
 
1 

Gothenburg Studies in Informatics, Report 31, November 2004  
issn 1400-741x (print), issn 1651-8225 (online) 

 
 
 

Community-based customer  
involvement for improving packaged 

software development 
 
 
 
 
 
 
 
 
 
 

Helena Holmström 
D o c t o r a l  d i s s e r t a t i o n  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Department of Informatics • Göteborg University 
Viktoriagatan 13 • po Box 620 
405 30 Gothenburg • Sweden 



 
2 



 
3 

Abstract 
Noting the widespread use of virtual communities for interacting with customers, this thesis 
explores the role of virtual communities for involving distributed customers in packaged software 
development (psd) and the opportunities and challenges that are associated with this. While the idea 
of involving customers in software development is not new, it is yet to gain momentum in 
psd. Here, customers are distant and unknown — making traditional methods for customer 
involvement difficult to apply. Instead, packaged software developers use indirect links, such 
as intermediaries and customer surrogates, to communicate with customers. However, 
while these are cost-effective approaches for involving customers, there are problems 
associated with them. For example, filtering or distortion of information may occur. In this 
regard, virtual communities constitute an interesting approach for involving distributed 
customers more directly in psd. In such communities, broad communities of interest, e.g., 
software customers, coalesce around products and services and instead of being involved 
only in idea generation, customers can co-create software, test software and provide each 
other with software support. 
 

Conceptually, this thesis is based on a « knowing-in-practice » perspective, viewing 
community knowledge, i.e. situated knowledge as enacted in use by distributed software 
customers, as critical for improving packaged software. In accordance with this conception, 
knowledge creation processes are understood as expanding beyond the level of the firm, and 
as suggested in this thesis, psd would benefit from utilizing also this knowledge. 
Methodologically, the interpretive case study is employed, using the hermeneutic circle as 
the guiding principle for the research process. Empirically, a Swedish computer game 
developer provides the context for assessing the role of virtual communities in psd. 
  

As a result of theoretical as well as empirical insights, this thesis presents community-based 
customer involvement as an approach for involving customers in psd. In embracing 
opportunities as well as challenges, this approach views community knowledge as critical for 
improving psd. For facilitating an understanding of the processes associated with community 
knowledge creation and transformation, the approach embraces a model for community use. 
In this model, community use is portrayed as a continuously ongoing interplay between the 
software firm and the software community. In this, knowledge creation and transformation 
processes are a result of commercial firm interests as well as voluntarily community 
participation. In understanding community use as portrayed in my model, there is the 
possibility to analyze how community knowledge is built, elicited and exploited from 
customer communities and hence, to what extent these can be used for involving customers 
in psd.  
 

Keywords: Packaged software development, software improvement, virtual communities, 
customer involvement, community knowledge, community-based customer involvement. 
 

Language: English 
Number of pages: 186 

Gothenburg Studies in Informatics, Report 31, November 2004 
issn 1400-741x (print), issn 1651-8225 (online) 



 
4 

Acknowledgements 
In looking back at my time as a PhD student, I realize how fortunate I have been. 
Surrounded by inspiring and fascinating people, my thesis work has been an experience only 
a few people will have the privilege to enjoy. For this, I have many people to thank and 
while I always thought the acknowledgements would be the easy part to write, I now realize 
that there are no words for describing the gratitude I feel towards these people. 
 

First, and always foremost, thank you Carl. You make me shine. Thank you for your 
patience, your support, your never-ending interest and your faith in me and in my ideas. 
Not many people are as lucky as I am — having a partner, a colleague, a best friend, a proof 
reader, a cover designer and a master of layout in one and the same person. In being by my 
side — no matter what — this thesis is as much yours as it is mine. I owe you so much. 
 

Thanks are also due to my supervisor Ola Henfridsson and my co-supervisor Brian Fitzgerald 
for their support and devotion during these years. In encouraging as well as constructively 
questioning my work, you have contributed to the development of this thesis as well as to 
my personal development as a researcher. Thanks to you, these years will be years to 
remember and I will look back at my thesis with pride. Also, and in relation to the reading of 
my cover paper, I would like to thank Nancy Russo — a very special friend and colleague — 
and Geoff Walsham. The opportunity to have you read my manuscript provided me with 
feedback I wouldn’t have gained elsewhere.  
 

In being the place where I started my research, the Department of Informatics at Umeå 
University, and all the people working there, will always be very close to me. Thank you all 
for contributing to my research and for providing such a familiar and friendly atmosphere in 
which I always felt appreciated. Especially, thank you Charlotte Wiberg for getting me 
started on my thesis work — if it wasn’t for you this thesis would never have been written 
in the first place. Thank you also Annakarin Nyberg for being a good friend and an inspiring 
colleague during the Daydream study. It was great fun working with you. For the latter part 
of my thesis work, the Viktoria Institute and the Department of Informatics at Gothenburg 
University have been important to me. Special thanks are due to all members of the 
Telematics Research Group for giving me excellent conditions for completing my thesis.   
 

Besides colleagues — family and friends have made this process an enjoyable one. Thank you 
all for your love and support. Very special thanks to Anders Backman for 3d modelling one 
of the figures in the thesis and for great help in the cover design process and finalizing it for 
printing. 
 

For funding — I owe my gratitude to the Center for Digital Business at Umeå University for 
the first two years, to Daydream Software in Umeå for support during the empirical part of 
my research, and to the Telematics Group at the Viktoria Institute for the final two and a 
half years of my PhD studies. 
 



 
5 

Finally, not many people include a horse in their acknowledgements. I do. With his ears 
flickering from curiosity, Pontus has listened to me going on about virtual communities and 
virtual community use and I can guarantee you — there is not a horse in this world as 
competent as Pontus when it comes to packaged software development. 
 
 
 

Helena Holmström • Ödsmål • October 2004 



 
6 

 
 Table of contents  
    
    
    

1 Introduction 9 
    
    

2 Software development 13 
    

 2.1 custom is development 16 
    

 2.2 packaged software development (psd) 17 
    

 2.3 software firm environments 19 
    
    

3 Research design 20 
    

 3.1 the interpretive research approach 21 
 3.1.1 The interpretive case study 22 
 3.1.2 Principles for conducting and evaluating interpretive case studies 23 
    

 3.2 the empirical context 24 
 3.2.1 Daydream Software 24 
 3.2.2 Motivation for choice of research site 25 
 3.2.3 Clusterball 25 
 3.2.4 The Clusterball community 27 
 3.2.5 My role as a researcher at Daydream 27 
    

 3.3 research process 29 
 3.3.1 The research process as a transition between empirical data and 

theoretical concepts 
35 

 3.3.2 Adopting Klein and Myers (1999) principles for the conduct and 
evaluation of the Daydream study 

36 

    
    

4 A community-based perspective on psd 39 
    

 4.1 community: background and definitions 40 
    

 4.2 community use in psd 44 
 4.2.1 Community knowledge 45 
 4.2.2 Community knowledge use 46 
    

 4.3 the community use model 49 
    
    
    



 
7 

    
    
    
    
    
    

5 Research contributions 50 
    

 5.1 thesis paper overview 51 
 5.1.1 Internetworking with customers — paper 1 51 
 5.1.2 Customer knowledge in software development — paper 2 52 
 5.1.3 Customer role ambiguity — paper 3 53 
 5.1.4 Distributed software development approaches — paper 4 54 
 5.1.5 Customer involvement in packaged software maintenance — paper 5 54 
 5.1.6 Community knowledge for improving psd — paper 6 55 
    

 5.2 related papers 55 
    

 5.3 the role of community use in psd 56 
    

 5.4 opportunities and challenges with community use 60 
    
    

6 Conclusions 62 
    
    

 References  64 
    
    

 paper 1.  Developing e-commerce in internetworked organizations: a case of customer 
involvement throughout the computer gaming value chain 

73 

    

 paper 2.  Virtual communities as platforms for product development: an interpretive 
case study of customer involvement in online game development 

95 

    

 paper 3.  Customer role ambiguity in community management 109 
    

 paper 4.  The distributed nature of software development — a comparison of three 
development approaches 

123 

    

 paper 5.  Virtual community use for packaged software maintenance 139 
    

 paper 6.  Improving packaged software through online community knowledge 163 
 



 
8 



 
9 

1 Introduction 
Traditionally, software development has been conducted within organizational contexts to 
satisfy organizational needs. Sometimes referred to as custom is development (Sawyer, 2000), 
such development results in made-to-order software systems that are built for specific users 
that are identified before development begins (Keil and Carmel, 1995). Typically these 
systems, including software, hardware and people, are developed by either an organization’s 
internal it staff or by direct subcontract to a software house. Examples of such software 
would be legacy systems such as payroll systems, project planning and control systems, 
transaction processing systems, decision-support systems and office automation systems 
(Avison and Fitzgerald, 2003; Sommerville, 2001). In custom is development, the idea of 
involving users in the development process is well recognized. This recognition is evident in 
studies on user involvement in different phases in the systems development process (Avison 
and Fitzgerald, 2003; Franz and Robey, 1986), in system implementation and use (Barki and 
Hartwick, 1994), and for system success (Ives and Olson, 1984, 1986; Tait and Vessey, 
1988). To these ends, there are well-established development methods and techniques that 
support user involvement in the custom is development process (see e.g., Avison and 
Fitzgerald, 2003; Checkland, 1981; Mumford, 1995). 
 

However, we are experiencing a profound shift in how software is developed (Sawyer, 
2000; 2001, Carmel and Becker 1995, Dubé, 1998). From being developed in-house and 
built by each user organization’s own it staff, i.e. custom is, software is now to a greater 
extent developed by specialized software houses and sold as ready-to-install products, i.e. 
packaged software. Packaged software, also known as shrink-wrapped, commercial off-the-
shelf or commercial software, refers to all software sold as tradable products from a vendor, 
distributor or store, that are designed to be easily installed and to interoperate with existing system 
components (Abts, 2002). As recognized by Carmel (1997), packaged software came about in 
the late 1960’s as a result of an agreement between ibm and the United States Department of 
Justice to have ibm unbundle software from hardware, and has, since then, become an 
increasingly important form of information technology. In fact, the market for packaged 
software has grown to be the fifth largest industry in the us (Sawyer, 2000) and packaged 
software products are now widely used by both organizations and individual consumers.  
 

As recognized by Sawyer (2000, 2001) and Carmel (1995), there are significant differences 
between custom is development and packaged software development (psd). Above all, while 
methods and techniques for user involvement1 are common in custom is development, these 
are yet to gain momentum in psd. Here, customers are distant (Sawyer, 2000), i.e. 
                                                       
1 As recognized by Keil and Carmel (1995) one significant difference between custom is and packaged software 
development is that of terms used for denoting the software consumer. While « user » or « end user » is the 
common term in custom is, « customer » has become the most common term used within the psd domain. In 
accordance with this, I use the term « user » whenever referring to custom is development and « customer » 
whenever referring to psd. As a result of this, this thesis contributes with insights regarding customer involvement. 
For an additional discussion of the term, see also Grudin (1991). 



 
10 

geographically distant to the software developers, and unknown (Grudin, 1991), i.e. 
identified after development ends and the product is put on the market, making traditional 
methods for customer involvement difficult to apply. Instead, packaged software developers 
use a variety of indirect links, i.e. intermediated means, to communicate with customers 
(Sawyer, 2001). For example, packaged software developers build software to meet 
requirements gleaned from sources such as help-desk call-log analysis, market research, 
product reviews, surveys and user groups, of which continuous and direct customer contact 
is one of the least likely means (Keil and Carmel, 1995). While these techniques are indeed 
cost-effective for involving customers in psd, there are several problems associated with the 
use of indirect customer links. For example, filtering or distortion of information may occur 
and from a psd manager perspective, the use of indirect links is viewed as a significant factor 
in explaining why many psd projects fail (Keil and Carmel, 1995). 
 

Recognizing this problem, the question of how to involve customers more directly in psd 
becomes relevant. Clearly, psd can benefit from customer involvement and many are those 
who have highlighted customer knowledge as important for improving product development 
processes (Finch 1999; Von Hippel 1986). With profound experience and detailed 
knowledge of specific software products customers can be seen as possessing situated 
knowledge of the software and the particular situations in which it is used. Hence, customers 
— and the knowledge they possess — constitute a resource in the process of software 
development. What makes psd particularly challenging is the fact that customers are 
distributed outside the traditional boundaries of the firm (Lee and Cole, 2003; Orlikowski, 
2002). Thus, a critical issue for any packaged software developer aiming for customer 
involvement is to find techniques allowing for customers to be directly involved in 
development despite the fact that they are geographically distant to the developers.  
 

In this, the emergence of new information and communication technologies has initiated a 
transformation of customer—producer relationships (Nambisan, 2002). With the advent of 
the Internet and Web-based technologies, distributed customer communities can now 
convene, interact and share resources extensively via electronic interfaces (Lee and Cole, 
2003). As recognized by Nambisan (2002), the use of virtual customer communities for 
interacting with customers has become an interesting approach for facilitating innovation and 
knowledge creation processes in product development. In virtual communities, broad 
communities of interest, e.g., software customers, coalesce around specific products and 
services. Instead of being involved only in generating ideas for new products, customers can 
co-create products with firms, test products and provide each other with product support. 
In this regard, virtual communities can be seen as an interesting approach for involving 
distributed customers in knowledge creation processes necessary for product development. 
In such an approach, knowledge creation is seen as a process taking place not only within the 
boundaries of the firm but as a distributed process manifested in the interaction within 
virtual customer communities. 
 

In recognizing virtual communities as a common — yet largely unexplored — approach for 
involving customers in product development, this thesis explores the role of virtual communities 



 
11 

for involving distributed customers in psd and the opportunities and challenges that are associated with 
this. Besides the call for empirical studies exploring this topic (Nambisan, 2002), my 
motivation for this is my belief that psd processes could benefit from increased customer 
involvement and that indirect customer links could indeed be complemented with 
approaches allowing for more continuous and direct customer interaction.  
 

In order to clarify this research question, a few words about its scope and possible limitations 
are appropriate. First, this study adopts a hermeneutic approach (Klein and Myers, 1999) 
which means that the findings are oriented towards the interpretation of human processes as 
they are understood and communicated within a specific empirical context (Patton, 2001). 
In this thesis, the research question concerns the role of virtual communities for involving 
customers in psd processes. The research process is focused on mediating an understanding 
of psd in order to make this phenomenon understandable for anyone interested in psd and 
how it might be improved in terms of customer involvement. 
 

Second, and as a consequence of the hermeneutic approach, the research question explored 
in this thesis is of an open character. The formulation of the problem is intended not to 
constrain the analysis but to make possible for different perspectives in the analysis. The 
empirical context that I explore — computer game development — involves a rich setting 
in which both opportunities and challenges are experienced. In my attempt to understand 
this empirical context, the alternative to delimit the research question would be 
constraining. While such delimitation would bring with it the possibility to streamline the 
study it would also risk making me less sensitive to the unique features that characterize this 
particular context. 
 

Third, in using Walsham’s (1995) classifications of different types of generalizations that can 
be made based on interpretive case studies, the findings of this thesis can be classified as 
specific implications. What I present is a detailed account of a specific case of community use. 
In terms of generalizability, generative mechanisms identified for phenomena in the social 
sciences should be viewed as « tendencies » which are valuable in explanations of past data 
but are not wholly predictive for future situations (Walsham, 1995). Therefore, the 
generalizations discussed in this thesis should be seen as explanations of a particular 
phenomenon derived from empirical interpretive research, which may be valuable in similar 
organizational contexts. Below, the thesis structure is outlined in terms of the papers that 
were selected to be included in the thesis. 
 
Thesis structure 
This thesis includes a cover paper and a collection of six individual papers. In the cover 
paper, my intention is not only to synthesize the research presented in each paper, but also 
to complement the discussion in the papers with knowledge that has emerged during the 
research process but, for different reasons, have not been included in the papers. 
 

The cover paper is divided into six sections. Following the introduction, section two 
provides the background for my research. In identifying related research, this section 
provides an understanding of the area on which I build upon, as well as the area to which I 



 
12 

wish my research to contribute to. In section three, my methodological choice of the 
interpretive case study is presented as well as the empirical setting in which this research was 
undertaken. Section four provides the theoretical perspective employed in the thesis. Here, 
an understanding of software development as a knowledge intensive activity is presented and 
virtual communities are outlined as enablers for the creation and transformation of 
knowledge inherent in distributed customer communities. On the basis of continuous 
transitions between theoretical concepts of « knowledge », « practice » and « community », 
and empirical insights gained throughout my research process, a conceptual model for 
understanding community use is presented, i.e. the community use model. In identifying 
environmental conditions as well as internal knowledge creation and transformation 
processes, the model provides an understanding of community knowledge as pivotal for 
improving psd. Section five presents my research contributions in terms of a community-
based approach to customer involvement. Finally, section six concludes the cover paper. 
 

Following the cover paper is the collection of six papers that constitute the thesis. The 
papers are included in the same order as they were written. Due to the publication process 
of the first paper, however, it appears as if it was written after paper number two, although 
this was not the case. In the collection, there are two published journal papers, one 
submitted journal paper and three conference papers. Three of the papers are co-authored 
with my supervisor Ola Henfridsson, one is co-authored with my co-supervisor Brian 
Fitzgerald, and on the remaining two I am the single author. The six thesis papers are listed 
below. 
 

Paper 1 Henfridsson, O., and Holmström, H. (2002). Developing e-commerce in 
Internetworked Organizations — customer involvement throughout the value 
chain in the case of the online computer game Clusterball. data base  — 
Special Issue on Developing e-Commerce Systems, Current Practices and State-
of-the-Art. vol. 33, nr. 4, pp. 38-50. 

  

Paper 2 Holmström, H. (2001). Virtual Communities as Platforms for Product 
Development — an interpretive case study of Customer Involvement in Online 
Game Development. In Proceedings of icis 2001, (22nd International Conference on 
Information Systems), December 16-19, New Orleans, LA, usa. 

  

Paper 3 Holmström, H., and Henfridsson, O. (2002). Customer Role Ambiguity in 
Community Management. In Proceedings of hicss 35 (35th Hawaii International 
Conference on System Sciences), January 7-10, Big Island, Hawaii. 

  

Paper 4 Holmström, H. (2003). The Distributed Nature of Software Development — a 
comparison of three development approaches. In Proceedings of pacis 2003 
(Pacific Asia Conference on Information Systems), July 11-13, Adelaide, Australia. 

  



 
13 

Paper 5 Holmström, H., and Fitzgerald, B. (forthcoming). Virtual Community Use for 
Packaged Software Maintenance. Accepted for publication in the Journal of 
Organizational Computing and Electronic Commerce — Special Issue on « Virtual 
Communities and Personalization in e-commerce ». 

  

Paper 6 Holmström, H., and Henfridsson, O. (submitted). Improving Packaged 
Software Through Online Community Knowledge. Submitted to an international 
is journal. 

2 Software development  
Software development, and the way in which it is conducted has for a long time been a core 
interest within the field of information systems (is). Software development methods 
(Fitzgerald, 1996, 1997; Avison and Taylor, 1997; Nandhakumar and Avison, 1999), 
software development tools and techniques (Avison and Fitzgerald, 2003) and software 
development environments (Holmström, 2003) keep fascinating both researchers and 
practitioners, and due to continuous alteration, there are reasons to believe that this field 
will keep fascinating us also in the future.  
 

A common way of characterizing software development is that of a series of sequentially 
organized phases such as strategy, feasibility, design, programming, implementation, use and 
maintenance (Clegg et al, 1997). Here, as well as in the software engineering perspective as 
presented by Sommerville (2001), the idea is that software development comprises a series 
of well-defined phases in which specific activities are performed. Each phase operates with a 
defined notation and will often result in a prescribed artifact, such as a design document or a 
program (Baskerville and Pries-Heje, 2001). In systems development this sequential model 
is frequently referred to as the systems development life cycle (sdlc) or the waterfall model 
(Avison and Fitzgerald, 2003; Sommerville, 2001), representing a linear approach to 
software systems development. This model consists of six phases that together constitute the 
steps necessary to develop a system that is tested, implemented and evaluated in relation to a 
system specification (Avison and Fitzgerald, 2003). In being a model that has been around 
since the late 1960s, the sdlc is known as a well-tried and tested approach that has, in one 
way or another, influenced most software development methods that are being used today 
(Avison and Fitzgerald, 2003). 
 

 In terms of user involvement, there are well-established methods for this within the field of 
software development (see e.g., Checkland, 1981; Mumford, 1995; Avison and Wood-
Harper, 1986; Avison and Fitzgerald, 2003). In the sdlc, several attempts are made to 
involve users in the development process. First, there is a user specification in which users 
specify their requirements of the system. This is handed over to the system developers in the 
beginning of the development process and is then used throughout the process in order to 
develop a system according to initial user requests and requirements. Second, there is the 
opportunity for users to review progress at the end of each phase in the development 
process. However, while the sdlc — and the idea of linear systems development — is still 



 
14 

significant in environments in which requirements are well understood, its application in 
more complex environments has shown to be problematic. The principal weakness is the 
underlying assumption that a solution can be achieved at through a sequence of phases. This 
implies that later phases depend on the successful completion of earlier phases, something 
that according to Henson and Hughes (1991) requires « perfect foresight ». Furthermore, 
researchers have noted that systems development very seldom is an orderly systematic 
process in which developers complete one task before moving on to another (Fitzgerald, 
1997). Above all, despite the attempt to involve users in the development process, the linear 
model of software development suffers from its rigid structure and inflexible nature and 
hence, is limited in its ability to adapt to changing user needs and requirements. As 
recognized by Clegg et al (1997), knowledge that users possess of the detailed workings of 
the application domain, how it works and how it could work, are given less significance than 
more technical concerns. Often, users’ knowledge is incorporated only by capturing their 
requirements during the early feasibility study, or through some form of acceptance testing 
during the later stages of implementation. Bearing in mind the recognition of users’ having 
difficulties with articulating their requirements before the development process has begun 
(Nuseibeh and Easterbrook, 2000), and the fact that changes during the later stages of the 
development process is often considered inconvenient (Avison and Fitzgerald, 2003), there 
is no surprise that linear systems development, as that reflected in the sdlc, is often 
associated with user dissatisfaction and low user acceptance rates (Avison and Fitzgerald, 
2003).  
 

As a result of the limitations identified in relation to user involvement in the sdlc, numerous 
methods and techniques have been developed to better cater for this. For example, there are 
the socio-technical approaches recognizing “…the interaction of technology and people and 
produces work systems which are both technically efficient and have social characteristics which lead to 
high job satisfaction” (Mumford, 1983). In addition, there is the entire field of Participatory 
Design (pd) and contextual design (Beyer and Holtzblatt, 1998) representing human-
oriented approaches towards systems development in which the people destined to use the 
system play a critical role during the development process. Recognized not as a single theory 
or methodology, but as a rich and diverse set of perspectives and experiences, pd aims at 
establishing a more cooperative process of technology development in which the gulf 
between developers and users can be bridged (Grønbæk et al, 1993). The approach can be 
seen as a response to the recognition that traditional software development methods often 
fail in involving users and consequently don’t comply very well with users’ needs and 
requirements (Grudin, 1993). As claimed by Jones (1988) “…we must recognize that the  
« right » requirements are in principle unknowable by users, customers, or designers at the start”. Thus, 
techniques must be developed to make possible for user involvement during the software 
development process. In pd, it is believed that knowledge about users’ practices and 
environments can only be obtained through close cooperation, and that a stronger focus on 
the development process will also result in better software products (Grønbæk et al, 1993). 
Common techniques as advocated in pd are for example language and organizational games 
(Ehn, 1993), mock-ups (Ehn, 1993; Holtzblatt and Jones, 1993), scenario-building 
(Holtzblatt and Jones, 1993) and user workshops (Greenbaum and Halskov Madsen, 1993). 



 
15 

However, despite methods and techniques for user involvement these are often difficult to 
apply in relation to certain software development environments or certain software 
products. As recognized in several studies within the field of is (Sawyer, 2000, 2001; 
Carmel and Becker 1995; Dubé, 1998), there is an ongoing shift in how software is made. 
Rapidly changing technology, ever-shorter product life cycles, and ever-increasing 
competition exert pressure for prices on software products to go down and quality to go up 
(Dubé, 1998). Under these conditions, reducing time from idea to market becomes a 
fundamental competitive strategy (Carmel, 1995) and accordingly, new development 
methods emphasizing development productivity rather than process rigor arise. Today, 
software firms use methods such as eXtreme Programming (xp), Dynamic Systems 
Development (dsd) and Feature-driven Development (fdd) to deliver business value 
quickly, while also accommodate changing user requirements (Abrahamsson et al. 2003). 
Also, the forms of software products are changing. According to Sawyer (2000), there are at 
least three different forms of software. First, custom is represents made-to-order software 
systems that are built for a particular user organization. Here, development is typically an 
internal business and the user organization is closely involved throughout the development 
process. Second, and as a growing segment, packaged software represents ready-to-install 
software products intended for mass use of customers distributed all over the world. Here, 
development is done by specialized software firms and due to the global distribution of 
customers, these are less involved in the development process. Third, and as a hybrid form, 
applications with large packages, such as for example enterprise resource planning (erp) 
systems, represents software systems that are sold to large organizations but require 
extensive post-purchase tailoring to meet the specific needs of each customer organization. 
The move to purchasing a software application an then tailoring it to meet specific 
organizational needs reflects a « hybrid » response to the « build-versus-buy » decision as 
reflected in custom is and packaged software. Further, both custom is and packaged 
software, and its hybrid, differ from embedded software. Here, software is typically written to 
the hardware, making hardware and software intertwined and bundled. Of course, and as 
recognized by Sawyer (2000), the boundaries distinguishing these forms of software are 
blurred. Not the least, the hybrid form of erp software purchase and subsequent tailoring 
show that there are indeed differences between different types of software that could still be 
classified as packaged software. Also, custom is has undergone significant change in both 
development methods (Little, 2004) and development tools (Clegg et al, 1996).  
 

In this thesis, I focus on packaged software, not in terms of large business solutions serving 
multiple purposes (such as application packages), but in terms of software solutions serving 
limited purposes for individual software consumers (such as a computer game or a 
development platform). While this research might prove relevant also for hybrid forms of 
packaged software, this is not an intended goal in this thesis. Below, custom is development is 
briefly outlined as what has historically been the main concern within the field of is 
development, and what most software developers have been accustomed to. Following this, 
packaged software development is presented as one specific, and growing, branch of software 
development that is significantly different to custom is in terms of both development 
environment and development practice. In contrasting custom is and psd, there is the 



 
16 

recognition of customers as less involved in psd. Challenged by this, the remaining part of 
my thesis focuses on the role of virtual communities for involving distributed customers in 
psd, and the opportunities and challenges that are associated with this.  

2.1 custom is development 

Traditionally, software has been developed as a part of larger information systems, most 
often intended for organizational use. According to Avison and Fitzgerald (2003), these 
systems include many interacting components, such as people (e.g. analysts and business 
users), objects (e.g. computer hardware devices) and procedures (e.g. activities suggested 
by an is development methodology) that are all important to the overall system development 
process. The characteristic feature of these systems is that they are customized for one 
particular organization and hence, intended to support the specific behavior and structure of 
that organization. 
 

Typically, custom is systems, or bespoke products (Sommerville, 2001), are systems that are 
developed by either an organization’s internal it staff, or by subcontract to a software house 
(Sawyer, 2000). In other words, custom is are made-to-order systems that are built for specific 
users in a specific organizational setting. This definition of custom is includes for example 
payroll systems, project planning and control systems, conferencing systems, transaction 
processing systems, decision-support systems and office automation systems (Avison and 
Fitzgerald, 2003; Sommerville, 2001). Also, this definition of custom is includes most 
government work. As recognized by Sawyer (2000), software development of the us 
Department of Defence is typically custom is development.  
 

In terms of development environment, custom is is characterized of much of what has been 
described in the previous section on traditional software development (section 2). Here, the 
development process is mature with well-established development methods describing 
separate phases such as for example design and development, reflecting an engineering view 
on the development process. Also, and due to limitations in the sdlc — which has to a great 
extent influenced the development methods applied in custom is today — there are 
numerous techniques for user involvement. From being a shortage, user involvement is 
today a central belief within custom is development (Sawyer, 2000). For example, there are 
techniques such as prototyping (Avison and Fitzgerald, 2003; Baskerville and Wood-Harper, 
1998) and contextual inquiry (Beyer and Holtzblatt, 1998), and methods such as Effective 
Technical and Human Implementation of Computer-based systems (Mumford, 1995) and 
Soft Systems Methodology (Checkland, 1981) emphasizing user involvement during the 
software development process. 
 

However, while custom is will always be an important strand of software development 
practice, and certainly what many future software developers will be acquainted with, there 
is an on-going shift in how software is made and what type of software products that are 
produced. To a larger extent we are experiencing ready-to-install products intended for a 
mass market of distributed customers, i.e. packaged software. Below, this type of software, 
as well as the conditions under which it is developed, is outlined.  



 
17 

2.2 packaged software development (psd) 

Packaged software, also known as shrink-wrapped, commercial off-the-shelf or commercial 
software, refers to all software sold as tradable products from a vendor, distributor or store, that are 
designed to be easily installed and to interoperate with existing system components (Abts, 2002). 
Furthermore, Carmel (1997) describes this type of software as competitive, both domestically 
and across national frontiers. As recognized by Carmel (1997), packaged software came 
about in the late 1960’s as a result of an agreement between ibm and the United States 
Department of Justice to have ibm unbundle software from hardware, and has, since then, 
become an increasingly important form of information technology. In fact, the market for 
packaged software has grown to be the fifth largest industry in the us (Sawyer, 2000) and 
packaged software products are now widely used by both organizations and individual 
consumers. 
 

As recognized by Sawyer (2000), many of the largest packaged software firms are well-
known (e.g., Adobe, Microsoft, and Oracle) and examples of packaged software products 
are operating systems such as Microsoft Windows and Mac os, desktop publishing software 
such as Adobe cs and Quark Express, database programs such as Microsoft sql and Oracle, 
and computer games such as Blizzard’s Warcraft and Sony’s Everquest. However, the largest 
growth in packaged software is applications, as different from system software, with large 
packages of which enterprise resource planning (erp) software (e.g., sap), is the fastest 
growing segment. This type of software often requires extensive tailoring to meet the 
specific needs of, for example, an organization. This kind of modification is also true for 
other large business solutions such as document management software (e.g., docs Open and 
Groupwise). 
 

In terms of development environment, the psd process is considered immature in that 
formal development methods are not used to the same extent as in custom is and, instead of 
separate phases, the development process is often characterized more of integrated design 
and development (Sawyer, 2000). In considering customer involvement, there are certain 
difficulties associated with psd. First, customers are distant (Sawyer, 2000), and as a result of 
this, less involved in the psd process. Looking at successful packaged software products such 
as Microsoft Windows, Adobe Pagemaker or games such as Warcraft and Everquest,  
customers can be found all over the world. As thrilling as this might seem, this fact makes it 
difficult to use conventional techniques for user involvement as advocated by, for example, 
traditional systems development (Avison and Fitzgerald, 2003) or participatory design 
(Greenbaum and Kyng, 1991; Namioka and Shuler, 1993). While these techniques succeed 
in capturing both individual expectations and organizational needs, activities such as user 
workshops, role playing and mock-ups are typically location-dependent activities and hence, 
do not resonate well in the distributed environment of psd. Instead, psd uses indirect links 
such as support lines, i.e. the unit that helps customers with day-to-day problems, surveys, i.e. 
textual surveys administered to a sample of customers, user groups, i.e. customer groups 
convening periodically to discuss software usage and improvements, trade shows, i.e. 
customers are exposed to prototypes and asked for feedback at a trade show, and marketing 



 
18 

and sales, i.e. firm representatives meet customers to listen to suggestions and needs (Keil 
and Carmel, 1995), for involving customers in the development process. However, while 
these approaches make possible for a cost-effective customer-developer interaction in 
distributed settings, this interaction is often mediated through intermediaries or customer 
surrogates (Keil and Carmel, 1995) and as a consequence, difficult to rely too heavily upon. 
In this discussion, intermediaries are seen as entities situated between customers and 
developers, while customer surrogates are entities that are not true customers but are 
treated as such for the purpose of gathering requirements and feedback. Realizing this use of 
indirect customer-developer links (Keil and Carmel, 1995), it is fair to say that packaged 
software customers have often played a largely passive role with firms employing a range of 
structured inquiry mechanisms to import customer knowledge. Also, logistical and 
economic considerations force firms to involve only a minority of customers in these 
inquiries (Nambisan, 2002), and while recent research suggests groupware systems for 
interacting with distant customers (Tuikka and Salmela, 1998; Fukushima and Martin, 1998) 
these systems are difficult to apply in psd where the products are intended for a mass market 
of which representative customers are difficult — and sometimes impossible — to identify 
in advance (Keil and Carmel, 1995).  
 

Second, customers are unknown (Grudin, 1991), and often remain unknown until the 
software is marketed. Certainly, all software development begins with some idea of its 
intended customers, for example, if they are already existing customers or a new market. 
But still, the development situation of packaged software is clearly separated from the use 
context and the uncertainty of the eventual customer is an important facet of product 
development, as well as the unexpected fates of many products (Grudin, 1991). In contrast 
to custom is development, psd is targeted to a mass market of distributed customers. As 
well as organizations are characterized according to the work routines that are carried out, 
organizational members can be characterized according to the context of which they are 
part. Thus, custom is development benefits from the fact that users are part of the same 
organizational context and have a common culture to which they can relate. In psd, on the 
other hand, customers are not part of a coherent use context, and there exists little data 
material for characterizing customers and for developing representative use models. Here, 
there are no formal work patterns, no organizational processes and no organizational goals 
available to facilitate the process of understanding and representing customers. 
Consequently, customers cannot to the same extent be represented in terms of profession 
and professional domain, and the overall context in which the software is to operate — and 
the purpose for which it is used — might not be shared but instead different for every single 
customer. As recognized by McDonough et al. (2001), the process of understanding 
customer needs and requirements is no longer a matter of identifying needs of a relatively 
homogenous group, as for example of users within an organization.  Instead, it requires an 
understanding of globally distributed customers who speak different languages, who have 
different cultural beliefs and who may not be able to ever meet physically with each other or 
with the software developers. While, for example, scenario-building and rich pictures 
(Checkland, 1981) aim at capturing the complex relationships within an organization, psd 
cannot to the same extent benefit from a shared use context, and the developers can in most 



 
19 

cases only guess which customer community and what types of customers that will use the 
products (Divitini et al. 2000).  

2.3 software firm environments 

As recognized in the discussion above, there are a number of characteristics that distinguish 
the psd environment from the custom is development environment. Based on two case 
studies, Sawyer (2000) identifies four distinguishing characteristics in terms of (1) industry, 
(2) software development, (3) cultural milieu, and (4) teams (table 1).  
 

Characteristics  Packaged Software Development   Custom is Development 
     
Industry  Time to market pressures 

Success measure: profit, market share, 
mind share 

 Cost pressures 
Success measures: satisfaction, user 
acceptance, roi 

     
Software 
Development 

 Line positions 
User is distant and less involved 
Process is immature 
Somewhat integrated design and 
development 
Design control via coordination 
 

 Staff positions 
User is close and more involved 
Process is mature 
Separated design and development 
Design control via consensus-building 

     
Cultural Milieu  Entrepreneurial 

Individualistic 
 Bureaucratic 

Less individualistic 
     
Teams  Less likely to have matrix/project 

structure. More likely to be self-
managed 
Involved in entire development cycle 
More cohesive, motivated, jelled 
Opportunities for large financial 
rewards 
Small and collocated 
Share a vision of their product(s) 

 Matrix managed and project focused 
People assigned to multiple projects 
Work together as needed 
Salary-based 
Grow larger over time and tend to 
disperse 
Rely on formal specifications and 
formal documents 

     
     

table 1. Summary table of differences between packaged software and  
custom is software firm environments (Sawyer, 2000) 

 

First, packaged software industry is dominated by time pressures. To break new ground in 
bringing new and innovative products to the market is critical to create return on the 
investments done by either venture capital or state-supported incubator money. Also, the 
success of the packaged software industry’s products is measured by profit, and to achieve 
this, there is the challenge of either developing a large installed base or to create new market 
opportunities. 
 

Second, packaged software development is conducted by developers that often hold line positions 
which make their needs central to the performance of the organization (Sawyer, 2000). 



 
20 

Instead of being part of corporate staff and serve supporting roles, as is often the case for 
developers within custom is development, packaged software developers are production 
mechanisms and hence, those who generate revenue. Also, in the psd process there is a 
product focus which cannot to the same extent be seen within custom is development. 
Furthermore, the process is immature and there is a distant relationship to customers since 
customer needs and requirements are most often filtered through intermediaries. This means 
that formalized software development methods as well as methods for customer 
involvement, are not used to the same extent in psd as is the case in custom is development. 
Rather, the psd process is highly iterative, flexible and constantly evolving and while there 
are attempts to involve customers, these are often restricted to beta testing or 
demonstrations. 
 

Third, cultural milieu, in terms of ideas, values and shared norms, of psd is entrepreneurially-
oriented and individualistic (Sawyer, 2000), and the hierarchical and bureaucratic structures 
that can often be found within custom is are not a characterizing feature here.  
 

Finally, packaged software development teams are typically small and co-located. As recognized 
by Sawyer (2000), psd teams tend to be stable and remain committed to a product over 
several versions or releases. Consequently, they often work together for long periods of 
time and define goals over prolonged periods. Also, motivation is often manifested in 
financial rewards such as stock options and bonuses that can provide a lucrative bonus for 
developers in psd firms. 
 

As can be seen in table 1, there are fundamental differences between psd and custom is 
environment. However, while differences in terms of industry, cultural milieu and 
development teams are indeed both interesting and challenging, and certainly aspects that 
influence the psd process, my focus in this thesis is the fact that customers are recognized as 
distant and less involved in the psd process (Sawyer, 2000). Recognizing this, and keeping in 
mind the apprehension of customers as having many of the best ideas for product 
improvement (Finch, 1999; Von Hippel, 1986), there is the need for approaches to involve 
customers also in psd. In involving customers, there would be the opportunity to exploit 
knowledge inherent in the customer community and improve psd products and processes in 
better accordance with this. In this thesis, virtual communities are explored as one such 
approach. In being conceptualized as the association of community members and the 
enabling electronic medium, virtual communities are constituted by interesting structures 
that provides benefits by supporting interpersonal relationships, encouraging knowledge 
sharing, allowing for quick access to information and enabling collective action such as, for 
example, software development (Butler, 2001).  

3 Research design 
This section presents the research design that was employed in this thesis. In the first part 
(section 3.1), the interpretive research approach and the particular choice of the interpretive case 
study is outlined to create an understanding for the underlying philosophy that was adopted 



 
21 

in this research and the assumptions that follow this. In addition, a set of principles for 
conducting and evaluating interpretive research (Klein and Myers, 1999) is presented as 
background for a later discussion of how the research reported in this thesis was conducted 
and hence, how it can be evaluated. In the second part (section 3.2), the empirical context is 
described to provide the reader with an insight in this particular case setting and why it was 
chosen for this study. In the third part (section 3.3), my research process is outlined as well as 
the way in the principles, as presented by Klein and Myers (1999), were adopted. It is my 
intention that this chapter will provide the reader with a good understanding of how this 
research was conducted and the way in which my empirical field work was carried out to 
explore the particular phenomenon of study. 

3.1 the interpretive research approach 

From being almost non-existent within the is research community at the beginning of the 
1990s, the interpretive research approaches are now accepted as part of the mainstream of 
the information systems research community (Markus, 1997). For the interpretive 
researcher, the foundational assumption is that most of our knowledge is gained through 
social construction such as language, consciousness, shared meanings, documents, tools and 
other artifacts. Furthermore, this type of research does not predefine dependent and 
independent variables, but focuses on the complexity of human sense making as the situation 
emerges (Klein and Myers, 2001). Here, the understanding of human thought and action in 
social and organizational contexts is of primarily interest (Klein and Myers, 1999). In the 
words of Walsham (1993, p. 4-5), interpretive methods of is research are “…aimed at 
producing an understanding of the context of the information system, and the process whereby the 
information system influences and is influenced by the context” and the interpretive researcher face 
the challenge of understanding a phenomenon through the different meanings that people 
assign to them.  
 

While there are different types of interpretive research approaches (Mingers, 1984), they all 
differ from the positivist research tradition in terms of epistemology, i.e. the nature of 
knowledge claims, and ontology, i.e. the nature of reality. Following the positivist tradition, 
facts and values are distinct and it is considered that scientific knowledge consists of facts 
(Walsham, 1995). Generally speaking, is research can be classified as positivist if there is 
evidence of formal propositions, quantifiable measures of variables, hypothesis testing, and 
the drawing of inferences about a phenomenon from a representative sample to a stated 
population (Orlikowski and Baroudi, 1991). In contrary to this, interpretive research starts 
out with the assumption that (1) facts and values are intertwined and hard to disentangle and 
that both are involved in scientific knowledge i.e. « non-positivism », or that (2) scientific 
knowledge is ideological and inevitably conducive to particular sets of social ends i.e.  
« normativism » (Archer, 1988; Walsham, 1995). 
 

In terms of ontology, i.e. the nature of reality, the positivist tradition considers reality as 
existing independently of our construction of it, i.e. external realism. The interpretive 
researcher, on the other hand, views reality as an intersubjective construction of the shared 
human cognitive apparatus, i.e. « internal realism », or as « subjective idealism » where each 



 
22 

person is considered to construct his or her own reality (Walsham, 1995). Here, the 
assumption is that access to reality, given or socially constructed, is only through social 
constructions such as language, consciousness and shared meanings (Klein and Myers, 1999). 
So, what does it mean then to adopt an interpretive research approach when studying an is 
phenomenon? As recognized by Henfridsson (1999), this brings with it the privilege of 
developing research within an established tradition of research. Thus, instead of having to lay 
the foundations for conducting such research, the interpretive researcher can concentrate on 
developing and refining the contents of his work within an already established tradition. 
Also, it means that there exist explicit criteria for conducting and evaluating such research. 
Klein and Myers (1999) have made such criteria explicit for interpretive field studies and 
present the hermeneutic circle as the fundamental principle of interpretive research. Below, 
the particular choice of the interpretive case study as a research method is outlined as well as 
the hermeneutic circle as the fundamental principle for conducting and evaluating this type 
of research. 

3.1.1 The interpretive case study  

As recognized by Yin (2003) the case study is but one of several ways of doing research. 
Other ways include experiments, surveys, histories and the analysis of archival information. 
While Yin adopts an implicitly positivist stance in describing case study research, there are 
many points of agreements between the positivist and interpretivist approaches to case 
studies. As pointed out by Walsham (1995) — in representing the interpretive school, any 
interpretivist would accept Yin’s (2003) view that case studies are the preferred research 
strategy “…when a « how » or « why » question is being asked about a contemporary set of events over 
which the investigator has little or no control” (Yin, 2003, p. 9). Furthermore, (Yin 2003, p. 13) 
defines the scope of the case study as “an empirical inquiry that (1) investigates a contemporary 
phenomenon within its real-life context, especially when, (2) the boundaries between phenomenon and 
context are not clearly evident”. 
 

Clearly, the case study research method is particularly well-suited to is research, since the 
object of this discipline is the study of human actions and interpretations surrounding the 
development and use of computer-based information systems (Walsham, 1995), and where 
multiple sources of evidence has to be collected and abstracted to get plausible answers to 
the research questions (Gillham, 2000). Indeed, the is literature contains reports from a 
significant number of interpretive case studies, covering a wide range of different topics and 
issues (see e.g., Markus, 1983; Suchman, 1987; Orlikowski, 1992: 2002, Walsham, 1993). 
 

As a result of the emergence of interpretive research as an important and accepted approach 
to research within is, as well as due to my own interest in the way of conducting research as 
advocated by this tradition, the case study approach was deployed in the study reported on 
here. In exploring virtual communities and the potential of these in terms of customer 
involvement, the interpretive approach in general, and the interpretive case study in 
particular, provided me with a set of methods and techniques for elaborating on the topic 
chosen. Below, a set of principles for conducting and evaluating such studies are outlined 



 
23 

(Klein and Myers, 1999). Following this, the empirical context in which my empirical work 
was conducted is described. 

3.1.2 Principles for conducting and evaluating interpretive case studies 

As the fundamental principle for conducting and evaluating interpretive research, Klein and 
Myers (1999) present the hermeneutic circle. This meta-principle encompasses the whole 
process of interpretation and asserts that understanding stems from seeing the interrelation 
between wholes and parts of a phenomenon (Klein and Myers, 1999). The idea is that we 
come to an understanding of a complex whole from preconceptions about the meanings of 
its parts and their interrelationships. In this process, the interpretation moves from a 
precursory understanding of the parts to the whole and from a global understanding of the 
whole context back to an improved understanding of each part. 
 

In this thesis, my aim was to understand the role of virtual communities for involving distributed 
customers in psd, and the opportunities and challenges that are associated with this. For such an 
understanding, the hermeneutic circle implies that one needs to iterate between parts and 
wholes, while reflecting upon how the pre-understanding affects the researcher’s 
understanding. With regard to my phenomenon of study, this means that a hermeneutic 
process might consist of me developing an understanding by using my pre-understanding to 
go back and forth between parts such as empirical details as experienced in the empirical case 
and wholes such as literature on internetworked organizations and customer involvement in 
software development.  
 

Besides the fundamental principle of the hermeneutic circle, Klein and Myers (1999) 
introduce six additional principles which are all useful for conducting and evaluating 
interpretive research (table 5 in section 3.3.2). In being consistent with a considerable part 
of the philosophical base of literature on interpretivism, these principles are seen as 
guidelines from which interpretive research can be better judged and assessed. In applying 
these principles it is argued that a theoretical base is established which would otherwise have 
to be derived by each interpretive researcher. Also, these principles allow for researchers to 
defend their work to principles that are firmly grounded in at least one major direction of 
interpretive philosophy, i.e. the hermeneutic tradition. Finally, the introduction of a set of 
principles encourages researchers to consider each one of the principles systematically 
instead of otherwise neglecting important aspects of their work (Klein and Myers, 1999). In 
working as guidelines for the conduct and the evaluation of interpretive research, the 
principles as presented by Klein and Myers (1999) were considered in the research reported 
on in this thesis. Below, the empirical context in which this research took place is outlined 
(section 3.2). Following this, my research process and the way in which Klein and Myers 
(1999) principles were considered in this study is presented (section 3.3). 



 
24 

3.2 the empirical context 

3.2.1 Daydream Software 

The case study reported on in this thesis was conducted at Daydream Software (referred to 
as « Daydream »). Daydream is a Swedish computer game developer with its headquarters in 
Umeå. By the time for this study (2000—2002) the company employed 65 people ranging 
from administrative personnel, marketing people and executives to software developers, 
web designers and graphical designers. Overall, the company consisted of young people and 
Daydream’s intention was to create innovative computer games that attracted people in all 
ages and from all over the world. Mainly, the focus was on sports games and strategic games 
and the general attitude was to avoid violence in the games. 
 

As a starting-point for this study there was the development of Clusterball — Daydream’s 
third production. Earlier, the company had released two computer games, Safecracker and 
Traitors Gate, which had both been very successful in Europe as well as in the us. While 
these games were sold as packaged software that could be purchased from any vendor world-
wide, Clusterball was different in that here Daydream’s intention was to develop a game 
that, in addition to being sold by vendors, also could be downloaded and experienced from 
the Internet. The main motivation for this was the opportunity to attract even more 
customers as well as the challenge of entering a new medium for launching the game. 
Clusterball — a game in which you fly around in ships trying to collect and steal balls from 
other players — would be their first multiplayer game to be downloaded and experienced 
from the Internet. In relation to the game there was an electronic payment system as well as 
a customer relationship management database (crm database) in which all players could 
register and through which Daydream could keep track of its customers. The expectations 
on Clusterball were high, and when entering the study in early 2000, I could sense a feeling 
of excitement throughout the company in developing what would become a groundbreaking 
product in many respects (for a more detailed description of Clusterball see section 3.2.3). 
 

In developing Clusterball, Daydream recognized customer knowledge and skills as critical to 
the development process. In looking back at earlier products that were static in the sense 
that once they were released customers could no longer influence them, Daydream wanted 
to make possible for customer involvement during — but also after — development. In this 
way Daydream wanted to enlarge the possibility to adjust the product according to customer 
needs and requirements. To achieve this, a virtual community was created on the Clusterball 
website. Here, customers from all over the world could meet and by using electronic 
forums these customers got the possibility to discuss every detail of the game as well as to 
sign up for tournaments and other activities organized by Daydream and other community 
members (for a more detailed description of the Clusterball community see section 3.2.4). 
In using virtual community functionality, there were opportunities for knowledge-sharing 
among Clusteball customers and by taking part in their discussions, Daydream developers 
could learn from customers and the knowledge they possessed.   



