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Robust regression is of interest in many problems where assumptions of a parametric 
function may be inadequate. In this thesis, we study regression problems where the 
assumptions concern only whether the curve is increasing or decreasing. Examples in 
economics and public health are given. In a forthcoming paper, the estimation 
methods presented here will be the basis for likelihood based surveillance systems for 
detecting changes in monotonicity. Maximum likelihood estimators are thus derived. 
Distributions belonging to the regular exponential family, for example the normal and 
Poisson distributions, are considered. The approach is semiparametric, since the 
regression function is nonparametric and the family of distributions is parametric. 
  In Paper I, “Unimodal Regression in the Two-parameter Exponential Family 
with Constant or Known Dispersion Parameter”, we suggest and study methods based 
on the restriction that the curve has a peak (or, equivalently, a trough). This is of 
interest for example in turning point detection. Properties of the method are described 
and examples are given. 
 The starting point for Paper II, “Semiparametric Estimation of Outbreak 
Regression”, was the situation at the outbreak of a disease. A regression may be 
constant before the outbreak. At the onset, there is an increase. We construct a 
maximum likelihood estimator for a regression which is constant at first but then 
starts to increase at an unknown time. The consistency of the estimator is proved. The 
method is applied to Swedish influenza data and some of its properties are 
demonstrated by a simulation study. 
 



Paper 1 
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SUMMARY.  

In this paper we discuss statistical methods for curve-estimation under the assumption of 
unimodality for variables with distributions belonging to the two-parameter exponential 
family with known or constant dispersion parameter. We suggest a non-parametric method 
based on monotonicity properties. The method is applied to Swedish data on laboratory 
verified diagnoses of influenza and data on inflation from an episode of hyperinflation in 
Bulgaria.  
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1 INTRODUCTION 

One of the central subjects of statistics is the estimation of curves. There exists a vast 
literature on the subject. Examples of methods are regression analysis and time series 
analysis. Often one has some knowledge in advance of the studied phenomenon that may be 
used in the analysis of the data. Such knowledge may be that the shape of the curve is known. 
In, for example, the study of the evolution in time of influenza during a season it is known 
that the number of reported cases per week of influenza-like illness first tends to increase and 
after reaching a peak tends to decrease. In such applications, it is reasonable to assume that 
the curve has a unimodal shape. Existing theory may motivate the use of some parametric 
formulation of the model. In the absence of such knowledge of the functional form of the 
curve one may use methods with fewer assumptions. 

Some smoothing method may be considered when no information of the shape of the 
curve is available. One may for example calculate a simple moving average with all non-zero 
weights equal. Since the weights may be regarded as a discrete log-concave function 
unimodality will be preserved as pointed out by Frisén [1]. Anderson and Bock [2] found, 
however, that the location of the maximum is generally not preserved. 

Example of another kind of method, which may be considered when no information about 
the shape of the curve is available, is to use smoothing splines. One procedure is described by 
Silverman [3]. In order to produce a good fit to data and to get a smooth curve he minimizes 
the following quantity with respect to g : 

( ) ( )( ) ( )2 2x t g t g u duα ′′− +∑ ∫ , 

where ( )x t  is the observed value at time t ( )1,2,...t n= , ( )
2

g u du′′∫  is a roughness penalty 
and α  is a smoothing parameter. This method does not preserve unimodality since the 
weights are in general not log-concave [1]. 

Information about the shape of the curve can be of different kinds. Sometimes it is known 
that the curve is concave. Hildreth’s [4] method of concave regression may then be used. This 
method gives consistent estimates of the curve [5]. Holm and Frisén [6] propose a method for 
estimating concave or convex and increasing or decreasing functions. Dahlbom [7] modified 
their algorithm and extended the method to estimate sigmoid and unimodal concave 
functions. In her paper, there is an extensive analysis of the properties of the estimators for 
different curve forms. The assumption of concavity is unrealistic in some applications. In, for 
example, a study of influenza it is shown by [8] that in the up-phase an exponential function 
seems to describe the number of laboratory diagnosed cases rather good. To the down-phase, 
an exponentially decreasing function can be fitted. Such a mixture of exponential functions is 
not concave. We do not consider methods for estimating unimodal functions under 
restrictions of concavity in the present paper. 

Gill and Baron [9] consider a method for estimating a continuous change of the canonical 
parameter of an exponential family from a constant level to a linear function. By using a non-
linear transformation of the time-scale the results can be generalized to a non-linear 
continuous change of the parameter. They give conditions for consistent estimators of the 
change-point. They consider parameters with known behaviour after the change-point.  

As was seen above, there exist different methods to estimate regressions with order 
restrictions. However, here we concentrate on regression where the only restriction on shape 
is that of unimodality. 

Davies and Kovac [10] describe methods for nonparametric regression controlling the 
number of local extremes. The methods considered are the run-method and the taut-string 
multiresolution method. In the run method there is a restriction on the maximum run-length 
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of the sign of the residuals. The taut-string method was first proposed by [11] and extended to 
nonparametric regression by [12]. In the integrated process, one constructs upper and lower 
limits. A taut string is a function within those limits with the shortest length. The derivative 
of the taut string is the estimator of the curve. The estimates at the local extremes may be 
adjusted to get better results. The two methods have been used to estimate a unimodal curve. 

In the estimation of a monotone function regression splines may be used as described by 
Ramsay [13]. The idea is to define a knot sequence which partitions the interval into 
subintervals. In each subinterval a non-negative linear combination of a small number of 
monotone splines are fitted, This type of method has been used by Meyer [14] to estimate a 
unimodal density with known mode. To each side of the mode she fits monotone regression 
splines under the restriction of continuity at the mode. 

None of the methods, for unimodal regression mentioned above, however, give maximum 
likelihood estimators. Such estimators were constructed for the normal distribution with 
known variances in [1] but here we aim at maximum likelihood estimation for a wider class 
of members of the exponential family. These maximum likelihood-estimates are needed in 
surveillance, see e.g. [15].  

In a study of influenza, [8] the Poisson distribution and the normal distribution were used 
to describe the distribution at given time points. The Poisson distribution belongs to the 
exponential family and has one parameter. The one-parameter exponential family may be 
regarded as a special case of the two-parameter exponential family with known or constant 
dispersion parameter. The normal distribution with constant variance is in the class of the 
exponential family with constant dispersion parameter. 

