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Abstract 

The Chernobyl nuclear accident left many questions in its wake. One of these questions was 

why children affected by the radioactive fallout seemed to have a higher incidence of thyroid 

cancer compared with adults in the same area. The purpose of this study was to compare 

proteomic changes in internally 131I irradiated rats of two age groups, one young and one 

adult. This was performed through analysis of fresh frozen thyroid tissue from a previous 

animal study where young and adult rats were exposed internally to various amounts of 131I. 

Analysis of the rats’ thyroid proteome was achieved through liquid chromatography tandem 

mass spectrometry and analysed with Welch’s t-test with Benjamini-Hochberg correction. 

Protein functional analysis and gene ontology (GO) term analysis were done with UniProt. 

Large variations in mainly the control group’s data made comparison at the group level 

difficult. One protein’s relative abundance, TRXR3, was found significantly changed in the 

young population at 0.5 kBq. TRXR3 is the rat equivalent to the TRXR3 found in humans and 

is a part of cellular oxidant detoxification and redox homeostasis. This would imply that 

oxidative stress had taken place, but the lack of other markers makes it difficult to draw a 

solid conclusion. Due to the lacking appearance at other doses, TRXR3 was not considered a 

good candidate biomarker for 131I radiation exposure or absorbed dose.  
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Sammanfattning 

Tjernobylolyckan skapade ett antal frågor, en av vilka var varför barn som påverkades av det 

radioaktiva nedfallet hade en högre incidens av sköldkörtelcancer jämfört med vuxna som 

verkade vara opåverkade av samma nedfall. Frågan är fortfarande utan svar. Syftet med studien 

var att undersöka proteomiska skillnader mellan vuxna och unga råttor som internt bestrålats 

med 131I. Detta utfördes genom att analysera frusen sköldkörtelvävnad från en tidigare 

djurstudie där unga och vuxna råttor exponerades för olika mängder 131I. Proteomiska 

förändringar mättes genom vätskekromatografitandemmasspektrometri och utvärderades via 

Welchs t-test med Benjamini-Hochberg metoden. Uniprot användes för identifiering av 

proteiner. Eftersom datan innehöll stora variationer var det svårt att dra slutsatser. TRXR3 var 

det enda upphittade proteinet och befann i gruppen unga råttor, 0.01 Gy. Proteinet är väldigt lik 

det mänskliga proteinet TRXR3. Den tar del i bland annat cellulär oxidationsavgiftning och 

redox homeostas vilket skulle implicera oxidativ stress men bristen på andra markörer för det 

gör slutsatser svåra att dra. Eftersom TRXR3 bara upphittades vid en dos ansågs den inte vara 

en kandidat för att biomarkera 131I exponering eller absorberad dos.  
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Introduction 

After the Chernobyl nuclear accident, the cancer rates of the thyroid, most likely caused by 

internal exposure to 131I, were observed to dramatically increase among children below 14 years 

of age at the time of the accident (UNSCEAR, 2017). At the same time, the thyroid cancer 

incidence in individuals considered to be adults at the time of the accident remained seemingly 

unaffected by the radioiodine (UNSCEAR, 2017). While research has been conducted on 

identifying the radiobiological response after internal low dose exposure to 131I (Larsson, et al., 

2020; Larsson, et al., 2022), the mechanisms which make children more susceptible to ionizing-

radiation-induced thyroid cancer remain mostly unknown (UNSCEAR, 2017).  

 

Background 

The Iodine Isotope 131I 
131I is an isotope with atomic number 53 and is used to treat certain thyroid-related illnesses, 

e.g., cancer and hyperthyroidism (Berg, G., et al., 2007). It emits both gamma and beta 

radiation, and decays into 131Xe, a stable element. Since 131I decays by beta emission with a 

mean energy of ca. 190 keV for the beta particles and ca. 364 keV for the gamma photons and 

has a physical half-life of about 8 days, it fits quite well into the field of theranostics. 131I is 

suitable for regional use against tumors due to the short range of the beta particles and 

functionally useful half-life. The gamma emission expands the use of 131I making imaging of 

the biokinetics and dose estimations possible, giving it the capability to be a theranostic tool.  