 
25 

3.2.2 Motivation for choice of research site 

For me as a researcher interested in software development in general, and psd in particular, 
and the way in which customer involvement can be achieved in this, the Daydream case was 
attractive for many reasons. In my research, Daydream represents a software firm focusing 
on a type of packaged software that must be up-to-date with technological and societal 
trends. This does not only imply that software developers must be competent in a particular 
domain but also willing to acquire new knowledge over time. Therefore, interaction with 
software customers in a virtual customer community can be seen as one source for acquiring 
such new knowledge. Second, the development of Clusterball involved a commitment to 
improve its software products and processes by means of a virtual customer community — 
the Clusterball community. This fact coincided well with my intents to study the role of 
virtual customer communities for improving psd. In the Daydream case, the phenomenon of 
study, i.e. the role of virtual communities for involving distributed customers in psd, was engrained 
into the context, since the idea with the Clusterball community was precisely this. Thus, in 
terms of phenomenon of study, the Daydream case offered me an empirical context in which 
my research interest was clearly discernible. Third, there was the critical aspect of getting 
access to the phenomenon of study, i.e. the organization, the individuals and the particular 
system or application of interest. Here, my supervisor played an important role in 
introducing me to the company after initial contacts had been established. In starting the 
Center for Digital Business at Umeå University, my supervisor had been in contact with 
Daydream several times, and in setting up this joint project, Daydream signed as the first 
collaboration partner in the newly started research center. During the entire time for the 
study, it was important for me to spend as much time as possible at the research site in order 
to learn about the company and the way in which it had developed over time. In this, 
Daydream proved helpful in many ways, providing me with company reports, archived 
company protocols and development specifications on early versions of Clusterball. In all, 
reading these documents and spending considerable time at Daydream, added to my 
understanding of the empirical setting and the larger context of which it was part.  
 

In order to further provide the reader with a good understanding of the empirical setting, 
the particularities of Clusterball is outlined below (section 3.2.3), as well as the 
characteristics of the Clusterball community (section 3.2.4). My intention is that these 
sections will provide the reader with insight in the particular software product that I have 
studied and the way in which the virtual community was designed to make possible for 
customer-developer interaction. 

3.2.3 Clusterball 

Clusterball is a multiplayer computer game in which players fly around in ships trying to 
collect balls and steal balls from other players (figure 1). To protect players from 
opponents, different kinds of protective equipment can be found in the different venues in 
which the game takes place. The game uses the 3dgm graphical engine, it is programmed in 
C++ and it is modeled in Java. As the software for version control, Sourcesafe was used 
throughout the software development project. In being a sports game — aimed at fascinating 



 
26 

people — certain features, i.e., graphics, sound and dynamics, were handled carefully 
during the development process. First, in terms of graphics, Clusterball uses advanced « level 
of detail » (lod) technologies. The landscape is rendered with a lod algorithm and the 
landing tracks are based on curves that are computed in real time. In this way, Clusterball 
can be adapted to work on low-end machines as well as using the power of the latest 3d 
graphic cards. Second, the a3d sound api is fully utilized to create a stunning audio 
environment. Many sounds are physically modeled and directly linked to the dynamics 
engine to create, for example, collision sounds as realistic as possible. Finally, Clusterball has 
got sophisticated collision detection and dynamics engines. The collision detection uses 
hierarchical trees of bounding volumes in combination with a fast backtracking algorithm, 
which grants for fast collision detection that is stable also for low frame rates. The dynamics 
engine includes a numerical integrator and a full simulation of dynamic rigid bodies including 
collision response and friction. Also, the aerodynamics of the aircraft is realistically 
simulated and the users are able to trim the parameters of the aero dynamical model to make 
the control of the aircraft as intuitive as possible. 
 

 
 

figure 1. Screenshots from four Clusterball venues — 
Antarctica, Egypt, Taj Mahal and Stonehenge 

 

While there was considerable development work in terms of code generation, there were 
other challenges related to the idea of Clusterball as not only a packaged software product, 



 
27 

but as an online game. For example, Daydream introduced an in-house developed network 
api, called Autobahn. Autobahn uses algorithms for packet compression, packet aggregation 
and latency hiding which make bandwidth requirements reduced and the system tolerant for 
packet loss. Due to this, it is possible to set up a Clusterball server on a 56kbps modem and 
host 7 other players. The clients need only a 9.6kbps modem to play. The latency hiding 
algorithms consist of a force-based system, which is directly linked to the dynamics engine. 
Without problem, players can compete across the Atlantic, as gameplay is not noticeably 
affected when network ping is less than 600-700 ms. 

3.2.4 The Clusterball community 

The Clusterball community, which can be found at www.clusterball.com (figure 2), is 
a game community consisting mostly of members from northern Europe and the us. 
Depending upon previous game scores, each member is categorized according to the official 
Clusterball ranking, ranging from « newbie », « bellboy » and « trainee » to « master »,  
« grand master » and « cluster king ». In total, there are 20 different ranking categories and 
members with the highest rankings are well-known and celebrated members in the 
community. Together, they engage in discussions concerning Clusterball, and on a regular 
basis they arrange tournaments and team-play as well as tutorials and training sessions for 
Clusterball beginners.  
 

 
 

figure 2. The Clusterball website (www.clusterball.com) where  
the Clusterball community meet 

 

With approximately 17,000 postings distributed among two different forum tracks (the  
« general track » and the « technical track ») over a three-year period, the Clusterball 



 
28 

community provides an active discussion forum for development and modification of the 
game. However, clusterball.com is not the only place where the Clusterball community 
meets. Besides this forum, there are fan websites, i.e. websites developed by community 
members, that offer forums and chat rooms for community members, and team websites 
where different Clusterball teams meet and sign up for tournaments. One of the most 
impressive fan websites is ballsnatchers.com which was originally developed exclusively 
for Clusterball by two of the players, and which is now maintained and further developed by 
a team of Clusterball players from all over the world. Here, the players have their own « hall 
of fame » (player/team victory announcements), a « haiku corner » (player poems) and a  
« player gallery » (player portraits). 
 

The common interest in the Clusterball community is computer games in general, and 
Clusterball in particular. In different forums, community members discuss configuration and 
installation problems as well as tournaments, team-play and how to improve the game in 
terms of new functionality. At clusterball.com there is the « technical » and the « general 
» forum, and at ballsnatchers.com there is a specific forum for beginners called « young  
wings » where new players can post questions to the rest of the community. Also, there is a 
« chat-and-gossip » forum in which the players discuss anything that comes to mind. The 
devotion and motivation among community members can also be seen in the activities they 
organize. For example, there are several Clusterball Schools for beginners (see e.g., 
Ootpek’s Clusterschool, Kronix Tips and Lava-Lava’s Clusterball Tips at 
www.clusterball.com), a Skin Tutorial in relation to a skin site on which players upload 
their individually designed skins so that others can download and use them, and a  
« testimonial site » where Clusterball players share experiences regarding their initial contact 
with Clusterball.  
 

To communicate, Clusterball community members send postings to electronic forums 
consisting of different tracks. In these, headings are shown for all topics, and postings are 
presented as threaded lists. Also, there is a pre-game chat in which players can meet before 
the match, as well as after, to discuss issues concerning that particular session. In addition to 
this there are fan websites where several other forums and chats can be found and where 
many Clusterball players spend time on a regular basis. To manage the community, 
Daydream created a new position in the company, that of a « community manager ». This 
person was responsible for responding to the ideas put forward by the community members. 
According to Daydream, this helped to ensure that the community was nurtured, and that 
valuable feedback was not lost. Also, many of the developers at Daydream are active 
community members. Not surprisingly, the Daydream developers can be found in the upper 
categories on the ranking list since their profound knowledge about Clusterball makes them 
very skilled players. 

3.2.5 My role as a researcher at Daydream 

As recognized by Walsham (1995), interpretive researchers are attempting the difficult task 
of accessing other people’s interpretations, feeding them through their own conceptual 
apparatus, and feeding a version of events back to others. In this, it is important for 



 
29 

researchers to have a view of their own role in this process. Either, the role of the outside 
observer or the role of the involved researcher can be adopted (Walsham, 1995). As an outside 
observer, the researcher is seen as not having a direct personal stake in various 
interpretations and outcomes. The merit of this is that the people studied will hopefully be 
relatively frank in expressing their views. Of course, the disadvantage is that of not being 
present on many occasions and thus, not getting a direct sense of the field organization. As 
an involved researcher, the researcher is to be seen as a member of the field either by 
participant observations or by action research. The merit of this is the opportunity to get an 
« inside view » of the field and becoming, at least for a limited period of time, a member of 
this field. On the other hand, an involved researcher will always be regarded as having 
personal stake in views and activities, and other personnel may be more careful when 
expressing their interpretations and opinions. In addition, there is the problem of being an 
insider but still never « a real insider ». As recognized by Mumford (1985), unless 
participant observers or action researchers hide their research motives, which could be 
considered unethical, they will still not be regarded as normal employees and thus, not total 
insiders. 
 

Despite the difficulties as identified by Mumford (1985), the choice in this study was to 
adopt the role of the involved researcher. As such, I spent two to three days every week at 
the research site during a period of six months. As a participant observer I took part in 
company meetings and workshops, I was part of the project group in developing the 
Clusterball website and the Clusterball community website, I put together a document 
evaluating the different Daydream websites and the current status and use of these at that 
particular time and I took part in the every-day particularities of Daydream. While I suspect 
that my presence did influence, and sometimes maybe appeared confusing to Daydream 
employees, there was also the feeling of openness and trust due to the fact that I was there 
on a regular basis and part of the on-going project group. In taking the responsibility as 
required as a project member there was always the advantage of getting access to 
information and also the advantage of being seen as part of the team.  

3.3 research process 

In all, the research reported on in this thesis reflects a process (2000-2004) during which I 
have tried my best to explore the research phenomenon as outlined in the introduction 
(section 1). During these years, my empirical work consisted of a 17 month long study 
(January 2000-May 2001) at Daydream after which also a follow-up study was conducted 
(June and October 2002). While the initial contact with Daydream was taken by my 
supervisor already in December 1999, the research project officially started in January 2000. 
In accordance with the different types of work that was conducted, the project can be 
divided into four different phases — (1) an exploratory study, (2) an in-depth study, (3) a 
complementary data collection phase, and (4) a follow-up study. These phases and their different 
activities, as well as the data material and the research goals of each phase, is summarized 
below (table 2). Following this summary, each phase is further described in order to 
provide a detailed account of my empirical work.  
 



 
30 

Research phase  Research activities  Data material  Research goals 
       
January—March 
2000  
Exploratory study 

 Workshops at 
Daydream 
Formal/informal 
meetings  
e-mail correspondence 
Document review 
Review of gaming 
websites 

 Workshop presentations 
Meeting minutes 
Technical/design 
documents 
Press releases 
Shareholders’ prospects 
e -mails 
Website data 

 Get an initial 
understanding of 
Daydream as an 
internetworked 
organization, and the 
larger gaming context 
of which it is part. 

       

April—
September 2000 
In-depth study 

 Participant observations 
Project meetings 
Business presentations 
Product 
demonstrations 
Informal meetings 
e -mail correspondence 
Website reviewing 
Development of 
Clusterball website 

 Observational data 
(personal notes) 
Meeting minutes 
Presentation material 
Demonstration material 
e -mails  
Website data 
Community postings 
Technical/design 
documents 
Press releases 
Patch specifications 

 Get an understanding 
of Daydream’s 
software development 
process and the extent 
to which customers are 
involved in this through 
the use of a virtual 
community. 
Get access to 
interpretations held 
and enacted by 
employees at 
Daydream by being a 
temporary member of 
the field. 

       

October 
2000—May 
2001 
Complementary 
data collection 

 e -mail, telephone and 
icq-correspondence 
Interview study 
(Daydream employees)  
Web survey 
(community members) 

 e -mails and icq-logs 
Transcribed interviews 
Survey forms 
Community postings 
Patch specifications 

 Reveal different 
perspectives on 
customer involvement 
in Daydream’s 
software development 
process. 

       
June—October 
2002 
Follow-up study 

 Interview study 
(Daydream employees) 
Informal meetings 
e -mail and telephone 
correspondence 

 Transcribed interviews 
e -mails 

 Evaluate the role of the 
virtual community for 
customer involvement 
in Daydream’s psd 
process. 

       
       

table 2. Summary of the research phases, the research activities,  
the data material and the research goals in the Daydream study 

 

As can be seen in table 2, the empirical work was initiated with an exploratory study was 
conducted between January and March 2000. In this, we2 aimed at getting an initial 

                                                       
2 The Daydream study was conducted by me and a research colleague — Annakarin Nyberg — in a joint project funded by the Center for 
Digital Business at Umeå University and Daydream Software. As can be seen in this thesis, my research interest focused on the virtual 
community and the way in which this was used to involve distributed customers in the psd process. For Annakarin, on the other hand, 
there was the focus on digital customer relations and how technologies such as the customer relationship management (crm) database was 



 
31 

understanding of the company and the context of which it was part. During this period we 
attended company meetings and discussions, reviewed early documents such as design 
documents and technical specifications of Clusterball and spent time observing the work 
practice of Daydream employees in order to get a comprehension of the setting, the culture 
and the study topic (Morse, 1994). During this time, we also presented our research 
interests and the way in which Daydream provided a relevant empirical setting for our work. 
Finally, time was spent on reviewing other gaming websites in order to get an understanding 
of the global gaming community which proved to be a complex network of players, websites 
and virtual forums. This exploration included analysis of data sources such as technical 
documents, design documents, meeting minutes and press releases as well as website data 
such as printouts from different forums and articles published on gaming websites. These 
activities were aimed at coming to an understanding of the social context and the cultural 
background of the empirical setting. In this phase of my research, literature on 
internetworked organizations (Orlikowski, 1999) worked as a source of inspiration, and as a 
result, I focused on seeing how network technologies made possible for Daydream to involve 
its customers in the value-adding process of computer game development.  
 

Following the exploratory study, an in-depth study was conducted. During this phase, which 
lasted between April and September 2000, we spent two or three days every week at the 
research site and a total of 600 hours of participant observations were carried out in order to 
complement the exploratory study with an in-depth understanding of the development 
process of Clusterball. In being present at Daydream on a regular basis — in everyday 
activities ranging from breakfast at the office and informal conversations in the relaxing area 
to formal project meetings and official business presentations and demonstrations — and in 
taking active part in the development of the Clusterball website, we had the opportunity to 
learn about relationships between people, organizations and technology, and also to see how 
these were not static but constantly changing (Klein and Myers, 1999). During this phase, 
the aim was to understand the computer game industry as well as the particular challenges 
that Daydream encountered in being part of this. Also, we came in close contact with both 
marketers and software developers and learnt that there were many, sometimes conflicting, 
ideas on how the game should be marketed, and supported by the website. By being active 
participants in the development of the website we also had the opportunity to be a natural 
part of the workforce at Daydream. While data from the exploratory phase consisted mostly 
of already published material, data from the in-depth phase consisted of our own personal 
documentation in terms of conversation documentation (personal notes and meeting 

                                                                                                                                                       
used to keep track of, and learn about, customers and customer behavior. After the first three phases of the study, I continued the 
Daydream study while Annakarin was involved in another project. For publications related to Annakarin’s work, see e.g.: 
 

Nyberg, A., and Henfridsson, O. (2001). Learning about the online customer — an interpretive case study of building digital 
customer relations in online entertainment. In the Proceedings of i3e — The first ifip conference 
on e-Commerce, e-Business, e-Government, B. Schmid, K. Stanoevska-Slabeva, V. Tschammer (eds.), Zurich, Switzerland, pp. 
247-259. 
 
Nyberg, A. and Henfridsson, O. (2001). Going for the Online Customer — An Interpretive Case Study of Internetworked 
Customer Reach in Online Entertainment. In the Proceedings of ecis 2001. Smithson, J. Gricar, M. Podlogar and S. Avgerinou 
(eds.). Kranj, Slovenia, Moderna Organizacija, pp.  330-338.  



 
32 

minutes) and observation documentation (personal notes). In addition, printouts from the 
Daydream website, printouts from the community forum and material from official business 
presentations and demonstrations helped us in following the current debate and the burning 
topics at the company and among its customers. Entering the in-depth study, my 
understanding of Daydream as an internetworked organization made me focus on network 
technologies and the role of these for involving customers in value-adding processes. 
However, my initial understanding of such processes as general in character was slowly 
replaced with an understanding of software development processes as specific in character. 
Hence, while literature on internetworked organization had been important as a starting-
point, this was soon complemented with literature on software development and the 
specifics of software development processes. As a result, research reported from this period 
reveals customer involvement, and the challenges associated with this, as experienced 
specifically within software development processes. As part of the in-depth study there was 
the official release of Clusterball on July 17. At 1.00 pm that day, the first version of 
Clusterball could be downloaded from the Internet. In being the moment that everybody 
had been waiting for, the release brought with it both joy and fear. At the company office 
people were waiting for the first reactions in the community and the preparations for 
handling initial technical problems had already begun. As expected, there were substantial 
changes that had to be made and as a result of this, the first software patch was released on 
July 18, only one day after the official release. Following this, there was the release of the 
second patch on August 25. In handling technical problems, such as start-up and 
configuration problems, these patches could be seen as direct responses to the many 
community postings dealing with this. For me, these patches constituted important data for 
tracing the way in which customer suggestions, as posted to the community forum, were 
reflected in Daydream’s software development process.  
 

As a rounding-off on our active presence at Daydream, a complementary data collection was 
conducted between October 2000 and May 2001. In this, we maintained close contact to 
our informants at Daydream. These contacts were upheld by e-mail correspondence, icq 
interactions, and telephone conversations. We also conducted 11 qualitative interviews 
(table 3). In these interviews, our intention was to reveal different perspectives on 
customer involvement in the development process of Clusterball. Hence, managers, 
marketing people and developers3 were interviewed. Each interview lasted for 1-1.5 hours 
and were both recorded and transcribed. All interviews were of an open character, i.e. we 
did not direct the interview too closely but instead allowed for the respondents to express 
their own views in order to gain as much richness as possible for further interpretation 
(Walsham, 1995).  
 

In addition to the interviews, the complementary data collection phase consisted of a web-
based survey that was sent out to 200 Clusterball players ranging from « Newbies », i.e. not 
very experienced players, to « Grand Masters », i.e. very experienced players. The survey, 

                                                       
3 Due to travels and heavy workload for two Daydream employees, two of these interviews had to be conducted already in 
August and September 2000 prior to the complementary data collection phase. 



 
33 

consisting of 53 questions (of which 25 were multiple choice questions) was distributed in 
October/November 2000 and the final answers were collected in February 2001. To be able 
to represent the wide range of players and their different experiences of Clusterball, the 
community manager helped us in distributing the survey. In this, we used the customer 
database to select players from all different ranking categories that had been playing the 
game at least once the month before the survey, i.e. in September/October 2000. With a 
response rate of 52 percent, the survey helped us in understanding the players and their 
apprehension and application of the virtual community. During this phase, there was also the 
release of four Clusterball patches (October 19, December 20, February 22 and April 29). 
In handling bugs and errors as well as in including several new features such as replay and 
recording, pre-game chat, the possibility for match-making and ranking etc., these patches 
attracted much attention in the community and in the community forum this was evident in 
a rising number of postings. 
 

Title  Date  Title  Date 
       
Marketing manager  2000-08-26  Manager/chair of board  2000-11-02 
       
Executive director/founder  2000-09-21  Developer/founder  2000-11-14 
       
Marketer  2000-10-26  Developer #2  2000-11-28 
       
Developer #1  2000-10-26  Community manager #1  2000-11-28 
       
Administrator/external relations  2000-11-02  Community manager #2  2001-05-08 
       
Administrator  2000-11-02     
       
       

table 3. Interviews conducted during the complementary data collection phase 
 

For me, the first three phases of the Daydream study (the exploratory phase, the in-depth study 
and the complementary data collection phase) provided me with a rich understanding of the 
empirical context. As a point of departure, there was my inherent interest in customer 
involvement and the way in which this could be achieved in development processes. In the 
exploratory as well as in the in-depth study, this interest was discernible in relation to value-
adding processes within organizations using network technologies for interacting with 
customers. Here, Orlikowski’s (1999) notion of internetworked organizations was used as a 
theoretical lens through which Daydream’s development process was interpreted and 
understood (paper 1), and as a result, the virtual community was portrayed as a mediating 
technology characterized by openness and accessibility. In the later stage of the in-depth 
study, however, I started to see the particularities of Daydream’s development process as 
critical. While the notion of internetworked organizations could apply to any organization 
intending to use network technologies for mediating purposes such as customer 
involvement, I soon realized that the way in which this mediation was carried out at 
Daydream was closely dependant on the characteristics of their process, i.e. the 
particularities of the software development process. As a result of this, literature on software 
development came to work as the foundation for further interpretation of my empirical 



 
34 

findings (paper 2 and paper 3). As a common characteristic, the papers reflecting these 
early research phases very carefully report on the empirical setting of Daydream and the 
particularities it embraced in terms of technology, business models and software 
development practices. 
 

After the complementary data collection phase ending in May 2001, our Daydream study 
was rounded off. At that time we had spent 17 month working closely with people at 
Daydream and the opportunity of being part of development, release and further 
improvement of the product had given us a good understanding of the organization and the 
way in which Daydream’s software development processes were conducted. However, 
while my research colleague at that time chose to direct her focus to another study, I chose 
to conduct an additional follow-up study with some of the people that had been interviewed 
during the complementary data collection phase. The aim of this study was to further 
strengthen my data collection and to be able to evaluate the role of the Clusterball 
community for customer involvement. This follow-up study was conducted in June and 
October 2002. In this, I conducted interviews with the marketing manager, the lead 
programmer and the graphical designer (table 4) in order to grasp changes and to reach 
further understanding of the opportunities and challenges that Daydream had experienced 
during the development process of Clusterball. Each of these interviews lasted for 1.5 hours 
and were both recorded and transcribed. In looking back at the development of Clusterball, 
these interviews were of importance for evaluating the role of the virtual community and the 
way in which different stakeholders perceived it important for customer involvement. 
 

Title  Date 
   
Marketing manager  2002-06-14 
   
Lead programmer  2002-10-24 
   
Graphical designer  2002-10-24 
   
   

table 4. Interviews conducted during the follow-up study 
 

In providing me with additional data on the role of the community, the follow-up study 
encouraged me to write more critically on the topic. As discernible in the interviews from 
this study, there were many benefits of using the community for involving customers in the 
software development process — but also, challenges were discernible. From having written 
mostly positive accounts on community use, these interviews made me re-evaluate many of 
my early findings and put them in perspective according to what this follow-up study 
revealed in terms of challenges and difficulties. In allowing for a more critical view on 
community use, the follow-up study made me caution against the tendency to romanticize 
the community construct and especially that of virtual communities (Schwen and Hara, 
2003). While my more critical accounts can be seen in paper 5 and paper 6 in this thesis, 
paper 4 reflects the changing nature of software development environments which was also 
a topic that came to me after having left — and having had the time to further reflect upon 



 
35 

— the research site for some time. In this process, I came across literature on packaged 
software development and inspired by this, I started to evaluate my research in accordance with 
this. While the theoretical understanding acquired during early research phases had been 
influenced by conceptions of « internetworked organizations » and « software  
development », the follow-up study made me evaluate and present my research in terms of 
psd (Sawyer, 2000, 2001; Carmel and Sawyer, 1998; Keil and carmel, 1995) and the 
conceptual apparatus as found within the knowing-in-practice literature (see e.g., Boland 
and Tenkasi, 1995; Tsoukas, 1996; Brown and Duguid, 2001; Orlikowski, 2002). To 
further describe how my empirical work was intertwined with theoretical conceptions in 
order to form and refine my understanding for the research phenomenon, this process is 
elaborated upon below. 

3.3.1 The research process as a transition between empirical data and theoretical concepts 

Guided by the hermeneutic principle, my research process started with a research interest of 
an open character (Patton, 2001). Rather than having a focused research question, my initial 
formulation of the problem domain was very broad, intended not to constrain coming 
analysis but to make possible for different perspectives to be adopted. As is common in long-
term research, the initial conceptual apparatus encompassing certain assumptions and beliefs, 
transformed over time and as suggested by the hermeneutic principle (Klein and Myers, 
1999; Patton, 2001), transitions between theoretical conceptions and empirical data were 
central for me in articulating an increasingly plausible understanding of the research 
phenomenon outlined in this thesis. Throughout my research process, this meant that my 
early understanding of customer involvement was continuously refined through transitions 
between theoretical conceptions and empirical data. 
 

Theoretically, knowing-in-practice literature (see e.g., Boland and Tenkasi, 1995; Tsoukas, 
1996; Brown and Duguid, 2001; Orlikowski, 2002) provided me with an apparatus for 
understanding concepts such as « knowledge », « practice » and « community ». For me, 
situated customer knowledge was of primary interest, and in conceptualizing this as a 
capability enacted in practice, where practice is defined as the situated, recurrent activities of 
human agents, this literature successfully helped me in articulating the inherent complexity 
and multiplicity of the phenomenon I sought to portray. As a result of my interpretive 
approach in which understanding is something that is emerging throughout the research 
process, a major part of my theoretical understanding is discernible in the later phases of the 
research process and hence, reflected mainly in the final papers of this thesis. While I already 
in the beginning was influenced by the theoretical conceptions as mentioned above, my 
deeper understanding and hence, more thoughtful application of these was something that 
emerged after having had time to consciously reflect on these and iterate between these 
concepts and my empirical data. 
 

Empirically, the Daydream context embraced ingredients important for me and my research 
interests. Through interviews and participant observations I gained insight in both 
customers’ and developers’ apprehension of the development process of Clusterball. With 
the possibility to discuss these with the informants as well as with my research colleague, my 



 
36 

understanding of the context was early articulated and continuously refined. Intertwined 
with theoretical conceptions, my interventions in the everyday practices of Daydream and 
my close interaction with Daydream employees made me see that what my research would 
describe was my own interpretation of this context, not something that was absolutely 
correct or true (Patton, 2001). In engaging in this context on a daily basis, an understanding 
of its particularities soon emerged and I begun to realize that what I was doing was 
constructing a reality on the basis of my empirical experiences (Patton, 2001) and 
theoretical insights. In this way, my emerging understanding of this context can be seen as 
“…an infinite process, ending only when a sensible meaning and a coherent understanding has been 
reached” (Kvale, 1987, s. 62). For me, this was indeed an infinite process, reaching far 
beyond this thesis. While each individual paper articulates parts of this understanding, the 
outcome in terms of “…sensible meaning and a coherent understanding” (Kvale, 1987), is reached 
only in relating these parts to a larger context. In terms of the papers in this thesis, and in 
similar with the process of interpretation (Klein and Myers, 1999), the first papers can be 
seen as reflecting a precursory understanding for the final outcome, i.e. the different 
empirical parts, while the latter papers can be seen as reflecting the context for the outcome, 
i.e. the whole as a result of my transitions between empirical parts and theoretical concepts. 
In this way, I hope to enable the reader of this thesis to gain insight in the research 
phenomenon by contrasting empirical insights with theoretical expressions of the whole. As 
well as my own understanding of the research phenomenon was achieved through 
continuous transition between empirical insights and theoretical conceptions, the parts and 
wholes as expressed in the different papers will enable the reader to reconstruct these 
transitions and hence, follow me in my process to a conceptual understanding of virtual 
community use in psd. 
 

As a result of theoretical and empirical insights, and the continuous interplay and transition 
between these, this thesis presents a conceptual model for understanding community use in 
psd (figure 5 in section 4.2.3). In this model, knowledge building, knowledge elicitation 
and knowledge exploitation are suggested as comprehensive terms denoting my 
understanding of knowledge creation and transformation processes important for 
community use in psd. In reflecting my own conceptions of the research phenomenon, this 
model, and the knowledge processes identified in this, is my theoretical contribution — 
primarily analytical as to facilitate an understanding of community in psd. 

3.3.2 Adopting Klein and Myers (1999) principles for the conduct and evaluation of the  
Daydream study 

As introduced in section 3.1.2, there are well-established principles for conducting and 
evaluating interpretive research. These principles can be seen as a response to the call “…to 
discuss explicitly the criteria for judging qualitative research in information systems” (Lee et al, 
1995, p. 367), and were proposed by Klein and Myers in a paper published as part of a 
special issue in the mis Quarterly in 1999. In crystallizing a diffuse literature into a manageable 
set of principles, Klein and Myers (1999) make possible for better quality assessment of 
interpretive research as well as for the individual interpretive researcher to design their 



 
37 

investigations more carefully and systematically. In the Daydream study, these principles 
were considered in both research design and research evaluation. Below, a summary of these 
principles are provided (table 5). Following this, I discuss how each of these principles was 
accounted for in this particular study. 
 

 
1. The Fundamental Principle of the Hermeneutic Circle  
This principle suggests that all human understanding is achieved by iterating between considering the 
interdependent meaning of parts and the whole that they form. This principle of human understanding is 
fundamental to all the other principles. 
 
2. The Principle of Contextualization 
Requires critical reflection of the social and historical background of the research setting so that the intended 
audience can see how the current situation under investigation emerged. 
 
3. The principle of Interaction Between the Researchers and the Subjects 
Requires critical reflection on how the research materials, or data, were socially constructed through the 
interaction between the researches and participants. 
 
4. The Principle of Abstraction and Generalization 
Requires relating the idiographic details revealed by the data interpretation through the application of 
principles one and two to theoretical general concepts that describe the nature of human understanding and 
social action. 
 
5. The Principle of Dialogical Reasoning 
Requires sensitivity to possible contradictions between the theoretical preconceptions guiding the research 
design and actual findings with subsequent cycles of revision. 
 
6. The Principle of Multiple Interpretations 
Requires sensitivity to possible differences in interpretations among the participants as are typically 
expressed in multiple narratives or stories of the same sequence of events under study. Similar to multiple 
accounts even if all tell it as they saw it. 
 
7. The Principle of Suspicion 
Requires sensitivity to possible « biases » and systematic « distortions » in the narratives collected from the 
participants. 
 
 

table 5. Summary of principles for conducting and evaluating  
interpretive field research (Klein and Myers 1999) 

 

In taking into account the principle of contextualization (principle 2), the Daydream study was 
designed with an initial exploratory phase in which we aimed at getting an understanding for 
the social and historical background of Daydream. In this phase, company documents and 
product specifications were reviewed, as well as global gaming websites, in order to get a 
picture of the empirical context of which Daydream was part. Furthermore, the principle is 
discernible in the writing of research papers (paper 1,paper 2 and paper 3). In focusing on 
the empirical setting and the particularities associated with this, these papers reveal the 
background to the Clusterball development project, i.e. initial Daydream visions, as well as 
changes and modifications to these. In reading these papers, the reader will understand the 



 
38 

emergence of the Clusterball project, the way in which it developed and the challenges that 
Daydream encountered during the project. 
 

Similarly to the principle of contextualization (principle 2), the principle of interaction between the 
researchers and the subjects (principle 3), the principle of dialogical reasoning (principle 5) and the 
principle of multiple interpretations (principle 6) were all considered in research design and in 
the published papers. In relation to possible contradictions, differences in interpretations and 
how data can be socially constructed, as reflected on in these principles, the study was 
designed so that we were two researchers present at the research site. While having different 
research questions and hence, different interests and methods for exploring these, there was 
the opportunity for us to continuously discuss and reflect upon our presence at the research 
site, the interpretations that we made and the contradictions we encountered in relation to 
theoretically founded preconceptions and the story that the data told. In terms of published 
papers, the above mentioned principles are most evident in the latter papers (paper 5 and 
paper 6). Here, there is a critical investigation of the limitations of virtual community use in 
psd and it is evident that theoretically grounded forecasts of virtual community success do 
not always come true. While earlier papers (paper 1 and paper 2) to a greater extent reveal 
virtual community success, these latter papers add to the story by bringing in a more critical 
perspective as advocated also in the principle of suspicion (principle 7). In doing this, these 
papers not only reflect the different principles. As important, they reflect my own research 
process and the understanding I developed during the time for this study. My early papers 
(paper 1 and paper 2) reveal opportunities with virtual community use. As a contrast, the 
final papers (paper 5 and paper 6) reveal also disappointments and failures with community 
use, something that became evident to me after having left the site, providing time to reflect 
on what my research subjects actually meant in the words and actions that were presented to 
me. Of course, this enhanced understanding of the field emerged as a result of my own 
reflection, but in explicitly stating how important such reflection is, the principles as 
proposed by Klein and Myers (1999) have significantly contributed to this achievement. 
 

Finally, the principle of abstraction and generalization was considered in the way that my 
empirical data was collected and analyzed. Following the interpretive tradition in general 
and the principle of abstraction and generalization in particular, my data analysis consisted of 
an iterative process in which I combined empirical data of the development process of 
Clusterball and the use of the Clusterball community with theoretical concepts of  
« knowledge », « practice » and « community » (see e.g., Boland and Tenkasi, 1995; 
Tsoukas, 1996; Brown and Duguid, 2001; Orlikowski, 2002). In my analysis, I used an 
inductive approach (Patton, 2002) to find patterns, themes and categories to be used for 
further analysis of the data. As a result of this process, the material was categorized into 
different categories focusing on different aspects of the case. These categories were of an 
open character (Strauss and Corbin, 1998), with the purpose to categorize different 
stakeholders’ statements and expressions. The categories that were used were not 
predefined, but instead they were emerging as a result of me interacting with the data and 
getting an understanding of the content in relation to the research phenomenon. For 
example, as a result of this transitional process there is the concept of community knowledge as 



 
39 

presented in Paper 6. Here, the particulars of the Clusterball community and the way in 
which it was used, is related to the concept of « knowledge » (see e.g., Boland and Tenkasi, 
1995; Brown and Duguid, 2001) and it is suggested that virtual communities constitute 
platforms for community knowledge important for improving psd. In this, literature on 
organizational knowledge proved useful as a theoretical lens through which the particulars of 
my empirical data would be interpreted.  

4 A community-based perspective on psd 
This thesis is based on a conception of software development as a knowledge intensive 
activity (Clegg et al, 1996; 1997) in which important knowledge is residing outside the 
traditional boundaries of the software firm (Lee and Cole, 2003; Orlikowski, 2002). In 
accordance with this conception, knowledge creation processes expand beyond what is 
referred to as « the level of the firm », and, as suggested in this thesis, software development 
processes would benefit from utilizing also this knowledge. As recognized by Finch (1999) 
and Von Hippel (1986), many of the best ideas for product improvements come from the 
customer community. Still, customers remain a largely untapped source for knowledge 
creation (Nambisan et al, 1999) and are not integral to contemporary psd efforts (Sawyer, 
2000). Hence, the ability to incorporate distributed customer knowledge becomes a critical 
challenge for any organization aiming for further expansion of knowledge or innovation in 
their product development processes (Lee and Cole, 2003).  
 

Recognizing the importance of knowledge residing outside the boundaries of the firm, i.e. 
knowledge residing in distributed customer communities, this thesis explores the role of 
virtual communities for involving distributed customers and hence, for involving distributed 
customer knowledge, into the psd process. The recognition of customer involvement as 
beneficial for the psd process (Keil and Carmel, 1995) as well as the idea of customers as co-
creators in product development (Nambisan, 2002) has brought with it the view of new 
product development as a knowledge intense activity highly dependent on its customers. 
Referred to as « communities of knowing » (Boland and Tenkasi, 1995), « knowledge nets » 
(Barnes, 1983) or « communities of practice » (Wenger, 1998; 2000), the idea of 
communities as enablers for knowledge creation has for a long time been prevalent in the 
field of is research. In accordance with many sociological definitions of communities 
emphasizing features such as relationships and social interaction (see e.g. Hillery, 1955; 
Wellman and Gulia, 1999; Rheingold, 1994; Baym, 1998), this view portraits communities 
as dynamic structures in which the creation of knowledge is due to a continuous questioning 
and revision of routines, processes and relationships among community members (Boland 
and Tenkasi, 1995). Here, knowledge is nor individual nor communal, but a context-
dependant resource (Tsoukas, 1996), experienced and manifested by the engagement and 
participation of each individual in the practice of which the community is part (Wenger, 
1998). 
 

Below, a brief introduction to the concept of communities is given and some of the 
prominent definitions for describing the phenomenon are outlined (section 4.1). Following 



 
40 

this (section 4.2), I discuss the role of communities as important for knowledge creation and 
knowledge transformation processes. To this end, I present a model for understanding 
community use in psd. As a result of my interpretive approach to research in which 
theoretical and empirical iterations have contributed to my overall understanding of the 
research phenomenon, the community use model represents my understanding of the 
conditions under which community knowledge may be built, elicited and exploited for the 
purpose of psd improvement. Hence, the community use model depicts my understanding 
of how a community-based perspective may be an approach for involving customers in psd. 

4.1 community: background and definitions 

There is little doubt that the advent of the Internet and Web-based technologies has enabled 
communities of geographically distributed people to convene and interact in ways not 
experienced before. As a powerful tool for cheap, fast and global interaction, the Internet 
brings with it the opportunity for millions of people to create social spaces where they can 
organize themselves and share resources via electronic interfaces (Smith and Kollock, 1999). 
The concepts of « communities » and « belonging » have been transferred to the virtual 
world, and today we regard virtual interaction and virtual relationships as « real » in the 
sense that they complement, and sometimes even replace, physical interaction and face-to-
face meetings between people. 
 

Still, ambiguity exists concerning how to define « community ». As pointed out by Fernback 
(1997, p. 39) this is due to the fact that the term “…has descriptive, normative and ideological 
connotations…and encompasses both material and symbolic dimensions”. To further complicate, 
there is the recognition of the many perspectives from which communities can be studied 
(Preece, 2001, see also table 6). First, the sociology perspective emphasizes features such as 
size, location, relationships and social interaction (see e.g., Hillery, 1955; Wellman, 1997; 
Rheingold, 1994; Baym, 1998; Hamman, 2001). Second, the technology perspective 
emphasizes technical infrastructure, architecture and the design of the community-
supporting software (see e.g., Stanoevska-Slabeva and Schmid, 2001; Lechner and Schmid, 
2001). Third, the virtual world perspective emphasizes the sense of immersion that mimics 
reality and prolonged, repetitive interaction such as the interaction found in e.g., mmos and 
muds (see e.g., Curtis, 1992; Dibbel, 1998; Pargman, 2000). Finally, the e-commerce 
perspective emphasizes communication and information transfer, marketing purposes and the 
opportunity to use community features to draw people to a specific website (see e.g., Hagel 
and Armstrong, 1997; Kim, 2000).  
 

In an attempt to present one clear definition of « community », Hamman (2001) uses an 
analysis made by Hillery (1955). Here, 94 sociological definitions of the term were 
subjected to qualitative and quantitative analysis in order to identify concepts that were 
common in the sample of different definitions. In his study, Hillary found only one concept 
that was common among the 94 definitions — they all dealt with people. However, there 
were other areas where the majority of the different studies were in agreement. As a result, 
Hamman (2001, p. 75) suggests that the sociological term « community » should be 
understood as meaning (1) a group of people, (2) who share social interaction, (3) and some 



 
41 

common ties between themselves and other members of the group, and (4) who share an area 
for at least some of the time. Other prominent definitions are those presented by Rheingold 
(1994) and Whittaker et al (1997, p. 137). In these, « personal relationship »,  
« companionship », « shared goal » and « shared context » are identified as core attributes of 
a community. In his commonly quoted definition, Rheingold (1994, p. 5) describes virtual 
communities as:”...social aggregations that emerge from the Net when enough people carry on those 
public discussions long enough, with sufficient human feeling, to form webs of personal relationships in 
cyberspace”. 
 

Community perspective  Description  Research  
     
Sociology perspective 
 
 
 

 Definitions emphasizing features such as 
size and location, and more recent 
definitions emphasizing relationships 
and social interaction. 

 Hillery (1955) 
Wellman (1982) 
Rheingold (1994) 
Baym (1998) 
Hamman (2001) 

     
Technology 
perspective 

 Definitions emphasizing technical 
structure and architecture, technical 
functions and the design of the 
community-supporting software. 

 Stanoevska-Slabeva and Schmid 
(2001) 
Lechner and Schmid (2001) 

     
Virtual worlds 
perspective 

 Definitions emphasizing a sense of 
immersion that mimics reality and 
prolonged, repetitive interaction such as 
the interaction found in e.g., mmos and 
muds. 

 Curtis (1992) 
Dibbel (1998) 
Pargman (2000) 

     
E-commerce 
perspective 

 Definitions emphasizing communication 
and information transfer, marketing 
purposes and the opportunity to use 
community features to draw people to a 
specific website, e.g., stickiness. 

 Hagel and Armstrong (1997) 
Kim (2000) 

     
     

table 2. Examples of different perspectives from which communities can be studied  
 

In the field of information systems (is) the term « community » is transferred to describe the 
nature of computer-mediated interaction that goes beyond the mere function of 
communication — for mediating the negotiation (Wenger, 1998) and transformation of 
relationships (Boland and Tenkasi, 1995) that takes place among community members. 
Here, the medium itself becomes important in bringing geographically distributed people 
together, and in addition to the social aspects of community, the definitions include also 
technical aspects. For example, Preece (2000) defines virtual communities in terms of  
« people », « purpose », « policies » and  « computer systems ». Similarly, the definition 
provided by Stanoevska-Slabeva and Schmidt (2000) introduces « technological mediation », 
« ubiquity » and « online identity » as distinguishing features imposed on communities by the 
usage of the digital medium. Mynatt et al (1997) introduces the concept of « network 



 
42 

communities » and argues that these embody a unique constellation of characteristics that 
distinguish them from other forms of media and from other types of computational systems. 
Finally, recent research on system architecture and community infrastructure suggests that 
virtual communities should be described both in terms of its members and in terms of the 
platform, and that the technical aspects are significant for the overall community building 
process (Hummel and Lechner, 2001; Stanoevska-Slabeva and Schmidt, 2001). 
 

In looking at these different definitions, it should be noted that the term « virtual » has added 
another dimension to consider when defining « community ». In contrast to sociological 
definitions in which place and physical presence are central aspects, it is clear that computer 
networks allow for communities that stretch well beyond the neighborhood (Wellman and 
Gulia, 1999). Below (figure 3), and in an attempt to summarize the different notions of  
« community », the four characteristics as presented by Hamman (2001) are used to portray 
communities in terms of their social aspects. In addition to this, technical aspects (Sanoevska-
Slabeva and Schmidt, 2001; Preece, 2000) are added to also portray communities as 
technical infrastructures enabling virtual communities to expand physical or organizational 
boundaries. For this purpose, synchronous and asynchronous technology such as 
websites, e-mail systems, electronic discussion forums and chats are used (Preece, 2000). In 
understanding communities in terms of both social and technical aspects there is the 
possibility to view them as enablers for knowledge creation among geographically 
 

 
 
 

figure 1. A framework for understanding virtual communities in  
terms of social and technical aspects 

 



 
43 

distributed people, in this case among distributed software customers. While the 
characteristics in terms of people, social interaction, common ties and shared area are all 
necessary for communities to develop and maintain, there is the additional need for an 
infrastructure in terms of technology for virtual communities to emerge and sustain. In this, 
virtual communities exist at the intersection of social and technical systems (Stanoevska-
Slabeva and Schmidt, 2001), and as recognized by Mynatt et al (1997), neither technology 
nor sociality can supplant the need for the other, and the two are conceptually inseparable. 
Consequently, there are two constitutional elements of virtual communities — the 
association of community members (as represented by the « social aspects » in figure 3) and 
the enabling electronic medium (as represented by the « technical aspects » in figure 3). 
 

In terms of community knowledge, this is dispersed among geographically distributed 
community members and as recognized by Lee and Cole (2003) community knowledge 
creation is no longer abundant within, for example, a firm or a specific group of people, but 
instead dispersed across geographical and organizational boundaries. In using the 
development process of the Linux kernel as an example of community-based knowledge 
creation, Lee and Cole (2003) provide an interesting example of how knowledge residing 
among distributed Linux users is made explicit in the virtual community and how 
exploitation of this knowledge benefits the open source software (oss) development process. 
While oss communities may act as an illustrative example of community-based knowledge 
creation, examples can be found within traditional software firms as well.While not being 
able to access the source code of the software, and therefore not being part of code 
generation, these communities focus on discussing, testing and providing suggestions for the 
improvement of different software products. In this way, they constitute an important 
resource in the process of software development and improvement. Below, the idea of 
virtual software communities is further outlined to reflect the opportunity of using these for 
customer involvement in psd.  
 

Virtual software communities 
As one example of successful software communities there are the oss communities. Here, 
distributed software users meet to share information and collectively develop software 
applications, predominantly operating systems and web application systems (Feller and 
Fitzgerald, 2002). Membership in these communities is voluntarily and, instead of monetary 
compensation, contribution is based on motivation. What the community provides is a 
platform for collaboration and exchange of information between software users. Several case 
studies highlight the particularities and the fascination of open source (Mockus et al, 2002; 
Moon and Sproull, 2000) and for example, motivational factors and trust issues (Gallivan, 
2001), distributed knowledge creation processes (Lee and Cole, 2003) and the many pros 
and cons of oss development (Jørgensen, 2001; Sharma et al, 2001) have been studied in 
order to see to what extent the open source paradigm can be transferred to traditional 
organizing and traditional software development. As recognized by Ljungberg (2000), there 
are reasons to believe that oss development has the potential to influence the future of 
organizations both in terms of organization, customer relations and business models. 
 



 
44 

Besides oss communities there are other software communities in which users of software 
play an important role. Virtual customer communities have become a dominant feature in 
association to software product websites on the Internet. While not being able to access the 
source code of the software and therefore not being part of code generation, these 
communities focus on discussing, testing and providing suggestions for future software 
improvements. Today, the creation of virtual customer communities has captured popular, 
as well as scholarly attention. Not surprisingly, new business opportunities has emerged and 
already there are several companies offering software solutions for creating virtual customer 
communities in which people can collaborate and exchange ideas independent of location 
and time. For example, there is Web Crossing (www.webcrossing.com) and Ramins 
(www.ramins.net) which provide companies such as NetSuite and Nortel Networks with 
software for having distributed customers meet virtually to discuss their products. As it 
seems, these companies believe that knowledge inherent in their customer communities can 
provide valuable input to their development processes. As acknowledged by ibm, their 
customer communities provide ”...an open forum for easy exchange of information as well as 
valuable information to ibm development and support” (www-306.ibm.com, 2004-03-01). In 
reading this statement, much of the essence of virtual customer communities is captured as 
well as the context within which they often appear. As can be seen in the ibm example, easy 
exchange of information is regarded the driving force in a customer community and the 
members enjoy the opportunity of having access to other peoples’ experiences of particular 
products. Many times, customer communities can be seen as a problem solver in that 
customers benefit from helping each other and due to mutual engagement (Wenger, 1998) 
and reciprocity (Smith and Kollock, 1999), information exchange and retrieval is smooth 
and fast. Regarding the context, virtual customer communities appear in association to 
development and support of particular software products or software development 
platforms. For example, there are the catia customer communities (www.tenlinks.com) 
discussing cad/cam products, the ibm Tivoli customer communities (www-306.ibm.com) 
discussing a particular software product for intellectual capital management and access. In 
association to development tools and platforms, there are the Java Technology customer 
communities (developer.sun.com) in which more than 500 groups in 100 countries 
discuss Java technology and Sun products and there is the GapiDraw customer community 
(www.gapidraw.com) in which GapiDraw — a graphics platform for creating applications 
on handheld computers and Smartphones — is discussed by its international community of 
customers. In allowing for discussions, for testing and for product suggestions, these 
communities can be seen as enablers for customer involvement in psd. Below, a theoretical 
discussion is provided in order to create an understanding of virtual customer communities 
for customer knowledge creation and transformation processes important to psd.  

4.2 community use in psd 

Viewing software development as a dynamic and knowledge intensive activity (Clegg et al, 
1996; 1997) brings with it the understanding of customer knowledge, skill and expertise as 
central for the development process and outcome (Clegg et al, 1997).  As recognized by 
Keil and Carmel (1995) and Nambisan et al (1999), software development processes 



 
45 

benefit from customer involvement. Indeed, many of the best ideas for product 
improvements often come from customers (Finch, 1999; Von Hippel, 1986). With 
profound experience and detailed knowledge of specific software products customers can be 
seen as possessing situated knowledge of the software and the particular situations in which it 
is used. Hence, customers — and the knowledge they possess — constitute an important 
resource in the process of software development. 
 

