
Research Report 2007:9 
ISSN 0349-8034 

 
Mailing address: Fax Phone  Home Page: 
Statistical Research 
Unit 

Nat: 031-786 12 74 Nat: 031-786 00 00 http://www.statistics.gu.se/  

P.O. Box 640 Int: +46 31 786 12 74 Int: +46 31 786 00 00  
SE 405 30 Göteborg    
Sweden    
 

 

Research Report 
Statistical Research Unit 
Department of Economics 
Göteborg University 
Sweden 
 

  

 Evaluations of likelihood based 
surveillance of volatility 

 David Bock 

 



 1

EVALUATIONS OF LIKELIHOOD BASED SURVEILLANCE OF 
VOLATILITY 

By David Bock 

Statistical Research Unit, Göteborg University 
 

ABSTRACT 

The volatility of asset returns are important in finance. Different likelihood based 
methods of statistical surveillance for detecting a change in the variance are evaluated. 
The differences are how the partial likelihood ratios are weighted. The full likelihood 
ratio, Shiryaev-Roberts, Shewhart and the CUSUM methods are derived in case of an 
independent and identically distributed Gaussian process. The behavior of the 
methods is studied both when there is no change and when the change occurs at 
different time points. The false alarms are controlled by the median run length. 
Differences and limiting equalities of the methods are shown. The performances when 
the process parameters for which the methods are optimized for differ from the true 
values of the parameters are evaluated. The methods are illustrated on a period of 
Standard and Poor’s 500 stock market index.     
 
Key Words:  surveillance; statistical process control; monitoring; likelihood ratio; 
Shewhart; CUSUM. 
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1 INTRODUCTION 

Timely detection of an important change in stochastic processes is important in many 
areas. In finance, detecting changes in assets prices or returns are important for 
investment decisions and Shiryaev (2002) demonstrated that change-points might 
induce arbitrage opportunities. The surveillance of business cycles, treated in the 
special issue (no. 3/4 1993) of Journal of Forecasting, Andersson et al. (2004), 
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Andersson et al. (2005) and Andersson et al. (2006) is another important application. 
In quality control (Wetherhill and Brown (1991)), we may aim at timely detecting 
contaminated products in a manufacturing process. In medicine it is important to 
detect e.g. intrauterine growth retardation (Petzold et al. (2003)) or an increased 
incidence of a disease (Sonesson and Bock (2003)). Different medical applications are 
described in the special issue (no. 3 1989) of Statistics in Medicine.   

Since timeliness is important, the data should not be analyzed in a retrospective 
setting but in a prospective framework where data are analyzed online and sequential 
decisions are made. In the inference situation of surveillance repeated decisions are 
made, the sample size is increasing and the null hypothesis is never accepted. For 
general reviews on statistical surveillance, see Frisén and de Maré (1991), Yashchin 
(1993), Srivastava and Wu (1993), Lai (1995), Frisén and Wessman (1999) and Frisén 
(2003). 

Many methods for surveillance are in one way or another based on likelihood 
ratios. Likelihood ratio based methods are known to possess several optimality 
properties and the different methods are suitable for different situations. The methods 
has mostly been constructed and evaluated in a situation where the aim is to detect a 
change in the level of the process. Increasing attention has however been given to the 
monitoring of the variance (or the standard deviation).    

Detecting changes in the volatility of asset returns are important in e.g. portfolio 
management, see Severin and Schmid (1998), Severin and Schmid (1999), Schipper 
and Schmid (2001a) and Schipper and Schmid (2001b) where several surveillance 
methods were compared with respect to detecting changes in GARCH (generalized 
autoregressive conditional heteroscedasticity) processes, which are used to describe 
volatility in financial markets.  

The aim of this paper is to construct and evaluate likelihood based methods for 
detecting a change in volatility. Assuming a GARCH process might be reasonable in a 
financial setting but since no explicit expression for the univariate marginal 
distribution of a GARCH process is known (Schipper and Schmid (2001b)) 
constructing the required likelihood is not possible. Therefore an independent 
Gaussian process is studied here instead, as in most of the literature. The methods 
studied are the full likelihood ratio (LR), Shiryaev-Roberts (SR), Shewhart and the 
CUSUM methods, presented in section 4. The methods differ in what way the 
different partial likelihood ratios are weighted and they depend on different number of 
process parameters. 

These methods were studied in Frisén and Wessman (1999) and Järpe and 
Wessman (2000) for the same process as here but a change in the level. In case of a 
change in the variance, earlier studies have been made of the Shewhart (see e.g. 
Reynolds and Soumbos (2001)), CUSUM (e.g. Srivastava (1997) and Acosta-Mejia et 
al. (1999)) and SR (Srivastava and Chow (1992)) methods. 