These are the motivations of this paper, in which we study unimodal regression for 
variables with distributions belonging to the two-parameter exponential family with constant 
or known dispersion parameter. This kind of estimator is of interest for example in some 
economical problems and for outbreaks of infectious diseases as will be further discussed in 
Section 5. Andersson, Bock, Frisén and Pettersson have analyzed outbreaks of influenza in 
order to construct of methods for online detection of onsets and peaks of influenza [15-20] 

The outline of the paper is the following: In Section 2 the model is described. In Section 3 
we give the estimator. Some properties of the estimator are given in Section 4. Some 
applications of the method are described in Section 5. Concluding remarks are given in 
Section 6. 

 

2 THE MODEL 

2.1 The family of distributions  

We observe a random process, ( )X t , at n discrete values of the ordering variable t which will 
here be called time. The process may be defined as well in discrete time as in continuous 
time. In both cases, inferences are only for the behaviour of the process at the observed time 
points. We further restrict the attention to processes for which ( )X t  has a distribution 
belonging to the two-parameter exponential family with constant or known dispersion 
parameter. The one-parameter exponential family may be regarded as a special case with a 
known dispersion parameter. We also assume that ( )X t  and ( )X u  are independent for t u≠  

and that ( ), 1, 2,...,t u n∈ . In applications, the assumption of independency may often be a 
realistic since we observe the process at discrete time points. 
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We write a probability function belonging to the exponential family in the canonical form 
as in [21] 

( ) ( ) ( )( )
( ) ( ) ( )( )( )

( )( ) ( ) ( )( ); , exp ;
x t t b t

f x t t t c x t t
a t

θ θ
θ φ φ

φ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

   (1) 

where ( ) ( )t tθ ∈Θ  is constant for each t and ( )a ⋅ , ( )b ⋅  and ( ).c  are some functions. )(tφ  is 

the dispersion parameter, which is regarded as a nuisance parameter. ( )( ) 0a tφ >  is of the 

form ( ) ( )
( )( )
t

a t
t

φ
φ

ω
=  where ( ) 0tω >  are known weights for all t. We also assume that the 

dispersion parameter ( )tφ  either is known or if unknown ( )tφ φ=  for all t. f  can be either 
the p.d.f. for a continuous random variable, e.g. the exponential distribution or the probability 
function for a discrete random variable such as the Poisson distribution.  

It is also assumed that the family is regular as defined by Brown [22], i.e. that if 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ): exp ;

x t t
t t c x t t dx t

a t
θ

θ φ
φ

∞

−∞

⎧ ⎫⎡ ⎤⎪ ⎪Ξ = − < ∞⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  then the parameter space ( )tΘ  

is defined as ( ) ( )( )intt tΘ = Ξ . The parameter space shall thus be an open set. If f  is the 
probability function for a discrete random variable, then the integral should be replaced by a 
sum. 

It is also assumed the first and second derivatives of ( )b θ  with respect to θ  exist and that 

( )( )2

2 0
b tθ
θ

∂
>

∂
. It is a well-known fact that  

( ) ( )( ) ( )( )b t
t E X t

θ
μ

θ
∂

= =
∂

 

( )( ) ( ) ( )( )2

2( )
b t

Var X t a t
θ

φ
θ

∂
=

∂
 

2.2 The regression function 

In the present paper, we restrict attention to the case when the expected value of the 
process first is increasing and after having reached a peak decreases. The methods are easily 
modified for the case when the expectations first decrease and after a trough increase. 

We define unimodality as follows: There exists a t′  such that 
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

max

max max

max

1 ...  for 1

1 ... -1  and ...  for 2,3,...,

1 ...  for 1

n t

t t n t n

n t n

μ μ μ

μ μ μ μ μ μ

μ μ μ

′= ≥ ≥ = ⎫
⎪

′ ′ ′≤ ≤ ≤ ≥ ≥ ≥ ∈ ⎬
⎪′≤ ≤ = = + ⎭

  (2) 

where ( )max 1
max

t n
tμ μ

≤ ≤
= and there is at least one strict inequality in (2). 

 

3 THE MAXIMUM LIKELIHOOD ESTIMATOR 

For ( ) ( ) ( )nXXX ,...,2,1 , independently distributed random variables, ( )tX , ( )nt ,...,2,1∈ , 
having a distribution belonging to the two-parameter exponential family (1) we assume that 
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there are ( )m t  observations on ( )X t  for each t. In Lemma 1, we study the case of a 
monotone regression. Denote the maximum likelihood estimator  

of ( ) ( ) ( )( ),
1 2 ,..., nμ μ μ ′=μ  subject to ( ) ( )nμμμ ≤≤≤ ...2)1(  by 

( ) ( ) ( )( )1 , 2 ,..., nμ μ μ ′=μ .Then the following may be shown. 
 

Lemma 1: 
(a) μ  is given by minimizing  

( ) ( )( ) ( )
( )

2

1

n

t

m t
x t t

t
μ

φ=

−∑          (3) 

with respect to ( )tμ  ( )1, 2,..., )t n=  under the restriction of isotonicity for ( )tμ  if ( )tφ  is 
known for all t.  
(b) μ  is given by minimizing  

( ) ( )( ) ( )2

1

n

t

x t t m tμ
=

−∑          (4) 

with respect to ( )tμ , ( )1, 2,..., )t n= , under the restriction of isotonicity for ( )tμ  if 

( ) ( ) ( )1 2 ... nφ φ φ= = =  
The maximum likelihood estimator of μ , subject to ( ) ( )nμμμ ≥≥≥ ...2)1(  and the 

family of distributions of Section 2.1, is obtained by minimizing (3) and (4) respectively 
under the restriction of antitonicity. 

 
Proof: Silvapulle and Sen [23] consider the following case: Let ( ) ( ) ( )1 ,..., m tx t x t  be ( )m t  

independent observations on the random variable ( )X t  from group t , ( 1,..., )t n= .  