While the understanding of customer knowledge as important to software development is 
not new, psd has long suffered from lack of customer involvement. Due to distant customers 
(Sawyer, 2000) and unknown customers (Grudin, 1991), packaged software customers are 
often identified when development ends and the product goes to market (Keil and Carmel, 
1995). Also, the physical distance between customers and developers entails logistical and 
economical problems that add to the challenge of involving customers in the development 
process (Nambisan, 2002). Instead, intermediaries and customer surrogates have been used 
and while the question is not whether customers should participate in the development 
process, it is a matter of how they should efficiently do this (Sawyer, 2000; Keil and Carmel, 
1995). In other words, while customer knowledge is recognized as critical to psd, existing 
literature does not deal with the challenge of designing organizational capabilities to cater for 
this. Below, community knowledge is proposed as a comprehensive term for understanding 
customers’ situated knowledge on particular software products (section 4.2.1). In order to 
build, elicit and exploit such knowledge, I propose the community knowledge use cycle as 
consisting of three iterative and interrelated processes (section 4.2.2). Finally, and as a result 
of my theoretical and empirical understanding of community knowledge and how such 
knowledge may be achieved in the context of psd, I present the community use model (section 
4.2.3). This model is a conceptual understanding representing external environmental 
conditions as well as internal knowledge transformation processes important for community-
based customer involvement in psd.   

4.2.1 Community knowledge 

As recognized by Orlikowski (2002), knowledge inherent in domain-specific customer 
communities is a type of « knowing-in-practice » that is socially accomplished and 
constituted and reconstituted in the everyday practices of which those people are part. 
Furthermore, this knowledge is not stable or enduring but rather a capability that is enacted 
in each moment of action and that emerges only through ongoing relationships of context, 
actions and structures. Thus, peoples’ interpretation and experience of doing « the same 
thing » fosters knowledge that can be seen as representative for a group of people, i.e. a 
community. In Wenger (1998), this is understood as « communities of practice » in which 
people engage in shared practices, i.e. joint enterprises, and where knowledge is manifested 
in the mutual engagement in this enterprise and in the shared repertoires of participants. 
According to Wenger (1998), communities of practice exist everywhere. They are the basic 
building blocks of any social system because they are “[…] the social « containers » of the 
competences that make up such a system” (Wenger, 2000, p. 229). Consequently, we all belong 
to communities of practice. By participating in these communities we define with each other 



 
46 

what constitutes knowledge in a given situation, and it is argued that participation in 
communities of practice is “[…] the very core of what makes us human beings capable of meaningful 
knowing” (Wenger, 2000, p. 229). Here, continuous negotiation and re-negotiation is 
necessary to form what can be referred to as community knowledge, and while this 
knowledge is often described as intra-organizational (Lave and Wenger, 1991) there is also 
the recognition of community knowledge as residing outside the boundaries of the firm (Lee 
and Cole, 2003). Likewise, Boland and Tenkasi (1995) use the label « communities of 
knowing » when describing the expertise of different knowledge groups both within the firm 
and between the firm and its surrounding environment.  
 

Wherever located, knowledge of particular communities is situated and associated to the 
everyday practice of which the community is part. As recognized by Brown and Duguid 
(2001), what we know always depend on — and reflect — the social context in which this 
knowledge is acquired and put into practice. In this thesis, this situated knowledge is 
referred to as community knowledge which is a type of knowledge that is highly context-
dependent and manifested in the practice of different social settings. Apart from community 
knowledge as existing within the practice of software firms, community knowledge in the 
context of psd should be understood as customers’ situated knowledge on particular 
software products. Hence, it reflects not only technical knowledge such as hardware and 
software configuration skills, but also the particular circumstances and purposes of software 
use. As such, community knowledge is enacted in the moment and emerges only through 
everyday software use.  
 

As noted by Wenger (1998), community knowledge belongs to the community in that it is a 
capability that emerges through communal negotiation and communal experience, in this 
case communal negotiation and experience of software use. However, despite belonging to 
the community, this does not imply that community knowledge cannot be supported and 
encouraged by organizational activities in order to become useful for the software firm. On 
the contrary, organizational use of community knowledge is critical in order to transform 
this knowledge into purposeful action, such as for example it innovation (Nambisan et al, 
1999), or as in this case, software improvements. In similar with Wenger’s (1998) 
conception of communities as independent and autonomous, but at the same time 
impressionable in terms of help and support, this thesis argues for community knowledge as 
practically relevant only when it is transferred from within the community to its surrounding 
environment, i.e. the software firm and its’ psd processes. If this transformation is achieved, 
i.e. if customers’ situated knowledge on particular software products is made accessible to 
the software firm, there is the potential for software improvements reflecting accurate 
customer needs and requirements. Also, successful transformation of community knowledge 
increases customer involvement in psd, which previously has been identified as difficult to 
attain (Sawyer, 2000). 

4.2.2 Community knowledge use 

As recognized above, situated knowledge as existing in distributed customer communities, is 
critical for improving packaged software products and processes. In using this knowledge, 



 
47 

software firms seek to benefit from collective idea generation among geographically distant 
customers (Nambisan, 2002). However, to succeed in this community knowledge use, i.e. 
in transforming community knowledge into software improvements, there are certain 
organizational processes that need to be undertaken. In this thesis, I propose a model of 
community knowledge use in which these processes are understood as three iterative and 
interrelated processes unfolding at the intersection between commercial software firm 
practices and voluntary community participation (figure 4).  

 
 

figure 4. The community knowledge use cycle  
(Holmström and Henfridsson, submitted) 

 

In my model, a software community is understood as a group of software customers sharing an 
interest in a particular software product (having common ties) and using a virtual community 
for interacting and coalesce around this interest (using virtual community infrastructure as a 
shared area for social interaction). In accordance with the understanding of customer 
knowledge, skill and expertise as central for the development process and outcome 
(Clegg et al, 1997), this model views software communities as resources in providing the 
software firm with valuable input in terms of, for example, graphic skills, hardware and 
software configuration skills and general game design skills. The software firm is portrayed 
as a profit oriented business, governed by industry forces such as time to market pressures, and 
cultural milieu characteristics such as the individualistic and entrepreneurial behavior as 



 
48 

expressed by software developers (Sawyer, 2000). As suggested in the model, creation and 
transformation of community knowledge takes place in the interplay between the software 
community and the software firm. This creation and further transformation of knowledge is 
understood as consisting of three iterative and interrelated processes: knowledge building, 
knowledge elicitation, and knowledge exploitation. For me, these distinctions are primarily 
analytical as to facilitate an understanding of the way in which community knowledge use 
can improve psd, and what repeated activities this entails for the software firm attempting to 
benefit from this knowledge. 
 

As can be seen in the model, I view each cycle of community knowledge use as consisting of 
three processes. First, there needs to be community knowledge to be transformed, i.e. there 
is the need for processes supporting customers in their creation and sharing of situated 
knowledge. In this thesis, this process is referred to as knowledge building, denoting the process 
of supporting software customers’ creation and sharing of situated product knowledge. In this, virtual 
communities work as enablers of knowledge creation and exchange between customers, and 
also between customers and developers within the software firm. In accordance with Boland 
and Tenkasi (1995), dynamic interaction within and between such communities is 
understood as important for new knowledge to emerge. However, and as illustrated in the 
model, knowledge building is understood as taking place mainly within the community of 
software customers. While the software firm can indeed support the initiation of this 
process, I view the building process itself as unfolding through software customers’ mutual 
engagement in specific software products. 
 

Second, while knowledge building activities support the creation and sharing of knowledge 
within customer communities, there need to be organizational activities for making sense of 
this knowledge, i.e. arrangements for sensemaking capabilities (Weick, 1979) within the 
software firm. In this thesis, this process is referred to as knowledge elicitation, denoting the 
process of making sense of customer-generated product suggestions. To succeed in this process there 
needs to be the appreciation and understanding of shared repertoires as expressed within the 
community. These repertoires include routines, words, tools, gestures, symbols, actions, 
and concepts that the community has produced or adopted in the course of its existence 
(Wenger 1998). In making sense of these styles by which community members express their 
forms of membership and ideas, there is the possibility for knowledge elicitation in terms of 
customer suggestions for software improvements. As illustrated in the model, knowledge 
elicitation takes place at the intersection of the community and the software firm. Here, the 
firm needs to understand and appreciate the repertoires as expressed by the community. 
Also, the community’s willingness to share its knowledge with firm representatives is 
critical. 
 

Third, there is the need for organizational implementation of the knowledge that has been 
built and elicited in previous processes. In my model, I refer to this process as knowledge 
exploitation, denoting the process of transforming customer suggestions into software improvements. 
To succeed in this, organizational resources for implementing customer suggestions are 
required as well as product development iterations that make possible for this 



 
49 

transformation. As illustrated in the model, knowledge exploitation takes place exclusively 
within the software firm in order to implement customer suggestions into software 
improvements. Analytically, the process of knowledge exploitation can be seen as the third 
and final process of community knowledge use. However, in practice the processes of 
knowledge building, knowledge elicitation and knowledge exploitation are ongoing and 
closely interrelated. Furthermore, I view all three of them as necessary for the successful 
creation, understanding and use of community knowledge and hence, as central for 
improving psd. 

4.3 the community use model 

In an attempt to portray the psd environment in which software communities and software 
firms are constituent parts in knowledge creation and transformation processes, I present the 
community use model (figure 5). This model is to be interpreted as a way of understanding 
community use in psd. For me, this understanding has emerged throughout my research 
process, and while components can be seen in the different phases of the research process, 
the model I propose here is the result of an emerging understanding of the research 
phenomenon. On the basis of theoretical as well as empirical insights, the model reflects the 
constituent parts and processes I perceive central for understanding community-based 
customer involvement in psd. Hence, the model should be seen as portraying the conditions 
under which community knowledge may be built, elicited and exploited in the psd 
environment, as well as how the results of these processes may affect future psd 
environments in terms of software use and software firms.  
 

In the model, distributed software use, i.e. situated knowledge as enacted in use by distributed 
software customers and software firm environment, i.e. characteristics imposed on the psd 
environment in terms of industry, software development, cultural milieu and teams, are 
seen as conditions affecting the virtual community (arrow a and arrow b) and the 
knowledge creation and transformation processes as conducted within this. Together, these 
conditions, and the actors within these, are what constitute the virtual community in terms 
of software customers and software firm representatives using the community infrastructure 
for creation and transformation of community knowledge, i.e. knowledge building, knowledge 
elicitation and knowledge exploitation (arrow c, arrow d and arrow e). If extracted 
from the community (arrow f), community knowledge serves as input for improving psd 
products and processes. Also, extracted community knowledge works as input in future 
software use (arrow g), i.e. new use situations due to new software products, and in 
future software firm environments (arrow h), i.e. new environmental conditions due to 
new software processes. 
 

In understanding community use as portrayed in the community use model, there is the 
possibility to see how community knowledge is created within — and extracted from — 
customer communities. In this way, the model reflects my understanding of community-based 
customer involvement in psd, intended to improve the difficulties with this as identified in 
research within the field (Sawyer, 2000; Grudin, 1991). 



 
50 

 
figure 5. The community use model 

5 Research contributions 
Many are those who have highlighted the problems associated with generalizing the results of 
interpretive research in general and interpretive case studies in particular (Patton, 2002; 
Walsham, 1995). It is argued that the results only illuminate a particular situation or a very 
small number of cases (Patton, 2002). However, it is also recognized that certain kinds of 
small samples are selected and studied precisely because they have broader relevance 



 
51 

(Mintzberg, 1979; Patton, 2002). The view that also particulars and single cases contribute 
to general knowledge is expressed by Stake (1978) in saying that: ”Generalization may not be 
all that despicable, but particularization does deserve praise. To know particulars fleetingly, of course, 
is to know next to nothing. What becomes useful understanding is a full and thorough knowledge of the 
particular, recognizing it also in new and foreign contexts” (Stake, 1978). Concurring with these 
authors, I believe that we should not be misled into too narrow a view of generalizations 
which readers can gain from interpretive case studies. In accordance with Walsham (1995), 
however, I do believe that my results here should be seen as tendencies rather than data for 
predicting future events. Indeed, while there will always be the attempt to benefit from 
customer involvement in terms of community use as reported on here, there will also be the 
situated challenges of software use, firm environments and community culture that will 
affect how this involvement can be achieved and hence, how community use can improve a 
specific psd process. Therefore, my results should be seen as descriptive rather than 
normative. For instance, the conceptual model that I present should be interpreted as a way 
of understanding community use rather than predicting the way in which this should be 
undertaken. 
 

In this section, I intend to summarize the contributions of this thesis. To do this, I have 
chosen to summarize the thesis papers (section 5.1) as each of these represents components of 
my emerging understanding of the research phenomenon. As a result of continuous iteration 
between empirical data and theoretical concepts, each paper elaborates on different aspects 
of the case, and together, they provide a comprehensive view of what I call community-
based customer involvement. Also, related papers are listed (section 5.2) as a result of my 
research process. Following the presentation of the thesis papers and the listing of related 
papers, I discuss my theoretical contribution in terms of the community use model (section 5.3) 
and what this conception entails for community-based customer involvement. 

5.1 thesis paper overview 

In exploring subsets of the research phenomenon outlined in this thesis, each individual 
thesis paper contributes to the recognition of community use for improving customer 
involvement in psd. As outlined below, different aspects of this theme have been elaborated 
upon in the papers and it is my intention that, taken together, these papers will provide the 
reader with a rich understanding of the particulars of this case. In summing up the empirical 
and theoretical insights from each paper there is the recognition of common themes that all 
contribute to what I term community-based customer involvement.  

5.1.1 Internetworking with customers — paper 1 

Henfridsson, O., and Holmström, H. (2002). Developing e-commerce in Internetworked 
Organizations — customer involvement throughout the value chain in the case of the online 
computer game Clusterball. data base — Special Issue on Developing e-Commerce 
Systems, Current Practices and State-of-the-Art. vol. 33, nr. 4, pp. 38-50. 
 

In building on empirical data from the first three phases of the study, i.e. the 
exploratory study, the in-depth study and the complementary data collection, 

Paper 1 



 
52 

this paper illustrates how network technologies allow for on-going interaction with 
customers and hence, for facilitating the involvement of these throughout the process of 
software development. Using Orlikowski’s (1999) notion of internetworked organizations, we 
show how internetworking with customers benefits the process of computer game 
development in terms of better responsiveness to changing customer behavior and, 
ultimately, in achieving better computer game design. In the paper, both historical and social 
background to the case is given and we learn about Daydream as an innovative software firm 
with high reaching visions on outsourcing parts of development, evaluation, distribution and 
marketing to those consuming the products. In achieving this, technologies such as a 
customer relationship management (crm) database and a virtual community are deployed, 
and in releasing Clusterball also as an online product, there is the recognition of how 
network technologies, and the internetworking as described by Orlikowski (1999), extend 
the notion of e-commerce by involving customers also in producing value. 
 

However, while presenting customer involvement as beneficial for knowledge intense 
organizations, there is the recognition of challenges associated with this. In the paper, two 
challenges that need to be addressed when involving customers as co-producers in the 
software development process are outlined. These challenges are customer role challenges, and 
sensemaking challenges. In terms of customer role, the paper notes how involving customers in 
all stages of the value-adding process entails an increasing customer dependency that can be 
difficult to handle in an internetworked environment characterized by low switching costs in 
the firm-customer relationship. In addition, sensemaking challenges, i.e. capabilities to 
transform customer input into meaningful software improvements, are identified as difficult 
to manage in the context of e-commerce that traditionally has been dominated by standards 
for enabling exchange of information between seller and buyer. In contrast to this, this paper 
calls for a contextual approach for involving customers and it is concluded that both challenges 
need to be further explored in future research. 

5.1.2 Customer knowledge in software development — paper 2  

Holmström, H. (2001). Virtual Communities as Platforms for Product Development — an 
interpretive case study of Customer Involvement in Online Game Development. In 
Proceedings of icis 2001, (22nd International Conference on Information Systems), December 16-
19, New Orleans, la, usa. 
 

Adding to the empirical insights from paper one, and particularly to the call 
for a contextual approach for involving customers in software development, 

this paper discusses the use of virtual communities for testing, distributing, redesigning and 
evaluating a computer game. Based on an understanding of virtual communities as 
infrastructures for improving customer relationships, this paper adheres to the case study 
research on software communities in which interaction becomes a prerequisite for satisfying 
also commercial needs. As in paper one, empirical data originates from the first three phases 
of the Daydream study and while customer involvement is still the focus, this paper 
specifically recognizes customer knowledge and how this knowledge may be utilized in each 
phase of the software development process. On the basis of empirical data, it is noted that 

Paper 2 



 
53 

many suggestions for software improvements come from customers and that customer 
knowledge is especially important in the process of testing and evaluating Clusterball. 
Realizing this, there are reasons to believe that customer knowledge proves particularly 
useful for improving and maintaining software. In exploring this further, this paper calls for 
research on (1) structure redefinition, i.e. the transformation of the software development 
process due to continuous customer involvement, and (2)  role definition, i.e. the 
understanding of customer involvement as transforming the role of customers. 

5.1.3 Customer role ambiguity — paper 3 

Holmström, H., and Henfridsson, O. (2002). Customer Role Ambiguity in Community 
Management. In Proceedings of hicss 35 (35th Hawaii International Conference on System Sciences), 
January 7-10, Big Island, Hawaii. 
 

As recognized in the first two papers of this thesis, there are challenges 
associated with the enhanced customer role that is discernible when involving 

customers throughout the value-adding process of software development. Hence, the first 
two papers emphasize the need for further research on this topic. To cater for this, the third 
paper further explores customer role ambiguity as a critical issue for successful community 
management. In defining community management as the activity of establishing, maintaining 
and re-producing virtual communities, this paper examines the delicate opportunity of 
having customers act in the role of producers by devoting time and energy to value-adding 
activities such as product development and marketing without monetary compensation; on 
the other hand, the customers act in the role of consumers of the value produced by these 
activities. However, while this opportunity is outlined as promising and relevant especially 
for firms aiming at the business-to-consumer market, it is associated with customer role 
ambiguities in terms of individual customers’ uncertainty about the expectations surrounding 
his or her role, or in terms of interference with goal accomplishment. On the basis of 
empirical examples, three different customer role ambiguities are identified: (1) role 
absorption, i.e. difficulties for Clusterball ambassadors to handle the role as both player and 
company representative, (2) business model violation, i.e. difficulties with having customers 
contribute to value-adding development activities without violating the commercial business 
model and the way in which profit was to be made, and (3) non-organizational network 
elements, i.e. difficulties with telling where information originated since parts of game 
diffusion was handled outside traditional organizational boundaries. In discussing these 
ambiguities and the difficulties they entail in relation classic dimensions of business 
organization, i.e. trust building, business modeling, and organizational transformation, we 
further explore how customer role ambiguity adds new dimensions to these traditional 
elements of business organization. In concluding the paper, we suggest that an understanding 
of customer role ambiguities and the consequences these entails for classic dimensions of 
business organization is critical for making product-centered communities a viable 
alternative to traditional software development.  

Paper 3 



 
54 

5.1.4 Distributed software development approaches — paper 4 

Holmström, H. (2003). The Distributed Nature of Software Development — a comparison 
of three development approaches. In Proceedings of pacis 2003 (Pacific Asia Conference on 
Information Systems), July 11-13, Adelaide, Australia. 
 

This paper broadens the scope of the thesis with the purpose of understanding 
the software development environment in which psd is conducted. Here, my 

focus is changes that are discernible in today’s software development environment. As 
suggested in the paper, software development is to a greater extent becoming a distributed 
process and there is the need for development approaches that take into consideration the 
distributed environment in which software developers and software customers communicate 
and coordinate their work. On the basis of empirical results from the first three phases of the 
Daydream study, as well as complementing data from a secondary analysis of two published 
case studies, three approaches to distributed software development are explored, i.e. global 
software development (gsd), open source software development (oss) and community-based software 
development (csd). In a comparison, it is suggested that these approaches embrace differences 
in terms of (1) nature of development approach, (2) communication structure, and (3) coordination 
mechanisms, where the csd approach is especially relevant since this is the approach 
discernible in the empirical case reported on in this thesis. In being recognized as an 
approach adopted by companies aiming to infuse oss features into traditional software 
development, csd is described as a hybrid approach characterized by formal and informal 
structures and suitable for traditional software firms willing to involve its customers in their 
psd processes. As concluded in this paper, the identification of these approaches and the 
differences they embrace is helpful for both researchers and practitioners for recognizing the 
different approaches to distributed software development that exist, and for creating an 
understanding of the types of development situations in which these can be successfully 
applied. 

5.1.5 Customer involvement in packaged software maintenance — paper 5 

Holmström, H., and Fitzgerald, B. (forthcoming). Virtual Community Use for Packaged 
Software Maintenance. Accepted for publication in the Journal of Organizational Computing and 
Electronic Commerce — Special Issue on « Virtual Communities and Personalization 
in e-commerce ».  
 

As recognized in the second paper, customer involvement — in terms of 
customer knowledge — is of great importance especially in the process of 

improving and maintaining packaged software. To further elaborate on this, this paper 
explores the specific use of customer knowledge for packaged software maintenance. On the 
basis of empirical data from all four phases of the study, i.e. the exploratory study, the in-
depth study, the complementary data collection and the follow-up study, the paper 
investigates to what extent and in what situations customer knowledge is reflected in 
different categories of software maintenance. Three categories of software maintenance are 
explored, i.e. corrective, adaptive and perfective maintenance, and it is concluded that customer 

Paper 4 

Paper 5 



 
55 

knowledge, as generated within the virtual community, is reflected mainly in the first two 
categories of maintenance. Here, customers contribute in the process of software fault repair 
and software adaptation. As can be seen in the different patch specifications that are outlined 
in the paper, customer suggestions are evident in each new version of the game. However, 
while customer knowledge is reflected also in the in the third category of software 
maintenance, i.e. perfective maintenance, this is also the category where strong in-house 
ideas as well as external requirements put restrictions to the extent to which customer 
suggestions are considered. As a result, customer knowledge is exploited for the purpose of 
corrective and adaptive packaged software maintenance, but only to a limited extent 
exploited for the purpose of perfective packaged software maintenance.  

5.1.6 Community knowledge for improving psd — paper 6 

Holmström, H., and Henfridsson, O. (submitted). Improving Packaged Software Through 
Online Community Knowledge. Submitted to an international is journal. 
 

The sixth and final paper uses empirical data from all four phases of the study 
in order to explore psd as a knowledge intensive activity unfolding at the 

intersection between commercial software firm practices and voluntary community 
participation. In bringing findings from previous papers together, we examine benefits and 
limits of community use in psd.  In the paper, the challenges as outlined in previous papers 
are further elaborated upon and on the basis of theoretical concepts as well as empirical 
insights, we present a conceptual model for understanding community use in psd. This 
model — the community use model — describes such use as three iterative and interrelated 
processes unfolding at the intersection between the software firm and the software 
community. These processes are (1) knowledge building, i.e. the process of supporting 
software customers’ creation and sharing of situated product knowledge, (2) knowledge 
elicitation, i.e. the process of making sense of customer-generated input and transforming 
this into software improvements, and (3) knowledge exploitation, i.e. the process of 
implementing elicited customer knowledge into software improvements. Furthermore, the 
paper highlights the inherent tension between the motivational structures of commercial 
software firms and those of voluntary community participation — a tension that is 
understood as a true challenge of psd. 

5.2 related papers 

In addition to the six thesis papers, there is a set of related papers. While these papers have 
not been included in the thesis, they have all been important to me and my work for many 
reasons. First, among these there are several iris (Information Research in Scandinavia) 
publications. The opportunity for me to present these papers in a constructive atmosphere at 
the iris conferences has been of great help to me as a PhD student. Not only has it given me 
experience in presenting my work, but also it has introduced me to the Scandinavian 
community of researchers within the field of is. As a yearly meeting-place for doctoral 
students as well as senior researchers, the iris conferences has introduced me to a large 
network of is researchers of which many have proven to be of great importance to my work. 

Paper 6 



 
56 

Second, many of these papers represent ideas that have been further elaborated upon in the 
thesis papers. In this, they have constituted an important initial step in my research and can 
be seen as the seeds to much of what have finally been selected as to represent my work as a 
PhD student. Finally, the related papers reflect my research process. While much of what 
has been included in the thesis reflect what was written during the recent years (2002-
2004), these related papers adhere to the understanding of this process as a longitudinal 
project during which much work was done also during the time for the empirical study 
(2000-2002). The related papers are listed below: 
 

(1): Holmström, H. (2000). Getting to know your customers: Implications of virtual 
communities in on-line commerce. In Proceedings of iris 23 (Information Research in 
Scandinavia), August 12-15, Uddevalla, Sweden. 
 

(2): Holmström, H. (2001). Virtual Communities as Mediators of Customer Expertise — 
an interpretive case study of interactive product development in on-line entertainment. In 
Proceedings of iris 24, (Information Research in Scandinavia), August 11-14, Ulvik, Hardanger, 
Norway. 
 

(3): Henfridsson, O., Holmström, H., and Hanseth, O. (2001). Better safe than Sorry? In 
search of an Internet business model in on-line entertainment, In Proceedings of IFIP 8.2 WG 
Conference, July 27-29, Boise, usa. 
 

(4): Holmström, H. (2002). Virtual Communities in Distributed Software Development. In 
Proceedings of iris 25, (Information Research in Scandinavia), August 10-13, Bautahøj, Denmark. 
 

(5): Holmström, H., and Henfridsson O. (2003). Towards a Community-based Approach to 
User Participation. In Proceedings of iris 26, (Information Research in Scandinavia), August 9-12, 
Porvoo, Finland. 
 

(6): Holmström, H. (2004) Virtual Communities for Software Maintenance. In Proceedings of 
hicss 37 (37th Hawaii International Conference on System Sciences), January 5-8, Big Island, 
Hawaii. 
 

(7): Holmström, H. (2004) Involving Distant Users in Packaged Software Development: A 
User Community Approach. In Proceedings of iris 27 (Information Research in Scandinavia), and 
presented as a « plenary paper » at the conference. August 14-17, Falkenberg, Sweden. 

5.3 the role of community use in psd 

As recognized in this thesis, psd is inherently different from custom is development. Here, 
software is targeted to a mass market of geographically distributed customers and while 
custom is benefit from well-established development methods, psd processes are regarded 
immature and less likely to adhere to sequential development with separated development 
phases (Sawyer, 2000). Above all, customer involvement is yet to gain momentum, and for 
the time being, many psd processes suffer from lack of customer involvement due to distant 
(Sawyer, 2000), and unknown (Grudin, 1991) customers. As recognized by Keil and Carmel 
(1995), there is a bewildering array of customer-developer links from which to chose, e.g., 



 
57 

support lines, surveys, user groups, marketing and sales and trade shows. However, since 
many of these are indirect links in which customers and developers communicate through 
intermediaries or customer surrogates, they are difficult to rely too hard upon. While there 
is not the question of whether customers should participate in the psd process, there is the 
question of how they should efficiently do this (Sawyer, 2000; Keil and Carmel, 1995). In an 
attempt to solving this problem, this thesis has explored the role of virtual communities for 
involving distributed customers in psd. As the motivation for this, there is my belief that 
better utilization of knowledge inherent in customer communities could benefit product 
development processes. As recognized by Orlikowski (2002), knowledge is grounded in 
what people do and what they experience in their every-day situations. In these situations, 
knowledge creation is an ongoing social accomplishment that is constituted and reconstituted 
only in everyday social practices and in everyday social dealings with like-minded people 
(Brown and Duguid, 2001). Furthermore, knowledge is something that is achieved not 
given, and continuous negotiation is therefore critical in achieving this (Wenger, 1998), as 
well as systems and processes for successful integration of this into the product development 
process (Nambisan, 2002). 
 

In accordance with this notion of knowledge and the way in which it is manifested in 
distributed customer communities, an important contribution of this thesis is a model for 
understanding community use (figure 5 in section 4.3). This model is a conceptual 
understanding representing environmental conditions as well as internal knowledge creation 
and transformation processes important for community-based customer involvement in psd. 
The community use model reflects the constituent parts and processes that I perceive central for 
understanding how community use can improve customer involvement in psd. Hence, the 
model should be seen as portraying the conditions under which community knowledge may 
be built, elicited and exploited in the psd environment, as well as how the results of these 
processes may affect future psd environments in terms of software use and software firms.  
In this model, distributed software use, i.e. situated product knowledge as enacted in use by 
software customers (for example graphic skills, hardware and software configuration skills 
and gaming skills), as well as software firm environment characteristics, i.e. conditions imposed 
on psd due to its industry, software development, cultural milieu and team characteristics 
work as input in the cyclical processes of knowledge building, knowledge elicitation and knowledge 
exploitation. Here, knowledge building refers to the process of supporting software 
customers’ creation and sharing of situated product knowledge. As understood in the 
community use model, this process takes place within the community of software customers 
and hence, is relatively independent of what a software firm does to promote it. While the 
software firm can indeed support and facilitate the initiation of this process (see e.g., the 
creation of the Clusterball website and the appointment of a community manager and 
Clusterball ambassadors in the Daydream case), I view the building process itself as 
unfolding through software customers’ mutual engagement in a specific software product. In 
other words, given the existence of interesting software, the process of knowledge building 
unfolds relatively independently as a result of community commitment and engagement. 
However, since knowledge building is seen as such an important impetus to the later 



 
58 

processes of knowledge elicitation and knowledge exploitation, it is vital that the software 
firm engages as facilitator in this process, realizing the opportunities that exist.  
 

Following the process of knowledge building, knowledge elicitation refers to the process of 
making sense of customer-generated product suggestions. Here, an appreciation and 
understanding of shared repertoires such as routines, words, tools, gestures, symbols, 
actions, and concepts as expressed within the community is needed. In making sense of the 
styles by which community members express their membership and ideas as community 
participants, there is the possibility for knowledge elicitation in terms of customer 
suggestions for software improvements. As understood in the community use model, 
knowledge elicitation takes place at the intersection of the software community and the 
software firm. Here, the software firm needs to develop a sensemaking capability for 
understanding and appreciating the repertoire as expressed by the community. Also, the 
process presupposes the community’s willingness to share its knowledge with firm 
representatives interested in eliciting this. While the knowledge elicitation process is 
suggested for making sense of customer suggestions, this can be done in many different 
ways. As experienced in the Daydream case, a simple form of knowledge elicitation may 
consist of monitoring the community forum for postings on software operability problems. 
Doing this, the community is used more or less as a bug-reporting system and the knowledge 
elicitation process is not so much of a sensemaking process but instead a straight forward 
process of collecting as many customer suggestions as possible for solving minor software 
problems. At a more advanced level, however, arrangements for internalizing (and in later 
processes implementing) more substantial customer feedback are necessary, indicating the 
need for a boundary spanning role, see e.g., the community manager role in the Daydream 
case, grounded in community participation as well as in firm practices.  
 

In concluding the community knowledge use cycle, knowledge exploitation refers to the 
process of transforming customer suggestions into software improvements. To succeed in 
this the software firm needs to develop organizational resources for dealing with customer 
suggestions and transforming these into software improvements. As understood in the 
community use model, knowledge exploitation takes place exclusively within the software 
firm in order for software developers to implement customer suggestions and hence, benefit 
from community knowledge in their software development processes. While the term  
« exploitation » may denote an instrumental process of commercial utilization of co- 
produced community knowledge, this is — from a software firm perspective — what often 
takes place. While community building processes intended to nurture, support and stimulate 
community culture are indeed important for software firms aiming for community-based 
customer involvement, commercial interests will almost always be prioritized in the later 
stages of community knowledge use. Therefore, knowledge building and elicitation 
processes may support the creation and transformation of customer suggestions, while these 
— in cases where they contradict commercial interests — will most probably be neglected 
by the software firm. While such prioritizing is evident in most development projects, it 
might be more difficult to explain to devoted community members looking for their 
suggestions to be implemented in the software as encouraged in the knowledge building and 



 
59 

elicitation processes. Clearly, knowledge exploitation is the most contentious process within 
the community knowledge use cycle and as recognized in the Daydream case, there is the 
delicate situation of having customers as both producers and consumers of value. 
 

In understanding knowledge building, knowledge elicitation and knowledge exploitation as 
processes unfolding at the intersection between the software firm and the software 
community, my research recognizes the different motivational structures of commercial 
software firms and those of voluntary community participation (paper 6). In the software 
community, we find software customers interested in a particular software product using the 
community for sharing knowledge around this product. Here, social interaction around a 
common interest is of primary interest, and the virtual community infrastructure is used as 
an enabler for social interaction. In the software firm, on the other hand, there are profit 
oriented interests in an environment characterized by tight time to market pressures. Also, 
software developers are known as individualistic and entrepreneurial (Sawyer, 2000), using 
virtual community infrastructure for exploiting knowledge inherent in the customer 
community. While this difference in motivation might indicate a tension between the two, 
the understanding of knowledge as enacted in moments of action and emerging only through 
ongoing relationships of context (Orlikowski, 2002), makes them deeply dependant on each 
other, as well as central to the context of psd. The result of these processes is reflected in 
psd products in terms of new software releases, i.e. software improvements, and in psd 
processes in terms of new ways of working, i.e. re-organization of development activities. 
Furthermore, the model conceptualizes the results of knowledge exploitation as cyclical in 
that its output, i.e. psd product and process improvements, are understood as affecting 
future distributed software use (e.g., future product knowledge creation among distributed 
customers) and future software firm environments (e.g., future firm conditions as reflected 
in market share, development methods, organizational structures and formation of project 
groups). In this, the model portrays community use as a continuously ongoing interplay between 
the software firm and the software community in which knowledge creation and 
transformation processes are a result of commercial firm interests as well as voluntarily 
community participation. 
 

So, in understanding community use as consisting of knowledge building, knowledge 
elicitation and knowledge exploitation, and as taking place in a development environment 
influenced by commercial ideals as well as more altruistic community ideals — what is the 
role of virtual communities for improving psd? To answer this question, we need to return 
to the research phenomenon outlined in the beginning of this thesis. Here, I urge for 
exploring the challenges associated with involving customers in psd. While there are indeed 
approaches for involving customers, these are seen as insufficient and difficult to apply in the 
psd environment characterized by distant (Sawyer, 2000) and unknown (Grudin, 1991) 
customers. In meeting these challenges, I suggest virtual community use as a viable 
approach. In understanding virtual communities as existing at the intersection of technical 
and social systems (Stanoevska-Slabeva and Schmidt, 2001), I suggest that a community-
based approach to customer involvement involves the: 
 



 
60 

(1) recognition of virtual communities for bringing distributed customers and customer 
knowledge together for the purpose of customer involvement in distributed development 
environments, i.e. an understanding of the technical aspects of communities, and the… 
 

(2) recognition of virtual communities for establishing, maintaining and reproducing 
relationships important for the purpose of knowledge creation and transformation processes, 
i.e. an understanding of the social aspects of communities. 
 

In understanding the community-based approach as consisting of both technical and social 
aspects, there is the possibility to see how this approach might be able to address the 
research phenomenon in that it embraces: 
 

(1) technical aspects catering for the distributed development environment and the 
challenges this introduces for customer involvement, i.e. the difficulty identified with having 
distant customers (Sawyer, 2002), and… 
 

(2) social aspects catering for the community-building process and the challenges this 
introduces for customer-developer relationships to be established, i.e. the difficulty 
identified with having unknown customers (Grudin, 1991). 

5.4 opportunities and challenges with community use 

In facilitating an understanding of how community use can improve psd, and in recognizing 
the cyclical processes of knowledge building, knowledge elicitation and knowledge 
exploitation, it is my intention that the community use model contributes to an enhanced 
appreciation of community use in psd. However, I have come to understand that the 
phenomenon this model depicts is far from simple but instead associated with complexities 
in terms of opportunities and challenges affecting the way in which it will be interpreted and 
hence, understood. Below, the opportunities and challenges that I encountered in my 
research are outlined, categorized in accordance with the knowledge creation and 
transformation processes as identified in the community use model, i.e. knowledge building, 
knowledge elicitation and knowledge exploitation. 
 

• Internetworking opportunities (paper 1 and paper 2). One immediate opportunity in the 
process of knowledge building is the possibility to use the community infrastructure for 
internetworking with distributed customers. In facilitating connectivity between software 
customers and software developers, virtual communities can be seen as an efficient means in 
avoiding filtering or distortion of knowledge that may occur when using intermediaries or 
customer surrogates as customer representatives. As a result of this, community-based 
knowledge building makes possible for the software firm to establish a direct link to its 
distributed customer community. While community knowledge is something that resides 
naturally within a community, the process of knowledge building contributes to the view of 
knowledge co-creation as central for a new customer—producer relationship as is evident in 
many product development industries of today. 
 



 
61 

• Enhanced customer role opportunities (paper 3 and paper 4). The knowledge building process 
reflects an enhanced customer role in which customers are appreciated not only as 
consumers of value but also as producers of value. Recognizing the knowledge inherent in 
the customer community, software customers are seen as co-producers of knowledge 
important for software development. As a result of knowledge building processes, 
customers contribute to a variety of development activities including, for example, 
opportunities to make design choices, prioritization of product features, concept testing and 
the possibility to influence product customization. Thus, community-based knowledge 
building makes possible for expanding the role of customers to become also producers of 
knowledge in psd processes. 
 

• Customer role challenges (paper 1 and paper 3). In association to the enhanced customer 
role, customer role challenges are discernible. In taking the role as co-producers of 
knowledge, my research shows customers as increasing their control and influence on the 
psd process and hence, as challenging the traditional producer-consumer relationship. As a 
result of this, community-based knowledge building brings with it customer dependency 
leading to project uncertainty. Due to low switching costs and the fear of having customers 
abdicate their role as knowledge co-creators, thereby disrupting the development process, 
knowledge building needs to be carefully undertaken. Also, customer role ambiguity might 
arise, referring to the uncertainty customers and vendors might feel about the expectations 
surrounding the enhanced customer role as experienced in the process of community-based 
knowledge building. 
 

• Contextual approach opportunities (paper 2). Community-based knowledge elicitation allows 
for a contextual approach in which the interpretation of knowledge is not dominated by 
standards but instead on situated capabilities reflecting in-house development visions as well 
as current business needs. For this purpose, my research shows customer interaction as 
pivotal to the knowledge elicitation process. In providing functionality such as electronic 
forums and chats, community technology allows for a setting in which knowledge can be 
informally elicited in a way that has been found more beneficial than formal knowledge 
elicitation provided by, for example, structured inquiry tools. 
 

• Sensemaking challenges (paper 1 and paper 6). In the process of knowledge elicitation, 
sensemaking challenges are evident. While customers might indeed be willing to share their 
knowledge there is the need for a sensemaking capability within the software firm, attentive 
to the knowledge built in light of perceived business needs. In my research, this sensemaking 
capability was expressed in terms of new organizational roles, e.g., the community manager 
role. However, while such arrangements are indeed useful, the risk of capturing only a 
fraction of the knowledge built due to, for example, individual preferences and prerequisites 
is evident. Also, this process entails the need for selecting representative customer 
suggestions, i.e., the software firm’s ability to make sense of a wide range of customer input 
for exploitation of only competitive suggestions. 
 

• Maintenance opportunities (paper 5). For the purpose of exploitation, my research shows 
community knowledge as particularly useful for software maintenance. Using the tripartite 



 
62 

typology of corrective, adaptive, and perfective maintenance, exploitation of community 
knowledge proves especially valuable for the categories of corrective and adaptive 
maintenance. As illustrated in the Daydream case, the community allowed for customers to 
be efficiently involved in troubleshooting and in software fault repair. As a result of this, 
customers were involved in the knowledge exploitation process as accomplished by the 
software firm also after the product was introduced to the market.  
 

• Implementation challenges (paper 5 and paper 6). In relation to exploitation of community 
knowledge, implementation challenges are explicit. While being exploited in both 
corrective and adaptive software maintenance, customer suggestions are more difficult to 
implement in the category of perfective maintenance. Despite customer input, e.g., 
customer requests and suggestions, these are often ignored contrary to external 
requirements or in-house ideas. As a result of this, knowledge exploitation brings with it the 
need for clarifying development objectives, i.e., the software firm’s ability to communicate 
to what extent community knowledge is considered in each category of software 
maintenance. 

6 Conclusions 
In viewing community-based customer involvement as an approach for solving the 
difficulties with having distant and unknown customers, my research portrays interesting 
features of this approach that will influence our general perception of psd practice. I suggest 
that the approach I outline will alter the way in which we understand and reflect upon psd 
products and processes. First, my research depicts community-based customer involvement 
as a hybrid between traditional software development and open source software (oss) 
development. The oss model is a new way to develop software and in this, a model that is 
setting the stage for a structural change in the software development industry. However, 
while there are significant benefits of oss development, there is not always the possibility for 
traditional software firms to deploy this model of distributed development. Most often, for-
profit organizations, such as for example software vendors, have difficulties in building 
business models around the oss paradigm (Sharma et al, 2002). Instead, there is the 
challenge of finding ways to incorporate aspects of the community culture into traditional 
software development processes and in this way infuse characteristics of the oss paradigm 
into traditional software development. In my view, this is the incentive of the community-
based approach that I present. As can be seen in my research, community-based customer 
involvement allows for reduced development time (due to customers helping the developers 
with bug tracing and bug correcting activities), improved quality (due to community 
criticism and feedback), reduced cost (due to outsourcing parts of development on 
customers), increased developer loyalty (due to the view of customers as not only 
consumers but also producers of value), and increased developer talent pool (due to 
continuous enrolment of new community members). These characteristics can all be found 
within the oss paradigm, and what is interesting here is that — in adopting a community-
based approach to customer involvement — these characteristics are transferable to 



 
63 

traditional software firm settings as well. As illustrated in the Daydream case, the 
community-based approach allows for a traditional software firm, in this case Daydream, to 
infuse characteristics found in oss development into its psd process and in this way, foster an 
environment similar to oss. In other words, the community-based approach suggests that 
traditional software firms can reap many of the advantages as experienced within oss 
development without ever deploying this model. For example, organizations like Hewlett 
Packard, ibm, Intel, Sun Microsystems, etc., have already taken steps to use communities as 
a way to incorporate elements of oss into their software development processes. This, I 
think, indicates the belief in communities as beneficial for involving customers in the 
development process of packaged software products and this is also what can be seen in the 
research I report on here.  
 

Furthermore, my research highlights the commercial interest in community use. While 
there are voices emphasizing the social fabric of community (Schwen and Hara, 2003), 
recognizing the informal, nonhierarchical and social frame for considering these, the 
utilization and exploitation of community knowledge, as reported on here, suggests a kind of 
detached relationship to the complex practices as evolving within a community in the course 
of its time. As in oss development where it might be hard to maintain the delicate balance 
between self-deprecation and modesty and the egoistic motivations that inevitably arise in a 
reputation-based culture, community-based customer involvement implies a struggle with 
balancing between having customers act in the role of producers by devoting time and 
energy to value-adding activities without any monetary compensation, and at the same time, 
act in the role of consumers on which profit is to be made. However, and in similar with oss 
culture, the community culture as experienced in the Daydream case is undeniable a 
reputation-based one, attracting individuals aiming for status and recognition from those 
within the community. In this, it seems to me that commercial exploitation of community 
knowledge is not that controversial. Rather, community members rush from seeing their 
suggestions being implemented in the software and one of the most important incentives for 
community membership is the ego gratification as experienced when having contributions 
acknowledged by software firm representatives. As in oss, this phenomenon can be 
described as an attention economy (Bergquist and Ljungberg, 2001), revealing exploitation 
of community knowledge as appreciated rather than controversial. 
 

Finally, my research portrays a new way of looking at software development in general and 
software maintenance in particular. Traditionally, the conception of software development 
and maintenance is that of tedious and time-consuming processes. Thus, the opportunity to 
have parts of development outsourced to customers is indeed attempting. In this, the 
community-based approach I suggest bodes well as a model. Furthermore, despite research 
which suggests that software maintenance consumes between 40 to 75 percent of the total 
resources in software development (see e.g. Alkhatib, 1992; Lientz and Swanson, 1980), 
maintenance appears not to be highly regarded by software developers. As can be seen in my 
research, however, software maintenance is undertaken as a mutual commitment between 
software customers and software developers. While customer-developer relations in 
traditional software maintenance often become frayed, the positive atmosphere as reported 



 
64 

on here makes community-based customer involvement a prevailing idea. However, the 
word « maintenance » can be misleading when referring to adaptive changes such as those 
reported on here. While « maintenance » gives the impression of software as degraded and 
in need to be refurbished to its original condition, this is not true for the type of software I 
have studied. Software products, such as a computer game, do not degrade. Instead, they 
remain the same, while the environment and equipment around the product continuously 
changes. Thus, adaptive maintenance, as experienced in the Daydream case, is really a 
process of upgrading or improving the software to meet the needs of customers and 
surrounding product environments. Hence, in the case of community-based customer 
involvement I report on, software improvement is a better word for describing what has 
traditionally been referred to as software maintenance, an idea I suspect is valid also when 
referring to the life cycles of other packaged software products. 
 

To conclude, community-based customer involvement can be seen as a comprehensive 
approach for understanding community knowledge as critical for improving psd. It is my 
suggestion that, in involving customers and their situated knowledge in psd, both products 
and processes will improve. However, this is a complex process consisting of knowledge 
creation and transformation processes taking place at the intersection of software 
communities and software firms. As can be seen in my research, these parties are closely 
interrelated and while driven by different motivational structures, they are indeed 
interdependent for the successful completion of community knowledge use. In recognizing 
external conditions as well as internal processes important for community use, it is my belief 
that the community-based approach I present will not only add to the question of whether 
customers should be involved in psd but, in conceptualizing the role of virtual communities, 
add to the question of how they could be involved. 

References 
Abrahamsson, P., Warsta, J., Siponen, M., and Ronkainen, J. (2003). New Directions on 

Agile Methods: a comparative analysis. In Proceedings of the 25th International 
Conference on Software Engineering, Portland, Oregon, pp. 244-254. 

Abts, C. (2002) cots-Based Systems (cbs) Functional Density — A Heuristic for Better cbs 
Design. In Proceedings of cots-Based Software Systems, First International Conference, 
iccbbs 2002, Orlando, fl, usa, February 4-6. 

Alkhatib, G. (1992). The maintenance problem of application software, Journal of Software 
Maintenance: Research and Practice, vol.1, pp-83-104. 

Archer, S. (1988). Qualitative research and the epistemological problems of the 
management disciplines. In Competitiveness and the Management Process, Pettigrew, 
A. (ed.), pp. 265-302. Basil Blackwell, Oxford. 

Avison, D.E., and Fitzgerald, G. (2003) Information Systems Development: Methodologies, 
Techniques and Tools. McGraw Hill: London. 



 
65 

Avison, D.E. and Taylor, V. (1997). Information systems development methodologies: a 
classification according to problem situation. Journal of Information Technology. vol. 
12, pp. 73-81. 

Avison, D.E., and Wood-Harper, A.T. (1986). Multiview — An Exploration in 
Information Systems Development. Australian Computer Journal 18(4), pp. 174-179. 

Baskerville, R., and Pries Heje, J. (2001). A Multiple-Theory Analysis of a Diffusion of 
Information Technology Case. Information Systems Journal, Volume 11, pp. 1-32. 
Blackwell. 

Barki, H. and Hartwick, J. (1994). Measuring user participation, user involvement and user 
attitude. mis Quarterly, pp. 59-82. 

Barnes, B. (1983). On the conventional character of knowledge and cognition. In K.D. 
Knorr-Cetina and M. Mulkay (eds.), Science Observed, London, uk: Sage Publications. 

Baym, N. (1998). The Emergence of On-line Community. In Jones, S. (ed.) CyberSociety 2.0: 
Revisiting computer-mediated communication and community (pp. 35-68), Newbury Park, 
ca: Sage.  

Beyer, H., and Holtzblatt, K. (1998). Contextual Design; Defining Customer-Centered Systems. 
Academic Press: London. 

Boland, R.J., and Tenkasi, R.V. (1995). Perspective Making and Perspective Taking in 
Communities of Knowing. Organization Science, vol. 6(4), pp. 350-372. 

Bostrom, R.P., and Heinen, J.S. (1977). mis Problems and Failures: A Socio-Technical 
Perspective. mis Quarterly, September. 

Butler, B.S. (2001). Membership size, communication activity and sustainability: a resource-
based model of online social structures, Information Systems Research, vol. 12, no. 
4, pp. 346-362. 

Carmel, E. (1997). American Hegemony in Packaged Software Trade and the « Culture of 
Software ». The Information Society, vol. 13, pp. 125-142. 

Carmel, E., and Becker, S. (1995). A process model for packaged software development. 
ieee Transactions on Engineering Management, vol. 41(5), pp. 50-61. 

Checkland, P. (1981). Systems Thinking, Systems Practice. Wiley, Chichester. 

Clegg, C.W., Waterson, P.E., and Axtell, C.M. (1996). Software development: 
knowledge-intensive work organizations. Behaviour & Information Technology, vol. 
15(4), pp. 237-249. 

Clegg, C.W., Waterson, P.E., and Axtell, C.M. (1997). Software development: some 
critical views. Behaviour & Information Technology, vol. 16(6), pp. 359-362. 

Curtis, P. (1992). Mudding: Social Phenomena in Text-Based Virtual Realities. Intertek 3.3 
(winter), pp.26-34. 



 
66 

Dibbel, J. (1998). My tiny life — crime and passion in a virtual world. New York: Henry Holt & 
co. 