Different variants of the EWMA (exponentially weighted moving averages) 
method suggested by Roberts (1959) are often suggested, see e.g. Crowder and 
Hamilton (1992), MacGregor and Harris (1993), Acosta-Mejía and Pignatiello (2000) 
and Schipper and Schmid (2001b). The EWMA method is not likelihood based and is 
not studied here.  

The performance has often been assessed by the average run length when a change 
happens either immediately or never. The sole use of these two measures has however 
been criticized and a single measure of performance is not always enough but 
evaluations of different properties might be necessary, as pointed out by several 
authors, e.g. Frisén (1992) and Frisén (2003). In Frisén and Wessman (1999) and 
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Järpe and Wessman (2000) the methods were made comparable by having the same 
average run length when there is no change. Here the median run length is used.  

The different parameters can be chosen to make the methods optimal for specific 
situations. Since information on the parameters is rarely known in practice, there is a 
risk of mis-specification. The effect of mis-specifications on the performance of the 
methods is studied. 

As an illustrative example we monitor a period of Standard and Poor’s 500 stock 
market index to investigate whether our procedures could have detected a documented 
change in volatility.  

The plan of this paper is as follows. Notations and specifications are given in 
section 2. Optimality and measures of evaluation are described in section 3. Methods 
are described in section 4. Results from a simulation study are given in section 5 and 
in section 6 the methods are applied in a case study. Concluding remarks are given in 
section 7. 

2 THE CHANGE-POINT PROBLEM 

The process under surveillance, denoted by X is, as in most literature on quality 
control, measured at discrete time points, t=1, 2, ... and assumed to be independent 
Gaussian. Both the situation with subgroups that is samples of more than one 
observation are made at each time and without subgroups that is a single observation 
is made at each time have been treated in the literature. Often the both location and 
dispersion are monitored simultaneously.  

Here we have a single observation at each time and at an unknown time point, 
denoted by τ, there is an increase in the variance; 
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where Δ>1 is the unknown size of the shift. At time t<τ and t≥τ the process is said to 
be in-control and out-of-control, respectively. The aim is to detect the change as soon 
as possible after it has occurred. Only one-sided procedures are considered. In quality 
control the expected value μ and σ2 are often regarded as unknown and the change 
point time τ is an unknown non-random parameter. Here σ2 and μ are considered as 
known and the change point time τ is a discrete-valued random variable with intensity 
parameter  
 

νt = P(τ=t|τ ≥ t). 
 
We treat the case of a constant unknown intensity ν that is τ has a geometric 
distribution with density P(τ=t)=ν·(1-ν)t-1 on t=1, 2, ... as in e.g. Shiryaev (1963) and 
Frisén and Wessman (1999). Without loss of generality we take μ=0. In those 
methods where it is required, the unknown parameters Δ and ν are replaced by values 
d and v, respectively. The values are chosen to be relevant for the problem at hand 
and the methods are optimized for these values.  

At each decision time s=1, 2, …, we want to discriminate between C(s) and D(s) 
where C(s) is the critical event implying that the process is out-of-control and D(s) 
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implies that the process is in-control. The C(s) and D(s) can be specified in various 
ways and different methods are optimal for different specifications. Sometimes it is 
important to see whether there has been a change since the start of the surveillance 
and then C(s)={τ ≤ s} and D(s)={τ > s}.  

An alarm set A(s) is constructed, with the property that as soon as Xs belongs to 
A(s) we infer that C(s) has occurred. Usually the alarm set consists of an alarm 
statistic p(xs) and an alarm limit g(s), where the time of an alarm, tA, is defined as  
 

tA = min{s: p(xs) > g(s)}. 

3 MEASURES OF EVALUATION AND OPTIMALITY CRITERIA 

A desirable property of a method is that it detects a change quickly without having too 
many false alarms. We must however face a trade off between false alarms and the 
ability to detect a change. Likewise traditional hypothesis testing optimality of 
surveillance methods is assessed by the detection ability given a controlled error rate. 
However, as opposed to hypothesis testing is surveillance characterized by repeated 
decisions. Consequently, measures such as the significance level and the power need 
to be generalized to consider the sequential aspect.  

Chu et al. (1996) advocated a controlled the probability of any false alarm during 
an infinitely long surveillance period, ( )Ai

lim P t i | D
→∞

≤ <1. This is convenient since 

ordinary statements of hypothesis testing can be made. It was however pointed out by 
Pollak and Siegmund (1975) and Frisén (1994) that the ability to detect a change 
deteriorates rapidly with the time of the change. Consequences of this were illustrated 
in Bock (2006).   