We want to find the maximum likelihood estimator of ( ) ( )( )1 ,... nμ μ  where 

( ) ( )( )t E X tμ =  under the restriction 0Aμ ≥ . A  is a matrix in which each row is a 

permutation of ( )1,1,0,...,0−  and ( ) ( )( )1 ,..., nμ μ μ ′= . Assume that the distribution of ( )X t  

belongs to the exponential family with parameters ( )tθ  and ( )tφ .  Part (a) of proposition 
2.4.3 in [23] states that the maximum likelihood estimator μ  of μ  under the restriction 

0Aμ ≥  is the value of μ  at which  

( ) ( )( ) ( )
2

1

( )n

t

m tx t t
t

μ
φ=

−∑          (5) 

reaches its minimum subject to 0Aμ ≥  if ( ) ( ) ( )1 , 2 ,..., nφ φ φ  are known constants. Part (b) 
of proposition 2.4.3 in [23] states that the maximum likelihood estimator μ  of μ  under the 
restriction 0Aμ ≥  is the value of μ  at which  

( ) ( )( )2

1
( )

n

t
x t t m tμ

=

−∑          (6) 

reaches its minimum subject to 0Aμ ≥  if ( ) ( ) ( )1 2 ... nφ φ φ φ= = = = , say. In isotonic 
regression the i :th row of A has -1 in position i , +1 in position 1i +  and 0 in all other 
positions. For antitonic regression the i :th row has +1 in position i , -1 in position 1i +  and 0 



 6

in all other positions. Thus the maximum likelihood estimator μ  under the restriction of 

isotonicity and antitonicity respectively is thus given by minimizing ( ) ( )( ) ( )
( )

2

1

n

t

m t
x t t

t
μ

φ=

−∑  

with respect to ( )tμ  under the restrictions of isotonicity and antitonicty respectively if ( )tφ is 

known for all t. For ( ) ( ) ( )1 2 ... nφ φ φ φ= = = =  μ  is given by minimizing 

( ) ( )( ) ( )2

1

n

t

x t t m tμ
=

−∑  with respect to ( )tμ  under the restrictions of isotonicity and 

antitonicty respectively     
 
An estimator μ  of μ  under the restriction of unimodality may be constructed in the 

following way [1]. Regard the following partitions of the observations ( ) ( ) ( )nxxx ,...,2,1 : 

 { } ( ) ( ){ }( ) ( ){ } ( ) ( ){ }( ) ( ) ( ){ } { }( ), 1 ,..., , 1 , 2 ,..., ,..., 1 ,..., ,x x n x x x n x x n∅ ∅ .  (7)  

For each of these partitions we fit monotone regressions to each part. To the first part is 
fitted an isotonic regression and to the second an antitonic regression. Denote the likelihood 
for the fitted unimodal regression for the i :th partition by iL  ( )1, 2,... 1i n= + . μ  is given by 
the partition with gives 

1 1
max ( )ii n

L
≤ ≤ +

. 

 
Theorem 1: μ  defined above is the maximum likelihood estimator of μ  under the 
restriction of unimodality for the regular exponential distribution with known or constant 
dispersion parameter as described in Section 2.1.  
 

Proof: First, we regard the maximum likelihood estimator of μ  for a given t′  as defined 
by (2) Assume that 1t′ = . Then ( )tμ  is an antitonic function of t . The maximum likelihood 
estimator of μ  is given by lemma 1. Denote the maximum of the likelihood function in this 
case by 1L . If 1t n′ = +  then ( )tμ  is an isotonic function of t . The maximum likelihood 
estimator of μ  follows from Lemma 1. Denote the maximum of the likelihood function by 

1nL + . Now assume that ( )2,3,..., 1t n′∈ − . According to the definition of t′  in (2) then the 
curve is first increasing and then decreasing. If 
( ) ( ) ( ) ( )max max1 ... t -1  and ...t nμ μ μ μ μ μ′ ′≤ ≤ ≤ ≥ ≥  for a given t′ , we fit an isotonic function 

according to lemma 1 to ( ) ( )1 ,..., 1x x t′ − . Denote the maximum of the likelihood by t
IL ′ . Fit 

an antitonic function according to lemma 1 to ( ) ( ),...,x t x n′ . Denote the maximum of the 

likelihood by t
AL ′ .Then the maximal likelihood for the curve is I A

t t tL L L′ ′ ′= ⋅ . Our maximum 
likelihood estimator μ  of μ  under the restriction of unimodality is given by the partition, 
which maximizes tL ′  for ( )1,2,... 1t n′∈ +      

 
The method is illustrated by a numerical example in section 5.1. 
The parameter ( )tφ  in (1) may be interpreted as a scale parameter and ( )tω  as the number 

of observations on ( )tX  for ( )nt ,...,2,1∈ . For normally distributed variables, the scale 
parameter is the variance. When a unimodal regression is fitted to observations on normally 
distributed variables with varying variances, we correct for the differences in scale by 
weighting the observations inversely to their variances. If the dispersion parameter is constant 



 7

for all observations, we have the same scale for all observations and we therefore do not 
correct for differences in scale and give all observations a weight, which is proportional to the 
number of observations for all time points. 

In section 2 it was stated that ( )b θ
μ

θ
∂

=
∂

 and since it was assumed that ( )2

2 0
b θ
θ

∂
>

∂
 then 

μ  is a strictly increasing function of θ . This motivates the following corollary. 
 

Corollary: The maximum-likelihood estimator of ( )tθ , ( )tθ , is given by ( )( )1b tθ μ−′ , where 

1bθ
−′  denotes the inverse of ( )b θ

θ
∂
∂

. 

 

Proof: Since 
( )( )b tθ
θ

∂

∂
 is strictly increasing in ( )tθ  the inverse exists. If the likelihood is 

maximized for ( ) ( )t tμ μ=  it is also maximized for the value ( )tθ  of ( )tθ  for which  

( ) ( )( )b t
t

θ
μ

θ
θ θ

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠ =

 i.e. ( ) ( )( )1t b tθθ μ−′= .     

 

4 PROPERTIES OF THE ESTIMATOR 

The estimated curve preserves the unimodality since the transformation of the data is log- 
concave. See Frisén [1] for a proof. In this section we study consistency and bias. 

4.1 Consistency. 

When the number, m(t), of independent observations at each time point, t, tends to infinity, 
we have the following consistency property. 
 