Divitini et al. (1998). Internet-based Groupware for User Participation in Product 
Development.  cscw’ 98/pdc’ 98 Workshop Proceedings, Seattle, usa. 

Dubé, L. (1998). Teams in packaged software development. Information Technology & People, 
vol. 11(1), pp. 36-61. 

Ehn, P. (1993). Scandinavian Design: On Participating and skill. In D. Schuler and A. 
Namioka (eds.). Participatory Design: Principles and practices. Hillsdale, New Jersey: 
Lawrence Erlbaum Associates, pp. 41-77. 

Feller, J. & Fitzgerald, B. (2002). Understanding Open Source Software Development. Addison-
Wesley, London. 

Fernback, J.  (1997). The individual within the collective:  Virtual ideology and the 
realization of collective principles.  In S. Jones (ed.), Virtual Culture:  Identity and 
Communication in Cybersociety, (pp. 36-54).  London:  Sage. 

Finch, B.J. (1999). Internet discussions as a source for consumer product customer 
involvement and quality information: an exploratory study. Journal of Operations 
Management, vol. 17, pp. 535-556. 

Fitzgerald, B. (1996). Formalized systems development methodologies: a critical 
perspective. Information Systems Journal, vol. 6(1), pp. 3-23. 

Fitzgerald, B. (1997). A preliminary investigation of rad in Practice,. In Wood-Harper, A. 
T., Jayaratna, N., and Wood, J. (eds.), Methodologies for developing and managing 
Emerging Technology Bases Information Systems, Springer-Verlag, uk, pp. 777-87. 

Flaatten, P., McCubbrey, D., O’Riordan, P., and Burgess, K. (1989). Foundations of 
Business Systems, Chicago: Dryden Press. 

Franz. C., R. and Robey. D. (1986). Organizational context, user involvement and the 
usefulness of information systems. Decision Sciences (17), July, pp.329-356. 

Fukushima, T. and Martin, D. (1998). smart Ideas as a tool for user participation in product 
development. In Divitini et al. 1998, cscw’ 98/pdc’ 98 Workshop Proceedings, Seattle, 
usa. 

Gallivan, M. (2001). Striking a balance between trust and control in a virtual organization: a 
content analysis of open source software case studies. Information Systems Journal, 
11, pp. 277-304. 

Gillham, B. (2000). Case study research methods. Continuum: New York. 

Greenbaum, J., and Halskov Madsen, K. (1993). Small Changes: Starting a participatory 
design process by giving participants a voice. In D. Schuler and A. Namioka (eds.). 
Participatory Design: Principles and practices. Hillsdale, New Jersey: Lawrence Erlbaum 
Associates, pp. 289-299. 



 
67 

Greenbaum, J., and Kyng, M. (1991). Design at Work. Cooperative design of computer systems. 
Hillsdale N.J. Lawrence Erlbaum. 

Grudin, J. (1991). Interactive systems: Bridging the gaps between developers and users. ieee 
Computer 24(4), pp. 59-69. 

Grudin, J. (1993). Obstacles to participatory design in large product development 
organizations. . In D. Schuler and A. Namioka (eds.). Participatory Design: Principles 
and practices. Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 99-123. 

Gronbaek, K., Grudin, J., Bodker, S., and Bannon, L. (1993). Achieving Cooperative 
System Design: Shifting From a Product to a Process Focus. In Schuler, D., and 
Namioka, A. (eds.), Participatory Design: Principles and practices. Lawrence Erlbaum 
Associates: New Jersey. 

Hagel, J., and Armstrong, A. (1997). Net Gain — expanding markets through virtual 
communities. Boston, ma: Harvard Business School Press. 

Hamman, R.B. (2001). Computer Networks Linking Network Communities. In Werry, C., 
and Mowbray, M. (eds.). Online Communities. Prentice Hall: London. 

Henfridsson, O. (1999). it-adaptation as sensemaking — inventing new meaning for technology in 
organizations. Doctoral thesis, Department of Informatics, Umeå University, Sweden. 

Henson, K. and Hughes, C. (1991) A two-dimensional approach to systems development. 
Journal of Information Systems Management, pp. 35-43. 

Hillery, G.A. (1955). Definitions of Community: Areas of Agreement. Rural Sociology, vol. 
20, pp. 111-123. 

Holtzblatt, K., and Jones, S. (1993). Contextual Inquiry: A Participatory Technique for 
System Design. In Schuler, D., and Namioka, A. (eds.), Participatory Design: Principles 
and practices. Lawrence Erlbaum Associates: New Jersey. 

Hummel, J., and Lechner, U. (2001). Communities — The role of technology. In 
Proceedings of the 9th European Conference on Information Systems. 2001. 

Ives, B. and Olson. M. H. (1984). User involvement and mis success: A review of research. 
Management Science (30:5), May, pp. 586-603. 

Jones, J.C. (1988). Softecnica. In Thackara, J. (ed.) Design after modernism: Beyond the 
object, pp. 216-226. London: Thames & Hudson. 

Jorgensen, N. (2001). Putting it all in the trunk: incremental software development in the 
Freebsd open source project. Information Systems Journal, 11, pp. 321-336. 

Keil, M., and Carmel, E. (1995). Customer-Developer Links in Software Development. 
Communications of the acm, vol. 38, no. 5. 

Kim, A.J. (2000). Community Building on the Web. Peachpit Press: Berkeley, ca. 



 
68 

Klein, H. K., & Myers, M. D. (1999) A Set of Principles for Conducting and Evaluating 
Interpretive Field Studies in Information Systems, mis Quarterly 23(1), pp. 67-93. 

Klein, H. K, and Myers, M. D. (2001). Classification Scheme for Interpretive Research in 
Information Systems. In Trauth, E. M (ed.). Qualitative Research in is: Issues and Trends. 
Idea Group Publishing: London. 

Kvale, S. (1987). Validity in the Qualitative Research Interview. Methods: A Journal for Human 
Science, 1 (2, winter): 37-72. 

Lave, J., and Wenger, E. (1991). Situated learning — legitimate peripheral participation. 
Cambridge University Press: Cambridge. 

Lee, A.S., Baskerville, R.L., Libeneau, J. and Myers, M.D. (1995). Judging Qualitative 
Research in Information Systems: Criteria for Accepting and Rejecting Manuscripts. 
In Proceedings of the Sixteenth International Conference on Information Systems (icis), J.L. De 
Gross, G. Ariav, C. Beath, R. Hoyer, and C. Kemerer (eds.), Amsterdam, December 
10-13, 1995, p. 367. 

Lee, G.K., and Cole, R.E. (2003). From a Firm-Based to a Community-based Model of 
Knowledge Creation: The Case of the Linux Kernel Development. Organization 
Science, vol. 14(6), pp. 633-649. 

Lechner, U., and Schmid, B. (2001). Communities — Business Models and System 
Architectures: The Blueprint of mp3.com, Napster and Gnutella Revisited. In 
Proceedings of Hawaii International Conference on System Sciences (hicss), Maui, January 
3-6. 

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Addison-Wesley: 
Reading, ma. 

Ljungberg, J. (2000). Open Source as a Model for Organizing. In Proceedings of European 
Conference on Information Systems, Vienna, July 3-5, 2000. 

Markus, M.L. (1983). Power, politics and mis Implementation. Communications of the acm, 
vol. 26(6), pp. 430-444. 

Markus, M.L. (1997). The Qualitative Difference in Information Systems research and 
practice. In A.S. Lee, J. Liebenau, and J.I. DeGross (eds.), Information Systems and 
Qualitative Research, pp. 11-27. Chapman & Hall: London. 

McDonough, E., F., Kahn, K., B., & Barczak, G. (2001). An investigation of the use of 
global, virtual and collocated new product development teams. Journal of Product 
Innovation Management, 18, pp. 110-120. 

Mingers, J. (1984). Subjectivism and soft systems methodology — a critique. Journal of 
Applied Systems Analysis, 11, pp. 85-103. 

Mintzberg, H. (1979). An Emerging Strategy of « Direct » Research. Administrative Science 
Quarterly, Volume 24, Issue 4, Qualitative Methodology (Dec.), pp. 582-589. 



 
69 

Mockus, A., Fielding R., and Herbsleb, J.D. (2002). Two Case Studies of Open Source 
Software Development: Apache and Mozilla. acm Transactions on Software Engineering 
and Methodology, vol. 11, no. 3, pp. 309-346. 

Moon, J.Y and Sproull, L. (2000). Essence of distributed work: the case of the Linux 
Kernel. First Monday, http:⁄⁄www.first monday .org ⁄issue5-11⁄moon⁄index.html 

Mumford, E. (1983). Designing Human Systems. Manchester Business School, Manchester. 

Mumford, E. (1995). Effective Requirements Analysis and Systems Design: The ethics Method. 
Macmillan: Basingstoke. 

Mynatt, E.D., Adler, M., Ito, and O’ Day, V.L. (1997). Design for network communities. 
In Proceedings for the acm sigchi Conference on Human Factors in Computer Systems, 1997. 

Nambisan, S. (2002). Designing virtual customer environments for new product 
development: toward a theory. Academy of Management Review. vol. 27(3), pp. 
392-413. 

Nambisan, S., Agarwal, R., and Tanniru, M. (1999). Organizational Mechanisms for 
Enhancing User Innovation in Information Technology. mis Quarterly, vol. 23, no. 
3, pp. 365-395. 

Namioka, A., & Shuler, D. (1993). Participatory Design; Principles and Practices. Hillsdale: New 
Jersey. 

Nandhakumar, J. and Avison, D.E. (1999). The fiction of methodological development: a 
field study of information systems development. Information Technology & People, vol. 
12 (2), pp. 176-191. 

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: a roadmap. In 
Proceedings of International Conference on Software Engineering (icse), 4-11 June 2000, 
Limerick, Ireland. 

Orlikowski, W. (1992). The Duality of Technology: Rethinking the Concept of Technology 
in Organizations, Organization Science,vol. 3(3), pp. 398-427. 

Orlikowski, W. (2002). Knowing in Practice: Enacting a Collective Capability in 
Distributed Organizing. Organization Science, vol. 13 (3). 

Orlikowski, W.J. & Baroudi, J.J. Studying Information Technology in Organizations: 
Research Approaches and Assumptions, Information Systems Research (2) 1991, pp. 
1-28. 

Pargman, D. (2000). Code begets community — on social and technical aspects of managing a 
virtual community. Doctoral thesis, Linköping University, Sweden. 

Patton, M.Q. (2002). Qualitative Research and Evaluation Methods. sage Publications: ca. 

Preece, J. (2000). Online Communities: Designing Usability, Supporting Sociability. Chichester, 
uk: John Wiley & Sons.  



 
70 

Rheingold, H. (1994). The virtual community: Homesteading on the electronic frontier. Addison-
Wesley; Reading, ma.  

Sawyer, S. (2000). Packaged software: implications of the differences from custom 
approaches to software development. European Journal of Information Systems, vol. 
9, pp. 47-58. 

Sawyer, S. (2001). A market-based perspective on information systems development. 
Communications of the acm, vol. 44(11), pp. 97-102. 

Schneidewind, N (1987). The state of software maintenance, ieee Transactions on Software 
Engineering, vol.13, no.3, pp.303-310. 

Sharma, S., Sugumaran, V., and Rajagopalan, B. (2001). A framework for creating hybrid-
open source software communities. Information Systems Journal, 12, pp.7-25.  

Smith, M., A. and Kollock, P. (1999). Communities in Cyberspace. Routledge: New York.  

Sommerville, I. (2001). Software Engineering. Addison-Wesley: Harlow, uk. 

Stanoevska-Slabeva, K., and Schmid. (2001). A typology of online communities and 
community supporting platforms. In Proceedings of the 34th Hawaii International 
Conference on Systems Sciences. 

Stake, R.E. (1978). The Case Study Method in a Social Inquiry. Educational Researcher, 7: 
5-8. 

Suchman, L. (1987). Plans and situated actions: The problem of human-machine communications. 
Cambridge, uk: Cambridge. 

Tait, P. and Vessey, I. (1988). The effect of user involvement on system success: a 
contingency approach. mis Quarterly, 1988. 

Tuikka, T. and Salmela, M. (1998). WebShaman: Collaborative Virtual Prototyping in the 
Worl Wide Web: Supporting Internet-bases User-centered Design. In Divitini et al. 
1998, cscw’ 98/pdc’ 98 Workshop Proceedings, Seattle, usa. 

Von Hippel, E. (1986). Lead Users: A Source of Novel Product Concepts. Management 
Science, 32(7), pp. 791-805. 

Walsham, G. (1993). Interpreting Information Systems in Organizations. Chichester: John Wiley 
& Sons. 

Walsham, G. (1995). Interpretive case studies in is research: nature and method. European 
Journal of Information Systems, vol. 4, no. 2, pp. 74-81. 

Weick, K.E. (1979). The Social Phsycology of organizing. New York: McGraw Hill. 

Wellman, B., and Gulia, M. (1999). Virtual communities as communities: Net surfers don’t 
ride alone. In Smith, M. A., and Kollock, P. (eds.) Communities in Cyberspace. 
Routledge: London, p. 167-195. 



 
71 

Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity. Cambridge: 
Cambridge University Press. 

Wenger, E. (2000). Communities of Practice and Social Learning Systems. Organization. 
Vol, 7(2), pp. 225-246. 

Whittaker, S., Issacs, E., and O’Day, V. (1997). Widening the Net. Workshop report on 
the theory and practice of physical and network communities. sigchi Bulletin, 
29(3), pp. 27-30. 

Yin, R.K. (2003). Case study research — design and methods. Sage Publications: London. 



 
72 



 
73 

Developing e-commerce in internetworked organizations: a 
case of customer involvement throughout the computer 
gaming value chain 
 
 

Ola Henfridsson 
Viktoria Institute • Gothenburg • Sweden 

 

Helena Holmström 
Umeå University • Umeå • Sweden 

 
 
 
 
 
Abstract 
Many computer game developers have adopted network technologies for value-adding 
purposes at several stages of the corporate value chain. In this paper, we suggest that this 
adoption extends the current notion of developing e-commerce by including ongoing 
interaction with the consumers concerning what is being produced. On the basis of an 
interpretive case study, this paper outlines the process by which a Swedish computer game 
developer involved its customers in producing, testing, distributing, and marketing its online 
computer game Clusterball. Using Orlikowski’s (1999) notion of « internetworked 
organizations », the paper explores how this customer involvement was supported by the use 
of network technologies at every stage of the value chain, and it illustrates how this 
involvement can be understood as an important feature of future development 
of e-commerce in organizations.  
 

acm Categories: j.1, k.4.3, j.1, k.8.0. 
 

Keywords: e-Commerce, Systems Development, Internetworked Organizations, Corporate 
Value Chain, Customer Involvement, Online Entertainment, Computer Games.  
 



 
74 

1 Introduction 
Datamonitor (1999a) expects that ongoing development in both technology and customer 
behavior will continue to produce integration between computer game developers and 
Internet service providers, and that this blending will accelerate as a result of mediating 
more stages in the computer gaming value chain online. Meanwhile, the computer gaming 
industry is growing 15% annually with new standards, technologies, consumers and trends 
emerging, and for the involved actors — game developers, publishers, distributors, and 
retailers — this development requires a good portion of responsiveness towards new 
contingencies and opportunities.  
 

Using Orlikowski’s (1999) notion of « internetworked organizations », this paper describes 
and assesses one of the opportunities that e-commerce opens up for computer gaming 
companies, namely, the possibility to use Internet technologies to involve the customer at 
almost every stage of the value chain. By internetworking with the customer throughout the 
value-adding process, the game developer can benefit from better responsiveness to 
changing customer behavior and, ultimately, achieve better computer game design (cf., 
Ramírez, 1999). We suggest that, in putting the virtual value chain (Rayport & Sviolka, 
1995) into practice, the computer gaming industry has the potential to extend the notion of 
electronic commerce by not only offering and distributing games online but also by involving 
the customer in producing them. In view of this potential extension, however, we need to 
know more about the process of internetworking with customers. How can companies 
internetwork with their customers throughout the value chain? What are the challenges 
involved in such internetworking?  
 

To better understand these questions, this paper presents an interpretive case study 
(Walsham, 1995) of the process by which the Swedish computer game developer Daydream 
Software developed and launched its online game Clusterball. Clusterball represents a new 
generation of computer games that can be played, distributed, and paid for online. This 
generation of games can be considered an important step for computer developers looking 
for customer interaction throughout the corporate value chain. 
 

There are several reasons why this is important. First, many researchers (see e.g., Ciborra & 
Failla, 2000; Timmers 1998, 1999) note that developing fruitful e-commerce is not only 
about systems development, but is often a matter of using technology to cultivate business 
processes for value-creation. Drawing on this observation, it can be useful to further 
understand how the customer can be part of this cultivation process by exploring an 
empirical case of customer involvement.  
 

Second, throughout the history of e-commerce, the integration of various actors along the 
value chain has been an important issue (see e.g., Clemons & Row, 1988). Often regarded 
as the final stage of the corporate value chain, however, the customer’s possible integration 
with early stages in the value chain is seldom discussed. More knowledge of such integration, 



 
75 

therefore, can be useful for improving the development of customer-oriented e-commerce. 
Third, many researchers (see e.g., Normann & Ramírez, 1993, 1994; Ramírez, 1999; 
Wikström, 1996) present alternatives to Porter’s value chain model (Porter, 1985). Many of 
these alternatives criticize the exclusion of the customer in Porter’s model. The emergence 
of virtual value and supply chains (Rayport & Sviolka, 1995; Kerridge et al., 1998) reveals 
the limitations of this exclusion, and, in this sense, the research reported in this paper 
contributes to this discussion by illustrating how the customer of the internetworked 
organization can be part of almost every stage of the corporate value chain. 

2 Internetworked organizations, the computer gaming value 
chain, and e-commerce opportunities 

Diversity and conceptual innovation characterize information systems as a research discipline 
(Hirschheim et al., 1996). This diversity can be explained by the discipline’s relative youth 
as well as by the ongoing emergence of new objects of study. Technological changes and 
societal development tend to call for new concepts and perspectives. In this vein, this section 
presents Orlikowski’s (1999) internetworked organizations as a useful concept for 
exploring e-commerce development in interactive entertainment settings such as the 
computer gaming industry. Apart from Orlikowski’s thinking and its related literature, this 
section also outlines the background to the current issues and trends of the computer gaming 
value chain.  

2.1 internetworked organizations 

In view of the increasing number of organizations that use information technology to extend 
business processes over traditional organizational boundaries, it has been necessary to find 
good labels to describe these organizations. Cybermediaries (Jin & Robey, 1999; Sarkar 
et al., 1995, 1998), imaginary organizations (Hedberg, 1991), and virtual organizations 
(Davidow & Malone, 1992, Mowshowitz, 1997) are three examples of such labels. All these 
labels are useful in that they extend the long-standing idea that organizations can be 
conceptualized as open systems (Lawrence & Lorsch, 1967; Scott 1992) by observing how 
many of today’s most successful organizations use information technology in their boundary 
relations.  
 

Sarkar et al.(1998, p. 215) refer to cybermediaries as “…organizations that operate in 
electronic markets to facilitate exchanges between producers and consumers by meeting the needs of both 
producers and consumers”. The literature on cybermediaries highlights how the role of 
intermediaries is changing as a result of using network technologies and how this might 
require a re-formulation of transaction cost economics (Jin & Robey, 1999). The notions of 
imaginary and virtual organizations reveal how organizations can operate outside their 
traditional boundaries by using strategic alliances, information technology, and outsourcing 
strategies. In delivering customer value, these types of organizations build and cultivate 
networks with external parties rather than extend their operations outside their core 



 
76 

competencies. In this way, these organizations can function as if they were larger than they 
really are, i.e., they act as imaginary or virtual organizations.  
 

Noting how information technology nowadays is viewed as something with which to 
communicate, learn, collaborate, and network, Orlikowski (1999) provides an interesting 
exploration of how network technologies open up organizations. Such technologies enable a 
type of openness to various stakeholders that the traditional organization could not establish. 
Suppliers, legal authorities, and customers are all examples of stakeholders that are often 
connected to an organization’s work processes and practices. This internetworking, i.e., the 
use of computers for connecting different stakeholders’ networks, and its inter-related 
transparency, provide opportunities and challenges for most companies working in a global 
market.  
 

In this paper, we use Orlikowski’s (1999) notion of internetworked organizations for 
understanding customer involvement in a computer gaming setting. We find this notion 
particularly useful for exploring companies that almost entirely develop and maintain 
alliances with external parties over network technologies. This notion reveals how network 
technologies are increasingly interwoven in the processes of organizing. At its present stage, 
the research on cybermediation is useful for understanding the general nature of virtual value 
chains, while it offers little insight about the role of customer involvement in value-
generation. In reviewing the imaginary and virtual organization perspectives, one can see 
how they highlight information technology as an important element in organizing, but they 
nevertheless attribute information technology a supportive role only. In doing so, these 
perspectives oversee the dual nature of information technology (Orlikowski, 1992), i.e., 
how information technology both enables and restricts organizational action. Network 
technologies do not only support the ties that hold organizations together (as assumed in 
mainstream virtual organization literature), but it can also be part of establishing new forms 
of ties such as customer involvement in product development. In this regard, the notion of 
internetworked organizations takes into account that network technologies increasingly 
provide the rules and resources for building the necessary alliances with, for instance, online 
customers in computer gaming.  

2.2 the computer gaming value chain and e-commerce opportunities 

In exploring the e-commerce opportunities in computer gaming, this paper uses Porter’s 
(1985) value chain model as a starting-point for discussing the changes brought about by 
internetworking. This model conceptualizes the customer value of a product as a sum of 
added value of sequential stages. As originally formulated, these stages include inbound 
logistics, operations, outbound logistics, marketing and sales, and customer service, but the 
model is generic in the sense that the stages can easily be adapted to the particular context 
that it is applied to. In information systems research, the model has been used in studying, 
for instance, competitive advantage (Porter & Millar, 1985), inter-organizational systems 
(Chatfield & Bjørn-Andersen, 1997), and network technologies (Chandrashekar & Schary, 
1999). 
 



 
77 

Datamonitor (1999a) expects the us and western European computer gaming market to 
grow around 15% annually between 1998 and 2003. Amounting to $8.7 billion in 1998, the 
market is predicted to be worth $17.2 billion in 2003. While this market growth signals 
good business opportunity, the computer gaming market continues to be sensitive to 
technological development, new standards, and shifting consumer behavior. In other words, 
as is the case in most expansive and knowledge-intensive markets, the involved actors must 
develop the capability of being alert to changing sources of competitive advantage (Ciborra, 
1997).  In their analysis of the effects of the Internet, Datamonitor (1999a,1999b) expects 
three points of bypass of the computer gaming value chain (consisting of game developers, 
publishers, distributors, and retailers). First, it is expected that console manufacturers will 
be able to sell upgrades as well as new games directly to consumers by offering Internet 
connection via their consoles. Second, pc manufacturers can be expected to deliver and sell 
games to consumers by having them pre-installed in the hardware. Finally, and at the center 
of attention in this paper, developers and publishers can be expected to bypass distributors 
and retailers by offering online sale of games. 
 

In view of the changing conditions expected in the growing computer gaming market, game 
developers need to be alert to changing consumer behavior. A problem, however, is that 
there exists intermediate actors (publishers, distributors, and retailers) that can exploit their 
relative advantage in terms of customer knowledge achieved over a number of years. One 
important challenge for developers, therefore, is to find new ways to involve the customers 
in their business processes.  
 

The two following sections of this paper present a case where a computer game developer 
intended to benefit from internetworking with its customers in its effort to develop, market, 
distribute, and sell its new online computer game. The case study will show how Daydream, 
as an example of an internetworked organization, established customer involvement 
throughout the value chain.  

3 The Clusterball case: background and research methodology 
3.1 background 

Daydream Software is a Swedish computer game developer with its headquarters in Umeå in 
the northern part of Sweden. The company employs 65 people (November 2000) and the 
business mission is to develop entertainment that can be experienced, distributed and paid 
for via the Internet.  
 

Up to July 2001, the company has developed three computer games: Safecracker, Traitors 
Gate, and Clusterball. Contrary to the cd-based games Safecracker and Traitors Gate, 
Clusterball is played, distributed and paid for online. Clusterball is an online sport in which 
the players fly around in ships trying to collect colored balls that are placed in different 3d 
landscapes. The twelve venues offer different environments (see figure 1) in which the 



 
78 

challenge is to score as many balls as possible without having them snatched by the 
opponents.  
 

 
 

figure 1. Screenshots from Egypt — one of the twelve venues in Clusterball 
 

In releasing Clusterball (July 17, 2000), Daydream introduced a computer game with many 
interesting features. As many of today’s most successful computer games, Clusterball is a 
multiplayer game that is played online. This is achieved by means of an in-house developed 
network protocol called Autobahn. The protocol makes possible for computer clients, 
independent of platform, to connect in real time for playing the game. Also, the distribution 
of the game is handled online. By utilizing algorithms for packet compression, packet 
aggregation, and latency hiding, the required bandwidth is effectively reduced so that 
Clusterball can be easily downloaded on a modem. Finally, the game can be paid for online. 
By being a content provider in the process of developing Telia PayIt — the Swedish 
teleoperator Telias’s version of the micro-payment system Jalda —  Daydream plans to offer 
its customers a flexible online payment system. However, while the micro-payment system 
is still being developed Daydream uses a traditional credit card payment system (ibm’s 
DebiTech system). 

3.2 research strategy  

This study can be broadly classified as an interpretive case study (Klein & Myers, 1999; 
Walsham, 1995). In emerging as a valid and important approach to is research, the 
interpretive approach has been widely used in understanding phenomena through the 
meanings people assign to them (Boland, 1985; Orlikowski & Baroudi, 1991) and the 
process whereby information systems influence and are influenced by a specific context 
(Walsham, 1993). Our study focused on the early visions, expectations and apprehensions of 
Clusterball and how the implementation and use of network technologies made possible for 
internetworking with customers.  
 

There were two reasons for the choice of research site. First, we found Daydream as being 
in the forefront of using network technologies for involving customers in terms of their 
customer relationship management (crm) database and virtual community (see next 
section). Second, we gained good access to the research site. In late 1999, the ceo 
introduced us to the company and pointed out the general aspects of using network 
technologies in the computer gaming industry. He also provided us with access to both 
respondents and internal data material. 
 



 
79 

To capture the informal atmosphere of the company and to get close to the research context, 
we conducted the study as involved researchers (Walsham, 1995). Through participant 
observation and by being present at the company, we aimed at getting a direct sense of the 
organization (Walsham, 1995) and an insider view as temporary members of the field (Van 
Maanen, 1979).  There were at least two reasons for this approach. As involved researchers 
we were able to access data that normally would not be shared with outsiders. Moreover, 
our presence at the company enabled us to continuously discuss our interpretations with the 
research subjects. In doing so, we got direct response and could thereby avoid 
misinterpretations and misunderstandings. In accordance to the principle of interaction 
between the researchers and the subjects (Klein & Myers, 1999) this allowed us to critically 
reflect upon our interpretations and how they were constructed.  
 

As pointed out in literature on interpretive research methodology (Walsham, 1995), there 
are complex researcher role issues to take into consideration when pursuing research on the 
basis of an intimate contact with research subjects and context. One of these issues is the 
problem of reporting the role of the researcher. As noted by Walsham (1995), self-reporting 
faces the dangers of over-modesty and self-aggrandizement by which it is hard to balance 
between. In coming to terms with this difficulty, we continuously documented all events we 
took part in during a day, in what way we considered us to influence these events and what 
the final outcomes of these events were. We also had research project meetings on a regular 
basis where we discussed our roles as researchers at Daydream. These discussions were 
documented and helped us in critically considering our roles as researchers at Daydream. 
 

We were to a small part funded by Daydream for contributing with expertise in the areas of 
customer relationships and virtual communities. As Robey and Markus (1998) argue, 
practitioner sponsorship can be a valuable mechanism to ensure that the research conducted 
is conceived valuable. In our case, Daydream’s partial sponsorship was important to get and 
maintain credibility in the organization as well as to gain access to key actors. 

3.3 research process 

The study was conducted between January and October 2000 and can be divided into three 
phases.  First, between January and March, an exploratory study was conducted in order to 
get an understanding of the different organizational actors, the every-day routines at the 
company, and the overall context of computer gaming. During this period, we attended 
company meetings and discussions, reviewed early documents on the design of Clusterball 
and spent time observing the practice of Daydream in order to get a notion of the daily work 
of the organization. During the exploratory phase of the study, data sources such as technical 
documents, meeting protocols and press releases were used for getting an initial 
understanding of the context. We also had workshops with Daydream staff and spent 
considerable time on informal conversations to establish a personal contact with key 
informants. Also, time was spent on reviewing other gaming websites to get an 
understanding of the global gaming community and the context in which players spend much 
of their time. 
 



 
80 

Second, between April and September, we conducted an in-depth study in which we spent 
time at the research site on a more regular basis. Complete working places were set up for 
the research team and, starting on April 1, we spent two or three days every week at 
Daydream. During this phase, we conducted 600 hours of participant observation at the 
company in order to complement the exploratory study with an in-depth understanding of 
the technologies and the design of Clusterball as well as the interpretations held and enacted 
by people at Daydream. While being present at the company we took part in project 
meetings and were part of the development of the Clusterball website by providing 
evaluation reports on Daydream’s existing computer game websites. To be able to analyze 
different assumptions and intensions held by people at Daydream, notes were taken to 
document our conversations with employees and observations of work practice. In addition, 
we also documented discussions at the virtual Clusterball forum and other related gaming 
forums in order to capture expectations and experiences of the customers. 
 

Third, in October, we conducted complementary data collection by maintaining close 
contact to what Yin (1994, p. 84) refers to as informants. These contacts were upheld 
by e-mail correspondence, icq interactions, and telephone conversations. The research 
process and the data sources that were used are summarized in table 1.   
 

Phase  Data sources  Research goals 
     
January—March 
Exploratory study 

 Workshops at research site. 
Meeting protocols. 
Technical documents. 
Press releases. 
Prospects to shareholders. 
Informal meetings and conversations. 
e-mail correspondence. 
Official gaming websites. 

 Initial understanding of the 
research site and gaming context. 

     
April—September 
In-depth study 

 Participant observations. 
Meeting protocols. 
Website data — logs from the official 
Clusterball website and logs from 
related fan sites. 
Press releases. 
Personal diaries. 
e-mail correspondence. 

 Identification and assessment of 
research questions. 
Interventions in the context by 
being temporary members of the 
field. 
Getting access to interpretations 
held and enacted by staff at the 
research site. 

     
October 
Complementary 
data collection 

 e-mail. 
Telephone. 
icq correspondence. 

 Deepening the understanding of 
the research site. 
Maintaining the contact with 
informants. 

     
 

table 1.  A summary of the research process and the data sources used during the study 
 



 
81 

The data analysis consisted of two intertwined processes.  Firstly, we started out with two 
general themes — digital customer relationships and virtual communities — for exploring 
the case. Following the interpretive tradition in general and the principle of abstraction and 
generalization in particular (Klein and Myers, 1999), our data analysis consisted of an 
iterative process going back and forth between specifics of the implementation and use of 
Clusterball, and these more general themes and their implications for customer involvement 
throughout the value chain. Secondly, we exploited the advantage of being two researchers 
involved in the study. By sharing our files and continuously discussing our different 
interpretations of the context in which we were involved, we were able to extend our own 
view of the material and help each other in getting a broader perspective on specific events 
and statements experienced at the research site. 

4 Case description: involving the customer in developing  
e-commerce for customer value 

This section describes our understanding of Daydream’s attempt to include the customer in 
the process of developing, testing, distributing, and marketing its online game Clusterball. 
The section outlines how the customer was involved throughout the value chain and, 
furthermore, how this customer involvement can be regarded as an important step in 
developing e-commerce for customer value.  

4.1 daydream´s vision  

Concurring with the new stock emission in early 2000, Daydream’s ceo extended the 
company’s policy in terms of product development. “The customer is our best product developer”, 
he declared in the prospect published and distributed to current and potential shareholders, 
suggesting that Daydream had a lot to learn from those who play the games. This vision was 
based on two assumptions. First, the company’s ability to respond faster to changing 
customer demands would increase as a result of outsourcing part of the development, 
evaluation, distribution, and marketing processes to those consuming the products. Second, 
the company’s ability to respond to individual preferences would increase as a result of 
better communication and collaboration with individual customers. 
 

To reach the vision about internetworking with customers, Daydream needed a technical 
solution that allowed Daydream to trace general changes in customer behavior and to learn 
about customers’ individual needs. In response to these needs, a crm database and a virtual 
community were developed. These can be seen as important technical components in 
realizing the vision about involving the customers in the development process of Clusterball.  
 

First, the crm database, which was developed in cooperation with a local it-consultancy, 
was intended to facilitate the reach of specific customer segments. In order to do this, 
information about personal views and opinions had to be collected. User tests and polls, for 
instance, were considered as interesting means of getting an idea about the customers’ 
favorite music, favorite tv shows, favorite style of clothes, and so on. In combination with 



 
82 

background information such as age, gender and demographical information, it was believed 
that the relation to the customers could be tightened and personalized. In addition, 
information was collected from each gaming session in order to get information of exactly 
what venues individual customers preferred, how many balls he or she snatched and what 
opponents the player had met, etc. By analyzing this information, Daydream would be able 
to learn about the customers both as private persons as well as Clusterball players.  
 

Second, there was the Clusterball website with the virtual community. Reflecting the visions 
about an on-going interaction with the customers, the community was developed in order to 
make possible for flexible communication and functions that allowed the customers to talk 
to each other as well as to interact easily with people at Daydream. The website was 
presented in a press release dated December 17, 1999, seven months before the game was 
released. 
 

“The new website, clusterball.com, will be the meeting place for all the Clusterball 
players. The goal is to build a « community » for all those who play Clusterball.” (Press 
release December 17, 1999)  

 

The general wisdom of community building is that people with a common interest often 
generate special knowledge in that particular domain (Hagel & Armstrong, 1997; Martin, 
1999). Corresponding to this, Daydream hoped that the community members themselves 
would be able to treat and solve many problems without interacting with the company. In 
this way, the community can be regarded as a multi-purpose network (Holmström & 
Stalder, 2001), where the community would be a place for interaction and exchange of ideas 
for the players while it would constitute an important resource in gathering customer-
produced knowledge for Daydream. 
 

In terms of internetworking with the customers, one can say that the Clusterball community 
and its related crm database were components in the strategy of opening up the value chain 
to Daydream’s customers and their networks of friends, game communities, and fan 
websites. This strategy was an important part in developing, evaluating, distributing, and 
marketing Clusterball, and in what follows we explore the details of this process in order to 
better understand what the possibilities and challenges are when developing e-commerce in 
internetworked organizations. 

4.2 clusterball: the customer´s involvement in different stages of the  
value chain 

Customer involvement in the product development stage 
The traditional value chain model treats product development as one of the earliest stages in 
the process of building customer value, and, in practice, this stage seldom involves the 
customers themselves. In the Clusterball case, the involvement of customers also in product 
development was an important strategy for improving customer value. 
 

However, as pleasing as this strategy was, it was not without hesitation that Daydream 
encouraged the players to register in the customer database. Even though this was critical in 



 
83 

order to learn about the customers it was common knowledge that experienced players 
often had a negative attitude towards registration and did not voluntarily share personal 
information. As a consequence, Daydream decided to collect less information than they had 
initially planned for. Personal interests and habits are examples of information that 
Daydream decided to exclude in the registration process. In doing this, Daydream sought to 
please the community of experienced players, i.e., hardcore players, since they were seen as 
the most important group in the development process of Clusterball. 
 

As stated by the ceo, the customers were seen as increasingly important in product 
development. Daydream had two reasons for considering customer knowledge critical in this 
process. First, the knowledge of the customers would be useful for product development in 
general. Because of the fact that customers often have lots of experience of similar products, 
in this case other computer games, this experience could contribute to product development 
in that it would better coincide with customer needs and requests. To encourage customer 
involvement Daydream asked the members of the Clusterball community to bring forward 
their opinions and suggestions on how to improve the game. After a while, many of the 
community-members posted their own suggestions to the virtual forum, as they knew that 
people at Daydream would read them. Illustrative examples are: 
 

“I was sitting around today, thinking of some new play modes for Clusterball.” (« Clay » 
in the Clusterball community, August 28, 2000)  

 

“Greatly improve the chat features for multiplayer…” (« Shuttlekilla » in the 
Clusterball community, September 8, 2000) 

 

As a result of suggestions from players, Daydream could release patches that handled 
configuration problems and introduced new features to the game. The first patch was 
released on July 18, only one day after the game had been put on the market. This was a host 
error patch and was a result of early testing carried out by community members. In this way, 
the comments from the community members were used to handle many of the most 
frequent problems before the majority of customers had suffered from them. The second 
patch was released on August 25 and included in-game screenshots, modified play modes 
and the ability to join the game by team name, features that had been put forward by 
members of the community. With the valuable comments to the second patch in mind, the 
developers at Daydream asked the community to make a wish list for future patches. 
 

“We want your opinion on what to add to the next patch. We think that the forum will be 
a good place to discuss such things, so please give us your ideas.” (A posting from « 
Lobo » at Daydream to the gaming forum, September 7, 2000) 

 

Besides bug fixes, the third patch included in-game chat rooms since members of the 
community frequently requested them and also mentioned them in the wish list they had put 
together.  
 

Second, there was the idea that individual customers had individual needs and desires. 
Hence, Daydream strove for a product that allowed for individual design solutions. One 



 
84 

example was the possibility to design your own « skin » (i.e., the look of the ship that you 
are flying in the game), a feature that was released in the second patch. The fansite 
ballsnatchers.com presented this feature in the following way:  
 

“The upcoming patch for Clusterball will make it possible to make your own skins. 
Wehey! And right here on ballsnatchers.com, you can get the stuff you need to do 
so. Hell, we'll even go behind the scenes and show you what the different parts of the 
somewhat odd-looking figure is.” (ballsnatchers.com, August 25, 2000) 

 

The possibility to have personally designed skins was met with enthusiasm among customers 
and was soon put attention to in the community. Also, experienced players included 
comments that would be of help to less experienced players in designing their own skins:  
 

“Sometimes you want to add a scratch to your skin. And because of the not so high 
resolution you'll have to zoom in and work with single pixels. The picture shows how you 
can do it so it looks at least pretty good.” (ballsnatchers.com, August 25, 2000) 

 

In this vein, a skin tutorial was set up at one of the related fan sites (ballsnatchers.com), 
so that anybody interested could get help in the design of skins. This idea reflects an 
important theme in the market communication that concerned a re-definition of Daydream’s 
relationship with their customers. In introducing the open technology of Clusterball, the 
border between developers and customers was intended to slowly blur. In line with the open 
source movement (see e.g., Ljungberg, 2000; Raymond, 1999), the customers became co-
designers of the game, and Clusterball was regarded an online community for entertainment 
designers and consumers. The core of the experience, the game, would continue to improve 
as more and more customers joined the community.  
 

Customer involvement in the evaluation stage 
In the traditional value chain the customer is not introduced to a product before it is 
thoroughly tested for potential errors. In contrast with this conventional wisdom, Daydream 
engaged about 200 players who voluntarily tested early versions of Clusterball. 
 

Coinciding with the launch of the Clusterball website in December 1999, Daydream offered 
customers the possibility to register as « test pilots » of early versions of the game. This 
group of people would be valuable in detecting configuration problems and errors in the 
game before the game was released. During May and June 2000 the test pilots had 
considerable work to do. At an early stage, it became evident that there were still much to 
be adjusted in the game, and that the release would have to be delayed for implementing all 
necessary functions and meeting the requirements of different hardware configurations. In 
addition to the test pilots, the game was introduced at a gaming convention held in Umeå, 
Sweden, on July 1. During the weekend, and with Daydream people present, players from 
all over the country tried Clusterball and provided feedback on its features.  
 

With the release date approaching, the efforts put on testing the game increased. On June 
17, the first beta version of the game could be downloaded from the Clusterball website. 



 
85 

The beta version was available between June 17 and July 3, and on the Clusterball website 
you could read: 
 

“…the purpose is primarily to locate configurations that experience troubles getting 
Clusterball to run. Please send us feedback on performance and any strange behavior.” 
(clusterball.com, June 17, 2000) 

 

In addition to earlier testing that had been restricted to only a specific group of people, this 
announcement was an attempt to involve all potential customers in the trouble-shooting 
process. By voluntarily reporting errors to the virtual community, individual customers 
could be part of the test process before the release of the game. On June 29, Daydream’s 
group executive officer proudly stated that “…we are now ready to put Clusterball on the global 
market”, announcing that Clusterball would be available by July 17, 2000. 
 

Customer involvement in the distribution and marketing stage 
The traditional value chain model views distribution and marketing as the stages where what 
has been produced is packaged for meeting particular markets. This view is indeed reflected 
in the Clusterball case, but Daydream can be said to have extended this view by involving 
the players in diffusing and marketing the game among networks of gaming communities 
outside the direct control of the company. 
 

Even though there existed an understanding that there was still much to be done in terms of 
adjusting and tuning the game, Daydream officially released Clusterball on July 17, 2000. 
The release was a moment of excitement and expectation in that nobody knew exactly what 
to expect from a computer game that represented a bypass of publishers, distributors and 
retailers. Daydream’s bypass of these actors in the value chain can be seen as a test of 
Datamonitor’s (1999a, 1999b) prediction that online sales of computer games would be one 
important opportunity for computer developers.  
 

As a new actor in terms of distribution and marketing, Daydream had to develop strategies 
for taking care of these stages. In terms of marketing, the marketing department worked out 
a strategy on the basis of Datamonitor’s (1999a) distinction between « casual » and  
« hardcore » players.  
 

Casual players, i.e., people with limited experience of computer games, were considered 
important in that they represented a growing and prosperous market, while hardcore 
players, i.e., people with considerable gaming experience were important in that they had 
access to a network of players united in gaming communities all over the world. However, 
as it turned out, the choice of target group for Clusterball could not be separated from 
distribution and marketing considerations.  
 

While it was desirable to reach both casual and hardcore players, Daydream decided to 
target one group as it was considered an effort too demanding to reach both markets 
simultaneously. Since it was believed that the casual players had to be reached by traditional 
marketing campaigns such as publicity stunts and presentations, Daydream decided to focus 
the marketing efforts at the hardcore players. The hardcore players could be reached easily 



 
86 

and due to their contacts with other gaming communities they could be used in further 
distribution of the game. As in development and testing, it was believed that the players 
themselves could contribute to a great extent in the process. 
 

To reach the group of hardcore players, Clusterball was introduced on well-known gaming 
websites and by personal contacts provided by people working at Daydream. In this way, the 
rumor about Clusterball was efficiently spread in settings in which players spent time on a 
regular basis.  
 

Furthermore, the members of the Clusterball community contributed in marketing of 
Clusterball by publishing their own Clusterball websites. The emergence of such websites, 
so called fan sites, started soon after the release and in September 2000 there were already 
fourteen fan sites designed by individual Clusterball players (see e.g., ballsnatchers.com, 
clusterzone.net, clusterball.quakenexus.nu). The appearance of such websites 
proved to be important for Daydream not only in the distribution of Clusterball but in that 
they made possible to involve these players in future distribution and promotion of the 
game.  

5 Internetworking with customers throughout the value chain 
5.1 clusterball as a platform for e-commerce 

The Clusterball case illustrates how an internetworked organization such as Daydream 
conveys important differences to our understanding of e-commerce and the corporate value 
chain. In contrast with the traditional conception of the customer as a consumer of value, the 
internetworked organization offers the opportunity to engage customers as co-producers of 
value added throughout the stages of the corporate value chain. In this context, it seems that 
the internetworked organization’s source of competitive advantage can be found in its use of 
network technologies to connect to various stakeholders’ networks. Such network 
connections enable communication and collaboration with customers dispersed in terms of 
time and space.  
 

There were two important components in making Clusterball useful for e-commerce. First, 
the Clusterball site and the virtual community were critical in that they established a 
technological platform for attracting a critical mass of players. As outlined earlier, this 
platform was important for playing, distributing, and paying for the game.  
 

Second, a living game community was important to involve players in the different value 
chain stages. In light of this observation, Daydream developed certain organizational 
arrangements intended to support and stimulate such a community. As an illustration, a 
community manager was hired to cultivate the community and there were many other 
people in the staff who participated in this cultivation. Consider, for instance, the time and 
effort that Daydream staff attributed to both feeding the community with Clusterball 
information and actively playing the game.  
 



 
87 

In this regard, the development of Clusterball should not only be considered as computer 
game design, but also an attempt to establish a platform for e-commerce. But, what is new 
in the Clusterball case? What can we say about the nature of internetworked organizations in 
terms of developing e-commerce? The two following subsections highlight two issues — 
customer role challenges and sensemaking challenges — that characterize internetworked 
organizations and need to be addressed to develop e-commerce characterized by customer 
involvement.  

5.2 customer role challenges 

Internetworked organizations seem dependent on their customers. This dependency is 
perhaps most true in the distribution and marketing stages where the popularity and 
availability of an online computer game (without a cd based version sold by retailers) 
depends on the customers’ devotion for the game. Considering that the customers’ efforts in 
introducing the game to gaming communities by setting up fan sites, organizing clans, and 
much more, play a crucial role in building a critical mass of players, one understands how 
internetworking the distribution and marketing stages of the value chain is a delicate and 
critical business. While the traditional model is to set up formal agreements with distributors 
that market and sell the game using their established channels, internetworking these stages 
requires that the computer developer dare to let go of some of its control. The traditional 
business agreement is replaced by a type of social contract with the players.  
 

Noting this customer dependency, the marketing department’s ambivalence about deciding 
what information would be required from customers registering as members of the 
Clusterball community can be understood. The more information acquired, the better 
opportunities Daydream had to establish one-to-one customer relations by using the crm 
database. However, this obvious advantage had to be analyzed closely against the potential 
damage that an integrity discussion could have had on Daydream’s ability to attract hardcore 
players. No doubt, hardcore players, who traditionally worship integrity and condemn 
commercialism on the web, represent the most important group for Daydream in terms of 
marketing, while, on the other hand, casual players are predicted to take large part in the 
future computer gaming market growth (Datamonitor, 1999a). This dilemma exemplifies 
how internetworked organizations can be faced with the problem of approaching the 
customer in the role of both consumer and producer, and it also highlights how these roles 
often conflict with each other.  
 

On a general level, customers have always been an important topic within the area of 
strategic information systems and e-commerce. On the basis of Porter’s five force model 
(Porter, 1985), for instance, researchers have observed and documented how customers can 
increase or decrease their bargaining power by utilizing information technology throughout 
the value chain (Porter & Millar, 1985). One important difference in the case of the 
internetworked organization is that there are very low switching costs involved in the 
company—customer relation. The investment is low from both sides, and the relation is 
therefore more dependent on trust and devotion. In developing e-commerce for these 
customers, it seems that one important issue is to foster responsiveness to what generates 



 
88 

such values. This observation also relates to research results documented in the context of 
information infrastructure and knowledge-intensive organization. Ciborra et al. (2000), for 
instance, show how the building of successful information infrastructures in knowledge-
intensive settings requires a considerable degree of openness relative to the original plan to 
cater for productive exploitation of up-coming opportunities. This seems particularly 
relevant in business environments characterized by ongoing innovation and growth. In this 
regard, computer game developers have good reasons to allow drift (Ciborra, 1996) as a 
natural component in the e-commerce infrastructure that is developed. 

5.3 sensemaking challenges 

Internetworked organizations seem dependent on a capacity to align customers throughout 
the value chain, while the common e-commerce practice is to align customers in the last 
stage. Observing this, one might note that there is a significant difference between the early 
and late stages in terms of the level of standardization that can be enforced on the 
producer—customer relation. Involving the customer in the early stages of the value chain, 
such as product development, requires a more intimate relation with the customer than a 
typical e-commerce standard can supply. While e-commerce has a history of, at least, 
twenty years of discussions about the need of common standards such as edi and edifact for 
enabling the exchange of messages between seller and buyer in a structured format, we 
know little about the needs associated with the earlier stages of the value chain.  
 

We suggest that the early stages of the value chain call for new ways to align the customer. 
In fact, contrary to mainstream e-commerce, it seems that customer involvement at these 
stages requires a contextual approach.  In a computer gaming setting, this type of 
understanding can be generated from and within virtual communities such as the Clusterball 
community.  It is likely that attempts to standardize the idea-generation process 
characterizing virtual communities would be very unproductive in terms of the customer’s 
contribution to product development. Instead, one might suggest that an internetworked 
organization should establish organizational arrangements that can transform the input that 
customers provide into productive and meaningful improvements of the value-generating 
process. Using Weick’s (1979) notion of sensemaking, the most important quality of such 
arrangements is the ability to make sense of customer input and understand how this input 
relates to changes and opportunities in the surrounding business context. The active 
participation of Daydream staff in the Clusterball community can be seen as an embryo of 
handling these sensemaking challenges.  