A special use for 131I is the treatment of thyroid related issues, such as thyroid cancer or some 

types of overt hyperthyroidism. Due to the thyroid requiring iodine to produce the hormones 

triiodothyronine (T3) and thyroxine (T4), the thyroid will naturally accumulate iodine (Berg, 

G., et al, 2007). This makes 131I cheap to use and efficient at treating thyroid related disorders 

as no carrier needs to be used to bring the radiopharmaceutical to the thyroid and no chelator is 

needed, minimizing chemical toxicity. 
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Radiation Protection 

Protection against unwanted radiation exposure, not only from 131I, usually comes down to three 

factors, exposure time, range to the source, and shielding against the radiated particles. 

Reducing exposure time and increasing range to the source are simple ways to reduce absorbed 

dose and risk for adverse effects as simply moving away from the affected area will do in 

applicable cases. When this is not possible, however, shielding takes a greater role in reducing 

the risk of aftereffects. In the context of 131I, a common protective measure are potassium iodine 

tablets. They work on the premise that the thyroid can be saturated with iodine so that additional 

iodine will not be retained in the thyroid. This would protect from retaining radioactive iodine 

in the thyroid and lessen exposure time if it cannot be avoided. 

When exposure cannot be prevented, biomarkers can be a helpful tool in showing e.g., 

exposure, dose, and the presence of tumors. The specific information they offer could infer a 

better understanding of biological effects and risks at play after exposure to ionizing radiation. 

Several studies have proposed candidate biomarkers for internal exposure to 131I in children, 

such as, parvalbumin (PVALB) and thyroglobulin (TG) (Larsson, et al., 2022; UNSCEAR, 

2017). While there are plenty of studies showing significant responses in their suggested 

biomarkers, most of them show inconsistencies in which candidates are suggested (Larsson, et 

al., 2020; Larsson, et al., 2022; UNSCEAR, 2017). 

 

The Thyroid 

The thyroid is an organ which sits around the top, and in front, of the trachea. It weighs about 

20 g in humans and consists of two lobes which together form a butterfly shape (Berg, G., et 

al., 2007). It is an endocrine organ which mainly regulates growth, metabolic rate (short and 

long-term) and protein synthesis using the hormones T3, T4, and calcitonin (Berg, G., et al., 

2007). This can be done through directly affecting proteins and hormones, or by affecting gene 

expression (Berg, G., et al., 2007). A main component in T3 and T4 is iodine (Berg, G., et al., 

2007). 

The thyroid consists of follicular and parafollicular cells, and follicles (Berg, G., et al., 2007). 

Parafollicular cells, also known as C-cells, are scattered throughout the thyroid and secrete 

calcitonin when stimulated (Berg, G., et al., 2007). Follicular cells enclose the follicles which 

produce the hormones T3 and T4 when stimulated by thyroid-stimulating hormones (TSH) 

(Berg, G., et al., 2007). 
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The thyroid works as a deposit for iodine (Berg, G., et al., 2007). About 30% of the consumed 

iodine is transported to the thyroid while the rest is excreted through urine (Berg, G., et al., 

2007). This feature has been heavily relied upon when treating the thyroid using stable iodine, 

as well as internal irradiation by 131I (Berg, G., et al., 2007). However, 30% is not necessarily 

what the thyroid will absorb. The supply of iodine to the thyroid would eventually lead to 

saturation, as such the thyroidal intake of iodine would decrease. This would suggest a relation 

between thyroid iodine saturation and thyroidal uptake of iodine. 

 

Hyper-/Hypothyroidism 

There are several implications ionizing radiation can have in the thyroid. A very common late 

effect, in the context of therapy, is hypothyroidism. Hypothyroidism is an umbrella term for 

various states which cause the thyroid to produce less hormones than expected. Be it external 

irradiation or internal irradiation with 131I this is a frequent phenomenon, although the absorbed 

dose tends to be in the therapeutic range for most cases (Hancock, et al., 1995). The most 

common time of appearance, 2-3 years after exposure, may make some hesitate to call it a late 

effect. However, the time range in which it may occur is between a few months to over 20 years, 

in some cases, with about half of the cases occurring after 5 years (Colevas, et al., 2001; Illés, 

et. al., 2003; Mercado, et al., 2001). The frequency of occurrence of hypothyroidism increases 

with an increased dose (Metso, et al., 2004; Vogelius, et al., 2011). 