Theorem 2: In the class of distributions given in Section 2.1 ( )tμ  is a strongly consistent 

estimator of ( )tμ  for 1, 2,...,t n=  when min m(t)→∞. 
Proof: The theorem follows from the Kolmogorov law of large numbers since it is assumed 

in Section 2.1 that ( ) ( )( )b t
t

θ
μ

θ
∂

=
∂

 exists for 1, 2,...,t n=            

 
From this it follows that both the height and the time of the peak will be consistently 
estimated. Observe that the consistency do not prevail for the case where the number of time 
points tends to infinity.  

If there is only one observation for each time point but the number of time points 
tends to infinity then ( )maxˆ max tμ μ= ⎡ ⎤⎣ ⎦  is in general an inconsistent estimator of 

( )max max tμ μ= ⎡ ⎤⎣ ⎦  as is pointed out by Frisén [1] and Dahlbom [24] for a regression with 
normal distribution and by Woodroofe and Sun [25] for density estimation in the exponential 
family. 
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4.2 Bias. 

In the case when there is one observation per time point the estimators of the end-points and 
the maximum points are positively biased, as was pointed out by Dahlbom [24]. She also 
found that the bias of the estimators of other points at the curve often is negligible. Some 
results from her simulation experiments of certain curves and the normal distribution will 
now be reviewed. 

We focus our interest to the problem of estimating ( )max 1,2,..
max
t n

tμ μ
=

= ⎡ ⎤⎣ ⎦  when the time 

point for the maximum is unknown and when there is one observation at each of a fixed 
number of time points. As an estimator of maxμ  one may use ( )max 1,2,..

ˆ max
t n

tμ μ
=

= ⎡ ⎤⎣ ⎦ . Dahlbom 

[24] studied, the case when maxt  is unique, where ( )max 1,2,...,
arg max

t n
t tμ

=
= . One of the models for 

( )tμ  was a symmetrical and concave second-degree polynomial. The bias of maxμ̂  as an 
estimator of maxμ  was a decreasing function of the curvature normalised for the standard 
deviation. When the number of time points in an interval of fixed length increases then the 
bias tends to increase. Since deviations from symmetry may affect the bias, she also used a 
third-degree polynomial as a model for ( )tμ  with values of the coefficients giving unimodal 
and concave curves. It was found that moderate deviations from symmetry had small 
influence on the bias. 

The errors in the simulation experiments by Dahlbom were normally distributed. There is 
no obvious reason to expect much different results for other members of the exponential 
family. The curves studied by Dahlbom in the simulation experiments are concave. The bias 
in the estimator of maxμ  for other curve forms and other distributions is not necessarily the 
same. As mentioned in Section 1 a mixture of exponential functions, one increasing and one 
decreasing, seems to give a good fit to laboratory diagnosed influenza in Sweden. Such 
mixtures of exponential functions are not concave. 

 

5 EXAMPLES 

5.1 A numerical example. 

We have one observation on ( )tX  at each of the time points 5,4,3,2,1=t  where ( )tX  
follows the Poisson distribution ( )( )P tλ . The Poisson distribution is in the exponential 

family of equation (1), with ( )lnθ λ= , ( )b eθθ = λ= , ( ) 1a φ = , ( ) ( ), ln !c x xφ =  and 

( ) ( )( )b t
t

θ
μ

θ
∂

=
∂

eθ λ= = . We assume that ( )tμ  is unimodal as in (2). 

We give the calculations for the case there the observed values of X are 1, 3, 1, 5, and 1. In 
the table below, we give the observed values and the estimates of ( )tμ  at different time 
points and the likelihood for different partitions of the observations. As an example, we get 
the following likelihood for the partition { } { }1,3 , 1,5,1   

3
1

1
5

3
1

3
3

3
1

1 10457.0
!1

1
!5

3
!1

3
!3

3
!1

1 −−−−−− ⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅= eeeeeL  
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Table 1. The likelihood and the maximum likelihood estimators for each time conditional on each of the 
possible partitions of the dataset {1, 3, 1, 5, 1} 

 
Partitions t=1 t=2 t=3 t=4 t=5 Likelihood 

{ } { }, 1,3,1,5,1∅  2.5 2.5 2.5 2.5 1 30.221 10−⋅  
{ } { }1 , 3,1,5,1  1 3 3 3 1 30.457 10−⋅  
{ } { }1,3 , 1,5,1  1 3 3 3 1 30.457 10−⋅  
{ } { }1,3,1 , 5,1  1 2 2 5 1 31.160 10−⋅  
{ } { }1,3,1,5 , 1  1 2 2 5 1 31.160 10−⋅  

{ } { }1,3,1,5,1 , ∅  1 2 2 3 3 30.271 10−⋅  
 
The conclusion from Table 1 is that the maximum likelihood estimate of the curve is given 

in the rows for the partitions { } { }( )1,3,1 , 5,1  and { } { }( )1,3,1,5 , 1 . Thus, the maximum 

likelihood estimator isμ ( )1, 2,2,5,1= . 

5.2 An economical example. 

An economical example where it is of interest to use an inverted U-shaped curve is in the 
study of inflation before, during and after periods of hyperinflation [26]. See for example 
monthly data on the inflation for Bulgaria during the time period from 1995 to 2000. After 
the end of central planning, there was a budget deficit and high monetary growth. The 
confidence in government was decreasing and the inflation was steadily increasing. During 
March, the twelve-month inflation was about 2000%. After reforms, Bulgarians became more 
confident in their currency and inflation decreased. In figure 1, we show the Bulgarian 
twelve-month inflation in percent during the time period from June 1995 to September 1999. 
We also show the unimodal regression function fitted under the assumption of normally 
distributed values with constant variances.  

  

0
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1000

1500

2000

2500

1995-06 1995-12 1996-06 1996-12 1997-06 1997-12 1998-06 1998-12 1999-06

Inflation %

Fitted regression

 
Figure 1. Bulgarian inflation and fitted regression for the years 1996 and 1997 
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5.3 Application to influenza incidences 

In the study of the number of influenza cases during an ordinary season it may be reasonable 
to assume that the number of cases are initially increasing and that they after having reached 
a peak are decreasing. It is of interest to study the incidence, since influenza epidemics 
impose huge costs on society. The Swedish Institute for Infectious Disease control (SMI) 
publishes information on Swedish influenza incidence. Two types of weekly data are 
published, namely the number of influenza like illness (ILI) and laboratory diagnosed 
influenza cases (LDI). Details on the reporting can be found in [27]. 