6 Conclusion 
This paper presents a case study on customer involvement in producing value throughout the 
corporate value chain. In most e-commerce literature, the customer is viewed as the final 
stage of the value chain, resulting in an apparent focus on how to manage the exchange of 
messages between sellers and buyers in standardized formats. However, in some 
organizations in the computer gaming industry the customer’s potential involvement in 



 
89 

earlier stages in the value chain is tested. Using Orlikowski’s (1999) notion of 
internetworked organizations, this paper explores how the Swedish computer game 
developer Daydream involved its customers throughout the value chain for producing 
consumer value in computer gaming.   
 

We suggest that internetworked organizations need to develop certain alertness to shifting 
customer behavior and concerns. Not surprisingly when involving them as both consumers 
and producers, the customers’ productive involvement puts the organization in a position 
where sudden shifts in devotion and trust can be very counter-productive. The Clusterball 
case provides evidence that internetworked organizations can be faced with the problem of 
handling the customer as both consumer and producer. This enhanced customer role is 
largely unexplored in the mainstream literature on e-commerce suggesting that more 
knowledge about this role ambiguity is needed. Increasing our understanding of this 
ambiguity is important for finding better strategies and models for managing the kind of 
product-centered e-commerce platform that Clusterball represents. 
 

One might also observe how this ambiguity introduces sensemaking challenges for the 
organization. In the early stages of the value chain, the producer—consumer relation cannot 
be standardized, but needs a more contextual approach dominated by trust and devotion. 
This difference has its roots in the openness that network technologies (manifested in, e.g., 
virtual communities) introduce to their adopter, and it certainly needs to be handled in the 
process of both developing and cultivating the e-commerce components that are increasingly 
embedded in the practical day-to-day activity of internetworked organizations. This is an 
important but largely unexplored area for future research.  
 

On a theoretical level, the internetworked organization can be considered to extend the 
long-standing idea that organizations can be conceptualized as open systems by providing the 
information infrastructure that Lawrence and Lorsch (1967) did not recognize in one of its 
early formulations. In those days, the use of information technology, mostly referred to as 
information or data processing, was seen as a vehicle for the internal handling of large 
amounts of information in organizations. While Ackoff (1967) was one of the earliest 
opponents of such processing, we suggest that today’s internetworking technologies can 
enable the exploitation of the potential of organizations to communicate, learn, collaborate, 
and network with their environments including the customer.  To reach this vision, 
however, we need leading actors like those found in the interactive entertainment business, 
where the lessons learned from their attempts can make us further understand how to 
develop and cultivate customer oriented e-commerce in the beginning of the 21st century. 

Acknowledgements 
The European Union’s Regional Development Fund and Daydream Software funded this 
research. Thanks are also due to the editors of the special issue, three anonymous reviewers, 
Dick Eriksson, Jonny Holmström, and Rikard Lindgren for useful comments on earlier 



 
90 

drafts of this paper. Annakarin Nyberg conducted an important part of the empirical work 
drawn on in this paper.  

About the authors 
Ola Henfridsson is the program manager of the Telematics Group at Viktoria Institute, 
Göteborg, Sweden. He is also an assistant professor at the Department of Informatics, Umeå 
University. Ola is a member of the editorial board of Scandinavian Journal of Information 
Systems and he has published his research in journals such as Accounting, Management, and 
Information Technologies, Information Systems Journal, Journal of Information and 
Knowledge Management, and Scandinavian Journal of Information Systems. 
 

Helena Holmström is a PhD student in Informatics at the Center for Digital Business at Umeå 
University. She is also a lecturer at the Department of Informatics at Umeå University and 
teaches courses in systems design and electronic commerce. Her research interests focus on 
the use of virtual communities in software development. Helena has published and presented 
her research at conferences such as International Conference on Information Systems (icis) 
and ifip wg 8.2. 

References 
Ackoff, R. L. (1967). Management misinformation systems. Management Science, vol. 14, 

no. 4, pp. b147-b156. 

Boland, R. J. Jr. (1985). Phenomenology: A Preferred Approach to Research in Information 
Systems. In E. Mumford, R. A. Hirschheim, G. Fitzgerald, and Wood-Harper, A. T. 
(eds.), Research Methods in Information Systems, North-Holland, Amsterdam, pp. 193-
201. 

Chandrashekar, A. and Schary, P. B. (1999).Toward the virtual value chain: The 
convergence of it and organization. International Journal of Logistics Management, vol. 
10, no. 2, pp. 27-39. 

Chatfield, A. T. and Bjørn-Andersen, N. (1997).The impact of ios-enabled business process 
change on business outcomes: Transformation of the value chain of Japan airlines. 
Journal of Management Information Systems, vol. 14, no. 1, pp. 13-40. 

Ciborra, C. (1996).Introduction: What Does Groupware Mean for the Organizations 
Hosting It? In Ciborra, C. (ed.), Groupware and Teamwork, New York: John Wiley & 
Sons, pp. 1-19. 

Ciborra, C. U. (1997). De profundis? Deconstructing the concept of strategic alignment. 
Scandinavian Journal of Information Systems vol. 9, no. 1, pp. 67-82.  

Ciborra, C. U. and Failla, A. (2000).Infrastructure as Process: The Case of crm in ibm. In 
Ciborra, C. U., Braa, K., Cordella, A., Dahlbom, B., Failla, A., Hanseth, O., Hepsø, 



 
91 

V., Ljungberg, J., Monteiro, E., Simon, K. A. (eds.), From Control to Drift — The 
Dynamics of Corporate Information Infrastructures, Oxford: Oxford University Press: 105-
124. 

Ciborra, C. U., Braa, K., Cordella, A., Dahlbom, B., Failla, A., Hanseth, O., Hespø, V., 
Ljungberg, J., Monteiro, E., Simon, K. A. (eds.) (2000). From Control to Drift — The 
Dynamics of Corporate Information Infrastructures, Oxford: Oxford University Press. 

Clemons, E. K. and Row, M. (1988).McKesson Drug Company: A Case Study of 
Economost — A Strategic Information System. Journal of Management Information 
Systems, vol. 5, no. 1, pp. 36-50. 

Datamonitor (1999a). Electronic Games in Europe and the us to 2003, Datamonitor 
(Product Code: dmtc0315). 

Datamonitor (1999b). Online Games and Gambling, 1999-2004, Datamonitor (Product 
Code: dmtc 0532). 

Davidow, W. H., and Malone, M. S. (1992). The Virtual Corporation, New York: Harper 
Collins. 

Hagel, J. and Armstrong, A. (1997). Net Gain — expanding markets through virtual 
communities, Boston, ma: Harvard Business School Press. 

Hedberg, B. (1991). The role of information systems in imaginary organizations. In 
Stamper,R., Kerola,P., Lee,R., and Lyttinen,K. (eds.), Collaborative Work,Social 
Communications and Information Systems, Amsterdam, North-Holland, pp. 1-8. 

Holmström, J. and Stalder, F. (2001).Drifting technologies and multi-purpose networks: 
the case of the Swedish cashcard. Information and Organization, vol. 11, pp. 187-206. 

Hirschheim, R., Klein, H. K., Lyytinen, K. (1996). Exploring the intellectual structures of 
information systems development: A social action theoretic analysis. Accounting 
Management & Information Technologies, vol. 6, no. 1/2, pp. 1-64. 

Jin, L. and Robey, D. (1999). Explaining Cybermediation: An Organizational Analysis of 
Electronic Retailing. International Journal of Electronic Commerce, vol. 3, no. 4, pp. 47-
65. 

Kerridge, S., Slade, A., Kerridge, S., Ginty, K. (1998). supplypoint: Electronic 
Procurement Using Virtual Supply Chains — An overview. International Journal of 
Electronic Markets, vol. 8. no. 3, pp. 28-31. 

Klein, H. K. and Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating 
Interpretive Field Studies in Information Systems. mis Quartely, vol. 23, no.1, pp. 
67-93. 

Lawrence, P. R. and Lorsch, J. W. (1967). Organization and Environment: Managing 
Differentiation and Integration. Boston, Graduate School of Business Administration, 
Harvard University. 



 
92 

Ljungberg, J. (2000). Open Source Movements as a Model for Organizing. European 
Journal of Information Systems, vol. 9, no. 3, pp. 208-216. 

Martin, C. (1999). Net Future, New York:McGraw-Hill. 

Mowshowitz, A. (1997). Virtual Organization. Communications of the acm, vol. 40, no. 9, 
pp. 30-37.  

Normann, R. and Ramírez, R. (1993). From value chain to value constellation: Designing 
interactive strategy. Harvard Business Review, no. July-August, pp. 65-77. 

Normann, R. and Ramírez, R. (1994). Designing Interactive Strategy — from value chain to 
value constellation. Chichester: Wiley. 

Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology 
in organizations. Organization Science, vol. 3, no. 3, pp. 398-427. 

Orlikowski, W.J. (1999). The Truth is Not Out There: An Enacted View of the « Digital 
Economy ». Presented at Understanding the Digital Economy: Data, Tools, and Research on 
May 25 & 26, 1999 at the Department of Commerce in Washington, DC. 
(http:⁄⁄mitpress.mit.edu⁄ude.html, May 10, 2000) 

Orlikowski, W.J. and Baroudi, J.J. (1991). Studying Information Technology in 
Organizations: Research Approaches and Assumptions. Information Systems Research, 
vol. 2, no. 1, pp. 1-28. 

Porter, M. (1985). Competitive Advantage. New York: Free Press. 

Porter, M. and Millar, V. E. (1985). How information gives you competitive advantage. 
Harvard Business Review, no. July-Aug, pp. 149-160. 

Ramírez, R. (1999). Value Co-production: Intellectual Origins and the Implications for 
Practice and Research. Strategic Management Journal, vol. 20, pp. 49-65. 

Raymond, E. S. (1999). The Cathedral & the Bazaar — Musings on Linux and open source by an 
accidental revolutionary. Cambridge: O'Reilly. 

Rayport, J. F. and Sviolka, J. J. (1995). Exploiting the Virtual Value Chain. Harvard Business 
Review, no. Nov-Dec, pp. 75-85. 

Robey, D. and Markus, M. L. (1998). Beyond Rigor and Relevance: Producing Consumable 
Research about Information Systems. Information Resources Management Journal, vol. 
11, no. 1, pp. 7-15. 

Sarkar, M. B., Butler, B., Steinfield, C. (1995). Intermediaries and cybermediaries: A 
continuing role for mediating players in the electronic marketplace. Journal of 
Computer-Mediated Communication, vol. 1, no. 3. 

(http:⁄⁄jcmc.huji.ac.il⁄vol 1⁄issue 3⁄sarkar.html). 

Sarkar, M., Butler, B. Steinfield, C. (1998). Cybermediaries in Electronic Marketspace: 
Toward Theory Building. Journal of Business Research, vol. 41, pp. 215-221. 



 
93 

Scott, W. R. (1992). Organizations — Rational, Natural, and Open Systems. Englewood Cliffs, 
New Jersey, Prentice-Hall. 

Timmers, P. (1998). Business Models for Electronic Markets. International Journal of 
Electronic Markets, vol. 8, no. 2, pp. 3-8. 

Timmers, P. (1999). Electronic Commerce — Strategies and Models for Business-to-Business 
Trading, Chichester: Wiley. 

Van Maanen, J. (1979). The Fact of Fiction in Organizational Ethnography. Administrative 
Science Quartely, vol. 24, no. 4, pp. 539-550. 

Walsham, G. (1993). Interpreting Information Systems in Organizations, Chichester: John Wiley 
& Sons. 

Walsham, G. (1995). Interpretive case studies in is research: nature and method. European 
Journal of Information Systems, vol. 4, pp. 74-81. 

Weick, K. E. (1979). The Social Psychology of Organizing, New York: McGraw-Hill. 

Wikström, S. (1996). Value Creation by Company — Customer Interaction. Journal of 
Marketing, vol. 12, pp. 359-374. 

Yin, R. K. (1994). Case Study Research: Design and Methods (2nd ed.), Newbury Park, 
California: Sage. 



 
94 



 
95 

Virtual communities as platforms for product development: 
an interpretive case study of customer involvement in online 
game development 
 
 

Helena Holmström 
Umeå University • Umeå • Sweden 

 
 
 
 
 
Abstract 
Information technology has changed not only the way in which we do business, but also the 
way in which many products and services are developed. As a structure for communication 
and interaction, information technology makes it possible to interweave actors such as 
vendors and customers in organizational processes. This paper explores how interaction in 
virtual communities can transform the process of product development. It does so on the 
basis of an interpretive case study conducted at the Swedish computer game developer 
Daydream Software ab. The focus of the paper is the process in which Daydream involved 
their customers in the development process of the online game Clusterball. By using a 
virtual community as a means to reach the expertise of experienced players, Daydream was 
able to get valuable input in the product development process. In illustrating the way in 
which the virtual community contributed to the development process of Clusterball, this 
study provides empirical support of information technology as a means to transform the 
process of product development. 
 

Keywords: Virtual communities, customer involvement, product development. 



 
96 

1 Introduction 
In a global business environment where competition is intense, there are reasons to believe 
that companies able to design products that are better matched to customer needs and 
expectations will gain competitive advantage (Ciborra and Patriotta, 1996; Shapiro and 
Varian, 1999). However, the ability to customize products requires knowledge about the 
customers. As recognized by Normann and Ramirez (1993), a key strategic task for 
companies is to reconfigure traditional roles and relationships within the value-creating 
system so that actors, such as vendors and customers, can work together in co-producing 
value. In this way, hidden knowledge and skills of the customers can be revealed and as a 
result, products that better correspond to customer expectations can be developed. Instead 
of regarding the customer as an object and only a consumer of value (Porter, 1980), this 
implies a view of the customer as a subject with knowledge that is of importance in the 
development of products and services (Normann and Ramirez, 1993). 
 

As one way of involving customers in product development there is the opportunity to 
utilize knowledge accumulated in virtual communities. It is believed that as digital mediators 
or intermediaries (Chang, et al., 1999), virtual communities offer opportunities that can 
support continuous interaction between different actors such as vendors and customers.  
 

This paper reports on research conducted at the Swedish computer game developer 
Daydream Software ab. The specific focus of the paper is how Daydream used a virtual 
community as an important component in the development and release of the online game 
Clusterball. Building on the idea of a community as a pool of knowledge (Hagel & 
Armstrong, 1997), the philosophy at Daydream was that a community consisting of 
experienced players would be valuable in the development process of the game.  
 

There is considerable research about virtual communities and the impact of such as places for 
social interaction (Donuth, 1999; Markham, 1998; Jones, 1995; Laurel, 1993; Turkle, 
1995; Preece, 2000). This body of research is important in understanding characteristics and 
perceptions of virtual communities as well as motivation factors and the importance of 
identity among virtual community members. However, there is still much to be explored in 
the area of virtual communities and how the expertise of such may be of value in 
organizational contexts. With this in mind, the attempt by Daydream to use a virtual 
community as a platform for product development is interesting as it illustrates the potential 
of virtual communities as places for on-going interaction and co-operation, as well as it 
represents an attempt to establish an integrated organization with focus on the customer 
(Raisinghani, 2000). 

2 Virtual communities 
The conception of virtual communities is often that of a virtual place in which people can 
meet to socialize, exchange experiences and enjoy the possibility to establish relationships 



 
97 

without having to expose the physical self. There is a significant body of research conducted 
on how virtual worlds are conceptualized and understood (Croon Fors & Jakobsson, 2000; 
Markham, 1998), on virtual worlds as systems that mediate and moderate human 
experiences (Turkle, 1995) and how the information technology itself is a prerequisite in 
that it constitutes the structure within which relations can occur (Heim, 1997; Jones, 1999; 
Laurel, 1993; Markham, 1998; Turkle, 1995; Preece, 2000). In this respect the concept of 
virtual communities can be used to describe new forms of social life and the environment in 
which they take place. There is little doubt that virtual communities play an important role 
in establishing relationships between people. As recognized by Markham (1998) most people 
who participate in virtual environments see their interaction as real interaction with real 
people. This conception is conducive to the view of virtual communities a powerful arena 
for social interaction and unconditional relations. 
 

However, we are now experiencing a new strand of virtual communities on the Internet. 
With the growing importance of the Internet for business the economic value of virtual 
communities has become perceptible. There are reasons to believe that companies of today 
are starting to realize the potential of virtual communities as a means to enable and improve 
customer relationships (Hagel and Armstrong, 1997), establish interaction between 
customers and vendors (Chang et al., 1999), to draw attention to their websites (Preece, 
2000) and as an additional function to enhance opportunities for other business models 
(Timmers, 1998). Commercial virtual communities are communities with a transaction-
oriented interest and where the buying and selling of particular products is of primarily 
interest (Chang et al., 1999). Hence, interaction becomes a prerequisite for the satisfaction 
of commercial needs. 
 

At Daydream, the intention was to create a virtual community as a platform for product 
development. In contrast to traditional game development in which the customer is only to 
some extent involved, Daydream wanted to make possible for an on-going interaction with 
the customers by using the virtual community as the organizing structure for interaction. In 
looking back at the development process and release of the game, there were four phases in 
which the virtual community proved important. In what follows, these phases are presented 
and explored. 

3 Research Design 
3.1 research method 

This study can be described as an interpretive case study (Klein and Myers, 1999; Walsham, 
1995). For the is researcher interested in understanding information systems in cultural and 
social contexts, this orientation directs the focus to people’s assumptions, beliefs and desires. 
In the Daydream case, this meant that the early visions, expectations and apprehensions held 
by different actors were of importance as well as the general context of the computer 
gaming industry. As participant observers we aimed at getting an inside view of the work at 
Daydream by being temporary members of the field (Walsham, 1995; Van Maanen, 1979). 



 
98 

The fact that Daydream is a relatively small company in which formal decisions are rare 
there was a need to take part in every-day routines and assignments to capture critical 
information in informal speech. 
 

The study was conducted between January 2000 and October 2000 and covers the 
development process of the online game Clusterball. The study can be divided into three 
phases. Firstly, between January and March an exploratory study was conducted. In this 
phase we took part in company meetings and discussions in order to get to know the 
employees, the organization and the every-day routines at Daydream. We also presented our 
research interests on virtual communities and digitally mediated relationships and the way in 
which we could contribute to the context by exploring these specific research questions. 
Secondly, between April and September we conducted an in-depth study in which we were 
present at the company on a regular basis, resulting in 600 hours of participant observation. 
During this phase we took the opportunity to bring people from different departments 
together in discussions related to our research interests. We also distributed reports that 
were part of our research so that important issues could be discussed at an early stage. 
Finally, in October we conducted a complementary data collection.  
 

Two things guided our choice of research site. Firstly, Daydream represents leading practice 
in that the company almost exclusively uses information technology such as crm 
technologies, virtual communities, a dynamic advertisement system and a micro-payment 
system to handle its customer relations. Secondly, the research team had very good access to 
the company, which is an important factor when conducting interpretive research.  

3.2 data sources and analysis 

The data sources in this study are of three different kinds. Firstly, in following the 
interpretive tradition, data sources such as document review and observational data were 
used to obtain an understanding of the assumptions and expectations held and enacted by 
organizational actors at Daydream. Secondly, in exploring the relationships created in the 
virtual community website data such as postings to the virtual forum and data collected and 
stored in the customer database were used. Finally, the events and meetings the researchers 
took part in were all documented in daily reports. During the period of the study the 
researchers also had e-mail accounts set up at Daydream so that we could communicate with 
both employees and customers. 

3.3 case background 

Daydream Software ab is a Swedish company originating from a company called Sombrero. 
Sombrero was started in 1993 and the main idea was to sell computer software and to create 
solutions for the graphics industry. In 1995 the owners of Sombrero joined forces with two 
others in setting up Daydream Software ab. The team then consisted of art directors and 
illustrators as well as cad programmers and architects and the earlier focus on software 
development was complemented with web development and development of interactive 
computer games.  
 



 
99 

Today the company, consisting of 65 employees (November 2000), is developing computer 
games for the pc market. By the year 2000 three products have been released to the market: 
Safecracker, Traitors Gate and Clusterball.  
 

With Clusterball, Daydream introduces a new generation of computer games that are 
distributed, played and paid for over the Internet. In relation to the game there is a virtual 
community designed for the players. As a virtual meeting-place the community was regarded 
valuable as a platform for customer involvement in the product development process.  

4 The Development Process of Clusterball 
4.1 virtual test pilots 

In December 1999 it was made official that Daydream would put the new game Clusterball 
on the market in the year 2000. The game would be the first game to be distributed, played 
and paid for online. Also, features such as a crm database and a virtual community made the 
game an interesting prospect both for the company and foreign investors. In a press release 
on the Daydream website it was stated that: 
 

“As a first step in introducing Clusterball to the market, a website will be published on 
December 22. The new website, clusterball.com, will be the meeting place for all 
the Clusterball players. The goal is to build a « community » for all those who play 
Clusterball.” (Press release 99-12-17) 

 

One of the main ideas was that the virtual community would be used in order to sort out a 
group of people that would be interested in initial testing of the game. By trying early 
versions of Clusterball, this group of people would detect technical problems such as 
configuration problems before the official release of the game. However, the process of 
starting the tests did extend in time and it was not until the early spring of 2000 that this 
group of people was introduced as « test pilots » of Clusterball. 
 

During May and June 2000 the test pilots had considerable work to do. Early it became 
obvious that there was still much to be adjusted and that the release of the game would have 
to be delayed in order to meet the requirements of different hardware configurations. On 
June 17, the first official beta version of the game could be downloaded from the Clusterball 
website. The beta version would be available for anybody interested between June 17 and 
July 3. In this way, Daydream would get comments not only from the 200 test pilots, but 
from other players as well. On the Clusterball website you could read: 
 

 “The purpose is primarily to locate configurations that experiences troubles getting 
Clusterball to run. Please send us feedback on performance and any strange behavior.” 
(clusterball.com 00-06-17) 

 

In a press release in the beginning of July it was announced that the game would be released 
on July 17 at 2pm. As a result of rapid feedback from community members, the first error 



 
100 

patch was available on July 18 — only a day after the game was released to the global 
market. In this way, many of the most frequent problems were handled even before the 
majority of customers had suffered from them.  

4.2 virtually spread rumors 

While the game developers were occupied with solving technical problems, developing 
patches with new features and taking care of the requests put forward by the community, 
there were also activities going on at the marketing department. Here, the focus was how to 
distribute the game to the global market. 
 

The idea was to involve players in the promotion of the game. Hence, a group of people 
known from the virtual community was invited to Daydream in August in order to meet 
with the designers, play the game and get an inside view of the company. This event was 
considered successful by both players and developers, and got much attention in the 
Clusterball community as well as in forums on related websites. In this way, the rumor 
about Clusterball was spread efficiently in the context in which experienced players spent 
time on a regular basis.  Also, the members of the community contributed in the distribution 
of the game by publishing their own Clusterball websites. By individually designing and 
maintaining websites with content focusing on Clusterball, many of the players voluntarily 
contributed to the distribution of the game. The appearance of such websites, so called fan 
sites, started as soon as the game was released and in September 2000 there were already 
sixteen fan sites designed by individual players (see for example ballsnatchers.com, 
clusterzone.net and clusterball.quakenexus.nu). To encourage visitors to the 
Clusterball website to also join the discussions at the fan sites, Daydream often promoted 
these on the official Clusterball website: 
 

“There is a new mini-game out on ballsnatchers.com …very quick and very fast! 
Head over to ballsnatchers.com to grab it!” (Team Daydream at 
clusterball.com, 00-09-12) 

 

Owing to the community members and their network of contacts the rumor about 
Clusterball was efficiently spread on the Internet and the game was distributed to the gaming 
community without much effort from Daydream. 

4.3 virtual re-design of clusterball 

As the game was released, the virtual community and its members continued to be of 
importance. Foremost, the community members were involved in trying out various events 
that were planned as a way to attract customers. An example would be the first official 
Clusterball Cup that all community members were invited to join on July 27. In inviting the 
Clusterball community consisting of mainly experienced players, Daydream hoped for 
suggestions on how to improve it in order to also attract less experienced players. 
 

Moreover, the community members were actively involved in the re-design of the game. In 
the virtual forum there were frequently postings concerned with future improvements of the 
game.  



 
101 

 

“I was sitting around today, thinking of some new play modes for Clusterball.” (« Clay » 
in the Clusterball community, 00-08-28)  

 

“Greatly improve the chat features for multiplayer…” (« Shuttlekilla » in the 
Clusterball community, September 8, 00-09-08) 

 

“What would you think of Daydream releasing the source code so we could do some 
mods…” (« BurnOut » in the Clusterball community, 00-08-27) 

 

To encourage such postings, Daydream officially stated that they were interested in the 
opinions from the community members. In a posting to the forum on September 4, one of 
the developers at Daydream Entertainment said: 
 

 “At Daydream we are constantly listening to what the community wants…” (« Lobo » 
in the Clusterball community, 00-09-04) 

 

This period also included a second patch to which the community members contributed 
actively by suggesting what new features to add to improve the game. In this way, the virtual 
community was used to communicate ideas between developers at Daydream and the 
players during the design process. 

4.4 virtual expression of opinions 

After the release, most of the discussions in the virtual community were focused around 
technical issues. However, as time went by discussions of a more personal character 
occurred. The forum came to be used to reveal personal attitudes and opinions regarding the 
game. An example would be the discussion in the forum on August 8, when the game had 
been up and running for about a month. Most players were excited but there was also the 
recognition of beginning problems such as few active players. In the forum you could read: 
 

”It’s a little quiet here, too quiet…” (« Zodiak », 00-08-18) 
 

As recognized by this player there was a problem in attracting new participants to the game, 
something that resulted in the same people challenging each other. The players paid further 
attention to this in the forum on August 18: 
 

“I’ve been trying to go online to find some good games the past couple of weeks, but the 
only ones I seem to find are all those champs and superflys…the same people access the 
site every day” (« Muerte », 00-08-18) 

 

What followed in the community was a discussion of how to improve the game in order to 
attract new players. The discussion engaged lots of experienced players and together they 
came up with suggestions such as special tournaments and special tutorials that would help 
less experienced players in getting started. 
 

These discussions were considered important to Daydream for several reasons. Firstly, they 
identified troublemakers and inappropriate behavior by players. This made it possible for 



 
102 

Daydream to respond to upcoming conflicts and solve them at an early stage. Secondly, the 
discussions gave a good view of the general atmosphere in the community. The postings 
revealed current issues that were important to the community at that particular time. 
Finally, the discussions in the community could help in understanding the activity in the 
game and what could be done to improve this. In this way, the community was seen as a tool 
for revealing current issues concerning the players and their overall attitude towards the 
product.  

5 Community members as product developers 
On the basis of the empirical data, this research study suggests that the virtual community 
was important for Daydream for involving customers in the development process of the 
online game Clusterball.  
 

First, the virtual community constituted a platform for product testing. The opportunity for 
customers to register brought with it the possibility for Daydream to reach interested players 
at an early stage in the product development process. As in traditional beta testing of 
software products and in conformity with the open source code development (Raymond, 
1999), Daydream could benefit from individual volunteers and their willingness to freely 
share their expertise in contributing to the development process. Bug reports and user 
feedback were distributed efficiently, and Daydream enjoyed the opportunity of having the 
tests performed directly by end users in contrast to having test cases designed and run as 
common in traditional system development and software engineering methods (Avison and 
Fitzgerald, 1995; Pressman, 2000). 
 

To a large extent, the way in which the virtual community was used for testing resembles 
that of traditional beta testing of software. However, there are reasons to believe that the 
use of the community brought with it certain advantages. Foremost, the test process became 
an open process.  As the bug reports were posted directly to the virtual forum the test pilots 
could get valuable input from each other during the test process. This made the process not 
only a two-way participatory activity between the company and the test participants 
(Greenbaum and Stuedahl, 2000), but a many-to-many communication process in which test 
participants could get input from each other as well as having a continuous dialogue with the 
developers at Daydream. Moreover, the community-building atmosphere encouraged the 
test participants to keep engaging in the product even after initial testing. Many of the test 
pilots are still devoted members of the community. For Daydream, this meant that they had 
customers with substantial knowledge of the product and its development history, which 
will bring with it the opportunity to build on accumulated customer knowledge in future 
product development. Finally, the ability to continuously report to the virtual forum 
extended the test process in time and made it an on-going process, which is rare in systems 
development where tests are performed during the implementation and review phases of 
systems development (Avison and Fitzgerald, 1995).   
 



 
103 

Second, the virtual community was used in product diffusion. In developing fan sites and by 
distributing the news about the product to other gaming communities on the Internet, the 
community members carried out the diffusion of the product in a way that has been 
traditionally reserved to manufacturers and large-scale distributors (Von Hippel, 2001). As a 
meeting-place within which relations could occur and transmit, the virtual community made 
possible for customer driven diffusion of the product. 
 

Third, the community was used in product re-design. The players had concrete suggestions 
such as chat rooms, demo recording and playback, music for each venue and new play 
modes. Such suggestions were posted to the virtual forum and very early Daydream stated 
that all postings would be taken into consideration in the development of new patches. The 
community members freely shared their ideas and posted their suggestions to the community 
on a continuous basis. Concurring with to the open source movement (Raymond, 1999; 
Feller and Fitzgerald, 2000), the development process evolved incrementally as new 
suggestions from users appeared. However, since no source code of Clusterball was available 
only limited individual modifications could be made. Nevertheless, what the virtual 
community admitted was an open and collaborative development environment. 
 

In view of the product development process investigated here, it is important to observe that 
customer involvement in software development is by no means an unknown phenomenon in 
the is literature. In fact, this literature reports on several problems in involving users in 
systems development. As noted in user-centered collaborative approaches such as 
participatory design (Greenbaum and Kyng, 1991), Rapid Application Development (Avison 
and Fitzgerald, 1995) and Soft Systems Methodology (Checkland, 1981), one difficulty is to 
select user representatives that can facilitate in developing a system that match the work 
practice of a large user group. Moreover, it has been shown that user involvement can be 
hard to establish and maintain due to lack of motivation among users. In the Daydream case, 
the aim of customer participation was not to represent a work practice but instead to refine a 
product. During the process the game was used as a frame of reference to which both 
customers and developers could relate. Furthermore, by inviting all customers to the virtual 
community, Daydream got input from volunteering customers with varying skills and 
expertise. In this respect, participation was not imposed but customer-driven and there are 
reasons to believe that this encouraged both customer motivation and customer initiatives. 
 

Finally, the virtual community was used in product evaluation. The possibility to post 
messages without having to expose the physical self seemed to encourage informal speech 
between players. These discussions gave Daydream a good view of the general conception of 
the product and what issues were important to the customers at that particular time. 
Moreover, the discussions helped in understanding the activity in the game and what could 
be done to improve this. Often, information about customers is generated at user sites (Von 
Hippel, 2001) or collected using crm technologies (Kalakota and Robinson, 1999). 
However, a comprehensive view of changing customer needs calls for a considerable effort 
in collecting and analyzing large amounts of data. In addition to customer data obtained by 
using crm technologies, the virtual community allowed Daydream to trace changing 



 
104 

behaviors and emerging attitudes among customers by participating in the informal 
discussions in the virtual community. Also, much of the discussions contained information 
that could have been hard to capture in information requests put forward by using solely a 
crm system. As an informal setting for expressing oneself, the virtual community 
encouraged the customers to voluntarily contribute to product evaluation by expressing 
their feelings for the product. Moreover, by participating in the discussions Daydream could 
learn about its customers in a way not easily attained by using traditional customer data 
collection techniques. 

6 Conclusions 
Looking at the development process of Clusterball, it seems that the virtual community was 
valuable as a platform for involving customers in the development process. By using the 
virtual community, Daydream succeeded in establishing a collaborative development 
environment dominated by interactivity, speed and continuous feedback from customers.  
 

On the basis of empirical data, there are two implications of virtual communities in product 
development. First, the use of virtual communities redefines the structure of the 
development process. While the systems development life cycle is often described as a 
sequential process with a set of pre-defined phases, the virtual community enforced an 
integrated process with test, design and evaluation phases going on continuously. 
Furthermore, there was an increased possibility for customers’ initiatives to direct the 
development process. Instead of specifying customer requirements at an early stage of the 
process, user requirements could be collected and implemented during the whole 
development process.  
 

Second, the use of virtual communities redefines the customer role in the development 
process. Instead of customer involvement as a means to represent a work practice, the 
virtual community aimed at customer involvement in direct refinement of the product. In 
addition to customer involvement in the development phases of a system, the virtual 
community made possible for continuous customer involvement also when the system was 
implemented and during its subsequent use. 
 

In this paper, virtual communities have been identified as promising platforms for product 
development. However, to further understand the characteristics that have been outlined 
and their implications, further research is needed. First, research on structure redefinition 
would increase our understanding of the product development process and how this might 
be transformed by using virtual communities as a means to coordinate an integrated 
development process with continuous customer involvement. Second, research on customer 
role redefinition would increase our understanding of how to manage product-centered 
virtual communities characterized by customer involvement in both the development 
process and after product implementation. In exploring these areas we would broaden the 
view of virtual communities and their potential as collaborative environments for product 
development. 



 
105 

References 
Avison and Fitzgerald. (1995). Information Systems Development: Methodologies, Techniques and 

Tools. The McGraw-Hill Companies: London. 

Chang A-M, and Kannan P. K., and Whinston A. B. (1999). Electronic Communities as 
Intermediaries: the Issues and Economics. In Proceedings of the 32nd Hawaii International 
Conference on System Sciences (hicss), January 5-8, Maui, Hawaii. 

Checkland, P. (1981). Systems Thinking. Systems Practice. Wiley: Chichester. 

Ciborra, C. and Patriotta, G. (1996) Groupware and Teamwork in New Product 
Development: The Case of a Consumer Goods Multinational. In Ciborra, C. (ed.). 
Groupware & Teamwork: Invisible Aid or Technical Hindrance? John Wiley & Sons: 
Chichester, England. 

Croon Fors, A. and Jakobsson, M. (2000). Beyond use and design — The dialectics of being 
in virtual worlds. Internet Research 1.0: The state of the interdiscipline. Lawrence, ks, 
usa. 

Donath, J. (1999). Identity and deception in the virtual community. In Smith, M., Kollock, 
P. (eds.). Communities in Cyberspace. Routledge: New York. 

Feller, J. and Fitzgerald, B. (2000). A Framework Analysis of the Open Source Software 
Development Paradigm, in W. Orlikowski, P. Weill, S. Ang & H. Krcmar (eds.) 
Proceedings of the 21st Annual International Conference on Information Systems, Brisbane, 
Australia, December 2000. 

Greenbaum, J., and Kyng, M. (1991). Design at Work. Cooperative design of computer systems. 
Lawrence Erlbaum: Hillsdale N.J. 

Greenbaum, J., and Stuedahl, D. (2000). Deadlines and Work Practices in New Media 
Development: Its about time. Proceedings of the Participatory Design Conference, New 
York, usa, December 2000. 

Hagel, J and Armstrong, A.G. (1997). Net Gain — Expanding markets through virtual 
communities. Harvard Business School Press: Boston, Massachusetts. 

Heim, M. (1997). Virtual Realism. Oxford University Press: Oxford. 

Jones, S. (1999). Studying the Net. In Jones, S. (ed.). Doing Internet Research. Critical Issues 
and methods for Examining the Net. uk Publications: uk. 

Kalakota, R., and Robinson, M. (1999). e-Business; Roadmap for Success. Addison-Wesley: 
Reading, Massachusetts. 

Klein, H. K., and Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating 
Interpretive Field Studies in Information Systems, mis Quarterly, vol. 23, nr. 1, pp. 
67-93. 



 
106 

Laurel, B. (1993). Computers as Theatre. Addison-Wesley Publishing Company Inc: Reading, 
Massachusetts. 

Markham, A. N. (1998). Life Online: Researching real experience in virtual space. Altamira Press: 
London. 

Normann, R. and R. Ramirez (1993). From value chain to value constellation: Designing 
interactive strategy. Harvard Business Review, July-August, pp. 65-77. 

Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and competition. 
Free Press: New York. 

Preece, J. (2000). Online Communities: Designing Usability, Supporting Sociability. John Wiley & 
Sons: New York. 

Pressman, R., S. (2000). Software Engineering: A Practitioner’s Approach. McGraw-Hill: 
London. 

Raisinghani, M. (2000). Electronic Commerce at the Dawn of the Third Millennium. In 
Rahman S., M. and Raisinghani M., S. (eds.), Electronic Commerce: Opportunity and 
Challenges, pp. 1-20. Idea Group Publishing: London. 

Raymond, E., S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source by an 
Accidental Revolutionary. O’Reilly: Cambridge.  

Shapiro, C., and Varian, H., R. (1999). Information Rules. Harvard Business School Press: 
Boston. 

Timmers, P. (1998). Business Models for Electronic Markets. International Journal of 
Electronic Markets, vol. 8, nr. 2, pp. 3-8. 

Turkle, S. (1995). Life on the screen. Identity in the Age of the Internet. Simon & Schuster: New 
York. 

Van Maanen, J. (1979). The Fact of Fiction in Organizational Ethnography. Administrative 
Science Quarterly, vol. 24, nr. 4, pp. 539-550. 

Von Hippel, E. (2001). Innovation by user communities: Learning from open-source 
software. mit Sloan Management Review, vol. 42, nr. 4, pp. 82-86. 

Walsham, G. (1995) Interpretive case studies in is research: nature and method. European 
Journal of Information Systems, (4), pp. 74-81. 



 
107 



 
108 



 
109 

Customer role ambiguity in community management 
 
 

Helena Holmström 
Umeå University • Umeå • Sweden 

 
Ola Henfridsson 

Umeå University • Umeå • Sweden 
Viktoria Institute • Gothenburg • Sweden 

 
 
 
 
 
Abstract  
This paper examines challenges involved in managing product-centered communities. Using 
the notion of customer role ambiguity, the paper explores the ambiguity involved in 
balancing sound business modeling with voluntary customer participation in a computer 
gaming setting. The case study identifies three different customer role ambiguities — role 
absorption, business model violation, and non-organizational network elements — with 
important implications for community management. We suggest that an understanding of 
these implications is critical for making product-centered communities viable alternatives to 
traditional software development. 
 



 
110 

1 Introduction 
Many of the most viable and flourishing virtual communities on the Internet are product-
centered. The Linux community (Ljungberg 2000; Raymond 1999) and the Doom 
community (Hertz 1997) are two examples of communities that are closely associated with 
particular products. Many authors note how these types of communities have considerable 
commercial potential in terms of customer relations (Hagel and Armstrong 1997), 
marketing (Hoffman and Novak 1996), and product development (Wikström 1996). The 
underlying assumption in all these accounts is that virtual communities are useful for 
involving customers as co-producers in activities that traditionally are performed by 
companies only. In short, they portray the customer as both value consumer and producer. 
While this enhanced customer role (both consumer and producer) presents companies with 
new opportunities, it also puts forward new organizational challenges. Needless to say, there 
is potential role ambiguity involved in crossing the traditional producer—customer 
boundary. On the one hand, customers act in the role of producers by devoting time and 
energy to value-adding activities such as product development and marketing without 
monetary compensation; on the other hand, the customers act in the role of consumers of 
the value produced by these activities. While there exists research on customer role 
ambiguity in marketing, see e.g., Beard (1999), Webb (2000), previous research on virtual 
communities seems to overlook this issue. How can we understand customer role ambiguity 
in community management?  
 

In this paper, we identify customer role ambiguity as a critical issue for successful 
community management practice. Using a case study of a computer gaming community, we 
illustrate how customer role ambiguity can emerge in product-centered communities and, 
furthermore, suggest certain themes for future research on the topic.  

2 Customer role ambiguity in community management:  
related literature 

2.1 what is community management? 

In reviewing the literature, one can see that community management is broadly referred to 
as the activities of community development and community cultivation. Being at an early 
stage, the field of community management tends to be associated with a variety of aspects 
such as interaction and information design (Nielsen 1993, 2000; Preece 2000), technical 
platforms and system architectures (Lechner and Schmid 2001; Stanoevska-Slabeva and 
Schmid 2001) communities as business models (Timmers 1998, 1999), communities as 
collaboration platforms (Leevers 2001), identity-construction and trust (Donath 1999; 
Markham 1998; Turkle 1995), and the open source management (Ljungberg 2000; 
Raymond 1999). While this body of knowledge is important in understanding the 
characteristics and perceptions of the emerging field of virtual communities, it portrays a 



 
111 

rather fragmented picture from which it is difficult to extract a common understanding of 
community management. 
 

Throughout this paper, we refer to « community management » as the activity of 
establishing, maintaining, and re-producing a virtual community for commercial purposes. 
One distinctive feature of community management is that parties outside the traditional 
organizational boundary handle parts of the management activities. 

2.2 customer role ambiguity 

Previous research on community management typically recognizes how virtual communities 
intersect with an enhanced customer role. Hagel and Armstrong (1996, 1997) and Martin 
(1999), view virtual communities as tools for creating economic value by involving 
customers in business processes. In other words, apart from being merely consumers of the 
value created, customers also produce value when engaging in virtual communities. While 
this opportunity is promising and especially relevant for companies aiming at the business-to-
consumer market, however, the community management literature tends to overlook that 
this enhanced customer role is likely to come with role ambiguity. 
 

To better understand role ambiguity, one can look closer at how this construct has been 
conceived in organizational theory, see Kahn et al.(1966) and Jackson and Schuler (1985). 
This literature refers to role ambiguity as an individual’s uncertainty about the expectations 
surrounding his or her role in a job-related context (Beard 1999). One of the negative 
consequences of role ambiguity is that it interferes with goal accomplishment, which leads to 
job dissatisfaction. Even though role ambiguity has been mostly used to explain job stress and 
dissatisfaction, there are reasons to believe that the concept can be transferred to describe 
the uncertainty that customers or vendors might feel about the expectations surrounding the 
enhanced customer role in product-centered communities. One reason for this is that 
marketing researchers such as Beard (1999), Webb (2000) and Singh (1993) already have 
illustrated how role ambiguity can be transferred to ambiguity occurring in producer—
customer relationships.  
 

In what follows, we use a case study of a computer gaming community to illustrate how 
customer role ambiguity can occur in product-centered communities. These illustrations 
work as a basis for suggesting four themes for future research on customer role ambiguity 
and its implications for community management practice. 

3 Illustrating customer role ambiguity:  
the Clusterball case study 

3.1 research site 

Daydream Software ab is a Swedish company that develops computer games for the pc 
market. The company unifies competence concerning game development and interactive 
online entertainment. Up to 2001, the company has released three computer games: 



 
112 

Safecracker, Traitors Gate, and Clusterball, of which Clusterball was the first game to be 
played, distributed and paid for via the Internet. 
 

In addition to technical innovations related to the online game Clusterball, Daydream also 
extended the company’s policy in terms of product development when developing the game. 
In a prospect that was published and distributed to shareholders in early 2000, the ceo of 
Daydream declared: “The customer is our best product developer”. The reason to this was twofold. 
First, there was recognition of the value of customer expertise. The possibility to extract 
customer knowledge and incorporate it in new products was considered valuable for the 
process of product development. Second, the relationship between the company and its 
customers would benefit in that the two parties came closer due to a shared interest in the 
product. It was believed that Daydream could learn about its customers and that this would 
improve the company’s ability to respond to general changes in customer demands and also 
to better meet individual preferences. 
 

To realize the vision of involving the customers in product development, there was a need 
for a technical solution that enabled Daydream to interact with its customers. To serve this 
need a virtual community and a customer relationship management (crm) database were 
developed. In the virtual community all players of Clusterball could register as members and 
interact with each other and with employees at Daydream in discussion forums or in a chat. 
In being a virtual meeting-place for all players, the virtual community provided the 
possibility to establish contact with a large network of players that could be of interest to 
Daydream. In addition, the crm database system made it possible to learn about individual 
players and their preferences. 

3.2 research methodology 

This study was conducted as an interpretive case study (Klein and Myers 1999; Walsham 
1995) in which assumptions and intentions held by different organizational actors at 
Daydream were of importance in our understanding of the context. The study was 
conducted between January and October 2000 and included 600 hours of participant 
observation in which we got to know the people and the every-day work that was carried 
out at Daydream.  
 

The data sources were of three different kinds. First, data sources such as document review, 
official press releases and observational data were used to obtain an understanding of the 
company and the overall gaming context. Second, e-mail conversations, website data such as 
virtual message boards and data collected in the customer database were used to get an 
understanding of the customers and their relationship to Daydream. Finally, the events that 
we took part in during a day, for example company meetings and discussions were 
documented in personal diaries.  

3.3 the clusterball case 

As outlined earlier, Daydream intended to involve its customers in developing Clusterball. 
By introducing « Clusterball ambassadors » and by involving the customers in parts of the 



 
113 

design work, the company enhanced the role of its customers. However, to manage this 
enhanced customer role brought with it certain difficulties both for Daydream and the 
customers. 
 

Below, we use this case study of a computer gaming community to illustrate the enhanced 
customer role and how, as a result, customer role ambiguity can emerge in product-
centered communities. The illustrations serve as the base for our further discussion on how 
customer role ambiguity might have implications for community management. 
 

Role Ambiguity Created by Role Absorption 
In order to strengthen the relationship between the company and its customers, the 
marketing department at Daydream introduced the concept of « Clusterball ambassadors » 
soon after the game was released. An ambassador would be a person with good skills in 
playing Clusterball, an active member of the community and a person of good language and 
moral that would have a positive influence on other community members. Also, an 
ambassador would be a person with the ability to handle conflicts without loosing the 
temper. According to the community manager at Daydream, there were several reasons for 
introducing ambassadors to the game. First, they would be able to introduce the game to 
their local network of contacts such as friends, people in their hometown and people in 
surrounding areas. Second, they would be helpful in the work of improving and realizing 
community activities such as administration and hosting of Clusterball tournaments. Finally, 
they would strengthen the relationship between Daydream and the rest of the gaming 
community. In doing this, the ambassadors would contribute both to daily company 
activities as well as in representing Daydream in its contact with potential customers.  
 

The first ambassadors were appointed in the autumn of 2000. These persons were selected 
by employees at Daydream and were individually contacted by e-mail in which the 
community manager at Daydream explained the concept of Clusterball ambassadors. In all, 
five persons of different nationalities were selected and all of them were interested in 
becoming ambassadors in terms of what Daydream said that they expected from them.  
 

In short, the initiative to appoint Clusterball ambassadors was successful in that it engaged 
players in company-related work. By the end of the year 2000 the ambassadors had hosted 
their own tournaments as well as contributed with content to the Clusterball website.  
 

However, to enhance the customer role by having ambassadors as representatives of the 
company also brought with it customer role ambiguities. After a couple of months, there 
were misunderstandings between Daydream and one of the ambassadors regarding his 
behavior. From the company’s point of view the ambassador had become too absorbed by his 
role as an ambassador and representative of Daydream. This was reflected in the initiatives 
he took in the community. Instead of being only a supportive link between the company and 
the players, he started to act as if he ruled the community and the community members. The 
ambassador had a fierce tone and commented other players in a dominant way. This behavior 
was considered a bad role model and the decision from Daydream was to let the ambassador 
leave his assignment.  



 
114 

 

According to the ambassador, one major problem was that the terms from Daydream were 
unclear which made him unsure of what he was expected to do on the company’s behalf. 
Due to ambiguities in what the intentions with Clusterball ambassadors were, he found it 
hard to combine his role as an ordinary player with the role of an ambassador representing 
the company. Most often, difficulties arose when he got frustrated because of an unfair game 
or an irritating posting to the community forum. In such situations, he acted as if he ruled 
the community by giving other community members reprimands in a dominant way. 
 

In sum, the misunderstandings between Daydream and the ambassador illustrate the 
problem to handle the enhanced customer role. In this case, the ambassador had difficulties 
in handling his role as both an ordinary player and an ambassador, which resulted in the 
company loosing trust in him as a company representative. 
 

Role Ambiguity Created by Business Model Violation 
Computer games are often released with a separate game engine and additional maps. 
According to this business model the customer is charged for the game engine but not for the 
additional maps that can be downloaded as patches to the game or bought as complementary 
cd-roms. For example, in the online multiplayer game Quake the customers are charged for 
the game engine and a predefined set of « maps » (the landscapes in which the game takes 
place). Additional maps and expansion packages can be downloaded and are free of charge. 
Moreover, the Quake players are encouraged to design their own maps, as so called  
« mappers ». As Quake is a successful and widespread game many other games are developed 
and released according to this business model. Hence, most players are used to be charged 
for the game engine and then enjoy complimentary features for free, as well as they are used 
to be part of the design work.   
 

In opposite to this, Daydream was to profit not by selling the game engine but instead by 
selling Clusterball venues. On July 17 2000, the Clusterball game engine could be 
downloaded for free from the Clusterball website. After downloading the game engine the 
first two venues could be enjoyed for free. Thereafter, all additional venues had to be 
purchased by the customers. Another difference was that all the Clusterball venues were 
pre-designed by in-house developers at Daydream. Even though the players were 
encouraged to contribute to the design in that they could leave their suggestions on 
improvements in the virtual forum, employees at Daydream conducted the actual design 
work.  
 