Hyperthyroidism may also occur, while quite a bit less frequent than hypothyroidism (Hancock, 

et al., 1991; Fleming, et al., 1985). Hyperthyroidism is an umbrella term used to classify states 

of overproduction of thyroidal hormones. Given external radiation therapy to the neck with 

therapeutic doses, hyperthyroidism shows itself at similar time intervals as hypothyroidism 

(Hancock, et al., 1991) while it shows itself months after internal 131I radiotherapy 

(Dunkelmann, et al., 2004; Nygaard, et al., 1997). It is currently unclear why this is (Nagayama, 

et al., 2018). There is also evidence which supports a correlation between dose and incidence 

of hyperthyroidism for high doses (Dunkelmann, et al., 2004; Nygaard, et. al., 1997), but this 

is disputable for low to moderate doses (Imaizumi, et al., 2017).  

 

Thyroid Cancer 

In 2022 the number of thyroid cancer cases, in the US, was estimated at 2.3% of all cancer cases 

(NCI, 2023). In Sweden, in the year 2021, the number of new thyroid cancer cases was reported 

to be 19.94 persons per 100 000 (Cancerregistret, 2022). Thyroid cancer is also more common 

among women, compared with men, where women usually represent two-thirds to three-

quarters of all cases and is most frequent in people in the age range of 30-74 (Coleman, et.al, 

1993; NCI, 2023). The incidence trend for thyroid cancer around the world is a mix of decrease 

and increase in different countries while the general trend is pointing to an increase (Coleman, 

et.al, 1993; NCI, 2023; Cancerregistret, 2022). In the US the incidence of thyroid cancer was 
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observed at 7.5 persons per 100 000 in the year 2000 and 13.8 persons per 100 000 in 2019 

(NCI, 2023). For the period, 2000 to 2019, the measured difference was an increase of 10.77 

persons per 100 000, in Sweden (Cancerregistret, 2022). The mortality, however, has been 

decreasing. In the US, between the years 2000 and 2015, the 5-year relative survival climbed 

by 2%-units from an observed 96.6% to an observed 98.6% (NCI, 2023). This is mostly 

attributable to improvements in diagnostic imaging techniques which allow for imaging non-

palpable nodules (Cabanillas, et al., 2016). 

Thyroid cancer can be divided into neuroendocrine C-cell-derived and follicular-cell-derived 

thyroid cancer (Cabanillas, et. al., 2016). Follicular-cell-derived thyroid cancer can be divided 

further into differentiated and undifferentiated thyroid cancer. Yet another subdivision can be 

created by dividing differentiated thyroid cancer into papillary, follicular, and Hurthle cell 

thyroid cancer (Cabanillas et al., 2016). The most common type of thyroid cancer is 

differentiated thyroid cancer, representing more than 95% of cases, while the most common 

type in the subdivision is papillary thyroid cancer (Howlader, et.al, 2016; Cabanillas, et.al, 

2016). Fortunately, it is the papillary variant that is the most benign while the other types of 

differentiated thyroid cancer are high risk and are known to metastasize and spread into lung 

and bone tissue (Cabanillas, et.al, 2016).  

In the case of childhood thyroid cancer caused by ionizing radiation, the most common variant 

is papillary thyroid cancer (Bresciani, et.al, 2019) as this is the most common thyroid cancer 

form induced by ionizing radiation, which was also observed in children after the Chernobyl 

nuclear powerplant accident (Thomas and Yamashita, 2017). More specific details on the 

carcinogeneic development, like differences between spontaneous and ionizing-radiation-

induced thyroid cancer, remain unknown (UNSCEAR, 2017). 