The number of reported cases per week of influenza-like illness and the number of 
laboratory-diagnosed cases per week are counting variables. In some studies, it is assumed 
that the distribution of the number of cases can be approximated by the normal distribution. 
However, at the onset of an epidemic there are few cases. Assumption of normality then may 
assign a non-zero probability that cannot be ignored to a negative number of cases. The 
assumption of normality of the number of influenza cases has been criticized by Le Strat and 
Carrat [28]and Rath et al. [29]. Held et al [30] suggest the Poisson distribution for infectious 
surveillance data and also discuss the negative binomial distribution in cases of over-
dispersion relative to the Poisson distribution. Sebastiani et al [31] use a log-normal 
distribution for ILI data. Andersson et al [8] studied the distributional properties for ILI and 
LDI in Swedish influenza data from five influenza seasons. They fitted piecewise exponential 
functions to each season and examined the residuals. The auto-correlations in the residuals 
were low all seasons for the two variables. Near the peak, there was no evident relation 
between the squared residuals and the estimated curve. Since there were numerous cases near 
the peak an assumption of normally distributed values with constant variance may be 
adequate for that part. In [19], they also studied the onset of an epidemic using ILI-data. They 
found that the squared residuals depend on the estimated means. Since there was no direct 
evidence against the Poisson distribution they suggested that this distribution may be used a 
first approximation. 

Here we restrict our attention to the LDI data. The LDI-cases are reported weekly from 
five virus laboratories and between 15 and 20 microbiological laboratories. See [32] and [33] 
for details. The LDI cases are mostly patients in need of hospital care.  

In figure 2, we show the number of cases and the unimodal regression for the number of 
laboratory diagnosed cases under the assumption of Poisson distributed values for the season 
2005/2006 
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Figure 2. The number of LDI cases and the fitted regression during the season 2005/2006. 
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6 CONCLUDING REMARKS 

We have given examples of situations where it is reasonable to assume that the evolution in 
time of a process may be described by a unimodal curve and when it can be assumed that the 
distribution of the observed process may be described by a distribution belonging to the one-
parameter exponential distribution. 

In unimodal regression with distributions belonging to the exponential family with varying 
dispersion parameter, the observations are weighted inversely proportional to that parameter 
if there is one observation per time point. For distributions belonging to a one-parameter 
exponential family or two-parameter exponential family with constant dispersion parameter, 
all observations shall have the same weight for one observation per time point. An example 
of a two-parameter distribution in the exponential family with constant dispersion parameter 
is the normal distribution with constant variance. An example of a distribution belonging to 
the one-parameter exponential family is the Poisson distribution. In this paper, we restrict 
attention to estimation of the unimodal regression curve under the assumptions given above. 
The results are also important in the construction of surveillance procedures in order to 
monitor different processes in time. An example is in timely detection of influenza peaks 
where the Poisson distribution is useful. In some financial time series, the assumption of a 
normal distribution with constant variance may be used as in the example of Bulgarian 
hyperinflation. The monitoring of such time series may be of interest to among others actors 
on the foreign exchange markets.  
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SUMMARY.  

A regression may be constant for small values of the independent variable (for example 
time), but then a monotonic increase starts. Such an “outbreak” regression is of interest 
for example in the study of the outbreak of an epidemic disease. We give the least square 
estimators for this outbreak regression without assumption of a parametric regression 
function. It is shown that the least squares estimators are also the maximum likelihood 
estimators for distributions in the regular exponential family such as the Gaussian or 
Poisson distribution. The consistency of the estimators is proved. The approach is thus 
semiparametric. The method is applied to Swedish data on influenza, and the properties 
are demonstrated by a simulation study.  

KEYWORDS: Constant Base-line, Monotonic change, Exponential family.  
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1. INTRODUCTION 

One important aim in public health surveillance is to detect disease outbreaks. An 
outbreak can be characterised as a change from a constant level to a monotonically 
increasing incidence. This is an important part of surveillance for bioterrorism as well as 
of surveillance for the detection of new diseases such as the recent SARS and avian flu. 
Outbreaks are also important in the study of ordinary influenza. For likelihood-based 
surveillance methods ([1], [2]) maximum likelihood estimates are needed. Such 
estimators will be given in this article. However, the article will not deal with the 
sequential issues of on-line detection. 
 In many applications the “normal” or base-line state can be described by a constant 
level. At a possibly unknown time, the process changes to a monotonically increasing (or 
decreasing) regression. It is the case of a monotonically increasing regression following 
the change point that will be treated here, but the statistical problem is the same for a 
decreasing regression. This “outbreak” regression is of interest not only at the outbreak of 
an epidemic disease. We have a similar statistical problem when investigating whether 
data deviate from a specified econometric model by analysing whether there is a change 
point after which the residuals are increasing. 
 Often a parametric regression is used to estimate an outbreak. In many cases, however, 
for example at the outbreak of influenza, the parameters would vary from case (year) to 
case. The character of the outbreak also varies from one period to the next, thus making it 
difficult to use a parametric model without misspecification. In [3] and [4] it is concluded 
that parametric models are not suitable when the parameters vary much from year to year, 
as they do for influenza data. The importance of avoiding the effects of estimation errors 
is also discussed in [5]. Thus, here we suggest a nonparametric approach (with respect to 
the regression function) utilising only the characteristics of a constant start followed by a 
monotonic increase.  
  There are several related nonparametric regression problems. Unimodal or “J-shaped” 
regression is treated in e.g. [6], [7] and [8]. Concave regression is treated for example in  
[9]. A broken-line estimation is suggested in [10]. Here the parameter, in a distribution 
belonging to the exponential family, is constant at first, but at an unknown time there is 
an onset of a positive constant change. The authors point out that also nonlinear 
regression can be treated by this approach, after a parametric transformation, and they 
study conditions for consistent estimation of the change-point. They consider the case 
where the behaviour of the parameter is known after the change, while this paper requires 
only that the parameter is monotonically changing with time. In [11] and [12] there are 
discussions on the use of the extra information by monotonicity restriction in connection 
with smoothing methods. In [13] there is a discussion about the possibility of using an 
exploratory graphical method for finding jumps. Smoothing methods are very useful for 
illustrating the outbreak behaviour, but for some purposes, such as alarm systems and 
hypothesis testing, maximum likelihood estimates are useful.  
  The aim of this paper is to derive the least squares and maximum likelihood estimators 
for outbreak regression under monotonicity restrictions. We study both the case of a 
known and an unknown change point. The normal distribution and the Poisson 
distribution are of special interest but other members of the exponential family are also 
considered. The estimator is semiparametric in the sense that the regression function is 
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nonparametric while the distributions used for the maximum likelihood estimators are 
parametric.  
  In Section 2 the model is specified and notations are given. In Section 3 the least 
squares estimators are derived. In Section 4 the method is illustrated by an example. 
Consistency is discussed in Section 5. Maximum likelihood properties are given in 
Section 6. The properties are demonstrated by a simulation study in Section 7. In Section 
8 some concluding remarks are given. 