Considering the experience of most players to design parts of computer games (for example 
maps in Quake), it is not surprising that the Clusterball players soon wanted to have a 
stronger influence also over the design of Clusterball. To better meet this need, the players 
were offered the possibility to design their own « skins », i.e., the look of the ship that you 
are flying when playing Clusterball. To be able to express oneself by designing an original 
skin was an important feature of the game and it got much attention in the Clusterball 
community. However, as many games offer the possibility to design more than particular 
features such as skins, the gaming community soon strived for more. On August 27, there 



 
115 

was a posting to the virtual forum in which one of the players asked people at Daydream 
about releasing the source code of Clusterball. This would imply that all customers would be 
able to modify the game and that the control of its development to a greater extent was 
outside the company producing it. This question was never put attention to by Daydream 
since a critical issue, and a prerequisite for the business model, was to make profit on the 
product by selling additional venues developed by in-house programmers.  
 

In sum, this example illustrates the difficulties experienced in having customers as both 
consumers and producers of value. On the one hand, Daydream wanted to encourage 
voluntarily participation from its customers. On the other hand, there was a need to profit 
by commercial utilization of this participation. There are reasons to believe that this issue 
echoes the challenge of keeping the community members engaged as product developers at 
the same time as they constitute the group on which profit is to be made. 
 

Role Ambiguity Created by Non-organizational Network Elements 
Daydream intended the Clusterball community members as important components in 
diffusing the game. Using their networks of players, the community members were able to 
break the news about Clusterball to well established gaming communities on the Internet. 
This activity was important in the process of engaging a critical mass of players in Clusterball 
tournaments and team competitions.  Following this engagement process, several 
communities outside the direct control of Daydream were established around Clusterball. 
On Clusterball fan sites such as ballsnatchers (www.ballsnatchers.com), clusterkings 
(www.geocities.com⁄clusterballkings) and kryptonweb (www.kryptonweb.de.vu), 
the most experienced Clusterball players contributed a lot in building an interest in the game 
by providing virtual discussion forums, reviews on gaming sessions and skin tutorials for less 
experienced players. 
 

While this customer-driven activity was important to diffuse Clusterball, however, it also 
produced some unexpected customer role ambiguities. First, the appearance of individually 
developed Clusterball websites made it hard to tell where information originated. Without 
making it explicit to the community of players, Daydream supported certain fan sites by 
providing the developers with content and news about Clusterball. While Daydream argued 
that this made information even more credible since it was believed to originate in the 
gaming community itself, this made it hard for the customers to tell whether the information 
came from Daydream or from individual players interested in telling their own story on 
Clusterball. Second, the diffusion of Clusterball could no longer be fully controlled by 
Daydream since the activity of developing and maintaining fan sites were outside the 
organizational boundaries.  

4 Customer role ambiguity in community management:  
three suggested research themes 

As illustrated by the Clusterball case, the enhanced customer role in product-centered 
communities brings with it customer role ambiguity. In what follows, we explore how 



 
116 

customer role ambiguity adds new dimensions to three traditional elements of business 
organization: trust building, business modeling, and organizational transformation. 

4.1 trust building 

As shown in research on interaction in virtual communities, see for example Rheingold 
(1994), Donath (1999), Turkle (1995) and Markham (1998), trust is an important property 
in community cultivation and a prerequisite for any virtual community to evolve in the first 
place. In the literature cited above, however, trust is studied among community members in 
non-profit communities, i.e., there is no commercial dependency between the parties 
involved.  
 

Recently, trust has been recognized as one of the key factors in commercial settings such as 
electronic commerce and online bidding processes (Abdul-Rahman and Hailes 2000; 
Castelfranchi and Falcone 2000). This literature focuses on how to establish trust between 
trade parties that never meet physically. One of the lessons learned is that better models and 
representations of trust need to be developed due to different kinds and conceptions of trust 
(Castelfranchi and Falcone 2000; Castelfranchi and Tan 2001). 
 

So, what are trust implications of the enhanced customer role in product-centered 
communities? To what extent can customer role ambiguity negatively influence trust 
building in product-centered communities? The enhanced customer role implies an 
increased dependency between vendors and consumers. When using the community to 
extract customer knowledge and incorporate this in products, a sudden loss of devotion and 
trust of participant customers would be devastating for producing value. Looking at the 
Clusterball case, Daydream appointed certain players as ambassadors of the game. In many 
respects, the cooperation between Daydream and the ambassadors worked well in that the 
two parties shared the similar interest of diffusing Clusterball among a larger number of 
players.  
 

However, the case also illustrates how the enhanced role of the customers can be hard to 
manage, and how misunderstandings can occur in such relationships. Recall that one 
ambassador had to leave his assignment because he virtually became absorbed in his role as 
Clusterball ambassador. It is likely that this role absorption negatively influenced the trust 
built between the community and Daydream. In view of this role absorption, Daydream 
learnt that there are reasons to make their expectations on Clusterball customers more 
explicit.  
 

The Clusterball case points out at least two important research questions that the current 
literature on trust and virtual communities fail to cover (see table 1):  In what situations can 
customers work as trust builders in product-centered communities? To what extent can 
product developers reduce customer role ambiguity by making customer expectations 
explicit? 



 
117 

4.2 business modeling 

While it is difficult to assess and model the value generated in virtual communities, there is 
little doubt that successful communities do generate value for their members. This value can 
be, for instance, the source code in open source communities, the gathered expertise in 
specialized communities, or the shared pleasure of communication in muds.  
 

However, the commercial setting of product-centered communities makes the value 
generation question more complicated. The sponsor of the community basically expects the 
community to generate value that can be exploited commercially. In short, this expectation 
creates a potential conflict of interests between the sponsor and the community members in 
product-centered communities, which we need to know more about.  
 

The Daydream case illustrates that business model violation can work as a source of 
customer role ambiguity. Since the Clusterball business model was designed so that revenues 
came from selling additional venues rather than from selling the game engine, Daydream had 
to downplay customer involvement initiatives that were related to the venues. This 
downplaying occasioned ambiguity in light of Daydream’s explicit intention to involve the 
customers in the product development process. There is little research, if any, on business 
model violation in relation to community management. Important research questions are 
(see table 1): What implications does the enhanced customer role have for the design of 
online business models? How does one design profitable business models that still encourage 
voluntary customer participation?  

4.3 organizational transformation 

As noted in is literature, see e.g., Bloomfield et al.(1997) and Orlikowski (1992, 1996), 
information technology and organizational transformation is often intertwined, and 
establishing successful community management is likely to require organizational 
transformations of different kinds.   
 

There are recent accounts on how « internetworking » technologies such as extranets, 
intranets, and communication platforms make organizations more open (Orlikowski 1999). 
Product-centered communities are likely to contribute to such a development in that they 
enhance the customer role over the traditional producer-consumer boundary. Enhancing the 
customer role means that the distinction between the organization and its context gets 
indistinct. When the customer partly represents the organization, it is likely that the design 
of the organization needs to be adjusted in accordance with this enhanced customer role. 
 

The Clusterball case illustrates how the enhanced customer role makes the distinction 
between the organization and non-organizational elements blurry. While benefiting from 
both the official Clusterball community and the network of non-organizational communities 
(ballsnatchers, clusterkings, and kryptonweb) in diffusing the Clusterball game, Daydream 
simultaneously lost control over the diffusion process to parties outside the organization. 
This lost control cuts both ways. On the one hand, it creates novel forms of intermediation. 
On the other hand, novel forms of intermediation might, for instance, confront existing 



 
118 

market plans, which suggest that the sponsor of a product-centered community needs to 
adapt its market organization to reflect a situation where marketing is conducted both inside 
and outside the traditional organizational boundary. These kinds of problems are generally 
under-researched in the community literature. Important questions are (see table 1): What 
are the novel forms of intermediation created by the enhanced customer role in product-
centered communities? How can organizational structures and processes be designed to 
reflect/support the novel forms of intermediation that is created by the enhanced customer 
role? 
 

Business organization 
elements 

 Customer role ambiguities in 
the Daydream case 

 General Research questions 

     
Trust building  Role absorption  In what situations can customers work as trust 

builders in product-centered communities? 
 
To what extent can product developers reduce 
customer role ambiguity by making customer 
expectations explicit? 

     
Business modeling  Business model violation  What implications does the enhanced customer 

role have for the design of online business 
models?  
 
How does one design profitable business models 
that still encourage voluntary customer 
participation? 

     
Organizational 
transformation 

 Non-organizational 
network elements 

 What are the novel forms of intermediation 
created by the enhanced customer role in 
product-centered communities? 
 
How can organizational structures and processes 
be designed to reflect/support the novel forms 
of intermediation that is created by the 
enhanced customer role? 

     
 

table 1. Customer role ambiguities in community management 

5 Conclusion 
This paper argues that the enhanced customer role found in product-centered community 
settings is likely to come with customer role ambiguities such as role absorption, business 
model violation, and non-organizational network elements. We suggest that while role 
ambiguity is a critical issue for community management, it is nevertheless overlooked by 
current literature on this topic. In order to progress our understanding of how to 
successfully manage communities for commercial purposes, we therefore need to assess the 
consequences of customer role ambiguity for classic dimensions of business organization such 



 
119 

as trust building, business modeling, and organizational transformation. We suggest that 
such an understanding is critical to make product-centered communities a viable alternative 
to traditional software development. 

Acknowledgements 
The European Union’s Regional Development Fund and Daydream Software funded this 
study. Thanks are also due to Carsten Sørensen for comments on an earlier version of this 
paper. Annakarin Nyberg conducted an important part of the empirical work drawn on in 
this paper. 

References 
Abdul-Rahman, A., and Hailes S. (2000). Supporting Trust in Virtual Communities. In 

Proceedings of the 33rd Hawaii International Conference on System Sciences (hicss), January 
4-7, Maui, Hawaii. 

Beard, F. (1999). Client Role Ambiguity and Satisfaction in Client—Ad Agency 
Relationships. Journal of Advertising Research, March—April, pp. 69-78. 

Bloomfield, B. P., R. Coombs, et al. (1997). Information Technology and Organizations. 
Oxford University Press: Oxford. 

Castelfranchi, C., and Falcone, R. (2000). Trust Is Much More than Subjective Probability: 
Mental Components and Sources of Trust. In Proceedings of the 33rd Hawaii International 
Conference on System Sciences (hicss), January 4-7, Maui, Hawaii. 

Castelfranchi, C., and Tan Y-H. (2001). The Role of Trust and Deception in Virtual 
Societies. In Proceedings of the 34th Hawaii International Conference on System Sciences 
(hicss), January 3-6, Maui, Hawaii. 

Donath, J. (1999). Identity and deception in the virtual community. In Smith, M., Kollock, 
P. (eds.). Communities in Cyberspace. Routledge: New York. 

Hagel, J., and Armstrong, A., G. (1996). The Real Value of Online Communities. Harvard 
Business Review, May—June, pp. 134-141. 

Hagel, J and Armstrong, A., G. (1997). Net Gain — Expanding markets through virtual 
communities. Harvard Business School Press: Boston, Massachusetts. 

Herz, J. C. (1997). Joystick Nation. Abacus: London. 

Hoffman, D. L. and Novak, T. P. (1996). Marketing in Hypermedia Computer-Mediated 
Environments: Conceptual Foundations. Journal of Marketing, 60, July, pp. 50-68. 

Jackson, S., E., and Schuler, R., S. (1985). A Meta-Analysis and Conceptual Critique of 
Research on Role Ambiguity and Role Conflict in Work Settings. Organizational 
Behavior and Human Decision Processes 36(1), pp. 16-78. 



 
120 

Kahn, R., L, Donald, M., Wolfe, R., P., Quinn, J., Diedrick, S., and Rosenthal, R., A. 
(1966). Organizational Stress: Studies in Role Conflict and Ambiguity. Wiley: New York. 

Klein, H. K., and Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating 
Interpretive Field Studies in Information Systems. mis Quartely (23:1), pp. 67-93. 

Leevers, D. (2001). Collaboration and Shared Virtual Environments — from Metaphor to 
Reality. In Earnshaw, R., Guedj, A., and Vince, J (eds.). Frontiers of Human-Centered 
Computing, Online Communities and Virtual Environments, pp. 278-299. Springer: 
London. 

Lechner, U., and Schmid, B. (2001). Communities — Business Models and System 
Architectures: The Blueprint of mp3.com, Napster and Gnutella Revisited. In 
Proceedings of the 34th Hawaii International Conference on System Sciences (hicss), January 
3-6, Maui, Hawaii. 

Ljungberg, J. (2000). Open Source Movements as a Model for Organizing. European Journal 
of Information Systems 9(3), pp. 208-216. 

Markham, A. N. (1998). Life Online: Researching real experience in virtual space. Altamira Press: 
London. 

Martin, C. (1999). Net Future. McGraw-Hill: New York. 

Nielsen, J. (1993). Usability Engineering. ap Professional: Boston, Massachusetts. 

Nielsen, J. (2000). Designing Web Usability: The Practice of Simplicity. New Riders Publishing: 
Indianapolis, IN. 

Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology 
in organizations. Organization Science 3(3), pp. 398-427.  

Orlikowski, W. J. (1996). Improvising Organizational Transformation Over Time: A 
Situated Change Perspective. Information Systems Research 7(1), pp. 63-92. 

Orlikowski (1999). The Truth is Not Out There: An Enacted View of the « Digital  
Economy ». Presented at Understanding the Digital Economy: Data, Tools, and Research, 
on May 25-26 at the Department of Commerce in Washington, dc. 
(http:⁄⁄mitpress.mit.edu⁄ude.html) 

Preece, J. (2000).  Online Communities: Designing Usability, Supporting Sociability. John Wiley 
& Sons: New York. 

Rheingold, H. (1994). The Virtual Community. Finding Connection in a Computerized World. 
Secker & Warburg: London. 

Raymond, E. S. (1999). The Cathedral & the Bazaar — Musings on Linux and open source by an 
accidental revolutionary. O’Reilly: Beijing. 

Singh, J. (1993). Boundary Role Ambiguity: Facets, Determinants and Impacts. Journal of 
Marketing, 57(2), pp. 11-31. 



 
121 

Stanoevska-Slabeva, K, and Schmid, B. (2001). A Typology of Online Communities and 
Community Supporting Platforms. In Proceedings of the 34th Hawaii International 
Conference on System Sciences (hicss), January 3-6, Maui, Hawaii. 

Timmers, P. (1998). Business Models for Electronic Markets. International Journal of 
Electronic Markets 8(2), pp. 3-8. 

Timmers, P. (1999). Electronic Commerce — Strategies and Models for Business-to-Business 
Trading. Chichester: Wiley.  

Turkle, S. (1995). Life on the screen. Identity in the Age of the Internet. Simon & Schuster: New 
York. 

Walsham, G. (1995). Interpretive case studies in is research: nature and method. European 
Journal of Information Systems. 4, pp. 74-81. 

Webb, D. (2000). Understanding Customer Role and its Importance in the Formation of 
Service Quality Expectations. The Service Industries Journal, January, 20(1), pp.1-21, 
2000. 

Wikström, S. (1996). Value Creation by Company — Customer Interaction. Journal of 
Marketing, vol. 12, pp. 359-374. 

 



 
122 



 
123 

The distributed nature of software development — a comparison 
of three development approaches 

 
 

Helena Holmström 
Viktoria Institute • Gothenburg • Sweden 

 
 
 
 
 
Abstract 
Much change has undergone the environment in which software development takes place. 
To a greater extent, we are experiencing a distributed development environment. In this 
paper, three approaches to distributed software development are identified and explored — 
global software development (gsd), open source software development (oss) and 
community-based software development (csd). In a comparison of these, it is argued that 
the approaches embrace differences that are important to take into consideration for 
companies entering the distributed environment of software development. This paper 
suggests that these differences are related to the dimensions of (1) nature of development 
approach, (2) communication structure, and, (3) coordination mechanisms. 
 

Keywords: Distributed software development, distributed development approaches 



 
124 

1 Introduction 
Much change has undergone the environment in which software development takes place 
(Sheremata, 2002; Orlikowski, 2002; Feller & Fitzgerald, 2002). Today, software 
developers work under increasing competitive pressures and the systems themselves are 
continuing to be more technically advanced. Also, there are changing customer 
requirements to take into consideration and an accelerating demand for more customizable 
features in the software that is produced.  There is little doubt that these aspects make 
software development an unwieldy process.  
 

However, what really strike you are the changes in the way the software development 
process is coordinated. To a greater extent, software development is becoming a distributed 
process and there is the need for development approaches that take into consideration the 
distributed environment in which developers and users communicate and coordinate their 
work. 
 

In this paper, three approaches to distributed software development are identified and 
explored. First, there is global software development (Carmel & Agarwal, 2001; Dubé & 
Paré, 2001; McDonough et al., 2001). Second, there is open source software development 
(Feller & Fitzgerald, 2002; Raymond, 1999; Gallivan, 2001; Sharma et al., 2002; Bergquist 
& Ljungberg, 2001). Third, there is community-based software development (Holmström, 
2001).  
 

To illustrate the different approaches, three empirical cases are presented. In a comparison 
of these, it is argued that the approaches embrace differences in terms of: (1) nature of 
development approach, (2) communication structure, and, (3) coordination mechanisms. To 
this end, this paper aims at creating an understanding of the different approaches to 
distributed software development that can be taken, and in this way, facilitate for software 
development companies entering the distributed development environment. 

2 Background 
Below, three approaches to distributed software development are identified — global 
software development (gsd), open source software development (oss) and community-
based software development (csd). In the following discussion, these different approaches 
constitute the background for a comparison of three empirical cases.  

2.1 global software development  

In global software development (gsd), geographically distributed, and culturally diverse, 
software developers or development teams work jointly in a software development project 
(McDonough et al., 2001). According to Carmel and Agarwal (2001), there are at least 50 
nations participating in collaborative software development internationally, and the number 
is rapidly increasing due to economical benefits of outsourcing, the growth of the global 



 
125 

market and the occurrence of business arrangements such as strategic partnerships and joint 
ventures (Karolak, 1998). To support this type of distributed development there is the need 
for communication and cooperation technologies. As recognized by Smith and Blanck 
(2002), a combination of technologies can be used where synchronous media such as 
videoconference systems, electronic meeting systems and virtual whiteboards are combined 
with asynchronous media such as voicemail, electronic bulletin boards and forums, e-mail 
and group calendars. 
 

Global software development is not characterized of user-driven development. Instead, the 
software is developed by professional developers and then sold to users around the world. In 
this sense, the users can be seen as consumers of the value that is produced. Hence, the key 
challenge during software development is not on techniques for user-developer interaction, 
but rather on techniques to support developer—developer communication and 
coordination. 

2.2 open source software development 

In conformity with global software development in which software development is 
performed by geographically distributed developers, there is open source software (oss) 
development. Recently, this movement has gained significant attention and it is believed that 
oss development has the potential to influence the future of organizations both in terms of 
organization, customer relations and business models (Ljungberg, 2000).  
 

In oss, communities of developers contribute on a voluntary basis in developing software 
that is freely shared for review, reuse and modification. As recognized by Ljungberg (2000), 
the work seems to be totally distributed, delegated and loosely coupled. In terms of 
organization, the oss development approach does not have any formal structure (Sharma 
et al., 2002). Hence, projects are not dictated by any formal schedule or list of 
deliverables, neither is work assigned to the developers. No particular development method 
is advocated and unlike conventional software development there is no formal procedure to 
ensure that developers are not duplicating effort by working on the same problem at the 
same time. On the contrary, this is seen as beneficial to the process since it allows for a 
competition among multiple high-quality solutions (Feller & Fitzgerald, 2002). To 
coordinate the process, configuration tools such as the Concurrent Versions System (cvs) are 
used. The cvs offers an easy way to incorporate changes to the repository and with one 
single command the developers can download the latest version of the software tree (Feller 
& Fitzgerald, 2002). Lately, the cvs has also been complemented with web based extensions 
such as Bugzilla (web based bug tracking), Bonsai (web based access to archived source code) 
and Tinderbox (web based tools for analysing software builds). 
 

In contrast to global software development, oss development is characterized by a complex 
definition of who is the user and who is the developer. Often, the developer and the user of 
one particular piece of code is the same person. According to Ljungberg (2000), this is due 
to the fact that most oss projects originate in individual needs and requirements.  



 
126 

2.3 community-based software development  

Recently, there have been studies highlighting the importance of virtual communities as 
platforms for software development (Holmström, 2001; Henfridsson and Holmström, 
2002). In particular, oss literature has contributed to the view of virtual communities as 
enablers for collaborative work between distributed people (Sharma et al., 2002; Scacchi, 
2002). As recognized by Sharma et al.(2002), oss development is a fundamentally new way 
to develop software and the large number of voluntary developers reflects the strength of the 
community culture and the « sense of community » that can be found in virtual groups of 
like-minded people (Blanchard and Markus, 2002).  
 

However, while there are significant benefits of oss development, there is not always the 
possibility for software companies to deploy this way of distributed development. Most 
often, for-profit organizations have difficulties in building business models around the oss 
paradigm (Sharma et al., 2002). Instead, there is the challenge of finding ways to 
incorporate aspects of the community culture into traditional software development 
processes — and in this way to allow for a community-based approach to software 
development in which user involvement and user participation are key characteristics. 
 

To do this, there is the possibility to create « hybrid communities » (Sharma et al., 2002). 
In these, features found in oss communities are infused to varying degrees into traditional 
organizational structures to facilitate for flexible and user-driven development of quality 
software. Evidence points to leading organizations like Hewlett Packard, ibm, Intel, Sun 
Microsystems, etc., already having taken steps to use communities as a way to incorporate 
elements of oss into their software development processes (Sharma et al., 2002). This 
indicates the belief in communities as valuable for involving users in the development 
process. Also, the benefits of (a) reduced development time, (b) improved quality, (c) 
reduced cost, (d) gained developer loyalty, and (e) increased developer talent pool can be 
enjoyed (Sharma et al., 2002).  
 

In resemblance with the hybrid communities presented by Sharma et al.(2002), 
community-based software development requires the consideration of three major elements: 
(a) community building, (b) community governance, and (c) community infrastructure. 
First, « community building » refers to the precondition of having a « community of  
practice » (Wenger, 1998) with a strong and shared culture. To support this, organizations 
need to provide a free flow of information, to get rid of the formal organizational structures 
and provide mechanisms for informal relationships and networking among community 
members (Sharma et al., 2002). Second, « community governance » refers to the 
implementation of transparent governance mechanisms. Here, managers have to move away 
from the practice of imposing central command and control and, instead allow for 
community members to work in teams and to make decisions by discussing and voting 
(Sharma et al., 2002). Third, « community infrastructure » refers to the tools and 
infrastructures necessary for software development. In resemblance with the cvs-system that 
is used within oss development (Feller and Fitzgerald, 2002), community-based software 



 
127 

development presupposes a central repository in which information is accessible for the 
community members (Sharma et al., 2002).  
 

Based on this background, three empirical cases of distributed software development are 
presented. In the following discussion, the three cases are compared in terms of (1) nature of 
development approach, (2) communication structure, and (3) coordination mechanisms. 

3 Research setting and method 
The empirical part of this paper is based on three case studies. To obtain this data, two 
different methods for data collection were used. First, a secondary analysis of two published 
case studies on distributed software development was employed. Second, an interpretive 
case study at a software company was conducted.  
 

First, the secondary analysis implied the identification of representative papers. To identify 
the first case study — the case on global software development — I used the search engine 
Google and the scientific literature digital library CiteSeer which uses the search engines 
AltaVista, HotBot, and Excite to identify publications within the field of computer science 
and information systems. In this search, I used terms such as « global software  
development », « distributed software development » and « distributed development  
teams » to identify studies within this area. Although many publications were available on 
global software development, there were few case studies in which original data and data 
analysis could be obtained. Finally, by backtracking a reference found in a paper on product 
development, a study by Orlikowski (2002) was identified. In being an empirical account of 
the work conducted in a geographically dispersed organization this study matched the search 
criteria and was selected to represent the global software development approach. 
 

The second case study on which secondary analysis was employed was identified in the 
reading of Information Systems Journal and the special issue on Open Source (isj, nr 11, 
2001). In one of the papers, Gallivan (2001) identifies nine case studies of oss development. 
According to Gallivan, these studies were identified after searching the electronic archives of 
both acm (The Association for Computing Machinery) and ieee (Institute of Electronics and 
Electrical Engineers), after searching the database Bell & Howell/Proquest’s ab/Inform and 
after reviewing the papers that were presented at the 1st Workshop on oss Engineering 
(Feller et al., 2001). From the hundreds of publications that were found, only nine fit the 
selection criteria outlined by Gallivan (2001). First, the publication needed to describe the 
process of oss development, in general, or one or more specific oss projects. Secondly, the 
paper had to contain original data and analysis. From the nine case studies that were 
identified by Gallivan (2001), the Moon and Sproull (2000) study was selected to represent 
the oss development approach described in this paper. 
 

The third case study presented in this paper is the study of community-based software 
development. The empirical work reported here builds on an interpretive case study 
(Walsham, 1995; Klein & Myers, 1999), conducted by me and a research colleague at 



 
128 

Daydream Software between January 2000 — October 2002 (for publications on this study 
see for example, Holmström, 2001; Nyberg and Henfridsson, 2001; Henfridsson and 
Holmström, 2002). In our study, we focused on the software development process of the 
online game Clusterball and the way in which a virtual community was used to involve 
distributed users in the development process. In the study, data sources such as technical 
documents, meeting protocols, press releases and printouts from the community forum 
were used. Also, an extensive review of other gaming websites was conducted. 
Furthermore, the specific context of Daydream and its customers was explored through 600 
hours of participant observations at the company, 14 qualitative interviews with Daydream 
employees and a web survey that was sent out to 200 community members. 

4 Distributed software development: three empirical cases 
In section two, three approaches to distributed software development were identified. 
Below, these approaches are explored in three empirical cases. First, there is the Kappa case, 
representing global software development (Orlikowski, 2002). Second, there is the Linux 
case, representing oss development (Moon and Sproull, 2000). Finally, there is the 
Clusterball case, representing community-based software development (Holmström, 2001). 
While the first two cases are based on secondary analysis of published case studies, the third 
case is based on an interpretive case study conducted by the author. 

4.1 global software development — the kappa case 

Kappa is a globally-dispersed software development company with its headquarters in The 
Netherlands. At Kappa, the software development efforts are accomplished through 
temporary, global project groups involving a few hundred software engineers from all over 
the world. The software development activities are distributed across multiple Development 
Units (dus) located in 15 different locations spread over 5 continents. The geographical and 
cultural diversity of Kappa can be understood in the following statement made by one of the 
managers: 
 

“My situation is quite typical…I am a Greek working in Finland for a Dutch company 
and using English to do my work.” 

 

The rationale for having these distributed development teams is both economical and 
strategical. While the economical aspects include an increasing competitive pressure to 
reduce the time-to-market and an accelerating demand for more customizable features in the 
software, the strategical aspects are touched upon by one of the senior executives: 
 

“…First of all, you get access to resources wherever it is. Holland is a pretty small 
country and our universities just don’t turn out the number of engineers that Kappa 
needs…Another advantage is proximity to the markets.” 

 

To manage the complexity of the distributed work at Kappa there is a well-established 
organizational structure. In each location there are senior executives, senior du 



 
129 

managers, project managers, subproject managers and software engineers. However, as 
observed by one of the senior executives, there are difficulties in being such a diverse 
organization: 

 

“… as much as it is very nice to have these organizations that are diverse, they also 
sometimes pull in different directions. And the big challenge is to bring them together.” 

 

To handle negotiations and discussions there are substantial aligning efforts within Kappa. 
These are accomplished through two key activities: (1) the use of a proprietary project 
management model, its planning tool and structured systems development methodology, 
and (2) the annual contracting for work via standard metrics. A senior executive commented 
on the role of project planning and methodology tools in facilitating distributed work: 
 

“We use a common process methodology…And then we have coordination within this 
framework, done at all levels of the project to get all the different software pieces together 
for the system at the same time. There are the technical standards and coordination 
documents….” 

 

As part of the project plan, several documents have to be written. For example, there is an 
operational plan, an assignment specification and a project specification. The importance of 
Kappa’s project management model and methodology in aligning the different projects is 
explained by one of the project managers: 
 

“The project model and methodology helps a lot…We develop requirement specifications, 
development sketches, implementation proposals, technical reports, everything that tells 
us at an early stage, this is the scope, this is feasible, this is what we are going to do and 
this is what it costs now.” 

 

The use of the project management model as well as the division of projects into subprojects 
is all part of the hierarchical decomposition of work that characterizes Kappa. However, 
despite its efficiency of coordinating the different projects, the proprietary suite of the 
project management model can be viewed as constraining in shifting to new software 
platforms, new infrastructures, new programming languages and new development 
methodologies. One of the managers commented about Kappa’s current project 
management model: 
 

“I think it helps us, but the drawback is that the limit has been hit now of the capacity of 
that model…what we need now is a new model and a new methodology for parallel 
development.” 

 

Also, Kappa members emphasize the importance of face-to-face meetings. Despite the 
qualities of the project management model, these are necessary for establishing social 
relationships. One project manager noted: 
 



 
130 

“You can’t resolve everything over the phone. It is important to have that personal 
relationship as well, which you achieve by meeting each other, and then it makes it a lot 
easier when you communicate through e-mail or the phone.” 

 

The statements above reflect both advantages as well as limitations in working in a 
distributed environment. At Kappa, 30 nationalities in 15 geographic locations are currently 
trying to align their software development efforts. Their customers, on the other hand, 
seldom experience anything but a final product. Unaware of the distributed nature of Kappa 
they turn to their local subsidiary when having any problem. 

4.2 open source software development — the linux case 

In the beginning, Linux was a pc-based operating system produced through a software 
development effort consisting of more than 3,000 developers distributed over 90 countries 
on five continents. In its first three and a half years of development more than 15,000 people 
submitted code or comments to the three main Linux related newsgroups and mailing lists. 
As of December 1998, more than eight million users were running Linux on a wide variety 
of platforms and the operating system was projected to have an annual growth rate of 25% 
(Shankland, 1998). Today, Linux is much more than an operating system. As the number of 
people interested in Linux grew, they formed user groups to share information through the 
Internet with any Linux user in the world. By July 2000, there were more than 400 Linux 
user groups in 71 countries.  
 

The real fascination with Linux stems from the fact that it is not an organizational project. 
Instead, volunteers from all over the world contribute code, documentation and technical 
support because they want to. The first posting regarding the project came on August 25, 
1991, when a computer-science student from Helsinki wrote: 
 

“Hi everybody out there using « minix » — I’m doing a (free) operating system (just a 
hobby, won’t be big and professional like gnu) for 386 (486) at clones. This has been 
brewing since April, and is starting to get ready. I’d like any feedback on things people 
like/dislike in « minix » ….” 

 

This was followed by the announcement of Linux v0.02 on October 5, 1991. In a message 
posted to one of the newsgroups on the Internet, Linus Torvalds — the Helsinki student — 
wrote: 
 

“This is a program for hackers by a hacker. I’ve enjoyed doing it, and somebody might 
enjoy looking at it and even modifying it for their own needs…and I’m looking forward 
to any comments you might have.” 

 

Furthermore, everybody interested was invited to join the project: 
 

“Are you without a nice project to modify for your needs? Then this post might be just for 
you…Full kernel source is provided, as no « minix » code has been used…Sources to the 
binaries (bash and gcc) can be found at the same place in ⁄pub⁄gnu.” 

 



 
131 

Until the year 2000, there were 569 additional releases, all managed and announced by 
Linus Torvalds who single-handed acts as a filter on all patches and new releases. Depending 
on his judgment, a contribution can be rejected, accepted or revised. However, to help him 
in his decisions and in his programming efforts, Linus has an active community of 
programmers, who, electronically organized, are crucial for advice, suggestions and code. 
By using Linux mailing lists and Usenet groups, Linux community members get 
continuously updated on where to send code and where to find information.   
 

In the Linux community, the role structure has been identified as important for the overall 
organization of the development work. The two most important roles are « credited 
developer » and « credited maintainer ». The credited developer role originates from the 
v1.0 release in 1994 in which a credits file was included to publicly acknowledge people who 
hade contributed substantial code to the kernel. The credited maintainer role was formally 
acknowledged in February 1996 when the maintainers file was announced. Designated 
maintainers are responsible for particular modules of the kernel, for example, they review 
Linux-kernel mailing list submissions relevant to their modules, build them into larger 
patches, and submit the larger patches back to the list and to Linus directly. 

4.3 community-based software development — the clusterball case 

Daydream Software is a Swedish game developer. During the time for the study, the 
company had 65 employees ranging from software developers, graphical designers and web 
designers to marketing people, administrators and managers. At Daydream, the developers 
are located in offices close to each other. They communicate face-to-face or by using the 
telephone, but no major efforts are needed to support their communication and 
coordination electronically. Instead, the nature of distribution lies in the intention by 
Daydream to involve its distributed users in the software development process, an intention 
that was announced by the manager in 1999 in relation to the development of the online 
game Clusterball: 
 

“Our customers are our best product developers. We want constant feedback on our design 
suggestions so that we know what they want and how they want the product to improve. 
We want them as part of the design process.” 

 

While the developers are co-located, the customers are distributed around the world. This 
posed several challenges to Daydream in terms of communication and coordination tools. To 
solve this, a virtual community was created in which there was the possibility for users and 
developers to communicate using electronic forums, chats and e-mail. Very soon, the 
developers used the community forum to encourage user feedback on one of the beta 
versions of Clusterball: 
 

“The purpose is primarily to locate configurations that experiences troubles getting 
Clusterball to run. Please send us feedback on performance and any strange behaviour.”  

 

The response from the community was positive and as soon as the beta version was made 
available for downloading, the feedback could be enjoyed: 



 
132 

 

“I would like to see the ability to set a minimum and maximum player ranking when I 
host a game. In this way, a « Newbie game » will really be for « Newbies » — experts 
won't come along and thrash everyone.” 

 

“The number one thing I would like to see is demo-recording and playback”.  
 

The postings revealed configuration problems, modifications and future suggestions on 
additional functionality. Only between July 17, 2000 (official release date) and November 
2002 (the end of the study) there were 15,667 postings to the general forum and 1,878 
postings to the technical forum. Realizing this, Daydream expanded its organization and 
appointed a « community manager » to handle the postings and the activity in the forum. 
Also, the community manager was responsible for communicating the ideas put forward by 
the community to the rest of the company. According to one of the community members, 
their influence on the product was significant: 
 

“I think peoples’ suggestions on new features to patches are definitely taken into 
consideration…the people at Daydream seem to be open to suggestions from us players. “ 

 

Also, the developers seemed to enjoy the interaction with community members. In the 
following statement one of the developers reflects on the benefit of having community 
members influencing the product: 
 

“I use the community a lot in my work. In reading the postings I always find good 
suggestions on what to improve. Also, it is fun — I feel like I learn about the customers 
and what they really want!” 

5 Discussion 
As illustrated in the empirical cases, there are different approaches to distributed software 
development that can be taken. Below (table 1), the approaches are compared in terms of 
three dimensions: (1) nature of development approach, (2) communication structure, and, 
(3) coordination mechanisms. 
 

As can be seen, there are significant differences in the nature of development approach. In 
gsd, there are distributed teams of developers motivated by strategical and economical 
rationales. In oss, individual developers contribute without monetary compensation in 
software projects where the code is freely shared due to altruistic values. Often, projects 
originate in individual needs, something that is evident in the Linux case where Linus 
Torvald’s own objective was to create a Unix-like operating system for the ibm pc 386 series 
(Feller and Fitzgerald, 2002). In csd, software is produced by developers in close 
cooperation with distributed individual users in resemblance with the idea of user 
participation as expressed in for example Participatory Design (Namioka and Shuler, 1993) 
and Contextual Design (Beyer and Holtzblatt, 1998). These differences are further visible in 
  



 
133 

Dimensions  Global Software 
Development (gsd) 

 Open Source Software 
Development (oss) 

 Community-based Software 
Development (csd) 

(1) nature of development approach 
Design 
rationale 

 Strategical/Economical  Altruism/Ideology  User participation 

Developer 
infrastructure 

 Distributed teams of 
developers 

 Distributed individual 
developers 

 Distributed individual 
users 

Role of 
developer 

 Producer of software  Producer/consumer of 
software 

 Producer of software 

Role of user  Consumer of software  Consumer/producer4 of 
software 

 Consumer/producer5 
of software 

Division of 
work 

 Hierarchical 
decomposition of work 

 Parallel development  User—developer 
iteration 

(2) communication structure 
Communication 
type 

 Developer—developer   Developer—developer 
Developer—user 
User—user 

 Developer—user 
User—user 

Communicative 
actors 

 Project managers 
Senior executives 
Senior managers 
Sub-project managers 
Project members 

 Credited developers 
Credited maintainers 
Community members 

 Project managers 
Community managers 
Community members 

(3) coordination mechanisms 
Coordination 
infrastructure 

 Face-to-face, phone & 
audio conference, 
videoconference, 
electronic meeting 
systems, virtual 
whiteboards, data 
conferencing , 
voicemail, mail, 
electronic forums, 
intranets, e-mail, group 
calendars 

 Configuration 
management systems, 
web based bug tracking 
systems, web based 
access to source code, 
web based tools for 
analysis, virtual 
community functions 
such as electronic 
forums, news groups, 
e-mail 

 Virtual community 
functions such as 
electronic forums, 
chats, e-mail 

Coordination 
tools 

 Project management 
models 
Development methods 

 Peer supervision 
Peer review 

 Project management 
models 
Development methods 
Community postings  

Coordination 
process 
activities 

 Requirement 
specification 
Implementation 
proposals 
Software design 
Software test and 
implementation 
Software maintenance 

 Problem discovery 
Solution identification 
Code development and 
review 
Code commit and 
documentation 
Code release 

 Software design 
Software release 
Community-driven test 
and review 
Community-driven 
modification and 
maintenance 

 

table 1.  Comparison of three approaches to distributed software development 
                                                       
4 In terms of software code that can be implemented. 
5 In terms of feedback, design suggestions and modifications of existing design. 



 
134 

the roles of developers and users. While gsd and csd developers are mainly producers of 
software, the oss approach is characterized by developers also being users of the software. 
Furthermore, oss, and to some extent csd, allow for parallel development, something that is 
not encouraged in gsd. 
 

Due to the diversity in development infrastructure, there are differences in the 
communication structure. While the gsd approach focuses on developer—developer 
communication, both oss and csd support communication also between developers and 
users as well as between users and users. Regarding the communicative actors, there is 
evidence of hierarchical structures in all three approaches. This is interesting, especially in 
relation to the oss and csd approaches. While the community culture is often described as a 
bazaar (Raymond, 1999) where chaotic development processes evolve into coordinated 
processes, the cases presented in this paper bear evidence of defined structures and 
hierarchical organizations also within these. In the Linux case, Linus Torvalds dictated the 
rules, and in the Clusterball case, a community manager was appointed to direct the 
community activities.  
 

The infrastructure and the tools that are necessary to align distributed developers and 
distributed users are included in the final dimension of coordination mechanisms. In all 
approaches, Internet technology is deployed as the infrastructure for coordination. 
However, while the oss and csd approaches depend solely on Internet-based coordination 
infrastructures, the gsd approach encourages physical interaction and face-to-face meetings. 
In these, project management models and other formal structures can be negotiated, an 
activity that is not evident in for example oss development communities. Rather, these are 
self-organized and self-governed. Furthermore, there is an interesting difference in the 
coordination process activities that are carried out in each approach. While the design 
evolves as a result of an iterative process in both oss and csd, the gsd approach advocates for 
a pre-defined process in which requirement specifications direct the process. This is evident 
in the Kappa case were project specifications were an important part of the project 
management model. 
 

To sum up, the approaches embrace different characteristics important to distributed 
software development. While the gsd approach is emerging due to industry and business 
drivers on the global market (Karolak, 1998), the oss paradigm can be seen as a provocative, 
yet fascinating, approach driven by ideological conviction and altruistic interests (Sharma 
et al., 2002). The third approach, csd, is adopted by companies trying to infuse features 
from the community culture into their every-day practices of software development (Sharma 
et al., 2002). In representing formal and informal organizational structures, and in being 
approaches that to varying degrees involve the user community in the development process, 
the approaches offer different opportunities for the range of companies entering the 
distributed environment of software development.  



 
135 

6 Conclusions 
In this paper, three approaches to distributed software development are identified and 
explored — global software development (gsd), open source software development (oss) 
and community-based software development (csd). Based on a comparison of three 
empirical cases, it is argued that the approaches embrace different characteristics in terms of: 
(1) nature of development approach, (2) communication structure, and, (3) coordination 
mechanisms. In identifying and exploring the three approaches, this research aims at helping 
both researchers and software developers in: 
 

• Recognizing the different approaches to distributed software development 
that can be taken. 
• Recognizing the differences between the approaches, hence, creating an 
understanding for the types of development situations to which they can be 
applied. 

References 
Bergqvist, M. and Ljungberg, J. (2001). The power of gifts: organizing social relationships in 

open source communities. Informations Systems Journal, 11, pp. 305-320. 

Beyer, H. and Holtzblatt, K. (1998). Contextual Design: Defining Customer-Centered Systems. 
Academic Press: London. 

Blanchard, A. L., and Markus, M. L. (2002). Sense of Virtual Community — Maintaining 
the Experience of Belonging. In Proceedings of the 35th Hawaii International Conference of 
System Sciences (hicss), January 7-10, Big Island, Hawaii. 

Carmel, E., and Agarwal, R. (2001). Tactical Approaches for Alleviating Distance in Global 
Software Development. ieee Software, March/April. 

Dubé, L. and Paré, G. (2001). Global Virtual Teams. Communications of the acm, 44(12). 

Feller, J., Fitzgerald, B., and Van der Hoek, A. (2001). Making sense of the bazaar. In 
Proceedings of the First Workshop on Open Source Software. Feller, J., Fitzgerald, 
B., and Van der Hoek, A. (eds.). 23rd icse Conference, Toronto. 

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development. Addison-
Wesley: London. 

Gallivan, M.J. (2001). Striking a balance between trust and control in a virtual organization: 
a content analysis of open source case studies. Information Systems Journal, 11, pp.277-
304. 

Henfridsson, O.and Holmström, H. (2003). Developing e-commerce in Internetworked 
Organizations — customer involvement throughout the value chain in the case of the 
online computer game Clusterball. data base — Special Issue on Developing e-
Commerce Systems, Current Practices and State-of-the-Art, vol. 33, nr. 4. 



 
136 

Holmström, H. (2001). Virtual Communities as Platforms for Product Development — an 
interpretive case study of Customer Involvement in Online Game Development. In 
Proceedings of 22nd International Conference on Information Systems (icis), December 16-
19, New Orleans, la, usa. 

Karolak, D.W. (1998). Global Software Development — Managing Virtual Teams and 
Environments. ieee Computer Society Press: Washington. 

Klein, H. K. and Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating 
Interpretive Field Studies in Information Systems. mis Quarterly 23(1), pp. 67-93. 

Ljungberg, J. (2000). Open Source Movements as a Model for Organizing. European Journal 
of Information Systems, vol. 9, nr. 3, pp. 208-216. 

McDonough, E., F., Kahn, K., B., and Barczak, G. (2001). An investigation of the use of 
global, virtual and collocated new product development teams. Journal of Product 
Innovation Management, vol.18, pp. 110-120. 

Moon, J.Y and Sproull, L. (2000). Essence of distributed work: the case of the Linux 
Kernel. First Monday. http:⁄⁄www.firstmonday.org ⁄issue5-11⁄moon⁄index.html. 

Namioka, A. and Shuler, D. (1993). Participatory Design; Principles and Practices. Hillsdale: 
New Jersey. 

Nyberg, A-K. and Henfridsson, O. (2001). Going for the Online Customer — An 
Interpretive Case Study of Internetworked Customer Reach in Online Entertainment. 
In Proceedings of the 9th European Conference on Information Systems, June 27-29, Bled, 
Slovenia. 

Orlikowski, W. (2002). Knowing in Practice: Enacting a Collective Capability in 
Distributed Organizing. Organizational Science, vol. 13, nr. 3, pp. 249-273. 

Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source by an 
Accidental Revolutionary. O’Reilly: Cambridge.  

Scacchi, W. (2002). Understanding Requirements for Developing Open Source Software 
Systems. ieee Proceedings — Software Engineering, 149(1), pp. 24-39. 

Shankland, S. (1998). Linux shipments up 212 percent. cnet News.com, December 16. 
Accessed June 28 at http:⁄⁄news.cnet.com⁄category⁄0-1003-200-336510.html. 

Sharma, S., Sugumaran, V. and Rajagopalan, B. (2001). A framework for creating hybrid-
open source software communities. Information Systems Journal, 12, pp.7-25. 

Sheremata, W.A. (2002). Finding and solving problems in software new product 
development. The Journal of Product Innovation Management, 19, pp.144-158. 

Smith, P., G., and Blanck, E., L. (2002) From Experience: leading dispersed teams. The 
Journal of Product Innovation Management, 19, pp. 294-304. 

Walsham, G. (1995) Interpretive case studies in is research: nature and method. European 
Journal of Information Systems, (4), pp. 74-81. 



 
137 



 
138 



 
139 

Virtual community use for packaged software maintenance 
 
 

Helena Holmström 
Viktoria Institute • Gothenburg • Sweden 

 
Brian Fitzgerald 

University of Limerick • Limerick • Ireland 
 
 
 
 
 
Abstract 
This paper investigates the use of virtual communities for involving distributed customers in 
the maintenance of packaged software. On the basis of an empirical study it is suggested that 
virtual communities can be usefully leveraged for corrective, adaptive and perfective 
software maintenance. Specifically, the virtual community allowed for quick discovery of 
bugs and a rich interaction between developers and customers in the categories of corrective 
and adaptive software maintenance. However, while contributing also to the perfective 
category of software maintenance, this was the category in which several customer 
suggestions for modification were actually ignored by the developers. This implies that 
community use is indeed beneficial for maintenance related to coding and design errors as 
well as for maintenance of an adaptive character. However, it has limitations when 
associated with major changes such as software functionality addition or modification as 
those experienced in the category of perfective maintenance.  
 
Keywords: Packaged software, software maintenance, virtual communities 
  



 
140 

1 Introduction 
Despite research which suggests that software maintenance consumes between 40 to 75 
percent of the total resources in software development (see e.g., Alkhatib 1992; Boehm 
1981; Lientz and Swanson 1980; McKee 1984), maintenance appears not to be highly 
regarded by software programmers or their managers (Babcock 1987). One of the pioneers 
in the software field, Ed Yourdon, captured this well in the contention that for many 
programmers, maintenance was a fate worse than death, a view reinforced by Schneidewind 
(1987) who suggested that to be identified as working as a maintenance programmer was 
equivalent to being perceived as having bad breath. This results in the paradoxical situation 
that although maintenance of existing software is arguably more intellectually challenging 
than development of new software, the most junior and inexperienced programmers are 
frequently charged with the task. Thus, any initiative which can facilitate the maintenance 
task deserves to be examined closely.  
 

Much research has been conducted on the maintenance topic, and a tripartite typology of 
corrective (repairing faults after delivery), adaptive (adapting the software to new operating 
environments) and perfective (adding to, or modifying, software functionality) maintenance 
is widely adopted (e.g., Alkhatib 1992; Lientz and Swanson 1980; McClure 1981). This 
research has identified a number of factors that could contribute to easing the maintenance 
task, including assessment of software maintainability (Vessey and Weber 1983), factors 
associated with software repair (Lientz and Swanson 1980), and various maintenance tools 
(Smith 1999). However, this research has not typically focused on possible expansion of the 
role of the customer, a notable exception being the study of Hirt and Swanson (2001) which 
investigated the expanded role of customers in the maintenance of erp systems. Likewise, in 
the open source software (oss) area, Schmidt and Porter (2001) investigated the role that 
users could play in debugging, documentation, mentoring and technical support. Given the 
suggestion that 60 percent of the time spent on a program modification request is consumed 
in locating the lines to change (Smith 1999), any help that the customer community can 
provide in elaborating the nature of the problem, and thus helping to identify the section of 
the program to be changed, could be very beneficial. While the difficulties of software 
maintenance have been the subject of much research to date, an important development in 
more recent times has been that maintenance increasingly takes place in the context of 
packaged software development. In this mode, customers form a diverse group who are 
often far removed from developers. Thus, all the traditional difficulties manifest in the 
maintenance process are further exacerbated.  For example, a critical problem in software 
maintenance is the elicitation of changing customer needs and requirements (Nelson and 
Cooprider 2001). This is particularly true in relation to packaged software which is sold to 
pan-globally located customers. Recent research on innovation and distributed development 
suggests that innovation is stimulated by the diversity which can naturally arise by leveraging 
the expertise and diversity of geographically distributed customer groups (Chesbrough 



 
141 

2003). This is particularly important in the case of perfective maintenance, as the 
identification of new functionality requires both innovation and creativity.  
 