 

Sprague-Dawley Rats 

The Sprague-Dawley rats are a common and well-documented species of rats commonly used 

in animal experimentation. They tend to gestate in 21 days after which they enter a period of 

sexual maturation until week 10 after birth consisting of the phases, neonatal, infantile, juvenile, 

peripubertal, and adolescents, lasting from day 0-7, 7-21, 21-35, 35-55, and 55-70 respectively 

(Ghasemi, et.al, 2021; Beckman, 2003; Bell, 2018; Marty, et.al, 2003; Picut, et.al, 2018; 

Semple, et.al, 2013; Vidal, 2017). The rats tend to enter adulthood at the end of sexual 

maturation at about week 10 starting with the emerging adulthood and continuing into young, 

middle, older, and late adulthood at about the ages of 70, 150, 300, 600, and 730 days 

respectively (Ghasemi, et.al, 2021; Quinn, 2005; Stanley and Shetty, 2004). 
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Proteomic Analysis 

DNA is often referred to as a sort of blueprint, of which proteins are the product. As such, there 

is a profound connection between genes and proteins, but variations in expression between the 

two are frequent as the regulators mediating the transcriptional and translational processes are 

plentiful (Maier, et.al, 2009; de Sousa Abreu, et.al, 2009). It is therefore difficult and not advised 

to draw conclusions on gene expression from proteomic analyses. The proteome can, however, 

still be used to observe the consequences of gene expression change. Other studies have used 

proteomics to investigate the mechanics of late effects after exposure to 131I (Larsson, et.al, 

2020; Larsson, et.al, 2022). Their results showed statistically significantly changed expression 

in several proteins, but few consistencies in which proteins were significant and changed in the 

same manner. This can be used as a reference for what is to be expected from proteomic studies 

on the thyroid after internal exposure to ionizing radiation from 131I. In this study the effect of 

ionizing radiation from 131I on the thyroid was investigated through proteomic analysis. 

A method for protein analysis is mass spectrometry (MS). MS works by deviating charged 

particles in an electromagnetic field. The particle’s trajectory is determined by the particle’s 

inertia and charge. The electromagnetic field produces a force on the charged particle which 

deviates the path while the inertia resists the change in momentum giving the particle a distinct 

path. This gives information on the particle’s mass-to-charge ratio (m/z) which aids in the 

identification of the particle. There are, however, times where the m/z ratio is similar enough 

between particles that a distinction cannot be made. Two charged compounds can have different 

masses and different charges while still having the same m/z ratio. While it is difficult to 

completely remove the problem, increased performance can be achieved by coupling two or 

more MS analytical units together and fragmenting the particles into smaller constituents. This 

is called tandem MS (MS/MS). For substances still containing the possibility of 

indistinguishable MS profiles, liquid chromatography (LC) can help with this problem by 

providing refining and sorting information. In short, LC operates by running a mobile phase, in 

which the analyte is dissolved, through a stationary phase. The contents of the mobile phase 

will be separated by some attribute, like size, electric charge, solubility, etc., by interaction with 

the stationary phase and the product (eluent) will exit the stationary phase according to the 

sorting order. By using LC to discriminate substances in a solution through separation, the 

desired substance can be extracted, enabling analysis through MS while also contributing extra 

information in the form of retention time (RT) (Kailasam, 2021). Analysis of proteins can be 

done by cleaving them into smaller peptides and then attaching so called tandem mass tags for 

the simultaneous analysis of multiple samples, also known as multiplexing (Zhang and Elias, 

2017). Large proteins may have similar RT and m/z so directly analyzing them via LC-MS/MS 

is a difficult task. The cleavage of proteins into peptides can be archived by e.g., trypsin, 

cleaving at specific amino acid junctions. Peptides are more easily identifiable as the m/z value 

for peptides makes for fewer similar results than proteins. Another advantage is that bigger 

proteins are difficult to dissolve in LC-MS/MS solvents and can therefore not be analyzed while 

peptides can. The tandem mass tags fragment in a particular manner which creates reporter ions 

specific for each tag. The ions become visible in the mass spectrum and makes the peptides’ 
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abundances differentiable (Zhang and Elias, 2017). Analysis results are in the form of 

abundance from both LC and MS analysis and are plotted against the RT and m/z values in what 

is known as a total ion chromatogram (TIC) (Kailasiam, 2021). The TIC identifies the parent 

compound by matching fragmentation footprints at specific RTs with the parent’s expected 

fragmentation pattern and RT. Quantification is performed by taking the area under a relevant 

MS peak for the relevant RT (Kailasiam, 2021).  