2. MODELS AND SPECIFICATIONS 

We observe the process X and at time t we have m(t) observations x1(t), x2(t), ..., xm(t)(t), 
t= 0, 1, … s. Let τ be the time when the monotonic increase starts. Thus τ is the first time 
for which the regression function is not constant. The change point τ may be known or 
unknown. The expected value of Xi(t), for τ=j, is denoted by μτ(t). The superscript is 
suppressed when obvious. At time τ  the expected value μ changes from a constant level 
to an increasing regression: 
 
  μ(0)=...= μ(τ-1) < μ(τ) ≤ ... ≤μ(s). (1) 
 
The monotonicity restriction contains two parts 
 
   μ(0)=...= μ(τ-1)   (1a) 
   and  
   μ(τ-1) < μ(τ) ≤ ... ≤μ(s)  (1b) 
 
We will pay special interest to the situation when Xi(t) is normally distributed and the 
situation when Xi(t) follows a Poisson distribution, but some results are relevant to all 
members of the exponential family. 

3. LEAST SQUARES ESTIMATION OF AN OUTBREAK REGRESSION 

Least squares estimation with monotonicity restrictions was described for example in 
[14] and [15]. We need optimisation under two restrictions, (1a) and (1b). We will prove 
that if we first optimise under (1a) and then optimise the resulting series under (1b), we 
will get estimators with the desired properties. In a situation with more that 1 observation 
at a specific time (i.e. m(t)>1), the mean is calculated. The suggested estimator, for a 
specific value τ, is constructed by first considering condition (1a), which is the base for 
the computation of a provisional series y(t) where 
 

  ( )( )
m(t)1 1

j
j 0 i 1 t 0

Y (t) X j / m(t)
τ− τ−

τ

= = =

=∑∑ ∑  for t<τ and 
m(t )

i
i 1

Y (t) X (t) / m(t)τ

=

= ∑  for t≥τ. (2) 

 
The next step is to consider condition (1b): 
 
  ˆ (t)τμ  = g(t Y (1),Y (2),...,Y (s))τ τ τ , (3) 
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where the function g(t) is the least squares estimator of the provisional series Y (t)τ  under 
the monotonicity restriction (1b).  
  The order in which the two conditions (1a and 1b) are used will matter and only this 
ordering will result in estimators which satisfy the least squares and maximum likelihood 
conditions under the combined restriction. The estimator can also be seen as a pool-
adjacent-violators algorithm (PAVA) [15] as will be demonstrated below. 
 
Theorem 1: For a fixed number of observations s and a fixed time point τ from which 

( )tμ is increasing, the least squares estimator under the order restriction (1) is given by 
ˆ (t)τμ , given in (3).  
 
Proof: Since the ordering of the observations before τ is irrelevant, we can formulate the 
problem as having τ-1 observations at time τ-1, and the restriction for this new problem 
is: 
  μ(τ-1) < μ(τ) ≤ ... ≤μ(s).  
This problem is an ordinary monotonic regression and the LS estimator is given by 
PAVA. See for example Section 2.4.1 of [16].■ 
 
Theorem 2: When the change point is unknown, the least square estimator of μ(t) is  
   ˆ (t)μ = 1ˆ (t)μ  (4) 
 
Proof: All other restrictions are included in the monotonic restriction. Thus, no other 

joint estimators could have a smaller value of 
m(t )s

j 2
i

t 0 i 1

ˆ(x (t) (t))μ
= =

−∑∑ = Q(j) than Q(1).■ 

 
 The estimator ˆ (t)τμ  could work as a weighted least squares estimator by using 
weights, for example ( ) 1/ ( )w t tσ=  where σ2(t) is the variance of each of these 
observations. 

4. CALCULATIONS OF INFLUENZA INCIDENCES  

In order to illustrate the computation of the estimator, we give the details for an example 
with a few observations. This is the number of laboratory-identified cases of influenza in 
Sweden during the first weeks of the winter 2003/2004. 
  There are observations x(0), x(1), … , x(7) at time points t=0, 1,... (in this example 
m(t)≡1). We calculate the estimates for the cases when τ=3 and when τ=6. For τ=3, it is 
assumed that μ(0)=μ(1)=μ(2) and μ(2)<μ(3)≤μ(4)≤μ(5)≤μ(6)≤μ(7), and for τ=6 it is 
assumed that μ(0)=μ(1)=μ(2)=μ(3)=μ(4)=μ(5) and μ(5)<μ(6)≤μ(7) respectively. The 
data (x), the provisional series (y) and the least squares estimators ( μ̂ ) are given in Table 
1. 
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Table 1. The computations for the restrictions τ = 3 and τ = 6 

t x(t) y3(t) 
3ˆ (t)μ  y6(t) 

6ˆ (t)μ  

0 0 0 0 1 1 
1 0 0 0 1 1 
2 0 0 0 1 1 
3 2 2 1 1 1 
4 0 0 1 1 1 
5 4 4 4 1 1 
6 23 23 23 23 23 
7 38 38 38 38 38 
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Figure 1: The observed data x and the estimates conditional on the monotonicity restriction τ=3 and τ=6, 
respectively.  