A commonly used measure to summarize and control the false alarms is by the 
average run length, ARL0=E[tA|D]. Hawkins (1992) and Gan (1993) suggest that the 
control is made by the median run length, MRL0=Median[tA|D] as it has easier 
interpretations for skewed distributions and much shorter computer time for 
calculations. A third measure is the probability of a false alarm, 
PFA=P(tA<τ)=Eτ[P(tA<τ|τ=t)], which can be though of as a characteristic for 
surveillance corresponding to the level of significance for hypothesis testing (Järpe 
and Wessman (2000)).  

The timeliness of motivated alarms can be reflected by the average run length 
given an immediate change, ARL1=E[tA| τ=1]. This is the most commonly used 
measure but it is relevant to consider other change point times as well, as will be 
discussed later. The ability to detect a change within m time units from τ is reflected 
by the probability of successful detection, PSD(m, t)=P(tA-τ ≤ m⏐tA ≥ τ, τ=t), m=0, 1, 
…. It was suggested by Frisén (1992) and is an important measure if there is limited 
time available for rescuing action, e.g. in the surveillance of the fetal heart rate during 
labor or intrauterine growth retardation. Another measure is the conditional expected 
delay CED(t)=E[tA-τ|tA ≥ τ, τ=t]. The delay is summarizing with respect to the 
distribution of τ by ED=Eτ[ED(τ)] where ED(t)=CED(t)·P(tA≥ τ). An important aspect 
when evaluating a method is the trust you should have in an alarm at a specific time. 
The predictive value of an alarm at time t, PV(t)=P(τ ≤ t|tA=t), suggested by Frisén 
(1992) reflects the trust of an alarm. 
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The most commonly used optimality criteria is minimal ARL1 for a fixed ARL0. In 
the literature on control charts for the variance, this criterion has been used with only 
one exception (Hawkins and Zamba (2005)). This criterion might be suitable in an 
industrial manufacturing process where one considers various start-up problems. An 
advantage is that the criterion does not require an assumption regarding the 
distribution of τ but Frisén (2003) and Frisén and Sonesson (2003) has questioned it 
as a formal criterion.  

In the utility function suggested by Shiryaev (1963) the gain of an alarm is a linear 
function of the expected delay. The loss of a false alarm is an arbitrary function of the 
same difference. The criterion of maximization of the expected utility, where the 
expectation is taken with respect to τ, is often referred to as the ED criterion (see e.g. 
Frisén (2003)), since the expected delay is to be minimized. Bock et al. (2006) 
demonstrated that for certain assumptions regarding the price on assets, fulfilling of 
the ED criterion is equivalent to maximizing the expected return.  

When the worst possible case is important, the minimax criteria of Moustakides 
(1986) can be used. The criterion is minimal CED given the worst possible value of τ 
and the worst possible outcome of Xτ-1, given a fixed ARL0. As only the worst 
possible value of CED is used, a distribution of τ is not required. 

4 METHODS FOR SURVEILLANCE  

4.1 Suggested statistics under surveillance  

For the situation specified in section 2 (X(t)-µ)2, t=1, 2, …, s  are sufficient for the 
problem as will be seen in the next section. Often a transformation of the estimated 
variance at each time is used in the alarm statistic. Different transformations have 
different motivations. Often the transformation is made such that the variable under 
surveillance is (approximately) Gaussian and standard charts for Gaussian variables 
therefore can be used. Examples such of transformations are the logarithm of the 
subgroup standard deviation (Crowder and Hamilton (1992)) and |X(t)/σ2|1/2 (Hawkins 
(1981)).  

In the presence of a nuisance parameter using a pivot statistic is often advocated. 
The sub group range or a moving range or consecutive differences when there are no 
subgroups have been suggested when µ is unknown as these statistics are robust to 
changes in µ, see e.g. Page (1963), Rigdon et al. (1994), Acosta-Mejia (1998) and 
Acosta-Mejía and Pignatiello (2000). For, on the other hand, simultaneous 
surveillance of µ and the variance by a single statistic, see Domangue and Patch 
(1991), Chen et al. (2004) and Costa and Rahim (2004). 

In Ncube and Li (1999) the values of the EWMA statistic are discretized by a score 
that is assigned different values depending on the process is within different intervals. 
The alarm statistic is formed by the cumulative score. This could be motivated from a 
robustness perspective but implies a suboptimal procedure as a direct loss of 
information owing to the discretization of the data, as pointed out by Sonesson and 
Bock (2003).  