A previous study on analyzing the effects of 131I in the thyroid by Larsson, et.al, (2020) would 

suggest that there is a statistically significant change in the relative abundance of several 

proteins. It was found that SORBS2, ACADL, TG, and TPO were significantly overexpressed 

at low doses. The GO term analysis, which shows the processes and functions related proteins, 

revealed an immune response suggested by the discovered changes. There was found to be a 

dose-related response correlating with some of these proteins, although not monotonic.  

 

Purpose 

The purpose of this study was to identify and quantify changes in the proteome and causal 

effects in thyroid glands of rats irradiated internally with 131I at young and adult age to achieve 

low to medium absorbed doses, with regards to late effects. Late effects were considered 

proteomic change which occurred due to ionizing radiation after 12 months. 
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Method 

Animal Experiment 

The tissues used in this study were taken from a previous study by Larsson, et al. (2020). The 

model organism for observing protein abundance change in this study were male Sprague 

Dawley rats from Charles River Laboratories International in Salzfeld, Germany. Groups were 

created as seen in Table 1. Rats were divided based on their age into two groups, young and 

adult, containing 24 and 27 rats respectively. The adult rats were intra-venously injected at the 

age of 17 weeks while young rats were injected at 5 weeks. The two age groups were divided 

into four activity groups, 0.5, 5, 50, and 500 kBq, and one control group which received saline 

solution. 131I was injected and the rats’ thyroid dose was calculated and associated with their 

activity group. The absorbed dose to the thyroid was calculated through the MIRD formalism 

(Mattsson, et.al, 2015; Spetz, et.al, 2013). Euthanasia was performed 12 months after injection 

and the rats were dissected, thyroids collected and flash frozen. The rats had free access to food 

and water and new equipment was used for every thyroid. The thyroids were cut into three 

pieces in a fumehood using sterile equipment. One of the pieces was sent for proteomic analysis. 

The animal experiment performed in this study has been approved by the Ethical Committee 

on Animal Experiments in Gothenburg Sweden (Permit Number: 146-2015). 

 

 

 Table 1: Experiment design and group size (parenthesized). 

 Activity 

(kBq) 
- 0.5 5 50 500 

Dose to 

thyroid 

Adult 0 Gy (5) 0.007 Gy (5) 0.07 Gy (6) 0.7 Gy (5) 7 Gy (6) 

Young 0 Gy (6) 0.01 Gy (5) 0.1 Gy (4) 1 Gy (5) 10 Gy (4) 
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Sample Preparation 

The samples used in this study were placed in sterile test tubes and sent to the Sahlgrenska 

Academy Proteomics Core Facility where they were homogenized and prepared for LC-MS/MS 

analysis. Homogenization was performed by ultrasonication with a Covaris ML230 in lysis 

buffer (50 mM triethylammonium bicarbonate, TEAB, 2% sodium dodecyl sulfate). Protein 

concentration was measured using Pierce BCA Protein Assay (Thermo Scientific) on a 

Benchmark Plus microplate reader (BIO-RAD Laboratories). 40 µg protein samples were 

reduced for 30 minutes at 56ºC in 10 mM dithiothreitol followed by 10 minutes of room 

temperature alkylation using 20 mM iodoacetamide and 10 minutes of quenching with 10 mM 

dithiothreitol. Protein samples were placed in washed hydrophilic and hydrophobic carboxylate 

modified Sera-Mag™ SpeedBeads from Cytiva with a beads-to-protein ratio of 10:1. Protein 

and peptide clean-up dictated the SP3 workflow for the manufacturer-provided MS protocol. 

Proteins were precipitated on the beads with 100% ethanol and washed with 80% ethanol 

followed by being dried at room temperature. Digestion was done by incubating overnight at 

37ºC while shaking after adding 50 mM TEAB and 1.2 µg LysC with trypsin (Promega) after 

which an additional 2 µg of trypsin (Thermo Fisher Scientific) for digestion over 4 hours. 

