Dendritic Cell Maturation and Death during Salmonella infection

Role of pro-inflammatory cytokines and MyD88

AKADEMISK AVHANDLING

som för avläggning av medicine doktorsexamen vid Sahlgrenska akademien vid Göteborgs universitet kommer att offentligen försvaras i hörsal Gösta Sandels, Medicinaregatan 11, Göteborgs Universitet

fredagen den 25 januari 2008 kl 09.00

av Malin Sundquist

Fakultetsopponent: M.D. Brian Kelsall, National Institutes of Health, Bethesda, USA

The thesis is based on the following papers:

- I. <u>Malin Sundquist</u> and Mary Jo Wick. TNF-α-dependent and -independent maturation of dendritic cells and recruited CD11c^{int}CD11b⁺ cells during oral *Salmonella* infection. *J. Immunol.* 175:3287-98 (2005).
- II. Miguel A. Tam*, <u>Malin Sundquist</u>* and Mary Jo Wick. MyD88 and IFN-αβ differentially control maturation of bystander but not *Salmonella*-associated dendritic cells or CD11c^{int}CD11b⁺ cells during infection. *Submitted manuscript.* *Authors contributed equally.
- III. <u>Malin Sundquist</u> and Mary Jo Wick. *Salmonella* induces apoptosis of CD8α⁺ dendritic cells in the draining lymph node via MyD88-dependent production of TNF. *Manuscript*.

Dendritic Cell Maturation and Death during *Salmonella* infection Role of pro-inflammatory cytokines and MyD88

Malin Sundquist

Department of Microbiology and Immunology, Göteborg University, Sweden

Abstract

The costimulatory molecules CD80 and CD86 are required for the ability of dendritic cells (DC) to induce both tolerance and immunity. This thesis investigates the control of CD80/CD86 upregulation in vivo on DC during *Salmonella* infection.

After oral *Salmonella* infection, DC in Peyer's patches (PP), mesenteric lymph nodes (MLN) and spleen upregulated costimulatory molecules almost simultaneously despite differential seeding of these organs with bacteria. Costimulatory molecules were also induced on TNF/iNOS-producing CD11c^{int}CD11b⁺ DC that accumulated in infected organs. The CD11c^{int}CD11b⁺ DC were efficient at bacterial uptake but, in contrast to conventional DC, failed to process and present *Salmonella* Ag on MHC-II.

Using different gene-deficient mice, the pathways controlling CD80/86 upregulation on DC during *Salmonella* infection were dissected. Upregulation of CD80 was strictly dependent on the Toll-like receptor adaptor MyD88, whereas upregulation of CD86 was mediated by both MyD88-dependent and -independent factors. The proinflammatory cytokine TNF was identified as one MyD88-dependent factor required for optimal upregulation of CD80/86 in the MLN. In the absence of MyD88, upregulation of CD86 was mediated by type I interferons. However, the contribution of type I interferons to CD86 upregulation in wild type mice is only marginal, since mice lacking the type I interferon receptor (IFN- $\alpha\beta R$) showed no major defects in CD80/86 upregulation. Despite the abrogated upregulation of CD80/86 on DC of TNFR1^{-/-}, MyD88^{-/-} or MyD88^{-/-}IFN- $\alpha\beta R^{-/-}$ mice, DC directly associated with bacteria upregulated costimulatory molecules independently of these factors.

Pro-inflammatory signaling not only upregulated costimulatory molecules on DC during *Salmonella* infection, but also mediated DC death. Thus, MyD88-dependent production of TNF induced DC death in *Salmonella*-infected mice. $CD8\alpha^+$ DC were most susceptible to infection-induced cell death as assessed directly ex vivo by Annexin-V and 7AAD staining, whereas recruited CD11c^{int}CD11b⁺ DC were completely resistant.

Thus, the inflammatory environment imprints a distinct pattern of costimulatory molecules on DC, with MyD88-dependent factors controlling the upregulation of CD80. However, MyD88-dependent factors also induce DC death during *Salmonella* infection, which is likely to have a negative impact on anti-bacterial immunity.

Keywords: Dendritic cells, costimulatory molecules, bacterial infection, proinflammatory cytokines, Toll-like receptors, Ag presentation, cell death

ISBN-978-91-628-7362-2

Göteborg 2008