4.2 Likelihood based methods 
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The methods differ with respect to in what way the partial likelihood ratios  
 

L(s, t)=fXs(xs|τ=t)/fXs(xs|D), t=1, …, s, 
 
for a change at τ=t, are weighted. The methods depend on different parameters which 
can be chosen to make them optimal for specific situations such as one with an 
intensity v and shift size d.  

The method based on the full likelihood ratio, the LR method, has the alarm 
statistic  

 
p(xs)= Xs s Xs sf (x |C(s)) f (x |D(s)) = s

t=1
w(t) L(s, t)⋅∑  

 
where w(t)=P(τ=t)/P(τ ≤ s) is the weight for L(s, t). It was shown by Frisén and de 
Maré (1991) that the alarm rule of the LR method can be expressed in terms of the 
posterior probability P(C(s)|xs) and a positive constant limit gPP. This is equivalent to 
the LR method with the limit gLR(s)=gPP/(1-gPP)·P(D(s))/P(C(s))=gPP/(1-gPP)·P(τ > 
s)/P(τ ≤ s). The LR method depends on the specified v and d, for which the method is 
optimized. For a geometric distribution the method is ED optimal for a process with 
the parameter values used. 

A likelihood ratio method based on a small intensity (ν→0) is the SR method 
(Shiryaev (1963) and Roberts (1966)) which can be used when the distribution of τ is 
unknown. From a Bayesian point of view this method can be seen as based on a non-
informative generalized prior for τ since the weights w(t) tends to a constant. Also the 
alarm limit g(s) tend to a constant. The SR method depends only on d and can be used 
as an approximation to the LR method. Frisén and Wessman (1999) showed that the 
approximation works well, even for as large intensities as v=0.20. 

The CUSUM method of Page (1954) uses p(xs)= { }
1  t  s
max L(s, t)
≤ ≤

 where g(s) is a 

constant g. It depends on d and satisfies the minimax criterion described in the 
previous section. The Shewhart method uses p(xs)=L(s, s) and a constant limit, i.e. an 
alarm is given as soon as the last observations exceeds the limit. It has no dependency 
on v and d. The Shewhart method is ED optimal when C(s)={τ=s} and D(s)={τ > s} 
because then the alarm statistic of the LR method reduces to L(s, s).  

 For the situation specified in section 2 where µ=0 the partial likelihood ratios are 
 

L(s, t)= ( )( ) ( ){ }s- s- t-1 2 2 2
i=t

d exp δ d, σ x (i)⋅ ⋅∑ , t=1, …, s 

 
where δ(d, σ2)=(2·σ2)-1·(1-d-1). The alarm statistic of the LR method can then be 
expressed as  

 
p(xs)= ( )( ) ( ) ( ) ( ){ }-1 s st-1 2s 2 2 2

t=1 i=t
d P τ s P τ t d exp δ d, σ x (i)⋅ ≤ ⋅ = ⋅ ⋅ ⋅∑ ∑ , 

 
which can be written recursively as 
p(xs)= ( ) ( )( )( ) ( ){ } ( ) ( ) ( ){ }{ }1/2 2 2

s-1P τ s-1 d P τ s exp δ d, σ x (s) p x P τ s P τ s-1≤ ⋅ ≤ ⋅ ⋅ ⋅ + = ≤ ,  

s=2, 3, …, p(x1)= ( ){ }1 2 2 2d exp δ d, σ x (1)− ⋅ ⋅ . The SR method has the alarm statistic 
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p(xs)= ( ) ( ){ }s st-1 2-s 2 2 2
t=1 i=t

d d exp δ d, σ x (i)⋅ ⋅ ⋅∑ ∑ , 

 
which can be written recursively as p(xs)= ( ){ } ( ){ }{ }-1 2 2 2

s-1d exp δ d, σ x (s) p x 1⋅ ⋅ ⋅ + , 

s=2, 3, …, p(x1)= ( ){ }1 2 2 2d exp δ d, σ x (1)− ⋅ ⋅ . The alarm statistic of the CUSUM 

method can be written recursively as 
 

p(xs)= ( ){ }2
s-1max 0, p x x (s)-k+  
 

where p(x0)=0 and k=(2·δ(d, σ2))-1·lnd. It can be shown that σ2≤ k ≤ d·σ2. The alarm 
rule of the Shewhart method can be written as  

 
p(xs)=x2(s)/σ2> g. 

4.3 Limiting equalities 

It was proven by Frisén and Wessman (1999) that when the size of the change in the 
mean for which the methods are optimized for tends to infinity the stopping rules of 
LR, SR and CUSUM tends to the stopping rule of the Shewhart method. Below we 
prove the same behavior for a change in the variance.  