Recognizing these problems, the primary research objective in this paper was to explore 
how virtual communities, as platforms for interaction, could be used to elicit changing 
customer needs and requirements in the maintenance process of packaged software and 
hence, involving distributed customers in the software maintenance process. While there is 
considerable research on virtual communities as beneficial to software development (see e.g. 
literature on oss development by Raymond 1999; Feller and Fitzgerald 2000), this paper 
explores the specific deployment of virtual communities in the process of packaged software 
maintenance. Based on an empirical study of a computer game community, it is illustrated 
how virtual communities can support the software maintenance process for corrective, 
adaptive and perfective maintenance. 

2 Background 
2.1 software maintenance 

Pressman (1997) has stressed the importance of distinguishing between the maintenance 
process and the software configuration management process. According to Pressman, 
software maintenance is a set of software engineering activities that occur after software has 
been delivered to the customer. Changes are made in response to changed requirements but 
the fundamental structure of the software remains stable. Software configuration 
management, on the other hand, refers to the set of tracking and control activities that are 
initiated when a software project begins and terminate only when the software is taken out 
of operation. Hence, software maintenance can be regarded as a subset of the software 
configuration management process, and in this paper we will focus on the corrective, 
adaptive and perfective maintenance processes. 
 

In the corrective maintenance phase, coding errors, design errors and requirements errors 
are handled. While coding errors are relatively cheap to correct, design errors are more 
expensive as they may involve the rewriting of several program components. Most expensive 
however, are requirements errors since they might require extensive system redesign 
(Sommerville 2001). In contrast to a common belief, repairing system faults is not the most 
expensive maintenance activity. Studies have shown that only 17 percent of maintenance is 
concerned with correcting faults (Lientz and Swanson 1980). Rather, evolving the system to 
cope with new environments and to new or changed customer requirements consumes most 
maintenance effort.  
 

Adaptive maintenance is required when there is a need to adapt the software to a different 
operating environment, for example if some aspect of the system’s environment such as the 
hardware, the platform operating system or other support software changes, or if other 
environmental changes require the adaptation of the software. In a study by Lientz and 



 
142 

Swanson (1980), it was discovered that about 18 percent of the maintenance work was 
concerned with software adaptation. 
 

Finally, perfective maintenance is concerned with software functionality addition or 
modification. This type of maintenance is necessary in response to changes in customer 
requirements. According to Lientz and Swanson (1980), 65 percent of the maintenance 
effort is distributed on functionality addition or modification due to changes in customer 
requirements. Hence, of critical concern to this process is the elicitation of changing 
customer needs and requirements. However, to elicit these is a complex process. Goals such 
as identifying system boundaries, identifying stakeholders and identifying different customer 
groups are important but inherently difficult to accomplish. In addition to this, it is often the 
case that customers find it difficult to articulate their needs and requirements in an early 
stage of the process (Nuseibeh and Easterbrook 2000). To help in this process, there are 
several elicitation techniques. Besides observations, questionnaires, interviews and analysis 
of existing documentation, there are group elicitation techniques, prototyping, model-
driven techniques, cognitive techniques and contextual techniques (Byrd et al. 1992). Also, 
different techniques have been categorized as either informal or formal, where the informal 
approaches consist of face-to-face conversations between customers and developers while 
the formal approaches consist of structured documents that are produced and signed off by 
the customers (Sommerville 2001). Often, changes to the software are implemented 
iteratively and customers can be directly involved in testing new versions of the software. 
Requirements analysis which is conducted on the basis of actual experience with a real 
system artifact is a much richer experience and is more likely to yield more insightful and 
accurate requirements than the conventional model which typically requires customers to 
express their notional requirements in the absence of any detailed interaction with a real 
system artifact. 
 

However, despite these techniques, the process of requirement elicitation and the ability to 
adjust to changing customer needs is still difficult. Furthermore, there has been a recent shift 
in software development processes and software products. To a large extent, software 
development is now performed by software vendors, and contrary to custom is where 
made-to-order systems are built for specific customers, many software products of today are 
sold as packaged software, i.e. tradable products intended for mass use (Sawyer 2000). As 
recognized by Sawyer (2000), this will alter way we think about software development and 
certainly, this will have implications also for the process of software maintenance. While the 
same categories of maintenance still have to be accomplished, this has to be achieved in 
cooperation with a distributed customer group that never interacts physically with the 
software developers. This implies that the process of software maintenance is different — 
and perhaps even more complex — to that described in traditional software engineering 
literature. Given the considerable effort and cost of software maintenance, it is worthwhile 
exploring alternative approaches for interacting also with distributed customers. In this 
paper, we discuss how such interaction was achieved by using a virtual software community. 



 
143 

2.2 software communities 

With interaction media such as email, chat and conferencing systems, computer networks of 
today allow for people to create a wide range of new social spaces. On the Internet, people 
engage in topic-specific discussions groups, play games, entertain one another and even work 
on complex collective projects (Smith and Kollock 1999) such as software development 
(Butler 2001).  
 

In this paper, we focus on software communities, i.e. communities in which people 
interested in particular software products meet to collectively discuss these products and, in 
some communities, also participate in developing these. Primarily, these communities can 
be found in relation to software such as web infrastructure applications and computer games 
and collective action is related to the performance of different development tasks such as 
debugging, modification and improvement of that particular software. For example, in open 
source software (oss) communities, world-wide communities of software developers engage 
in developing software that can be freely shared for review, reuse and modification. 
According to Sharma et al. (2002), the oss model is a fundamentally new way to develop 
software and one that provides unique opportunities in terms of developer base and user 
input. In the Apache http Project there are developers from Canada, Germany, Italy, the us 
and the uk (Fielding 1999), and recent studies on the Linux kernel development community 
show activity in more than 28 countries (Hermann et al. 2000). Based on the Linux case, 
oss proponents argue that the model makes possible for quality software to be produced in a 
short period of time, with little cost, and by some of the best programmers in the profession 
(Sharma et al. 2002). This has also encouraged for-profit organizations to try to build 
business models around the open source paradigm and now companies such as hp, Intel, ibm 
etc. are helping create an Open Source Development laboratory to promote oss 
collaboration and growth. Typically, oss communities develop Internet and web 
infrastructure applications such as for example the Apache web server and the Mozilla Web 
Browser. The development process is iterative (Sharma et al. 2002) and characterized by 
parallel development, prompt feedback to user and developer contributions, and the use of 
extremely rapid release schedules (Feller and Fitzgerald 2000). Furthermore, oss 
community members value altruism, reciprocity and gift giving, and while financial reward 
is the main motivation in conventional software development this does not seem to be that 
significant for oss community members. Instead, the personal benefit of using an improved 
software product is the driving force in oss communities (Sharma et al. 2002). 
 

Also, software communities are found in relation to computer game development. As 
recognized by Scaachi (2002), the release of Doom onto the Web in open source form in the 
middle of the 1990’s began what is recognized as the landmark event that started the 
development and redistribution of open software game variants, so called pc « mods ». Mods 
are game variants that are created by small numbers of users who want to modify games 
instead of using them as they are provided. Today, the scope of mods has expanded to 
include entire new game types, game character models and skins (surface textures), levels 
(game play arenas) and ai game bots (in-game opponents). As in oss communities, game 



 
144 

community members value trust and reputation and to be generous with one’s time, 
expertise and source code are valued traits of community participants (Pavlicek 2000). 
 

In looking at these two examples, there is little doubt that software communities offer 
interesting opportunities in terms of involving customers in the software development 
process. While open source communities allow for users to access the source code and 
modify the software, other software communities allow for electronic discussion forums in 
which software users provide each other, and the software developers, with important 
feedback on the particular software. In such communities, users do not modify the software 
themselves but contribute to the development process in terms of knowledge they acquired 
when using the software. As recognized within the field of packaged software development, 
customer involvement is not common (Sawyer 2000), and when present, often in the form 
of intermediaries or customer surrogates (Keil and Carmel 1995). Hence, software 
communities can be seen as an interesting approach for involving distributed customers in 
the development and maintenance of software. Also, the examples above indicate an 
expansion of the traditional role of customers. In oss development, for example, software 
users are often also the software developers, and while there are indeed hierarchies within 
open source communities, there is a high user dependency and hence, high user impact. In 
this paper, we focus on the maintenance process of packaged software.  While there has 
been considerable research on software maintenance and how this task can be facilitated, this 
research has not typically focused on possible expansion of the role of the customer. 
Therefore, we take a closer look at the opportunity to use software communities to elicit 
changing customer needs and requirements and hence, expand the role of customers to 
more active participants in the software maintenance process. 

3 Empirical setting and research process 
3.1 daydream software 

Daydream Software is a Swedish computer game developer with its foundations in Sombrero 
ab, a company focusing on software systems and hardware sales. Daydream Software was 
founded in 1994, and is currently focused on producing interactive entertainment. During 
the period of this study, January 2000 — October 2002, the company consisted of 
employees ranging from managers, administrative personnel and marketing people to game 
developers, graphical designers and web designers. With successful products such as 
Safecracker and Traitors Gate, Daydream has a large international customer base and well 
established customer communities around its products. In developing Safecracker and 
Traitors Gate, all software was developed in-house and then sold as packaged software in 
which distributors and publishers were important actors. As common in packaged software 
development (Keil and Carmel 1995), customer polls and market research reports helped 
the developers in getting information about customers’ needs and requirements. Also, beta 
testing was performed by parts of the customer group in order to facilitate the development 
process and bring a complete product to the market. However, when released, both 



 
145 

Safecracker and Traitors Gate were static in the sense that customers could no longer 
influence the products. This was recognized by one of the developers at Daydream: 
 

“Both Safecracker and Traitors Gate were static products without vivid customer 
communities. During development we got user feedback in terms of beta testing, but 
customers were not directly involved in any further modification of the games.” 

 

Following on the success of these products, Daydream introduced Clusterball, a multiplayer 
computer game in which players fly around ships trying to collect balls and steal them from 
other players.  In contrast to Safecracker and Traitors Gate, which were both commissioned 
work, Clusterball was the result of an in-house vision — the idea of an online sport 
accessible also via the Internet. An important point of departure for Daydream, and also for 
the inspiration for this study, was the explicit intention from the outset to utilize customer 
knowledge in the maintenance and improvement of the game. To this end, a virtual 
community was established which would cater for customer-developer and customer—
customer interaction, not only during beta testing but also during the maintenance process. 
For Daydream, the community would allow for the continuous elicitation of customer needs 
and requirements, something that had been difficult to achieve when developing the two 
previous products. Also, the community would provide a mechanism for the customers to 
influence the maintenance process in terms of fault repair, software adaptation and software 
modification. This is a well-known, yet difficult challenge in traditional software 
maintenance, and the attempt by Daydream to use a virtual community represents a quite 
novel way to address it. 

3.2 the clusterball community 

Here we use Hamman’s (2001) four criteria to characterize virtual communities, namely 
group of people, shared social interaction, common ties and shared social area. These are 
used to describe the characteristics of the Clusterball community.  
 

A group of people 
The Clusterball community is a game community consisting of members from northern 
Europe and the us in the main. Depending upon previous game scores, each member is 
categorized according to the official Clusterball ranking, ranging from « newbie »,  
« bellboy » and « trainee » to « master », « grand master » and « cluster king ». In total, 
there are 20 different ranking categories and members with the highest rankings are well-
known and celebrated members in the community. Together, they engage in discussions 
concerning Clusterball, and on a regular basis they arrange tournaments and team-play as 
well as tutorials and training sessions for all Clusterball beginners.  
 

In order to stimulate the interaction between customers and developers a « community 
manager » was appointed in August 2000. This person was responsible for responding to — 
and implementing — suggestions put forward by the customer community. This helped to 
ensure that the community was nurtured, and that valuable feedback was not lost. 
 



 
146 

Not surprisingly, many of the developers at Daydream are active community members. This 
is a feature of many open source software projects also, in that invariably the software 
developers are themselves also actual users of the software, something that facilitates in the 
process of building a community (Feller and Fitzgerald 2000). 
 

Shared social interaction 
With approximately 17,000 postings distributed among two different forum tracks over a 
three-year period, the Clusterball community provides an active discussion forum for the 
development and the modification of the game. As recognized by Baym (1998), the 
communicative style of participants in such communities are often oriented around common 
interests and practices even before they enter the computer-mediated world, and often the 
members adhere to certain norms of rational discourse. In this case, the technology becomes 
an enabler of already established physical communities — a description that is very apt for 
the Clusterball community.  
 

However, clusterball.com is not the only place where the Clusterball community meets. 
Besides this forum, there are fan websites (websites developed by community members 
themselves) that offer forums and chat rooms for community members, and team websites 
where different teams meet and sign up for tournaments. One of the most impressive fan 
websites is ballsnatchers.com which was originally developed exclusively for Clusterball 
by two of the players, and which is now maintained and further developed by a team of 
Clusterball players from all over the world. Here, players have their own « hall of fame » 
(player/team victory announcements), a « haiku corner » (player poems) and a « player 
gallery » (player portraits). 
 

Common ties 
The common interest in the Clusterball community is computer games in general, and 
Clusterball in particular. In the different forums, community members discuss configuration 
and installation problems as well as tournaments, team-play and how to improve the game. 
At clusterball.com there is the « technical » and the « general » forum, and at 
ballsnatchers.com there is a specific forum for beginners called « young wings » where 
new players can post any questions they might have to the rest of the community. Also, 
there is a « chat-and-gossip » forum in which players discuss anything that comes to mind.  
 

The devotion and motivation among community members can also be seen in the activities 
they organize. For example, there are several Clusterball Schools for beginners (see for 
example Ootpek’s Clusterschool, Kronix Tips and Lava-Lava’s Clusterball Tips at 
www.clusterball.com), a Skin Tutorial in relation to a skin site on which players upload 
their individually designed skins so that other players can download and use them, and a 
testimonial site where Clusterball players share experiences from their initial contact with 
Clusterball. 
 

Shared area 
To communicate, the Clusterball community members send postings to electronic fora 
consisting of several different tracks. In these, headings are shown for all topics, and all 



 
147 

postings are presented as threaded lists. Also, there is a chat so that people can meet before 
the game, as well as after, to discuss issues concerning that particular gaming session. In 
addition to this there are the fan websites where several other fora and chats can be found 
and where many of the Clusterball players spend time on a regular basis. 

3.3 research methodology 

Research design 
The research outlined in this paper is part of a longitudinal interpretative case study 
(Walsham 1995) conducted at Daydream Software between January 2000 and May 2001.  
This  study consisted of an exploratory study, in which we sought an initial understanding of 
the company, an in-depth study involving participant observation at the research site and a 
complementary data collection phase in which qualitative interviews and a web survey were 
carried out. In addition to this, a follow-up study was conducted between June and October 
2002. In this, additional interviews were held and we sought to deepen our understanding of 
the particular context of Daydream Software and the way in which a virtual community was 
used for improving customer-developer interaction in the software maintenance process.  
 

Data sources and applicability of results 
In this particular paper, our objective was to investigate to what extent virtual communities 
can be used for involving distributed customers in the maintenance process of packaged 
software and hence, how they might address the problematic issues as identified earlier in 
the paper. To do this, four categories of different empirical data were extracted from the 
Daydream study (table 1): 
 

Empirical data  Description of empirical data 
   
Postings  Written messages revealing customer needs and requirements as well as 

suggestions for software improvements. 
   
Patch specifications  Technical specifications including modifications and new features that were 

implemented in each of the new software versions that were released as responses 
to customer needs and requirements. 

   
Web survey  A web based questionnaire including questions on community use and to what 

extent customers felt that they could influence the software maintenance process. 
   
Interviews  Qualitative interviews revealing the developers’ apprehension of the development 

process of Clusterball and to what extent the community allowed for customers 
to participate in this process. 

   
 

table 1. The different categories of empirical data that were extracted from the  
overall Daydream study for the purpose of this paper 

 

Firstly, postings to the technical forum at clusterball.com were analyzed with regard to 
discussion theme and result in terms of modifications to the software. The postings included 
those sent to the forum between the release date July 17, 2000 and May 2001, when the 



 
148 

complementary data collection phase was finished. During this period, 1,116 messages were 
posted to the technical forum, of which the major part were sent between July and 
December 2000 when the game was still new and when there were a lot of technical issues 
to handle. In reading the postings, special concern was taken to those reflecting customer 
needs and requirements and whether these were implemented in the coming patches. 
 

Secondly, patch specifications were studied to learn about the changes that were 
implemented in new versions of the software and whether these could be related to the 
postings in the forum. To do this, specifications of six different patches were analyzed. The 
patches included in this study were released on July 18, August 25, October 19 and 
December 20, 2000, and February 22 and April 29, 2001. While parts of these specifications 
were found at www.clusterball.com, other parts were obtained directly from the 
developers at Daydream. 
 

Thirdly, a web based survey was sent out to 200 Clusterball community members, ranging 
from « Newbies » (not very experienced players) to « Ring Kings » (very experienced 
players). The survey was sent out as part of the complementary data collection phase in 
October 2000 and consisted of questions regarding the use of the community and the way in 
which community members felt that they could influence the maintenance work of 
Clusterball. With a response rate of 52 percent the survey helped us in exploring 
community use and community influence in the software maintenance process. 
 

As a complement, qualitative interviews were conducted with the lead programmer and one 
of the graphical designers. These interviews were conducted during the follow-up study, and 
in these, the interviewees were asked to look back on the maintenance process of Clusterball 
and evaluate how, and in what situations, customers in the virtual community contributed to 
the different categories of maintenance. Each interview lasted for about 1.5 hours and they 
were both recorded and transcribed. 
 

In terms of generalizability, case study research is often criticized for being non-
representative (Walsham 1995), and therefore of limited use outside its specific context. 
However, from an interpretive position, representativeness in a statistical sense is not a key 
goal, but instead the plausibility and cogency of the reasoning used in describing the results 
from the case and in drawing conclusions from these results (Walsham 1995). In our study, 
we explore the use of virtual communities for involving distributed customers in the 
maintenance process of packaged software. In this, our goal is not to present generally 
applicable results. Undoubtedly, not all software communities are like the computer game 
community presented here, and not all software has characteristics similar to those in a 
computer game. The extraordinary motivation level of Clusterball community members and 
hence, the benefit of involving them as active participants in the maintenance process of 
Clusterball may not be applicable in other communities or in relation to other software 
products. Still, the Clusterball case constitutes an interesting example that illustrates the 
potential use of virtual communities for software maintenance and the extended customer 
role that is associated with this. While it might be difficult to translate all its aspects to the 
maintenance process of other software products, we provide a detailed account involving 



 
149 

specific implications in this particular domain of action (Walsham 1995). In doing this, the 
study adds to our understanding of virtual community use and for what particular categories 
of software maintenance such an approach might prove useful.  

4 Overview of Clusterball patches 
The Clusterball game uses the 3dgm graphical engine. It is programmed in C++, modeled 
in Java and the Sourcesafe product was used for version control for the project. To 
implement changes in customer needs and requirements, Daydream released six patches to 
the game. As early as July 18, 2000, only one day after the official release, the first patch to 
Clusterball could be downloaded from the Internet.  In addition, the second patch was 
released on August 25. Together, these patches solved many of the initial installation 
problems and start-up errors as well as host errors that were recognized by customers.  
 
On October 19, 2000, the third patch was released. This patch included several adjustments 
and modifications as suggested by the customers. For example, the patch included:  
 

• Replay and recording 
• dnf feature (players could still get points even if they « did not finish » the 
game) 
• Capability to lock a server on a min/max ranking basis (to avoid for 
newcomers to play against too highly skilled players or for highly skilled players 
to play against too novice players. 
• Pre-game chat (chat to other players while waiting to join a game) 
• Ranking for team-play 
• Longer chat lines in the in-game chat 

 

On December 20, 2000, the fourth patch was released. This was an a2d driver patch that 
was released to solve a problem related to customers using the ati rage pro lt graphics 
card. The a2d driver patch installed all the necessary a2d drivers for the graphics card and 
thus provided support for customers using this particular graphics card. 
 

In addition to this, the fifth patch was released on February 22, 2001. This was the gl setup 
patch which detected what kind of graphic card the user had and then downloaded and 
installed the latest drivers for that particular card.  
 

Finally, the sixth patch was made available on April 29, 2002. This patch included bug fixes, 
software adaptations and functionality additions. Among other things, these new features 
were included: 
 

• Improved support for joysticks including « twist handle » functions 
• lan-play without restriction of Internet access for host 
• Improved artificial intelligence (ai) in the training (offline) mode 

 

 



 
150 

Also, the following bugs were addressed: 
 

• Crash bug in the pre-game chat 
• Freeze bug when viewing replays 
• Throttle bug on joysticks 
• dnf bug in match history 
• Sound volume bug 
• Font problem in chat 

 

In studying the content of the Clusterball patches it is evident that many of the 
improvements that were made to the software originated in customer suggestions as 
reflected in the community postings.  Below, we discuss this process in more detail, 
illustrating the community contribution to the various categories of software maintenance. 

5 Community contribution to Clusterball maintenance 
Clusterball was released on July 17, 2000 and made accessible to customers all over the 
world. At this point, improvement, in terms of software maintenance began. In the 
following discussion, community postings are analyzed in order to illustrate the use of the 
virtual community in the maintenance process of Clusterball. 

5.1 corrective maintenance 

Corrective maintenance is concerned with software fault repair, coding errors, design errors 
and requirements errors. As recognized by Sommerville (2001) these types of errors are not 
the most expensive to correct. However, they need to be attended to on a continuous basis. 
In this process, Daydream got significant help from the community. Consider these 
community postings — all regarding different error messages: 
 

“A few times now I've had the game just hang. It's always right after a game when it says 
« time limit reached » or on the loading screen before a game starts. It will just stay at 
those screens forever and nothing will happen. I was curious if this was related to win2k 
or something else. Machine is p2-450, 348 ram, voodoo3 3000, win2k pro. I've 
installed the host error patch as well though this happens when I'm joining a game not 
hosting.” 

 

“Right when the loading screen appears I get an illegal operation and I have to close it. 
This happens every single time. I have a diamond viper v550, running 1280 x 1024 
32bit, and win 98. I have had some problems with other games not switching to 
direct 3d mode but nothing like this. Please help, I'm very annoyed.” 

 

“Hi, My crashes end with: clusterball caused an invalid page fault in module 
clusterball.exe at 015f:0054e7e4. It crashed mid-game. I have a 
450 athlon, 256 mb, geeforce 256. Any suggestions? Thanks.” 

 



 
151 

These errors were handled in the first and second patches. Most installation and start-up 
problems were solved in the first patch, and in the second patch, released on August 25, host 
errors were solved.  
 

Additional software faults that were recognized by customers concerned font problems, 
sound volume problems and a crash bug that appeared when too many customers joined the 
pre-game chat: 
 

“I like the new patch, but damn, I can't read anything when joining the chat. I have a 
19 inch monitor but I still can't read that crappy font. Also the sound is still a problem 
in xp with sb live sound card”. 

 

This posting got a quick response from one of the developers at Daydream: 
 

“… the soundcard thing is out of our reach, let's just hope that Creative will update their 
crap drivers for xp soon. I've got this sound volume problem with lots of other games in 
xp as well...see what I can do.” 

 

Regarding the crash bug in the pre-game chat, this was mentioned by one of the customers: 
 

“When there are too many « activities » going on in the pre-game chat room, Clusterball 
has a tendency to crash. I didn't note the error message though.” 

 

The font problem, the sound volume problem and the crash bug in the pre-game chat were 
solved in the sixth patch that was released in April 2002. In this patch, fixes for these bugs 
were included, together with several additional features as requested by the customer 
community.  

5.2 adaptive maintenance 

Adaptive software maintenance is required to adapt the software to different operating 
environments, for example if some aspect of the system’s environment such as the 
hardware, the platform operating system or other support software changes, or if other 
environmental changes require the adaptation of the software (Sommerville 2001).Consider 
the following community postings, all concerning software adaptation:  
 

“I wish the standard « control setting » was better. At present, getting a good control 
setting is too much a case of trial and error. But if people have problems with this they 
don’t play.” 

 

“It would be better if there was support for more video cards…” 
 

“I would like to see the Mac version of the game.” 
 

“It would be helpful, if it was possible, to run Clusterball in Windows Mode, or at least if 
you could minimize it.” 

 



 
152 

“I think you should integrate an irc client into the software so that you could access the 
Clusterball channel from inside the client.” 

 

A common theme across these postings was the desire for adaptation of the software to other 
operating environments or to be able to play the game using other configurations.  
 

Another problem recognized by customers in the community was the joystick problem:  
 

“I tried playing again today after a week... and sometimes the stick works okay. But the 
last few games I was only trying to stay on course (slamming the platforms and bumping 
into the equipment houses. This takes so much time, and other pilots start taking over my 
route, and then when I fly normally again, I arrive late everywhere. It occurs suddenly, 
and then it stops. Because of these problems other players have a lot of chances and I can't 
avoid them shooting because I can't fly properly. Does anyone have these problems with 
their joystick or am I the only one?????? Can someone help me out here????” 

 

Furthermore, throttle problems with the joystick were discovered: 
 

“I've just bought the saitek cyborg 3d joystick which has solved the jerky controls of 
my previous low budget version. The problem is the throttle doesn't seem to give full speed 
and the response to change direction etc. is very slow. I use standard pro settings. The 
joystick seems to be calibrated and profiled correctly but I can't get round these problems. 
Any ideas anyone?” 

 

The joystick problems were all solved in the sixth patch which also handled the dnf (did not 
finish) issue that was flagged by one of the customers: 
 

“My experience of dnf is that I send data, but don't receive anything, and when enough 
time has passed, my computer evaluates this as the server having gone down (not closed, 
that is a different message!), and ends the session. Is there a way for us dnf-targeted to 
ignore « Bad connection » for a longer period, maybe set this in the configuration file?” 

 

On December 20, 2000, the fourth patch was released. This was an a2d driver patch that 
was released in relation to graphic card problems that resulted in strange coloring of the balls 
in the game. This problem was identified by one of the customers:  
 

"I got an ati rage 128 graphics card. I’m not sure what you mean about the  
« environment map ». But when I play Clusterball, all the ships and balls are black. I 
need some help. I can still play but it is very annoying. Well thanks for the help.” 

 

In responding to this, one of the developers elaborated further on the nature of the problem: 
 

“I have actually seen this « black ball » phenomenon happen during development. I think 
it was with very old drivers on a riva tnt card. Since you want full support I'll just 
start asking my (huge) line of questions:  
1. Have you installed the latest open gl drivers for your ati rage 128?  



 
153 

2. Could you check in the Control Panel-> Display->Adapter that open gl is chosen 
the default renderer (important!)  
2.2 Also, while in the Display settings, what level of 3d acceleration is set, full, 75%, 
50%, 25%, or what?  
3. There is a possibility that the game tries to run software renderer instead of 
open gl... is your graphics « grainy » like software rendering?  
4. Do you have direct x 7.0 installed?  
5. What is your computer name, processor speed, etc.?  
6. If you open the config.cfg file in Wordpad, what value does it say after renderer?” 

 

Other community members, using other graphics cards, were also involved in the 
discussion: 
 

“Dear Clusterball Support: Is cd supposed to work with the voodoo5 fsaa? Whenever I 
have it enabled, starting a match freezes my system 80% of the time online, and about 
20% when offline training. fsaa works 100% fine on all of my other games, online 
and offline.” 

 

“Clusterball is not working so well with the new driver from nvidia. I'm using a tnt 
ultra 2 and have tested the new drivers. I installed it and I'm using the old one from 
January 2000.” 

 

To solve the graphics cards problems, the a2d driver patch installed all the necessary a2d 
drivers and hence, provided support for users using an ati rage pro lt graphics card. In 
addition, the fifth patch was released on February 22, 2001. This was the gl setup patch 
which detected what kind of graphic card the customer had and consequently downloaded 
and installed all the latest drivers for that particular card.  

5.3 perfective maintenance 

Perfective maintenance requires functionality addition or modification in response to 
changes in customer needs and requirements. In the Clusterball community, changes in 
customer needs and requirements were reflected in postings concerning for example, the 
ranking system, the need for a comprehensive chat feature and the desire for a « player 
search » function. The following postings all exemplify customers’ suggestions for improving 
the ranking system: 
 

“I would like to see tournaments for middle class rankings. There are tournaments for new 
people and for high class players, but the middle men are left out.” 

 

“I would like to improve the match making — to allow the possibility to find other 
players closer to my skill level.” 

 

“I would like to be able to set a minimum and maximum player ranking when I host a 
game. In this way, a Newbie game will really be for Newbies, experts won't come along 
and thrash everyone. Similarly, a group of experts won't have to worry about a raw  
« what do I do with these balls? » beginner unbalancing team play.” 



 
154 

 

To some extent, these problems were catered for in the third patch in which the 
functionality to lock a server on a minimal/maximal ranking basis was implemented, and 
hence, unbalanced match-making could be avoided.  
 

Also, the need for elaborate chat features was expressed: 
 

“It would be great to have a chance to chat with the experts. The « Ring Kings » could 
participate and give the « Newbies » some hints live.” 

 

“I would like to have the possibility to talk to other players while waiting for a game.” 
 

“There needs to be a better chat function in the game. The one that is there in this version 
is really bad — nobody sees it.” 

 

In response to these postings, a pre-game chat was implemented in patch number three. 
Using this, players could talk to each other while waiting to join a game and they could 
exchange experiences from previous gaming sessions. Also, longer chat-lines in the in-game 
chat were implemented to improve the overall chat function. Finally, the need for a player 
search was flagged by the customers:  
 

“A « player search » would be helpful. That way one could find a friend who is somewhere 
else in the ranking system.” 

 

“What I miss is some sort of « player search » where you could find out more about a 
specific player, like for example e-mail, ranking, score, games played, where he/she lives 
and so on…” 

 

Contrary to most other suggestions, the player search was not implemented in any of the 
patches. The reason for this could not be found in any of the developers’ postings to the 
community. Hence, postings regarding the player search can be seen as suggestions for 
future software improvement, something that was also the case for the following postings: 
 

“Make more then just the ship playable, most other games have more than one model to 
choose from. It doesn’t have to be that different, but still another model to choose from. 
Maybe there could be a model editor where players could make their own ships…” 

 

“Could there be a « viewer system » so that my friends could watch other people play 
before they participate themselves? The game would be more like a real sport if it was 
viewable on tv or the Internet.” 

 

“Make the venues change weather sometimes. The sun isn’t always shining. Perhaps a 
change in wind could make the venue Egypt more difficult.” 

 

“I would like to see a password for the server when hosting a match. Setting the number of 
games or how long time the dedicated server should run. It would also be great if it was 
possible to send messages to the players when running a dedicated server.” 

 



 
155 

Interestingly, a similar phenomenon was reported in the Mockus et al. (2000) case study of 
the open source Apache web server. In their study, they found that 75 percent of suggestions 
for software modifications are ignored. This is quite common in open source projects, and it 
has been suggested that a meritocracy exists whereby the privileged few at the core control 
almost exclusively the ongoing development of the projects. Although the Clusterball case is 
not an open source project, there seem to be parallels with the phenomenon as reported on 
in the Mockus et al. (2000) study. 
 

Despite the fact that suggestions, as those presented above, were never implemented during 
the period of this study, they can still be seen as important for Daydream in the maintenance 
work of Clusterball. Besides revealing suggestions for future software improvements, the 
postings reveal community engagement and community interest in the software that was 
produced. 

6 Discussion 
Based on the empirical findings in the Clusterball case, it is suggested that virtual 
communities, as platforms for interaction, are beneficial to the maintenance process of 
packaged software in all three of the maintenance categories.  
 

First, in the corrective maintenance process, concrete descriptions on specific software faults 
were obtained from the users. In the postings, detailed error messages and full descriptions 
of hardware configurations were included to facilitate the bug tracing activities conducted by 
the developers. This process of software fault repair can be compared with the different 
automatic fault reporting systems that are included in many software products. In a similar 
fashion, customer suggestions were registered and attended to, and without any significant 
developer—customer interaction, the results could be found in additional software patches. 
However, while the community could be used as any ordinary bug reporting system, there 
was also the opportunity for developers to either give personally customized answers to each 
contributor, or to post responses to the community forum so that anybody interested could 
learn from the answer. From the customers’ point of view, there was also the opportunity to 
have other customers commenting on the particular software fault and in what different 
situations it appeared. As can be seen in the Clusterball case, this allowed for an open 
discussion between customers and developers — and between customers — in which there 
was the possibility of finding not only the origin of a particular software fault, but also the 
different use circumstances in which this fault was evident. Furthermore, the discussion in 
section 5.1 reveals how triangulation occurred in that different customer reports helped to 
refine the location and cause of errors. As indicated in literature on requirement acquisition 
(Byrd et al. 1992), interactive dialogue is often required to establish the precise nature of a 
software fault, and the triangulation process described above helps to ensure such dialogue 
takes place. When one considers that estimates suggest that 60 percent of the time spent on 
a modification task is consumed in finding the location of the lines to be changed (Smith 
1999), this detailed troubleshooting triangulation could be very beneficial indeed. 
 



 
156 

Secondly, in the process of adaptive maintenance, community postings revealed different 
user configurations, different hardware and software equipment that customers used and 
how the software could be adjusted to suit the different operating environments 
represented. In similar fashion as with postings regarding software fault repair, postings on 
software adaptation included hardware specifications and configuration details. In addition to 
this, however, software adaptation postings also included suggestions for future 
improvements of the game, and adjustments that would be necessary in order to meet the 
requirements presented by other software and hardware equipment. In this, community 
postings revealed not only information important for the maintenance of Clusterball, but 
also information about the dynamic relation between Clusterball and other software and 
hardware configurations. As recognized by Norvig and Cohn (1997), however, the word  
« maintenance » can be misleading when referring to adaptive changes such as those reported 
on here. According to these authors, the term maintenance can give the impression that the 
software has somehow degraded, and needs to be refurbished to its original condition. This 
is misleading since software programs, such as a computer game, do not degrade. They 
remain the same, while the environment and equipment around the program continuously 
changes. Thus, adaptive maintenance is really a process of upgrading or improving the 
software to meet the needs of the changing environment. In the Clusterball case, such 
improvement was evident in, for example, additional support for new joysticks and 
enhanced support for video cards. 
 

Thirdly, in the process of perfective maintenance, innovative customer suggestions regarding 
the ranking system, the pre-game chat, and balanced match-making could be found. Taken 
together, these postings could be understood as recommendations for new system 
capabilities, either by adding new functionality or to modify existing functionality. 
However, while there was indeed a demand for customer suggestions, this was also the 
maintenance category in which suggestions were largely ignored. This is somewhat 
unfortunate as identifying new functionality is a major difficulty in conventional software 
maintenance (cf. Cusumano and Selby 1997), yet this is well catered for in this virtual 
community model, a feature of open source project also (Mockus et al. 2000). 
 

While being recognized as important in the Clusterball case, suggestions regarding additional 
play models, a viewer system and changing weather in the venues were never implemented. 
This suggests that there were limitations in what the customers could influence. This is in 
accordance with one developer’s view on the community and its importance in the 
maintenance process: 
 

“I read the postings, but the main parts of the new features that are implemented are the 
result of our own ideas. We already know what we would like the game to be like.” 

 

Accordingly, one of the customers commented:  
 

“I don’t think that I can influence the game itself, but more like little improvements and 
small features.” 

 



 
157 

While the above statements might suggest that there was no opportunity for customers to 
influence the maintenance process in terms of functionality addition or modification, it is 
important to recognize the context in which Clusterball was developed. Since Clusterball 
was not commissioned work but instead an in-house project, the developers had very strong 
ideas about the storyline and the overall design of the game. As indicated above, in some 
situations the developers’ already knew how they would like the game to evolve and hence, 
there are reasons to believe that they didn’t want their own storyline to be subject for too 
much external negotiation. Also, in developing software that is distributed to customers all 
over the world, there are additional actors such as distributors, publishers and vendors to 
consider in the development as well as in the maintenance process. As recognized by 
Zachary (1994), packaged software development is an activity driven by time-to-market 
demands and tight release schedules, making major changes or improvements difficult to 
attain depending on the surrounding circumstances in the software development 
environment. As illustrated in the Clusterball case, the process of software functionality 
addition or modification seems to be the process in which external actors, or strong in-house 
ideas, play an important role. As a result of this, many of the suggestions that were provided 
by customers were never implemented. However, while this implies that community use is 
limited in the perfective category of software maintenance, the community could still be 
used for the elicitation of innovative ideas important for future software improvement. 
Bergin and Keating (2003) have identified the need for an explicit model for software 
maintenance, and certainly, a model which would help the Clusterball developers harvest 
the wealth of useful suggestions from the virtual customer community would be very useful. 
This would also allow the strategic planning of which new features to implement, and some 
positive reinforcement could be provided to the customer community through, for example, 
the publication of a planned release schedule. In such a model, the community manager role 
within Daydream would also help ensure that such activities take place. 
 

In looking back at the empirical material, there are certain benefits that can be associated 
with community use for software maintenance. A common feature in all maintenance 
categories is the community supportiveness, i.e. community members’ willingness to help 
other community members in solving problems. As shown in the Clusterball case, customers 
mutually engage (1998) in helping each other and customer—customer interaction is a 
prominent feature of the community. In a community, getting help means giving help and 
the more people that get involved the better. This also reduces the workload of the 
developers somewhat since customers rather help each other before asking the responsible 
developer. In addition to this, the Clusterball case reveals community enrolment, i.e. 
community members’ willingness to engage new members to the community. While being 
positive for the overall community atmosphere as well as for community activities such as 
tournaments, training-sessions and forum discussions, this also facilitates for the software 
firm in attracting new customers. In research within the field of packaged software, 
customer involvement has been recognized as important for improving the development 
process [Sawyer 2000; Keil and Carmel 1995). Indeed, many of the best suggestions for 
product improvements often come from customers (Von Hippel 1986). Recognizing this, 
the potential of having community members enroll new customers will benefit not only 



 
158 

software development but also software maintenance in terms of an enlarged customer base 
and hence, increased customer feedback on software adjustments and improvements.  
 

Certainly, the degree of supportiveness and enrolment may vary over time, and also 
between different communities, but the basic idea of having a group of people willing to 
support and involve each other is beneficial to the overall process of software maintenance. 
Part of the success of rapid application development (rad) approaches has been attributed to 
the fact that some of the development task, for example documentation and testing, is 
devolved to the general customer community (Fitzgerald 1997). Likewise, it is often the 
case that developer—customer relations become frayed in traditional maintenance (Smith 
1999), and the positive atmosphere between developers and customers generated in the 
Clusterball virtual community bodes well as a model. 

7 Conclusions 
This paper has examined the specific use of virtual communities for involving distributed 
customers in the maintenance process of packaged software. On the basis of an empirical 
study of a computer game community, it illustrates how virtual communities can be used in 
the process of corrective, adaptive and perfective maintenance.  
 

In the corrective process of software fault repair, virtual communities facilitate bug tracing 
activities by allowing for the continuous elicitation of particular software errors in relation to 
individual customer configurations. Also, detailed troubleshooting help to refine the precise 
nature of the bug, and help to pinpoint its exact location. In the adaptive process, virtual 
communities bring forward customers’ view on future versions and adjustments necessary to 
adapt the software to requirements put forward by other equipment. Finally, in the 
perfective process, virtual communities allow for the elicitation of innovative ideas for future 
improvements and new functionality. However, while we suggest that virtual communities 
prove useful for involving customers in all three categories of software maintenance, it 
seems that customer impact is most evident in relation to corrective and adaptive 
maintenance. Due to external requirements as proposed by actors such as distributors, 
publishers and vendors, or strong in-house ideas as proposed by the software developers 
themselves, customer suggestions have less direct impact in the category of perfective 
maintenance. In accordance with Bergin and Keating (2003) we suggest that an explicit 
model for software maintenance could allow for the suggestions for new functionality to be 
better recorded and for positive reinforcement to be provided to the virtual community.  
 

Finally, the study suggests that there are certain benefits that can be associated with 
community use for software maintenance. First, community supportiveness, i.e. community 
members’ willingness to help other community members in solving problems is identified as 
important for reducing the workload of the developers. Second, community enrolment, i.e. 
community members’ willingness to engage new members to the community, is identified as 
central for attracting new customers to the community and hence, provides software 



 
159 

developers with increased customer feedback in their everlasting process of software 
maintenance.  

References 
Alkhatib, G. (1992). The maintenance problem of application software. Journal of Software 

Maintenance: Research and Practice, vol.1, pp. 83-104. 

Babcock, C. (1987). Staffers seek bolstered image. Computerworld, vol. 21, no. 20, p.8. 

Baym, N. (1998). The Emergence of On-line Community. In Jones, S. (ed.) CyberSociety 
2.0: Revisiting computer-mediated communication and community, pp. 35-68. Newbury 
Park, ca: Sage. 

Bergin, S. and Keating, J. (2003). A case study on the adaptive maintenance of an Internet 
application. Journal of Software Maintenance and Evolution: Research and Practice, vol. 15, 
no. 4, July/August 2003, pp. 245-264. 

Boehm, B. (1981). Software Engineering Economics. Prentice Hall, Englewood Cliffs, New 
Jersey. 

Butler, B.S. (2001). Membership size, communication activity and sustainability: a resource-
based model of online social structures. Information Systems Research, vol. 12, no. 
4, pp. 346-362. 

Byrd, T.A., Cossick, K.L. and Zmud, R.W. (1992). A Synthesis of Research Requirements 
Analysis and Knowledge Acquisition Techniques. mis Quarterly, March, pp. 117-138. 

Chesbrough, H. (2003). Open Innovation. Harvard Business School Press: Cambridge, ma. 

Cusumano, M and Selby, R. (1997) Microsoft Secrets. HarperCollins: London. 

Feller, J. and Fitzgerald, B. (2000). A framework analysis of the open source software 
development paradigm. In Proceedings of the 21th International Conference of Information 
Systems (icis), Brisbane, Australia. 

Fielding, R. T. (1999). Shared leadership in the Apache project. Communications of the acm, 
vol. 42, nr. 4. 

Fitzgerald, B. (1997). A preliminary investigation of rad in Practice. In Wood-Harper, A. 
T., Jayaratna, N., and Wood, J. (eds.), Methodologies for Developing and Managing 
Emerging Technology Bases Information Systems, Springer-Verlag, uk, pp. 777-87. 

Hamman, R.B. (2001). Computer Networks Linking Network Communities. In Werry, C., 
and Mowbray, M. (eds.), Online Communities. Prentice Hall: London. 

Hermann, S., Hertel, G. and Niedner, S. (2000). Linux study: first results. Linux study 
home page, http:⁄⁄www.psychologie.uni-kiel.de⁄linux-study⁄writeup.html. 
(Accessed April 24, 2001). 



 
160 

Hirt, S and Swanson, E.B. (2001). Emergent maintenance of erp: new roles and 
relationships. Journal of Software Maintenance and Evolution: Research and Practice, vol. 
13, pp.373-397. 

Keil, M. and Carmel, E. (1995). Customer-Developer Links in Software Development. 
Communications of the acm, vol. 38, no. 5, pp. 33-44. 

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Addison-Wesley: 
Reading, ma. 

McClure, C. (1981). Managing Software Development and Maintenance. Van Nostrand Reinhold 
Company: New York.  

McKee, J. R. (1984). Maintenance as a function for design. In Proceedings of afips National 
Computer Conference, Las Vegas. 

Mockus, A., Fielding, R. and Herbsleb, J. (2000). A case study of open source software 
development: the Apache server. In Proceedings of 22nd International Conference on 
Software Engineering, pp. 263-272. 

Nelson, K., M and Cooprider, J., G. (2001). The relationship of software system flexibility 
to software system and team performance. In Proceedings of the 22nd International 
Conference on Information Systems (icis), New Orleans, usa. 

Norvig, P. and Cohn, D. (1997). Adaptive Software. pc ai Magazine, vol. 11, nr. 1. 

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: a roadmap. In 
Proceedings of International Conference on Software Engineering (icse), 4-11 June 2000, 
Limerick, Ireland.  

Pavlicek, R. (2000). Embracing Insanity. Sams Publishing: ny. 

Pressman, R. (1997). Software Engineering: a practitioner's approach. European Edition. 
McGraw Hill: New York. 

Raymond, E., S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source by an 
Accidental Revolutionary. O’Reilly: Cambridge. 

Sawyer, S. (2000). Packaged software: implicatopns of the differences from custom 
approaches to software development. European Journal of Information Systems, 9, pp. 
47-58. 

Scacchi, W. (2002). Understanding the Requirements for Developing Open Source 
Software Systems. ieee—Software, 149(1), 24-39. 

Schmidt, D. and Porter, A. (2001). Leveraging open source communities to improve the 
quality & performance of open source software, in Feller, J., Fitzgerald, B. and van 
der Hoek, A. (eds.) Making Sense of the Bazaar: The 1st Workshop on Open Source 
Software Engineering, 23rd International Conference on Software Engineering, Toronto, 
Canada, May 2001, pp.52-56. 



 
161 

Schneidewind, N (1987). The state of software maintenance. ieee Transactions on Software 
Engineering, vol.13, no.3, pp.303-310. 

Sharma, S., Sugumaran, V. and Rajagopalan, B. (2002). A framework for creating hybrid-
open source software communities. Information Systems Journal, 12, pp.7-25.  

Smith, D. (1999). Designing Maintainable Software. Springer: New York. 

Smith, M., A. and Kollock, P. (1999). Communities in Cyberspace. Routledge: New York.  

Sommerville, I. (2001). Software Engineering. Addison-Wesley: Harlow, uk. 

Vessey, I. and Weber, R. (1983). Some factors affecting program repair maintenance: an 
empirical study, Communications of the acm, vol.25 no. 7, pp.128-134. 

Von Hippel, E. (1986). Lead Users: A Source of Novel Product Concepts. Management 
Science, vol. 32, no. 7, pp. 791-805. 

Walsham, G. (1995). Interpretive case studies in is research: nature and method. European 
Journal of Information Systems, vol. 4, pp. 74-81. 

Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity. Cambridge 
University Press: Cambridge. 

Zachary, G. (1994). Showstopper: The Breakneck Race to Create Windows nt and the Next 
Generation at Microsoft. The Free Press: New York. 



 
162 



 
163 

Improving packaged software through online community 
knowledge 
 
 

Helena Holmström 
Viktoria Institute • Göteborg • Sweden 

 
Ola Henfridsson 

Viktoria Institute • Göteborg • Sweden 
 
 
 
 
Abstract 
Packaged software development (psd) is largely a knowledge intensive activity. Thus, it 
depends on the organizational capability of developing and combining market and domain 
knowledge into timely and competitive software products. Given customers’ situated 
knowledge of the software, software firms increasingly seek new ways to involve customers 
in their software development activities. As highlighted in the literature, one alternative path 
for doing this is to use online communities. However, there exists little empirical research 
that examines the role that communities can play in the commercial endeavor of developing 
packaged software. To address this omission, this paper examines the benefits and limits of 
online community use in psd. The contribution of the paper is a model of community use in 
psd. This model describes such use as three iterative and interrelated processes, unfolding at 
the intersection between commercial software firm practices and voluntary community 
participation.   



 
164 

1 Introduction 
Packaged software is an increasingly important form of information technology. Already in 
1998, packaged software was the fifth largest industry in the us (Sawyer 2000), and it is now 
widely used by both business organizations and consumers. Sold by vendors, distributors or 
stores, packaged software (also known as shrink-wrapped, commercial off-the-shelf or 
commercial software) can be distinguished as tradable software products that are designed to 
be easily installed and to interoperate with existing system components (Abts 2002). 
 

Developing packaged software is largely a knowledge intensive activity (Clegg et al. 1996), 
driven by time-to-market demands in that breaking new ground is conceived critical for 
competitive advantage (Zachary 1994). Such development is conducted by developers that 
typically hold line positions making them central to firm performance (Sawyer 2000). 
Rather than holding supportive staff functions, packaged software developers are more 
center stage than most it staff in that they often possess the core competence central to the 
software firm’s competitiveness (cf. Hamel and Prahalad 1994).  
 

Given the centrality of packaged software development (psd), software firms continuously 
seek new ways to improve their development processes (Humphrey 1989; Mathiassen et al. 
2002). Recently, customer involvement has been recognized as a means to leverage psd (see 
e.g., Keil and Carmel 1995; Sawyer 2000). While its equivalent in custom is development 
— user involvement — is a well established ingredient in both literature and practice (see 
e.g., Carmel and Sawyer 1998; Greenbaum and Kyng 1991), however, customer 
involvement in psd is yet to gain momentum. Such involvement is fairly uncommon and 
often based upon indirect links such as intermediaries or customer surrogates (Keil and 
Carmel 1995).  
 

