAYSE jj .

Here the first factor is given in Eq. (12) and an estimate of xp is obtained from 
the estimated probit model. The estimates have little in common with the actual 
data. E.g. at EQT = 20, )(ˆ DAYSE  is about 800, but in the actual data no one 
had more than 650 days. From Eq. (12) the estimate of  is 

40.0)72.0( 2031966.0 , i.e. the -coefficients have been estimated with an 
absolute relative bias of 40 %. This figure can be used to correct for the bias of 
the -parameters by using Eq. (10): 

5.62ˆ5.37)40.01(ˆ)1(ˆ
4647ˆ2788)40.01(ˆ)1(ˆ

222

111

16



5. Conclusions and suggestions for further research

This paper has studied the performance of Heckman’s two-step approach when 
it is used to solve the problem with border-observations without selection effects 
and when data are censored from below. From the simulations it was concluded 
that the Heckit performed quite well for n larger than 100 and when the 
censoring proportion was 0.22, provided that the censored variable was 
normally distributed. With increasing censoring proportion the estimates 
gradually became more biased and the variance increased. However, it is 
possible to compensate for this by increasing the sample size.   
   By means of Eq. (11) it is possible to estimate , the absolute relative bias of 
the -estimates, and to adjust for the bias in the way that was done in Section 
4.3. Eq. (11) can also be used in the planning of a study. By first taking a pilot 
sample one gets a rough estimate of the censoring proportion p. The final proper 
sample size n can then be determined from restrictions on . E.g. if it is 
required that  is at most 1 % for the GM model, then n should be at least 62 if 
p = 0.05 and at least 1142 if p = 0.50. From considerations of space Eq. (11) had 
to be considered for two special cases of the ECR model. This gives some 
practical guide lines, but more detailed studies should be performed on the 
effect of the variance ratio upon the relation in Eq. (11). 
   Since the Heckit inevitably gives more or less biased estimates one should 
compare the estimated expectation of the observed variable with the observed 
data in a final step. A warning practical example was given in Section 4 where 
the censoring proportion was 0.72, leading to an estimated absolute relative bias 
of the regression estimates of 40 %, and this in turn led to gigantic over-
estimates of the actual costs for sick-listing. 
   When the censored variable has a distribution that is not normal Heckman’s 
two-step procedure may collapse for at least two reasons. One is that estimates 
of the hazard (or Mills ratio) used in the first step are biased. A second is that 
the regression function of interest and the hazard no longer are added to each 
other. From considerations of space the effects of misspecification was only 
studied for Laplace distributed disturbances, but such effects should be further 
investigated for a variety of distributions.  
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