 
Theorem 1: The stopping rule of the LR method tends to that of the Shewhart 

method when d tends to infinity. 
 
Proof:  

p(xs)> gLR(s) ⇔ ( )( ) ( ) ( ) ( ){ }-1 s st-1 2s 2 2 2
t=1 i=t

d P τ s P τ t d exp δ d, σ x (i)⋅ ≤ ⋅ = ⋅ ⋅ ⋅∑ ∑ > 

gPP/(1-gPP)·P(τ >s)/P(τ≤s)⇔  

( ) ( ) ( ){ } ( )s st-1 2 2 2 s 2
PP PPt=1 i=t

P τ t d exp δ d, σ x (i) g /(1-g ) d P(τ >s) = ⋅ ⋅ ⋅ > ⋅ ⋅∑ ∑ ⇔  

( ){ } ( ) ( ) ( ){ } ( ) ( )s-1 s-1t-1 2 s-1 22 2 2 2
t=1 i=t

exp δ d, σ x (s) P τ t d exp δ d, σ x (i) P τ s d⎡ ⎤⋅ ⋅ = ⋅ ⋅ ⋅ + = ⋅⎢ ⎥⎣ ⎦∑ ∑  

( ) s 2
PP PPg /(1-g ) d P(τ >s) > ⋅ ⋅ ⇔ ( ){ }2 2exp δ d, σ x (s)⋅ >

( ) ( ) ( ){ } ( ) ( )

s 2
PP

s-1 s-1t-1 2 s-1 22 2
PP t=1 i=t

g d P(τ >s)

(1-g ) P τ t d exp δ d, σ x (i) P τ s d

⋅ ⋅

⋅ = ⋅ ⋅ ⋅ + = ⋅∑ ∑
⇔

( ){ }2 2exp δ d, σ x (s)  ⋅ >

( ) ( ) ( ){ } ( )
PP

s-1 s-1(s-t 1) 1s-t+1 2 2 2 -1 2
PP t=1 i=t

g

(1-g ) v 1 v d exp δ d, σ x (i) 1 v d− + −−⋅ ⋅ − ⋅ ⋅ ⋅ + − ⋅∑ ∑
⇔  

( ) ( )
2 PP

2 2

ln g 1x (s)
δ d, σ δ d, σ

> − ×  

( ) ( ) ( ){ }( ) ( ){ }s-1 s-1-(s-t 1) -1- s-t+1 2 2 2 -1 2
PP t=1 i=t

ln (1-g ) v 1 v d exp δ d, σ x (i) 1 v d+⋅ ⋅ − ⋅ ⋅ ⋅ + − ⋅∑ ∑  
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⇔
( ) ( ) ( ) ( ){ }12 -1 -1 2PP

PP2 2

ln g 1x (s) - ln (1-g ) v d 1 v d
δ d, σ δ d, σ

−> ⋅ ⋅ ⋅Ο + − ⋅ .  

 
The dependency on s of the right hand side of the last expression disappears when d 
tends to infinity such that the stopping rule tends to the one of the Shewhart method.  
 

Theorem 2: The stopping rule of the SR method tends to that of the Shewhart 
method when d tends to infinity. 

 
Proof: In analogy with the proof of Theorem 1.  
 
Theorem 3: The stopping rule of the CUSUM method tends to that of the 

Shewhart method when d tends to infinity. 
 
Proof: d→∞⇒ k=(2·δ(d, σ2))-1·lnd→∞⇒ P( ( ){ }2

s-1max 0, p x x (s)-k+ >g)→ 

P(x2(s)-k>g)=P(x2(s)>g+k) since ( )( )s-1k
lim P p x 0 0
→∞

> = . 

5 A MONTE CARLO STUDY 

In this section, we study the properties of the methods. To make the methods 
comparable the alarm limits are adjusted to yield the same level of MRL0. Which 
level of MRL0 that should be chosen and what size of the scale change to be studied 
depends on the application.  

A low value of MRL0 can be interpreted as a situation where observations are 
made seldom and a high value with more frequent observations. This can be 
interpreted as differences in time scale. How distinct the differences between the 
methods are depends on the scale, as pointed out by Frisén and Wessman (1999). For 
example, if observations are made frequent, e.g. each day (a large value of MRL0) 
then there is a larger information loss of only using the last observation (Shewhart 
method) compared to less frequent observations, e.g. each week (a small value of 
MRL0). Comparisons with different values of MRL0 are not made here. The alarm 
limits are set here such that MRL0=60 which reflects roughly three months of daily 
data in the financial markets.  