The relative rareness of customer involvement in psd can be associated with at least two 
customer involvement barriers. First, psd is characterized by geographically distant 
customers (Sawyer 2000), making face-to-face interaction difficult to achieve. Second, 
packaged software customers are unknown (Grudin 1991) in that they are not part of any 
coherent use context. The development context of packaged software is clearly separated 
from the use context, i.e., there are no consistent use situations or organizational structures 
at hand when representing customers. Instead, there are multiple, sometimes conflicting, 
individual needs and requirements to take into consideration when developing packaged 
software for a mass market. 
 

In view of these barriers, software firms increasingly develop and deploy online communities 
for aligning customers with their psd processes. In such communities, customers engage in 
beta testing of nearly finished software as well as in more comprehensive activities including 
customer driven software development (Holmström 2001) and maintenance (Holmström 
and Fitzgerald forthcoming). In this regard, online communities can facilitate (1) the 
engagement of a mass scale of distributed but competent customers in developing, testing, 



 
165 

and modifying software (Lee and Cole 2003), and (2) the development of a better 
comprehension of customer perspectives on the software. In other words, online 
communities can be understood as a means of overcoming the geographical distance and the 
lack of a coherent use context characterizing packaged software customers. 
 

As documented in the literature on distributed product development, development efforts 
involving loosely coupled individuals and groups rely on a capability to convert the collective 
knowledge possessed into appropriate action for improving the product (Nambisan 2002; 
Orlikowski 2002). For example, in successful open source communities, this capability is a 
natural and important element in successful development of software (Lee and Cole 2003; 
Ljungberg 2000). In psd, however, firms face a number of challenges as they attempt to 
benefit from customer communities. The main problem is the inherent tension between the 
motivational structures of commercial software firms and those of voluntary community 
participation. Indeed, our previous case study research of a computer game firm documents 
attempts to benefit from customer communities and hence, improve the development 
process of packaged software (Holmström, 2001; Henfridsson and Holmström, 2002). 
However, our research also highlights difficulties with community use in psd, such as for 
example sensemaking challenges (Henfridsson and Holmström 2002) and customer role 
ambiguity (Holmström and Henfridsson 2002).  
 

On the basis of a longitudinal case study at Daydream Software, this paper explores the role 
of online communities in psd. The contribution of the paper is a model of community use in 
psd that describes such use as three iterative and interrelated processes. These processes are 
unfolding at the intersection between commercial software firm practices and voluntary 
community participation. 
 

The remainder of the paper is structured as follows. On the basis of a literature review, next 
section outlines a model for understanding how community knowledge can be built, elicited, 
and exploited in psd. Then, we describe our research methodology including the research 
site, research design, and data sources and analysis. The next section outlines a case of 
community use for psd purposes in a Swedish software firm. This is followed by a discussion 
of the benefits and limitations of community use in psd. The concluding section summarizes 
the contribution of this paper and points out directions for further research. 

2 Community knowledge in packaged software development 
Developing packaged software is largely a knowledge intense activity (Clegg et al. 1996). 
Thus, it depends on the organizational capability of developing and combining market and 
domain knowledge into timely and competitive products (Andreu and Ciborra 1996; 
Prahalad and Hamel 1990). Indeed, the packaged software industry is dominated by time 
pressures (Sawyer 2000) in that breaking new ground is often conceived critical for 
generating return on investment (Zachary 1994). Contrary to custom is development, the 
success of the packaged software industry’s products is measured by profit and market share, 



 
166 

underscoring the challenge of either developing a large installed base or creating new market 
opportunities (Sawyer 2000). 
 

In quest for competitive advantage, software firms continuously seek new ways for 
improving their psd processes (Mathiassen et al. 2002). Apart from efficiency measures 
applied to increase staff effectiveness and lower rework time (Little 2004), psd can benefit 
from leveraging customer involvement and input (Keil and Carmel 1995). Indeed, many of 
the best ideas for product improvements come from customers (Finch 1999; Von Hippel 
1986). In possessing situated knowledge of the software, customers constitute an important 
resource for improving psd in that they can co-produce the software (Holmström 2001), 
something that Nambisan (2002) portrays as knowledge co-creation, highlighting the 
centrality of knowledge produced in customer—developer relationships for gaining 
competitive advantage over time (see also e.g., Keil and Carmel 1995).  
 

Situated customer knowledge is a type of knowledge characterized by its contextual nature. 
As recognized by Brown and Duguid (2001), what individuals know always depends on — 
and reflects — the social context in which this knowledge is acquired and put into practice. 
Within the scope of this paper, situated knowledge emerges from everyday software use. 
Hence, it reflects not only the particular circumstances and different purposes of software 
use but it also conveys necessary technical competence such as hardware and software 
configuration skills. As such, this type of context-dependent knowledge is enacted in the 
moment (Orlikowski 2002), conveying the capability of individuals or groups to transform 
their situated knowledge into meaningful action. Such transformation is achieved through 
continuous reconstitution (Orlikowski 2002) and renegotiation (Wenger 1998) of meaning. 
Thus, situated knowledge is something that is achieved, not given, and it emerges from 
people’s ongoing reflection, experimentation, and improvisation within the practice of 
which they are part (Orlikowski 2002). 
 

Communities are mediators between individuals and formal, as well as informal, social 
structures, and as such, they work as repositories for the development, maintenance and 
reproduction of knowledge (Brown and Duguid 2001). While communities can be seen as 
sources of locally produced knowledge, they also create a vital link between organizational 
strategy and changes emerging in the surrounding environment (Brown and Duguid 2001; 
Lave and Wenger 1991; Wenger 1998). In similar vein, we refer to community knowledge 
as the situated knowledge manifested in the practice of a group of distributed software users. 
While a community’s knowledge is not held equally by all community members but shared 
across the community, participation in such a community gives access to that community’s 
identity and thus, to the collective knowledge generated within the community (Brown and 
Duguid 2001). Viewing community knowledge as closely related to community identity 
(Brown and Duguid 2001), it can be characterized as dynamic, i.e., changing as community 
practices changes, cumulative, i.e., expressing the community’s shared history of practice, 
and varied, i.e., reflecting distinct skills and practices enacted by individual members of the 
community. In the psd context, community knowledge is the capability of transforming, for 



 
167 

example, design skills, graphics skills, and hardware and software configuration skills into 
software improvements.  
 

In using community knowledge — as emerging within online communities — software 
firms seek to stimulate collective idea generation and product conceptualization among 
geographically distant customers (Nambisan 2002). Such use can be seen as consisting of 
three interrelated activities initiated by the software firm, but highly dependent on its 
relationship with the community. First, knowledge building, i.e., the process of supporting 
software customers’ creation and sharing of situated product knowledge, is vital to improve 
psd. Here, online communities work not only as enablers of knowledge exchange within 
communities of knowing (Boland and Tenkasi 1995), but also between the software firm and 
its customers. It is through dynamic interactions between such communities that new 
knowledge emerge (Boland and Tenkasi 1995).  
 

Second, improving psd cannot merely come from knowledge building. It also depends on a 
capability of the software firm to stimulate customers’ willingness to express their 
knowledge and to incorporate the knowledge expressed in the psd process. Thus, the 
software firm needs to develop organizational arrangements with which they are able to 
transform customer input into productive and meaningful improvements of the software 
(Henfridsson and Holmström 2002). These arrangements involve a sensemaking capability 
(Weick 1979) attentive to the knowledge built in light of perceived business needs. This 
process, presented here as knowledge elicitation, is understood as the process of making sense 
of customer generated input and transforming this into software improvements. The key to 
knowledge elicitation is the appreciation of shared repertoires including routines, words, 
tools, gestures, symbols, actions, and concepts that the community has produced or adopted 
in the course of its existence (Wenger 1998). Shared repertoires include both the discourse 
by which members create meaningful statements about the software, as well as the styles by 
which they express their forms of membership and ideas as community participants. The 
knowledge elicitation process then forms the basis for implementing useful software 
improvements. 
 

Finally, knowledge exploitation closes the community knowledge use cycle by implementing 
elicited customer knowledge into software improvements. As in any product development 
process, this process is influenced not only by organizational factors such as firm culture, but 
also environmental factors including risk capital availability and market forecasts. This makes 
knowledge exploitation a challenge for many software firms. For example, the individualistic 
and entrepreneurially oriented cultural milieu of packaged software development can pose a 
challenge for implementing product suggestions generated by customers (Carmel 1997; 
Sawyer 2000).  
 

In view of this literature review, improving psd through community knowledge consists of 
three iterative and interrelated processes: knowledge building, knowledge elicitation, and 
knowledge exploitation. These distinctions are primarily analytical as to facilitate our 
understanding of the way in which community knowledge can improve psd. Taking a cyclical 
perspective on community knowledge use, the community knowledge use model (see 



 
168 

figure 1) facilitates an analysis of a software firm’s repeated community activities in quest 
for improved packaged software. In such an analysis, the model also distinguishes the 
location of each of these processes. As illustrated below, knowledge building takes place 
within the community of software customers. While the software firm can support the 
initiation of this process, the building process itself unfolds through software customers’ 
mutual engagement in a specific software product. Knowledge elicitation, on the other 
hand, takes place at the intersection of the community and the software firm. In this process, 
the software firm attempt to benefit from making sense of customer generated input in 
order to transform this into product improvements. To do this, there is the need for the firm 
to understand and appreciate the repertoire as expressed by the community as well as the 
community’s willingness to share its inherent knowledge with external actors such as firm 
representatives. Finally, knowledge exploitation takes place exclusively within the software 
firm in order to implement customer knowledge into software improvements important for 
profit and market share in a competitive firm environment. In this process, the software firm 
faces the challenge of balancing commercial interests and customer needs and requirements.   

 
 

figure 1. The community knowledge use cycle 
 

Since our own work (Henfridsson and Holmström 2002; Holmström and Henfridsson 2002; 
Holmström 2001) and that of others (Keil and Carmel 1995; Sawyer 2000) recognize the 
promise of customer involvement in psd, we view the community knowledge use cycle as a 



 
169 

way of focusing our thinking on the different processes of community-enabled psd and thus, 
of benefits and limitations, as well as tensions, evident in these. In the following sections, we 
outline a case of community use in psd in the computer game industry.  

3 Research methodology  
3.1 research site 

Daydream Software is a small computer game developer with its headquarters in Umeå, 
Sweden. At the beginning of this study, the firm employed around 65 people and had 
developed two computer games: Safecracker and Traitors Gate. The relative success of these 
two games had attracted a significant international customer base, making an early stock 
exchange quotation in 1996 possible. 
 

Our selection of Daydream as the case for this research can be traced to a number of factors. 
Daydream is a software firm that focuses on a type of packaged software, computer games, 
that must be up-to-date with technological and societal trends. This does not only imply that 
software developers must be competent in a particular domain but also willing to acquire 
new knowledge over time. Interaction with software customers in an online customer 
community can therefore be seen as one source for acquiring such new knowledge. 
Moreover, the development, introduction and diffusion of Daydream’s third computer game 
— Clusterball — involved a commitment to improve its psd processes by means of an 
online customer community — the Clusterball community. This fact coincided well with 
our intents to study the role of customer communities for improving psd. 
 

 
 

figure 2. The Clusterball website 



 
170 

The technical basis for the Clusterball community was a web application 
(www.clusterball.com, see also figure 2 above) and the game itself. The web 
application provided electronic discussion forums, fan website links (links to unofficial 
Clusterball websites), product information, and software downloads. The game included a 
pre-game chat allowing for players to meet before each gaming session to discuss tactics and 
to share experiences from previous gaming sessions. Given the ambition to improve the psd 
process, the Clusterball community represented an attempt to cater for situated customer 
knowledge.  

3.2 research design 

The research reported in this paper builds on a 17 month (January 2000 — May 2001) 
interpretive case study (Klein and Myers 1999). Interpretivist researchers examine research 
phenomena through investigating the different meanings people assign to them (Orlikowski 
and Baroudi 1991). This procedure assumes that people act-in-the-world on the basis of 
their subjective and inter-subjective meaning creation. Whether the meanings associated 
with the phenomena are « correct » descriptions of the world is not an issue for the 
interpretive researcher. What matters is rather the extent to which these meanings can help 
the researcher understand why people act as they do. 
 

The interpretive case study is particularly suited for studying research contexts in which 
different actor groups’ views of the research phenomenon can be expected to be divergent. 
In fact, examining multiple interpretations of the research phenomenon is at the heart of 
interpretive research (Klein and Myers 1999). In our case, we suspected that the gap 
between Daydream’s commercial interest and the non-commercial interest of community 
participants would be central to understand benefits and limits of community use in psd. 
Therefore, we reasoned that an interpretive frame of reference would be useful for 
exploring the prospects of online communities in psd, as these were reflected in the 
assumptions, beliefs, and knowledge held by both parties.  

3.3 data sources and analysis 

Faithful to general principles of interpretive research, the findings generated in this research 
have emerged as an iterative process between theoretical conceptions and empirical data 
(Klein and Myers 1999). As is common in most long term research, the initial conceptual 
apparatus — encompassing certain assumptions, beliefs, and rationale — transformed over 
time. In interpretive research, transitions between theoretical conceptions and empirical 
data are central elements in formulating an increasingly plausible understanding of the 
research phenomenon. In our study, such transitions (between parts such as community 
postings and Daydream’s software development context, and wholes such as the knowing-
in-practice literature) were necessary to successively formulate our understanding of 
community use in psd.  
 

In this research process, a multitude of data sources have been used: meeting minutes, 
observational data, press releases, shareholders’ prospects, technical documents, qualitative 
interviews, website data (community postings), and a web survey. As a significant starting 



 
171 

point for acquiring an insider view of research phenomenon, for instance, the first author of 
this paper spent most of her working time during 4 months at Daydream’s sites. Supporting 
engagement between researchers and research subjects (Nandhakumar and Jones 1997), 
these observational studies were important impetuses for developing a first tentative 
understanding of the research setting. With this pre-understanding as a basis, this paper uses 
three data sources from the overall Daydream study. First, qualitative interviews with 
Daydream employees were conducted to get an understanding of their view of the psd 
process and the role that they attributed to the online community in this process. To cover 
the wide range of Daydream employees and their different experiences of the psd process, a 
total of 11 interviews were conducted with marketing and administrative people, as well as 
software developers and web designers. Each interview lasted about 1½ hour and they were 
all tape recorded and transcribed. The open ended questions covered topics such as the 
development process, the role of customers, customer relationships, and customer 
community participation. 
 

Second, postings published at the online community were collected between July 2000 and 
October 2002.  These were used as an attempt to understand the way in which knowledge 
was acquired and exchanged among customers. This data source revealed the extent to 
which Daydream software developers were active in the community and in what situations 
there was an interaction between customers and developers. With approximately 17,000 
postings divided between two forum tracks (the general track and the technical track) during 
this period, the Clusterball community was an active forum with postings reflecting the 
situated knowledge of customers important for improving Daydream’s psd process. 
 

Third, a customer web survey were used in order to allow for distributed customers to 
reflect upon the psd process and the extent to which they felt that their knowledge was 
built, elicited and exploited in this. To represent the wide range of customers in the 
community, we selected 200 Clusterball players ranging from newbies (not very experienced 
players) to grand masters (very experienced players) who had registered in the customer 
database and played the game the month before the survey was sent out (i.e. October 2000). 
The survey, consisting of multiple choice questions as well as free text alternatives, was 
distributed in November 2000 and the final answers were collected in February 2001. With 
a response rate of 52 percent, the survey helped us in (1) our understanding of the 
customers and their apprehension and application of the customer community for the 
purpose of knowledge building, and (2) our understanding of the customers and their view 
of how their knowledge was elicited and exploited by Daydream in the psd process. 
However, despite a relatively high response rate indicating a rich data material, the result of 
the survey was a bit of a disappointment. While the multiple choice questions were carefully 
answered by a majority of respondents, the free text alternatives — which were intended to 
provide us with individual reflections in similar to those attained when conducting 
qualitative interviews with Daydream employees — were only briefly answered by a 
minority of the respondents, providing us with very limited data material reflecting the view 
of individual customers. As a result of this, the web survey was used only as a complement 



 
172 

to other data sources such as observations, document reviews, community postings, and 
qualitative interviews. 

3.4 the clusterball case 

Daydream’s plan to develop a new computer game was formed in 1998. Since 
this game was envisioned as the first online game that would be distributed, 

paid, and played over the Internet, considerable time was invested in developing a new 
network protocol, micro payment functionality and a customer relationship management 
(crm) application interface. The development of these new and, at that time, immature 
technologies was both time consuming and complex, and already at an early stage the game 
was delayed. At this stage, the psd process was basically an undertaking between in-house 
software developers and external technology vendors and consultants. 
 

As the first interface towards customers there was the first version of the Clusterball website 
in early 2000. Since the game was still under development, the website merely contained 
game information and development progress reports. In other words, the website was 
primarily an advertising tool, intended to maintain interest among earlier Daydream 
customers as well as to provide feedback to impatient investors in the small stock listed firm. 
In parallel with the development of the website, the software was beta tested by 200 players. 
These were recruited via the Clusterball website where customers registered in the 
customer database, as well as via personal contacts among Daydream employees. 
Approaching the official release in July 2000, the website was continuously developed to 
include also payment functionality and more advanced graphics and layout. At this stage, 
there were already hundreds of registered members in the Clusterball community.  
 

Following the release, customers had immediate concerns with getting the software to work 
with their various technical configurations. Only during the first month, two software 
patches dealing with installation, startup and configuration problems and host errors were 
released. These patches were direct responses to community postings, revealing the kind of 
problems typical for software that suffers from tight deadlines where too little time for 
comprehensive testing is given. Illustrative postings from this period were: 
 

 “Right when the loading screen appears I get an illegal operation and I have to close it. 
This happens every single time. I have a diamond viper v550, running 1280 x 1024 
32 bit, and win 98. I have had some problems with other games not switching to 
direct 3d mode but nothing like this. Please help, I'm very annoyed.” 

 

 “Hi, My crashes end with: clusterball caused an invalid page fault in module 
clusterball.exe at 015f:0054e7e4. It crashed mid-game. I have a 450 athlon, 
256 mb, geeforce 256. Any suggestions? Thanks.” 

 
Given the customer involvement vision, the early use of the Clusterball 
community came as a little disappointment. Even though the community was 

helpful for corrective bug fixing, this type of customer input reflected immediate customer 
concerns rather than the customer—developer relations envisioned in setting up the 

Cycle 1 

Cycle 2 



 
173 

Clusterball website. Seeking such relations, however, Daydream intensified the efforts to 
keep customers updated with Clusterball information to maintain and strengthen their 
interest. In complementing general information such as technical specifications, screenshots, 
and game descriptions; both software developers and marketing people published updated 
information including Clusterball news, technical support, and faq additions more 
frequently. Indeed, such information was considered necessary for building community 
knowledge. The manager at the time commented:  
 

“You have to encourage the players, have a dialogue with them and make sure that they 
can contact us and communicate with us as well as with all the other players…this can 
be done in electronic forums, on chat lines or through fan websites developed by 
individual players and promoted by us.” 

 

To handle the overwhelming amount of customer feedback during the month following the 
software release, Daydream appointed a community manager in August 2000. As a link 
between customers and software developers, the community manager was responsible for 
stimulating customer feedback as well as to make sure that this was implemented in the psd 
process. This activity was considered important for building a sense of trust among 
customers, whose suggestions then would be better catered for, and for improving 
Daydream’s psd process.  
 

The community manager viewed himself as a Daydream representative in the community, 
directed at encouraging customer feedback as well as for feeding customer suggestions into 
the psd process: 
 

 “…whenever I enter the forum I do it as a Daydream employee, which is very important 
to remember. Thus, it is not my personal opinions — but instead the Daydream view — 
that I am supposed to deliver. (…) As a manager, I try to collect all the ideas and turn 
them into software improvements by handing them over to the developers. It is easier if 
this is done by one person so that the developers don’t have to keep track of all ideas 
themselves. I know what they are doing and what people to ask for certain things and in 
that way I think we get a smoother and faster process in implementing new features of the 
game.” 

 

In other words, the community manager played an important role in encouraging customer 
suggestions, making sense of these suggestions and translating their meaning into product 
suggestions that could be handed over to the software developers. Indeed, the community 
manager viewed customer suggestions as a key component in the psd process: 
 

 “One very important thing in this is to remember that if you once invited the customers to 
be part of the development process…to make them aware of that they have impact…then 
you must also see to it that the suggestions they come up with are implemented. Things 
must happen on the basis of community discussions and it must be evident that they are 
able to influence the software development process in the way we told them that they 
would.” 

 



 
174 

Besides monitoring community postings, the community manager actively stimulated new 
suggestions for software improvement. Typically, the manager intervened with a clear goal 
in mind, e.g., a new patch release. Consider the community manager’s posting in relation to 
the third Clusterball patch: 
 

 “Hi! In developing the next Clusterball patch we would like to know what features you 
most of all would like to see in the game…are there anything missing in the game right 
now and what is it that you all really want us to implement? Please, post your suggestions 
to the community forum…we are looking forward to seeing them.” 

 

As a response to this invitation, numerous postings were submitted to the community. 
Typical examples, which later were transformed into software improvements, were:  
 

 “My experience of dnf is that I send data, but don't receive anything, and when enough 
time has passed, my computer evaluates this as the server having gone down (not closed, 
that is a different message), and ends the session.” 

 

 “I would like to improve the match making — to allow the possibility to find other 
players closer to my skill level.” 

 

“I would like to be able to set a minimum and maximum player ranking when I host a 
game.” 

 

 “I would like to have the possibility to talk to other players while waiting for a game.” 
 

The third Clusterball patch was released in mid October, 2000. At that time, the peak of 
corrective bug fixes seemed to have passed, and consequently, Daydream could pay more 
attention to functional improvements and additional features of Clusterball. In response to 
customer suggestions as exemplified above, additional functionality such as replay and 
recording, a dnf feature (players still get points even if they did not finish the game), 
improved match making capabilities (to lock a game server on a min/max player ranking 
basis), a pre-game chat, and team play ranking were implemented. The community manager 
noted: 
 

 “The first patches were developed almost exclusively on the basis of community discussions 
in which customer needs were evident. For example, there was the replay function so that 
people can record their games and look at them afterwards, the team play ranking in 
which every individual team gets points and are ranked in a system and a lot of different 
search and sorting possibilities so that it is easier to keep track of different players, 
different venues and different hosting servers.” 

 

The direct link between customer suggestions and Clusterball patches was also pointed at by 
one of the software developers: 
 

”The pre-game chat was a direct result of customer suggestions. Very soon many players 
felt that they wanted a place were they could meet and talk before joining a gaming 
session.” 



 
175 

 

As a direct customer—developer link, the community served many purposes and the 
community manager role was appreciated by customers. One of them expressed the 
following in our customer web survey: 
 

 “It is a good idea since we now know that someone is taking care of all the 
suggestions…hopefully in a systematic way. Even though they might not always be 
implemented anyway…but it feels better.” 

 

Also, the overall effort by Daydream to strengthen the customer—developer link was 
indeed appreciated by customers: 
 

 “I think I can influence almost all things…Daydream has been working very closely in 
cooperation with the community.” 

 

“I think the programmers of Clusterball will listen to peoples’ voices because they really 
want this game to be as good as possible.” 

 

“I think peoples’ suggestions to new features are definitely taken into consideration and I 
think that’s a great idea. The people at Daydream seem to be open to suggestions from us 
players.” 

 

 “The community helps me influence the people at Daydream. I talk to them there and I 
think they listen to us players and try to make the game as good as we want it to be.” 

 
In November 2000, Daydream appointed what they called Clusterball 
ambassadors as to further strengthen their relationship with customers. These 

ambassadors were customers playing Clusterball on a daily basis and contributing extensively 
to the community in terms of postings. Since the ambassadors would be regarded as any 
ordinary player by the rest of the community, Daydream reasoned, they could obtain 
information that would not be presented to, or appreciated by, Daydream employees. By 
the end of November 2000, there were five ambassadors — three in the United States, one 
in Germany and one in Italy. The ambassadors’ role in knowledge building and elicitation 
was recognized by the community manager: 
 

 “Even if my job is to keep track on the community I am not an ordinary player who enters 
the game whenever I like to or with the same prerequisites as any other player…the 
ambassadors are ordinary players…in that sense I work as a link between the customers 
and Daydream while the ambassadors work as a link between the customers and me.” 

 

The role of the ambassadors was further explained by the community manager: 
 

 “…their [the ambassadors’] duty is to be active participants in the forum discussion, 
help newbies in the game and see to it that people get answers on their questions when 
entering the Clusterball world.” 

 

Cycle 3 



 
176 

Furthermore, the ambassadors helped Daydream in administrating different community 
events — something that was appreciated by the community manager: 
 

 “To this day, the ambassadors have arranged their own tournaments and helped us in the 
administration of different events, they have guided new players and helped them in 
learning the game and so on…” 

 

In addition to knowledge building and elicitation activities initiated by Daydream, Daydream 
also sanctioned the initiative to start the Clusterball School. This initiative originated from 
one of the most well known and frequent players in the community. The aim of the school 
was to help new players to learn the game faster and thereby making them better prepared 
for gaming sessions. Daydream viewed the initiative as a way to attract new players to the 
game as well as for players to further develop their gaming skills.  
 

The community manager appreciated the initiative: 
 

 “The school is great…all people seem to like it. People get to know each other without 
always having Daydream people around. They can learn by themselves and ask each other 
when they need help.” 

 

In other words, the Clusterball School seemed to increase customer—customer links. One 
of Daydream’s software developers noted that: 
 

 “I think the school helps people to get to know each other. Experienced players meet with 
new players and they can develop relationships that probably will last even after they 
have played the game. Also, I think they enjoy the game more when they know the 
opponents…it is good for the overall community atmosphere.” 

 

Customer—customer links, as manifested by the Clusterball School and the community 
forum, were appreciated by customers too: 
 

 “In the community I can learn from more experienced players and from the developers.” 
 

 “The community is good when you need help. And it is a great way of sharing your own 
experiences as well as for learning from other players. I know I have learnt a lot.” 

 

 “It gives people a chance to give suggestions about the game, about other players and get 
advice for the game. I think it is a great place for newbies too, to give them an idea of 
what’s going on and how to play the game.” 

 

After a series of knowledge building and elicitation activities including the community 
manager role, the ambassador role, and the Clusterball School, Daydream could relax 
somewhat at the turn of the year. Accordingly, two Clusterball patches dealing with only 
minor technical problems were released. For example, the forth patch solved graphics  and 
sound problems as pointed out by customers: 
 



 
177 

 “I got an ati rage 128 graphics card... but when I play Clusterball, all the ships and 
balls are black. I need some help.” 

 

 “…the sound is still a problem in xp with sb live sound card.” 
 

Following this, the fifth patch was released in February 2001. This patch — the gl setup 
patch — could detect whatever graphic card customers used and hence, install the latest 
drivers for that particular graphic card.  
 

During the spring 2001, lots of customer suggestions on new features were posted to the 
community. This may be traced to the fact that at that time the game had been around for 
some time and there was the opportunity for players to reflect upon major changes and 
improvements instead of only minor bug fixes for solving immediate operability problems. 
In response to these postings, a sixth patch was released in April, 2001. This patch included 
improved joystick support (such as twist handle functions), lan play without restriction of 
Internet access for host and improved artificial intelligence in the training (offline) mode. In 
addition, corrective development was also done. These corrections handled, e.g., a crash 
bug in the pre-game chat, a freeze bug when viewing replays, a throttle bug on joysticks, and 
a dnf bug in match history. 
 

While the sixth patch included new functionality triggered by customer suggestions, 
however, there were also several suggestions that were ignored by the developers at 
Daydream. Examples of such suggestions were: 
 

 “Make more then just the ship playable, most other games have more than one model to 
choose from... Maybe there could be a model editor where players could make their own 
ships…” 

 

 “Could there be a viewer system so that my friends could watch other people play before 
they participate themselves?” 

 

 “I would like to see a password for the server when hosting a match. Setting the number 
of games or how long time the dedicated server should run. It would also be great if it was 
possible to send messages to the players when running a dedicated server.” 

 

While reflecting customer concerns, Daydream never explained why these suggestions were 
never put attention to. Clearly, there were limitations to what the customer community 
could influence in terms of development, despite the fact that they had been encouraged to 
participate in Daydream’s psd process. These limitations were recognized and explained by 
the software developers: 
 

”There were requirements that were too costly or too technically difficult to realize. Some 
suggestions we simply didn’t implement because we didn’t agree with them...for example 
some of the suggestions about the gameplay we didn’t like and therefore never 
implemented.” 
 



 
178 

“The features that will influence us the most are those that players have difficulty with 
and that Daydream themselves are not 100 percent happy with. I don’t think Daydream 
would be happy with changing the gameplay too much, quite correctly, because it would 
affect existing players, but they have shown that they want to implement suggestions and 
will add new modes and features to expand the game according to player suggestions 
without changing the playability of the game.” 
 
“Much of what was implemented we already recognized ourselves, since we of course 
played the game in the same way as all other players. However, we prioritized all input 
we got from the community and we always chose features that the majority of customers 
wanted and that we thought would be the most appreciated by the community.” 

 
As suggested above, there existed contradictory views on the actual role that the community 
played in the development process of Clusterball. While Daydream viewed the community 
as a resource for improving Clusterball, however, they were clearly selective in their 
assessment of what customer suggestions to implement.  
 

This selectiveness was also recognized by customers. Some of the comments in our customer 
web survey were negative:  
 

 “I think the community can be used for reporting bugs and make small suggestions. I 
don’t think I can influence the game itself, more like little improvements for a new patch 
— that is what they [Daydream] seem to listen to.” 

 

 “The forum is made for people to chat about anything relating to Clusterball. What 
people do is that they post messages about what they like and dislike about the game. For 
Daydream — taking a look at the forum once in a while would be a good idea as it 
would give them ideas on how to improve the game and make it more enjoyable.” 

 

 “I feel that it would be wise for Daydream to read through the user and player comments 
in the forums, and try to implement features based on these suggestions. Ultimately, the 
users will determine what they like and don’t like about the game and if it meets the 
expectations they are looking for. If not, they will continue looking for something else.” 

 

As indicated above, our case study at Daydream pinpoints benefits as well as limitations 
associated with community use for improving customer involvement in psd. Below, the 
implications related to these benefits and limitations are discussed. 

4 Discussion 
Earlier research highlights the specific firm and firm environment conditions associated with 
psd (Sawyer 2000). It also outlines how these conditions make direct customer involvement 
difficult in psd. Typically, customer involvement is based on indirect links such as 
intermediaries or customer surrogates (Keil and Carmel 1995). Given the central role that 
customers can play in successful product development (Von Hippel 1986; Nambisan 2002), 



 
179 

we therefore investigated how online customer communities can be used to improve 
customer involvement in psd.  
 

On the basis of a literature review, we outline a model of community use in psd. The model 
specifies three interrelated processes characterizing community knowledge use in psd. These 
processes are knowledge building, knowledge elicitation and knowledge exploitation. In the 
previous section, we used the model for exploring community use surrounding the 
development of a computer game at a Swedish game developer — Daydream. table 1 
depicts the different cycles of community knowledge use as illustrated in the Daydream case. 
 

Spanning between January and August 2000, the community use in cycle 1 was 
characterized by a relatively detached relationship between Daydream and its customers. 
Clearly, Daydream’s early knowledge building activities were relatively simple actions, 
aimed at setting up the technological infrastructure necessary for establishing a community. 
Indeed, these activities were beneficial in that they provided an efficient means for collecting 
customer feedback on initial problems related to the software. However, the type of 
suggestions elicited primarily concerned installation and configuration problems experienced 
by customers. Reflecting immediate software operability concerns rather than commitment 
to software improvement, the customer suggestions posted were straight forward and 
unambiguous in character. In terms of knowledge elicitation, this basically meant monitoring 
the community forum for bug reports that could be useful for corrective maintenance of the 
software. While this was a rather smoothly operating community knowledge use cycle, 
however, it simultaneously failed to leverage other lessons learned in the community. For 
instance, the importance of customer—customer relationships was virtually unnoticed by 
Daydream and hence, no activities for supporting these were undertaken. In this regard, 
community use was somewhat restricted during cycle 1. In fact, it can be noted that 
without more active knowledge building and elicitation processes, the community worked as 
any ordinary bug reporting system. 
 

Noting the simplistic community use in cycle 1, Daydream attempted to develop a richer 
and more enduring relationship with its customers at the end of August 2000. Indeed, cycle 
2 (August — October 2000) was characterized by improved developer—customer 
relations. For example, the appointment of a community manager was a step towards taking 
more active part in the community’s situated knowledge creation. This appointment was 
intended to stimulate knowledge building and sharing, as well as to improve Daydream’s 
capability to elicit the knowledge that was built and shared among community members. As 
a result, the knowledge elicitation of cycle 2 not only included bug report monitoring but 
also efforts to build an insider’s view of community activities. The community manager’s 
daily participation in forum discussions and game playing contributed to such a view, making 
him part of the skills and practices enacted by community members (cf. Brown and Duguid 
2001). At this point, customers within the community viewed the community manager’s 
active community participation as a legitimate attempt to improve customer relations and to 
involve them, and the knowledge they possessed, in the improvement of the software. This 



 
180 

sense of trust coincided with a third patch including simple corrective bug fixes but also 
more creative functionality additions. 
 

Cycle  Knowledge building  Knowledge elicitation  Knowledge exploitation 
       
#1: 
Jan—Aug 
2000 

 Development and 
release of Clusterball 
website.  
Game and development 
progress reports. 
Recruitment of beta 
testers. 

 Monitoring of 
community postings for 
bug reports. 

 Software patches 
(#1&2) consisting of 
corrective bug fixes and 
solutions for host error 
problems. 

       
#2: 
Aug—Oct 
2000 

 Website updates on 
Clusterball news and 
faqs. 
Appointment of 
community manager. 

 Monitoring of 
community postings for 
bug reports. 
Community manager 
participation in 
community activities 
and game playing 
(insider view). 
Community manager 
reports of customer 
needs and requirements 
as well as customer 
behavior to software 
developers. 

 Software patch (#3) 
including corrective 
bug fixes and 
functionality additions. 

       
#3: 
Nov 2000 — 
May 2001 

 Appointment of 
Clusterball 
ambassadors. 
Clusterball School. 

 Monitoring of 
community postings for 
bug reports. 
Community manager 
participation in 
community activities 
and game playing 
(insider view). 
Community manager 
reports of customer 
needs and requirements 
as well as customer 
behavior to software 
developers. 
Clusterball ambassadors 
as links between 
customers and 
community manager 
and software firm. 

 Software patches 
(#4&5) including 
corrective bug fixes. 
Software patch (#6) 
including functionality 
additions. 

       
       

table 1. Community use in developing Clusterball 
 



 
181 

 

Even though the appointment of a community manager represented a step towards more 
advanced community use, however, Daydream took further measures to reinforce links 
between customers and the psd process. In cycle 3 (November 2000 — May 2001), 
Clusterball ambassadors were recruited for improving customer—customer relations with 
the potential to increase the knowledge building and elicitation processes and hence, the 
development of the software. Complemented by the initiative to start the Clusterball School 
(an attempt that was sanctioned by Daydream), the ambassadors augmented earlier 
knowledge building and elicitation activities as conducted by the community manager. Since 
the capacity of the community manager was limited in terms of workload and the degree to 
which he could act as a true insider, these community driven knowledge building and 
elicitation activities targeted a broader range of community members. Thus, with the help of 
the ambassadors and the Clusterball School, Daydream was able to more actively stimulate 
customer—customer relations and also, to further strengthen the firm—community 
relation. Triggered by this intertwined community relationship, more extensive and far 
fetched suggestions were posted to the community forum. For example, suggestions on a 
model editor for making more than the ship playable, a viewer system and a message system 
for players when running a dedicated server were posted. However, none of these 
suggestions were implemented and hence, did not result in any improvements to the 
software. Indeed, cycle 3 demonstrated limits to community use in psd. For instance, 
suggestions concerning the overall storyline were sparsely considered. Concurring with the 
individualistic culture of software firms (Sawyer 2000), such suggestions were rejected due 
to developers’ strong images of what the game would be like. In addition, more costly or 
technically difficult changes were often rejected because management feared that they would 
not pay off in increased sales or resonate well with strict time-to-market deadlines. In 
particular, this represented a fear of not representing the majority of customers’ needs and, 
in this way, leaving a large segment of customers outside the negotiations of intentions (cf. 
Schwen and Hara 2003). Despite Daydream’s intimate community use, cycle 3 can be 
considered incomplete in that intensive activities for knowledge building and elicitation lead 
to only limited exploitation in terms of software improvements. As can be seen in table 1, 
the patches released during this period primarily covered corrective bug fixes.  
 

Our exploration of the role of customer communities in psd has resulted in a model of 
community use in such development. While the open source literature documents successful 
examples of community based software development (see e.g., Lee and Cole 2003; 
Ljungberg 2000), there exists few studies investigating community use in commercial 
software development efforts. Nambisan (2002) presents an attempt to formulate a theory 
targeting new product development in general. To this end, Nambisan generates a set of 
useful propositions for understanding the theoretical underpinnings of community use. 
Complementing Nambisan’s effort, however, our research represents a framework 
particularly focusing on community use in psd. This model was furthermore used to analyze 
an empirical case study that was undertaken at a Swedish computer game developer. In our 
study, we were able to convey the challenges residing at the boundary between commercial 
firm interests and the voluntary nature of online community participation. Indeed, at the 



 
182 

heart of psd, there exists a commercial interest not directly presented in, e.g., open source 
software communities. In psd, the software firm and its related online community can be 
seen as two separate communities-of-knowing (Brown and Duguid 2001), governed by 
different motivational structures and identities. In looking at the empirical data from our 
study, we believe that this fact has consequences for the different processes of community 
use in psd. 
 

Community knowledge building is relatively independent of what a software firm does to 
promote it. As long as the boundary object — the software — attracts enough committed 
customers there typically will be software users internalizing situated knowledge from 
software use, which a significant portion of them will share with others. This can be 
facilitated by the software firm by setting up websites and to be active in the forums 
established on such sites, but it is primarily something that resides naturally within a popular 
online community. In other words, given the existence of interesting software in the first 
place, knowledge building exists relatively independently of actions taken by the software 
firm. However, knowledge building is an important impetus to the sensemaking processes 
characterizing knowledge elicitation. It is therefore vital that the software firm engages in 
knowledge building by developing boundary spanning organizational arrangements. In the 
Daydream case, these consisted of the community manager role, the Clusterball 
ambassadors, and the firm sanctioned Clusterball School. 
 

Community knowledge elicitation takes place at the intersection of the software firm and the 
online community. As long as the community is simply used as a bug reporting system, 
knowledge elicitation typically consists of monitoring community forums for postings about 
software operability problems. At a more advanced level, arrangements spanning 
organizational boundaries are central to internalize the customs and common ties 
characterizing an online community-of-knowing. These are necessary to build the customer 
relationship needed to acquire more substantial customer input. Given such feedback, 
however, the person, or group of people, acting in the boundary spanning role needs to 
develop a sensemaking capability for interpreting customer feedback in light of in-house 
development visions and ideas as well as perceived business needs. Such a capability is likely 
based on a dual role, grounded in the participation in — and practice of both communities-
of-knowing. 
 

Community knowledge exploitation represents the most contentious process in the 
community knowledge use cycle. Since the software firm operates in a commercial 
environment, issues related to business environment and firm culture naturally become 
ingredients in software improvement decisions. Partly outside the scope of what takes place 
in the community, commercial interests will almost always be prioritized in cases where 
these contradict community input. Such prioritization is typically difficult to explain to 
devoted community members sharing a different opinion. While such prioritizing always 
exist in software development projects, it can be harder to maintain trust in prioritizing 
based on commercial appropriateness rather than software excellence. This is a core 
difference between community use in psd and, e.g., open source software development. 
 



 
183 

On a theoretical note, it must be emphasized that community use in psd can never fully 
embrace the situated learning taking place in an online community-of-knowing. As 
highlighted by Schwen and Hara (2003), the online community literature tends to 
romanticize the notion of community. Looking at our case, the mere application of the 
notion of use in community use suggests a kind of detached relationship to the complicated and 
situated learning characterizing customer—customer relationships and identities produced 
and reproduced over time. In this regard, communities can never be controlled or exploited 
in conventional terms. In the spirit of Wenger’s (2000) discussion on community of practice 
design, however, the community use model presented in this paper should be seen as an 
attempt to describe what actions software firms can take to recognize, support, encourage 
and nurture customer communities in order to improve their software development through 
community knowledge. 

5 Conclusion 
Triggered by the recognition of customers as less involved in psd (Sawyer 2000), this paper 
sets out to explore the use of online communities for improving customer involvement in 
psd. The paper presents a model for analyzing community use in psd as an undertaking 
between a software firm and its customer community. Our model depicts community 
knowledge use as an iterative cycle consisting of three interrelated processes: knowledge 
building, knowledge elicitation, and knowledge exploitation. Also, it illuminates the relative 
location of these processes, pinpointing the interplay between the commercial endeavor of 
packaged software development and voluntary community participation.  
 

Our analysis of the Daydream case highlights that successful completion of community 
knowledge use cycles can be a challenging task. As long as community knowledge is merely 
exploited for software operability concerns, such completion is relatively unproblematic.  
 

Community knowledge use is then a straight forward process consisting of the setting up of a 
web infrastructure for stimulating, monitoring, and implementing customer suggestions. 
Community use in psd is also useful for minor functionality additions. For such software 
improvement, cycle completion is more complex though, requiring organizational efforts 
for deepening the relationship with customers.  
 

However, our study also demonstrates limitations associated with community use in psd. 
These limitations are particularly true in relation to major software changes. While 
community members may be encouraged to devote time and effort to software 
improvement, they are likely to be disregarded when commercial interests are contradicted. 
In such cases, the omission to exploit community knowledge leaves the community 
knowledge use cycle uncompleted. Thus, while the processes of knowledge building and 
elicitation reflect altruistic ideals and mutual engagement grounded in a common interest, 
the process of knowledge exploitation is located within the realm of the software firm. 
Steered by commercial ideals, this makes vibrant community input subject to firm 



 
184 

prioritization, typically with the result of being neglected. This tension in motivational 
structures is at the heart of community use in psd.  
 

Looking back at our study, the community knowledge use model is developed within a 
computer game setting. Due to the extraordinary motivation found in such communities, 
this limits our ability to generalize the model to other contexts. As in all interpretive case 
studies, our findings should be seen as tendencies rather than predictions (Walsham 1995). 
However, we do believe that the model and hence, the opportunity for community 
knowledge use, is applicable to settings in which the software concerned triggers customer 
motivation and engagement equivalent to that found in computer gaming. Since “theory may 
never be scientifically generalized to a setting where it has not yet been empirically tested and 
confirmed” (Lee and Baskerville 2003, p. 240), further research is however needed to validate 
and refine the model for new research settings.  

References 
Abts, C. (2002). cots-Based Systems (cbs) Functional Density — A Heuristic for Better cbs 

Design. In Proceedings of cots-Based Software Systems, iccbss 2002, Orlando, usa, 
February 4-6. 

Andreu, R., and Ciborra, C. (1996). Organizational learning and core capabilities 
development: the role of it. Journal of Strategic Information Systems (5), pp. 111-127. 

Boland, R.J., and Tenkasi, R.V. (1995). Perspective Making and Perspective Taking in 
Communities of Knowing. Organization Science, vol. 6(4), pp. 350-372. 

Brown, J, and Duguid, P. (2001). Knowledge and Organization: A Social—Practice 
Perspective. Organization Science (12:2), pp. 198-213. 

Carmel, E. (1997). American Hegemony in Packaged Software Trade and the « Culture of 
Software ». The Information Society, (13), pp. 125-142. 

Carmel, E., and Sawyer, S. (1998). Packaged software development teams: what makes 
them different? Information Technology and People, (11:1), pp. 7-19. 

Clegg, C.W., Waterson, P.E., and Axtell, C.M. (1996). Software development: 
knowledge-intensive work organizations. Behaviour & Information Technology, (15:4), 
pp. 237-249. 

Finch, B.J. (1999). Internet discussions as a source for consumer product customer 
involvement and quality information: an exploratory study. Journal of Operations 
Management, (17), pp. 535-556. 

Greenbaum, J., and Kyng, M. (eds.) (1991). Design at Work: Cooperative Design of Computer 
Systems. Erlbaum, Hillsdale, N.J. 

Grudin, J. (1991). Interactive systems: Bridging the gaps between developers and users. ieee 
Computer (24:4), pp. 59-69. 



 
185 

Hagel, J., and Armstrong, A. (1997). Net Gain — expanding markets through virtual 
communities. Harvard Business School Press, Boston, ma. 

Hamel, G., and Prahalad, C.K. (1994). Competing for the future. Harvard Business School 
Publishing: New York, uk. 

Henfridsson, O., and Holmström, H. (2002). Developing e-commerce in Internetworked 
Organizations — A case of customer involvement throughout the computer gaming 
value chain. data base (33:4), pp. 38-50. 

Holmström, H. (2001). Virtual Communities as Platforms for Product Development — an 
interpretive case study of Customer Involvement in Online Game Development. In 
Proceedings of icis (22nd International Conference on Information Systems), December 
16-19, New Orleans, la, usa. 

Holmström, H., and Fitzgerald, B. (forthcoming). Using Virtual Communities for Software 
Maintenance. Accepted for publication in the Journal of Organizational Computing and 
Electronic Commerce — Special Issue on Collaborative Internet Applications. 

Holmström, H., and Henfridsson, O. (2002). Customer Role Ambiguity in Community 
Management. In Proceedings of hicss 35 (35th Hawaii International Conference on 
System Sciences), January 7-10, Big Island, Hawaii. 

Humphrey, W.S. (1989). Managing the Software Process, Addison-Wesley, Reading, ma. 

Keil, M., and Carmel, E. (1995). Customer—Developer Links in Software Development. 
Communications of the acm, (38:5). 

Kim, A.J. (2000). Community Building on the Web. Peachpit Press: Berkeley, ca. 

Klein, H. K., and Myers, M.D. (1999). A Set of Principles for Conducting and Evaluating 
Interpretive Field Studies in Information Systems. mis Quarterly (23:1), pp. 67-93. 

Lee, A.S., and Baskerville, R.L. (2003). Generalizing Generalizability in Information 
Systems Research. Information Systems Research (14:3), pp. 221-243. 

Lee, G.K., and Cole, R.E. (2003). From a Firm-Based to a Community-Based Model of 
Knowledge-Creation: The Case of the Linux Kernel Development. Organization 
Science (14:6), pp. 633-649. 

Little, T. (2004). Value Creation and Capture: A Model of the Software Development 
Process. ieee Software (May/June), pp. 48-53. 

Ljungberg, J. (2000). Open Source Movements as a Model for Organizing. European Journal 
of Information Systems (9:3), pp. 208-216. 

Mathiassen, L., Pries-Heje, J., and Ngwenyama, O. (2002). Improving Software Organizations: 
From Principles to Practice, Addison-Wesley, Boston. 

Nambisan, S. (2002). Designing virtual customer environments for new product 
development: toward a theory. Academy of Management Review. (27:3), pp. 392-413. 



 
186 

Nandhakumar, J., and Jones, M. (1997). Too close for comfort? Distance and angagement in 
interpretive information systems research. Information Systems Journal (7), pp. 109-131. 

Orlikowski, W.J. (2002). Knowing in Practice: Enacting a Collective Capability in 
Distributed Organizing. Organization Science (13:3), pp. 249-273. 

Orlikowski, W.J., and Baroudi, J.J. (1991). Studying information technology in 
organizations: Research approaches and assumptions. Information Systems Research (2:1), 
pp. 1-28. 

Prahalad, C.K., and Hamel, G. (1990). The Core Competency of a Corporation. Harvard 
Business Review (68:3), pp. 79-91. 

Sawyer, S. (2000). Packaged software: implications of the differences from custom 
approaches to software development. European Journal of Information Systems (9), pp. 
47-58.  

Schwen, T.M., and Hara, N. (2003). Community of Practice: A Metaphor for Online 
Design? Information Society (19), pp. 257-270. 

Von Hippel, E. (1986). Lead Users: A Source of Novel Product Concepts. Management 
Science, (32:7), pp. 791-805. 

Walsham, G. (1995). Interpretive case studies in is research: nature and method. European 
Journal of Information Systems, (4:2), pp. 74-81. 

Weick, K.E. (1979). The Social Psychology of Organizing, McGraw-Hill, New York. 

Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity. Cambridge: 
Cambridge University Press. 

Wenger, E. (2000). Communities of Practice and Social Learning Systems. Organization 
(7:2), pp. 225-246. 

Zachary, G. (1994). Showstopper: The Breakneck Race to Create Windows nt and the Next 
Generation at Microsoft. The Free Press, New York. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 2400
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 2400
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [4000 4000]
  /PageSize [595.000 842.000]
>> setpagedevice