5. CONSISTENCY 

When the number of observations m(t) increases for each time t we get consistent 
estimators for the µ vector. 
 
Theorem 3: If the distribution belongs to the exponential family, then ˆ (t)τμ  will give a 
consistent estimate of µ(t) which fulfils condition (1). 
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Proof: Let m= min{ ( )}
t

m t . The estimator will use the averages 
m(t)

i
i 1

X(t) X (t) / m(t)
=

= ∑ . 

Since X(t)  is a strongly consistent estimator of the expected value in the exponential 
family, so is ˆ (t)τμ , since only averaging and PAVA are used in the transformations of 
x(t) . It follows that, with probability one, 
  

m
lim max | ( ) ( ) | 0

t
Y t tτ μ

→∞
− = . 

 
Thus, with probability one ˆ (t)μ satisfies the condition (1) as m goes to infinity. ˆ (t)μ .■  
 
 Unfortunately this consistency does not carry over to the case where there is only one 
observation for each time but the number of time points increases. For the case when we 
have a pre-grouping of the time points into classes, the consistency property carries over 
to the expected values in these time-classes if the number of observations in each time-
class increases. 

6. MAXIMUM LIKELIHOOD ESTIMATION 

For certain distributions the least squares estimators given above are also maximum 
likelihood estimators. We will consider the regular exponential family with the conditions 
of the derivatives of the parameters as specified on page 34 of [15] and give special cases 
of this family. 
 
Theorem 4: The least squares solutions of Theorem 1 and 2 are the maximum likelihood 
solutions if the values of the dispersion parameter are equal for all times (but possibly 
unknown). 
 
Proof: This follows from properties of ordinary isotonic regression since the current 
problem can be expressed in these terms, as demonstrated in the proof of Theorem 1. See 
for example Section 2.4.2 of [16].■ 
 
Theorem 5: The weighted least squares estimator is the maximum likelihood solution for 
known but possibly different values of the dispersion parameter.  
 
Proof: This follows from properties of ordinary isotonic regression. See for example 
Section 2.4.2 of [16].■ 
 
Corollary 1: The least squares solutions ˆ (t)τμ  and ˆ (t)μ  in (3) and (4) are the maximum 
likelihood solutions when the observations at each time follow a normal distribution with 
equal variances. 
 
Corollary 2: The weighted least squares solutions ˆ (t)τμ  and ˆ (t)μ  in (3) and (4) are the 
maximum likelihood solutions when the observations at each time follow a normal 
distribution with unequal variances, where the variances are known (or their relation to 
each other is known).  
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Corollary 3: The (unweighted) least squares solutions ˆ (t)τμ  and ˆ (t)μ  in (3) and (4) are 
the maximum likelihood solutions for a Poisson distribution. 
 
This follows from the fact that there is no additional dispersion parameter for the Poisson 
distribution. One might have expected that weights should be used since the parameter of 
the Poisson distribution also reflects the variance. However, the only places where the 
regression differs from the observations are where the estimates by the PAVA are 
constants. A weighted regression should thus have constant weight.■ 
 
 The estimated curve (and the corresponding likelihood) may be used for inference 
such as hypothesis testing or surveillance concerning the start of the influenza season, but 
such inference will not be treated here. 

7. SIMULATION STUDY OF PROPERTIES 

We generated data similar to those that can be expected at an influenza outbreak [3] in 
order to illustrate bias, variance and the influence of the value of τ when the increase 
starts. In Sweden the monitoring of influenza starts at week 40 each year but the time of 
the onset varies considerably between years. Thus, also the waiting time until the onset 
(τ-1 weeks) varies considerably between years, and we investigated several possible 
scenarios. The reported results are based on at least 1 000 000 replicates. We report 
results for Poisson and normally distributed variables. 
 To illustrate the case for a Poisson distribution we generated weekly numbers of 
laboratory-diagnosed influenza cases (LDI) according to their similarity with the 
influenza season 2003/2004, which was a “typical” season. The observed process X 
follows a Poisson distribution with the parameter μ(t), where 

  0

0 1

, t
(t)

exp( (t 1)), t
μ < τ⎧

μ = ⎨ β +β ⋅ − τ + ≥ τ⎩
 

 
where μ0=1, β0=-0.26, β1=0.826.  
 In Figure 2 the mean and standard deviation (by 2 SD bars) of the estimates of 1 000 
000 replicates are given. The cases are generated for different values of τ (τ=4 and τ=8). 
The estimates were produced with knowledge of the true value. The variation of the 
estimates is smaller than without the restriction, thus Var( ˆ (t)τμ )<Var(X(t). The effect of 
the restriction of a constant phase has a major influence on Var( ˆ (t)τμ ) during this phase, 
and this variance is smaller than the variance for the  mean of all the observations during 
the constant phase. The monotonicity restriction has a small variance-reducing effect 
when the slope is large in comparison with the variance.  
 There is a bias, but this is too small to be seen in the scale of Figure 2. Thus the two 
series (the mean of the estimate and the expected value of the generated data) coincide in 
Figure 2. The bias ( ˆ[ ]−E μ μ ) is illustrated in a larger scale in Figure 3. 
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Figure 2. The mean of the estimated values at each time point (dot) and the variation of the estimated 
values, illustrated by ± 2SD (bars). The true expected value, μ(t), cannot be distinguished from the mean of 
the estimates, E[ μ̂ (t)], in the scale of the figure. The left figure is estimated under the true restriction of 
τ=4, and the right figure is estimated under the true restriction that τ=8.  
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Figure 3. The bias ˆ[ ]−E μ μ  for the situations when data are generated for τ=1 τ=4 and τ=8 and the true 
value of τ is known in the estimation.  
 
As could be expected the bias in the constant phase is small since the first step of forming 
the mean (provisional series) produces an unbiased estimate. In the next step the isotonic 
regression will produce a too low estimate of the constant phase. The weight of the 
unbiased estimate is (τ-1)/s, thus the bias will be small for a large value of τ. For the next 
part of the regression the bias is as expected for an isotonic curve; namely, there is a 



 9

negative bias for early time points and a positive bias for late ones. This is illustrated in 
Figure 4 where a constant value is generated and the estimation is made under the 
restriction of τ=1.  
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Figure 4. Estimation under the restriction of τ=1 for data generated by a Poisson distribution with a 
constant mean (i.e. generated under the condition that τ=∞).  
 