The in-control and out-of-control variance is set to 1 and 2, respectively, i.e. σ2=1 
and ∆=2 in section 2, as in e.g. MacGregor and Harris (1993) and Acosta-Mejia et al. 
(1999). The size of the change for which the methods are optimized for, d, is set to 
1.5, 2 and 2.5. For d=2 the variance is correctly specified whereas for d equals to 1.5 

and 2.5 the variance is under- and over specified by 50%, respectively. The value of 
the intensity for which the LR method is optimized for, v, is set to 0.10 and 0.20. To 
distinguish between the same methods with different values of v and d, the values will 
be given as arguments, e.g. LR(v; d). 
For the Shewhart method analytical calculations were made. For the other methods 
simulations of 107 replicates were made. The limits were set such that the largest 
deviation between the values of P(tA≤60|D) and the intended values of 0.50 were 
smaller than 0.1%.   
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5.1 In-control properties 

Having equal MRL0 do not mean that the in-control run length densities are identical 
but they can have different shapes. The most common way to control the false alarms 
is by the ARL0. MRL0=60 corresponds to values of ARL0 between 60 and 87 for the 
methods. The great variation in ARL0 is due to the great differences in skewness seen 
in the in-control run length densities shown in Figure 1. LR(0.2) yield the smallest 
values of ARL0 for all values of d and Shewhart the largest and these two methods 
have densities that are most symmetric and skewed, respectively. Shewhart and 
CUSUM have similar ARL0. As implied by the theorems, the larger the d the more 
similar are the densities to the one of the Shewhart method. A method designed to 
detect a large change quickly should allocate nearly all weight to the single last 
observation, as pointed out by Frisén and Wessman (1999). When the methods are 
optimized for detecting a small change in the variance, many observations are 
required to have enough evidence for a change and the densities are consequently less 
skewed compared to when d is large. 
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Figure 1. The density of the time of alarm, P(tA=t|D). Shewhart(○), CUSUM( ), 
SR( ), LR(0.1)(× ), LR(0.2)(- - - -).   
 

It seem surprising that LR(0.2) is less skewed compared to LR(0.1) and SR since a 
large intensity should intuitively yield a large probability of early alarms. This was 
also noted by Frisén and Wessman (1999) who explained it by the way the false 
alarms are controlled. For a low intensity the right-hand tail of the run length 
distribution is thick. As ARL0 was fixed, the only possibility was a high alarm 
probability at early times. When MRL0 is fixed the time points of the alarms have less 
effect but many alarm times larger than 60 must still be compensated by high alarm 
probabilities early. 

The probability of a false alarm, PFA, is another measure used to control the false 
alarms. It summarizes the false alarm distribution by weights with the distribution of 
τ. It is shown as a function of ν in Figure 2.   
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Figure 2. The probability of a false alarm, PFA. Shewhart(○), CUSUM( ),  
SR( ), LR(0.1)(× ), LR(0.2)( - - - -).   

 
The differences in PFA are due to both the differences in shape of P(tA<τ|D) and 

the location. As a result of the shape of the geometric distribution early alarms have a 
great influence on PFA. The large PFA for the Shewhart method is a result of the 
many early false alarms seen in Figure 1. Due to the opposite behaviour of the error 
spending of LR(0.2) it has the smallest PFA. Like an equal MRL0 does apparently not 
imply equal PFA and vice versa, Frisén and Wessman (1999) and Frisén and 
Sonesson (2003) demonstrated the same difference between ARL0 and PFA. 
Consequently, comparisons between methods depend on which measure that is 
controlled.  

5.2 Out-of-control properties 

As was mentioned in section 3 the out-of-control behaviour is in often summarized by  
the ARL1. In  
Figure 3 the ARL1 is shown as a function of d.  The convergence to the ARL1 of the  
Shewhart method is evident. 
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Figure 3. ARL1 as function of d. ∆=2. Shewhart(○), CUSUM( ), SR( ),  
LR(0.1)( × ), LR(0.2)(- - - -).  
 
The conditional expected delay, CED, is shown in Figure 4 for different values of τ. 
For τ=1, CED=ARL1-1. The CED clearly depends on τ for several methods, which is 
not revealed by the ARL1. The worst value of CED is at t=1 for the CUSUM method 



 11

and CUSUM has the smallest CED(1) among the methods. Though ARL0 is not 
controlled here this illustrates the minimax optimality of the CUSUM method.  
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Figure 4. Conditional expected delay, CED(τ). Shewhart(○), CUSUM( ), 
SR( ), LR(0.1)( × ), LR(0.2)(- - - -).   
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Figure 5. Probability of successful detection, PSD(m, τ), with m=1. Shewhart(○), 
CUSUM( ), SR( ), LR(0.1)(× ), LR(0.2)(- - - -).   
 

CUSUM is better in terms of CED but worse in terms of PSD with m=1 (Figure 5) 
compared to Shewhart.  The reason for this is that P(tA=t⏐tA ≥ τ, τ=t) that is PSD with 
m=0, is higher for Shewhart compared to CUSUM which favors PSD with m=1. The 
high P(tA=t⏐tA ≥ τ, τ=t) of the Shewhart method is due to it´s optimality for 
C(s)={τ=s} and D(s)={τ > s} (see section 4.2). The error spending behavior of the LR 
methods explained in section 5.1 influences the detection ability such that the methods 
have a large CED and a small PSD for early changes and the opposite for late τ. 

5.3 The trust of alarms 

The predictive value at time t, PV(t), reflects the trust you should have in an alarm. 
The predictive value at time point t is 
 

P(τ ≤ t|tA=t)=PMA(t)/(PMA(t)+PFA(t)) 
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where PFA(t)=P(tA=t|t < τ)·P(τ > t) and PMA(t)= ( ) ( )t
Ai=1

P τ i P t t|τ i= ⋅ = =∑  are 
probabilities of a false and a motivated alarm at time t, respectively. The PV is shown 
as a function of the time of the alarm in Figure 6 and 7.  
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Figure 6. Predictive value, PV, with ν=0.10. Shewhart(○), CUSUM( ), 
SR( ), LR(0.1)( × ), LR(0.2)(- - - -). 
 

 

d=1.5

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25
t

PV(t)

d=Δ=2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25
t

PV(t)

d=2.5

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25
t

PV(t)

 
Figure 7. Predictive value, PV, with ν=0.20. Shewhart(○), CUSUM( ), 
SR( ), LR(0.1)( × ), LR(0.2)(- - - -).  
 

Shewhart and CUSUM have high detection ability for early changes as seen in 
Figure 3, 4, and 5, but at the same time a high false alarm probability (Figure 1). The 
result is a low predictive value of early alarms, i.e. these are not very trustworthy. The 
results get better for a large value of ν. The PV of SR and LR appear to be fairly 
robust to mis-specifications of ∆. For these methods PV is stable over time, which 
might be a desirable property as it simplifies matters if the same action can be used 
regardless of whenever an alarm occurs.       
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6 ILLUSTRATIVE EXAMPLE 

The use of the methods is here illustrated by a simple example. The methods are 
monitoring the returns, denoted by r, of the stock market index Standard and Poor’s 
500 (S&P500).  

Andreou and Ghysels (2002) applied a number of tests for homogeneity in the 
variance of the returns of S&P500 for the period 4 January 1989-19 October 2001 
(3229 observations). The tests were made retrospectively that is a historical data set of 
given length were analyzed. Both tests for a single change point and for multiple 
change points were applied. For the latter the number of breaks was determined by the 
test of Kokoszka and Leipus (2000) applied to the squared returns and a sequential 
segmentation approach.  It was concluded that changes in the volatility occurred at 31 
December 1991, 18 December 1995 and 26 March 1997. Whether the second change 
in 18 December 1995 could have been detected online is investigated below.  

The period of monitoring is 9 October 1995–25 March 1997 that is 370 
observations and τ=50. Financial returns are known to be conditionally 
heteroscedastic. We try to explain the heteroscedasticity by an in-control model and 
monitor the residuals. An in-control model is estimated by a historical set of data 31 
December 1991 – 6 October 1995 (954 observations). The returns of the historical 
period and the monitoring period are shown in Figure 8.  
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Figure 8. Daily returns of S&P500. The start of the monitoring period is marked with 
a solid vertical line. The time of the change τ is marked with a dashed vertical line. 
Left: 31 December 1991 –25 March 1997. Right: 9 October 1995 – 25 March 1997. 
 

A common way of characterizing the heteroscedasticity is by ARCH processes. 
The portmanteau Q-test of the squared residuals (McLeod and Li (1983)) and the 
Lagrange multiplier test by Engle (1982) for ARCH disturbances are applied to the 
returns of the historical period. The tests can be used to identify the order of an ARCH 
process. The p-values at different lags are shown in Table 1 and these indicate that 
there are high order ARCH effects which could be described by a first order Gaussian 
GARCH process, GARCH(1, 1); r(t)=μ(t)+ε(t)·h(t)1/2 where h(t)=ω+α1·(r(t-1)-μ(t-
1))2+β1·h(t-1), ω>0, α1>0, β1≥0, α1+β1<1 and ε~iid N(0, 1). We estimate the 
parameters of the Gaussian GARCH(1, 1) model with μ(t)=μ (a constant) using the 
historical data set. The parameter estimates are given in Table 1. It should be pointed 
out that a proper modeling strategy requires a much more thorough analysis than this. 
But for illustration the model is used as a rough approximation. 
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The statistic under surveillance is the squares of the standardized residuals 
X(t)=(r(t)- μ̂ )/ 1/2ĥ(t)  where ĥ(t)  is the estimated conditional variance.  