The pattern in Figure 3 will not completely agree with the one in Figure 4 even at the 
isotonic phase, since we have an exponential increase as soon as the influenza has started. 
Thus, we will very soon have very little influence of the isotonic regression. The later 
points will almost always be estimated by the observed values, and the bias will thus 
decrease to zero. 
 The effect of misspecification of τ is illustrated in Figure 5. Both curves (τ=4 and τ=8) 
from which data are generated are the same as those in Figure 2. 
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Figure 5. The mean of the estimated values at each time point (dot) and the variation of the estimated 
values, illustrated by ± 2SD (bars). The effect of error in the assumption of τ is illustrated: in the left figure, 
the true τ equals 4 but the restriction τ=8 is imposed in the estimation, and in the right figure, the true τ 
equals 8 but the restriction τ=4 is imposed in the estimation.  
 
In Figure 5 we can see that a restriction of a later change than the true one will give a 
constant phase at a too high level. In figure b we can see that a restriction of an earlier 
change than the true one has very little impact. In Figure 6 we illustrate the bias and the 
standard deviation when no assumption of the value of τ is made but the general 
maximum likelihood estimator ˆ (t)μ  is used. 
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Figure 6. The maximum likelihood estimator, without any information about τ (true τ equals 8). Left: The 
mean of the estimated values at each time point (dot) and the variation of the estimated values, illustrated 
by ± 2SD (bars). The true expected value, μ(t), cannot be distinguished from the mean of the estimates, 
E[ μ̂ (t)], in the scale of the figure. Right: The bias at each time point (dot).   
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In Figure 6 (left) we see that the mean of the estimated curve, even without information 
on τ, is very close to the real curve in the current scale. Thus, even without knowledge of 
τ, the estimator produces a reasonable estimate. By comparing the bias in the right panel 
of Figure 6 with the one in Figure 3 (for τ=8), we can conclude that the knowledge of the 
value of τ decreases the bias – especially for the constant phase. By comparing the 
variation of the estimates (±2SD) in Figure 6 (left) with that of Figure 2, we can see that 
the correct restriction (knowledge about τ) decreases the variation – especially during the 
constant phase. 
  For the Poisson distribution, the variance and the expected value are related. In order 
to examine the effect of variance we generated normally distributed data with constant 
variance. To illustrate the properties for normal distributions with different variances we 
generated data with means similar to the number of influenza-like cases (ILI) during the 
winter 2003/2004. The following model was used for the observed process X: 
  X(t) ∼N(μ(t); σ2),  
where 

  0

0 1

, t
(t)

exp( (t 1)), t
μ < τ⎧

μ = ⎨ β +β ⋅ − τ + ≥ τ⎩
 

 
and μ0=20, β0=2.67, β1=0.68 and different values of the variance σ2 are used. A normal 
distribution is a reasonable approximation here since the incidences are rather high. 
Different scenarios were considered regarding the length of the constant phase. 
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Figure 7. Average bias of the ML-estimator for normally distributed data with standard deviation σ=3 and 
σ=6 respectively. The data are generated for τ=4 and this is used as a restriction in the estimation. 
 
In Figure 7 we can see that the bias is small for a small variance. This illustrates that the 
estimator is consistent.  
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8. CONCLUDING REMARKS 

The results presented here on outbreak regression are of importance not only in pure 
estimation contexts but also for on-line surveillance based on maximum likelihood 
estimators. The outbreak of a disease can often be characterised as a change from a 
constant level to a monotonically increasing incidence. Surveillance systems for detecting 
outbreaks are crucial in surveillance for bioterrorism as well as in surveillance for the 
detection of new diseases, see [17]. Outbreak detection is also important in the study of 
ordinary influenza [18]. Surveillance systems based on likelihood ratios have important 
optimality properties [2]. For nonparametric surveillance as in [4] (nonparametric with 
respect to the shape of the curve), maximum likelihood estimates are useful as a basis for 
maximum likelihood ratios. The estimators presented here can be used for likelihood-
based surveillance to detect the onset of an increasing incidence. Smoothing methods are 
useful for the description of the outbreak behaviour but will not give the required 
maximum likelihood estimators.  
 Sometimes it is reasonable to believe that the regression is continuous and has 
continuous derivatives. However, this condition can always be satisfied by some 
definition of estimates between the discretely observed times. Thus this is no restriction 
to the estimates. When a smooth curve is needed for illustration, it is possible to fit a 
smooth curve (such as a spline [19]) to the maximum likelihood estimates.  
 One may be interested in estimating the time, τ, of the onset of the increasing phase 
and also the level of the constant phase, µ(0). The maximum likelihood estimation of the 
curve by the proposed method will also give maximum likelihood estimates of these 
parameters. Generally, however, there will not be one unique maximum likelihood 
estimator of τ. No other value of τ can give a larger value of the likelihood than τ=1, 
since µ(0)= ... =µ(i-1)<µ(i)≤ ...≤µ(s) is a special case of, or on the limit of, 
µ(0)<µ(1)≤...µ(i)...≤µ(s). The maximum likelihood estimator of µ(0) will be unique but 
biased since the maximum likelihood estimators of τ and µ(0) are closely related. This 
problem of bias in the endpoints is shared with other maximum likelihood estimators of 
ordered statistics such as the usual monotonic regression. In order to get unbiased 
estimators of τ and µ(0), more (parametric) structure is needed, for example a certain size 
of the change. Note that when the maximum likelihood statistic derived here is used for 
test or surveillance purposes, the bias is not a problem. In such cases there are natural 
false alarm requirements which give the user the opportunity to state that only important 
deviations should be detected. This corresponds to the above-mentioned parametric size 
condition for the estimator but is expressed by probability and does not require any 
parametric assumption for the curve.  
 The estimator is consistent (for a large number of observations at each time) but not 
unbiased. The direction of the bias is that the estimates are too low. However, the bias is 
very small for the constant phase. For the increasing phase the bias is smaller to start with 
due to the stabilisation by the constant phase. A long constant phase exaggerates this 
tendency. 
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