Since Δ is unknown the values of d, for which the methods are optimized for, used 
in section 5 are used also here. The alarm limits used earlier are used also here. The 
alarm times are given in Table 1.      

 
P-values of the portmanteau Q-test and the Lagrange multiplier test at different lags. 
Lag 1 2 3 4 5 6 7 8 
Q-test 0.442 0.670 0.233 0.087 0.044 0.025 0.036 0.054 
LM-test 0.440 0.671 0.237 0.099 0.058 0.041 0.049 0.077 
Parameter estimates of the GARCH(1, 1) model. Standard errors within brackets. 
μ ω α1 β1 
0.000452 
(0.000183) 

1.6561E-6 
(7.8792E-7) 

0.0356 
 (0.0125) 

0.9134 
(0.0327) 

Alarm times (τ=50). 
LR(1.5; 0.1) LR(2; 0.1) LR(2.5; 0.1) 
51 50 50 
LR(1.5; 0.2) LR(2; 0.2) LR(2.5; 0.2) 
55 51 50 
SR(1.5) SR(2) SR(2.5) 
50 50 50 
CUSUM(1.5) CUSUM(2) CUSUM(2.5) 
51 50 50 
Shewhart 
50 
Table 1. Results from the modeling strategy and the alarm times of the methods. 
 
All the methods give alarms at τ or immediately after. The variances of X before and 
after τ as estimated by ( )( ) ( )n 22

t=1
σ̂ = 1 n-1 x(t)-x⋅∑  yields a shift of the size 

Δ̂=1.495. At τ there is a highly negative return (see Figure 8, right) influencing the 
alarm statistics. For the model used in the simulations P(tA=τ|τ=50) varies between 
0.035 and 0.057 for the methods and the outcome in Table 1 is hence rather extreme. 
The residuals thus appear to deviate from the process of interest. The validity of the 
Gaussian GARCH(1, 1) model for describing financial time series is in fact frequently 
debated in the empirical finance literature. This illustrates many of the difficulties 
encountered by case studies. 

7 CONCLUDING REMARKS 

Different likelihood based methods of statistical surveillance for detecting a 
change in the variance has been evaluated. The methods differ with respect to how the 
different observations available at each decision time are treated and the way the 
alarm limit change with the decision time. The methods differ with respect to the 
number of parameters they depend on. All methods but the Shewhart method depends 
on the size of the change and the LR methods does also depend on the intensity of the 
change-point time.  

The robustness of the methods with respect to mis-specifications of the change has 
been examined. The results demonstrates the same behavior Frisén and Wessman 
(1999) found for a change in location: the larger the size of the change, d, for which 
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the methods are optimized for, the more similar to the Shewhart method are the 
methods. Hence, if we optimize for a very large d all weight is allocated to the last 
observation. If, on the other hand, we optimize for a small d, more weight is given to 
earlier observations than for Shewhart because more observations are needed for 
having enough evidence for a change.  

Differences in the weighting are reflected in the skewness of the run length 
densities. For a large d early alarms are more frequent compared to a small d. 
Consequences of these differences are that for the former situation PFA is high 
compared to the latter as early alarms have a great influence because of the geometric 
distribution.  

The detection ability as measured by CED and PSD is rather constant and great at a 
large d. When the d is small the detection ability is worse at early changes but get 
better the later the change occurs. The price of the good detection ability of early 
changes of Shewhart and CUSUM is however that early alarms are not very reliable. 
LR and SR have better predictive values at early alarms. 

The LR method has the parameter v to optimize for the intensity for a change. This 
is avoided by the SR method. For the values of MRL0 and v used, LR seems in terms 
of PFA and PV (Figure 2, 6 and 7) to be robust against mis-specifications of the 
intensity and SR appear to be a good approximation of LR for small values of the 
intensity.  

The surprising way the methods differed in shapes of the run length densities noted 
by Frisén and Wessman (1999) is also seen here. It depends on the way the false 
alarms are controlled, as explained in section 5.1.   

In the illustration of the methods on the S&P500 data all the methods gave alarms 
very close to the change-point time. However, if the model residuals represented the 
process of interest then these results would be very improbable. This illustrates many 
of the difficulties and limitations encountered by case studies.   
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