TMTpro 18-plex isobaric mass tagging reagents from Thermo Fisher Scientific were used to 

label the supernatant in accordance with manufacturer instructions. A reference was created by 

pooling the samples of a plex. Peptide purification was performed according to manufacturer 

instructions with Pierce peptide desalt spin column and HiPPR detergent removal kit from 

Thermo Fisher Scientific. A Dionex Ultimate 3000 UPLC reverse-phase chromatograph from 

Thermo Fisher Scientific was used for TMT fractionation. Solvent A was 25% ammonia and 

solvent B was 84% acetonitrile. A reversed-phase XBridge BEH C18 column (3.5 µm, 3x250 

mm, Waters Corp.) and a stepped solvent B gradient from 3% to 54% over 65 minutes followed 

by an increase to 80% solvent B with a 200 µl//min flow was used for peptide separation. LC-

MS3 analysis was prepared by reconstituting evaporated 36 fractions, which were combined 

from 72 primary fractions, in 3% acetonitrile and 0.1% trifluoroacetic. 

 

Sample Analysis 

The fractions were analysed via LC-MS3 in an Orbitrap Fusion Lumos Tribrid MS with an 

Easy-nLC1200 LC system and FAIMS Pro ion mobility system from Thermo Fisher Scientific. 

A Thermo Fisher Scientific Acclaim Pepmap 100 C18 column (100 µm x 2 cm, 5 µm particle 

size) was used to trap the peptides. Separation was done on a Dr. Maisch Reprosil-Pur C18 

analytical column (35 cm x 75 µm, 3 µm particle size) with a stepped gradient on the interval 

[4,80] % acetonitrile in 0.2% formic acid over 75 minutes at a flow of 300 nl/min. The same 

data-dependent settings were used for the FAIMS Pro when alternating between the 

compensation voltages, -50 and -70. The precursor mass spectra had a resolution of 120 000 

and an m/z range of 375-1500. The most abundant precursor charges between 2 and 7 were 

isolated using a cycle time of 1.5 seconds and an m/z window of 0.7 and fragmented by 
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collision-induced dissociation at 30%. Recording of fragment spectra was done at Rapid scan 

rate. Further MS3 fractionation was done for the 10 most abundant MS2 fragments. The 10 

fragments were isolated using multi notch isolation. High energy collision dissociation at 55% 

was used to perform MS3 fractionation. Recording resolution was 50 000 and m/z range was 

[100,500]. 

Identification and relative quantification were performed with Thermo Fisher Scientific’s, 

Proteome Discoverer 2.4. SwissProt (8177 entries, April 2023) was used to match the data 

against Rattus norvegicus. Precursor tolerance and fragment ion tolerance was 5 ppm 

respectively 0.5 Da for a Sequest database matching. One missed cleavage was accepted for 

tryptic peptides. Methionine oxidation was put as a variable modification. Fixed modifications 

were cysteine carbamiodomethylation, TMTpro on lysine, and peptide N-termini. A percolator 

was used as a filter for PSM validation with a 1% FDR. TMT reporter ions were identified in 

the MS3 HCD spectra with 3 mmu mass tolerance and TMT reporter intensity for each sample 

were normalized on the total protein contents. SPS Mass Match threshold was 65%. Sequest 

XCorr threshold was 1.2. Unique peptides were used for relative quantification. Proteins were 

required to pass with an FDR of 5%. 

 

Welch’s t-test 
A suitable statistical test for analysis of change in protein expression is Welch’s t-test. The 

central limit theorem can be used to assume that the tissue protein abundance between tissue 

samples is approximately normally distributed, and a t-distribution can therefore be used to 

describe a limited sample size of tissue samples. Given the study of protein expression before 

vs. after some treatment, unequal variance between the two may also be assumed as there is no 

guarantee that the treatment retains the variance. 

Welch’s t-test, or two-sample t-test with unequal variance, is a statistical test used for comparing 

two populations where normal distribution can be approximated, but equal variance between 

the observed populations cannot. J.S. Milton (1995) states that the comparison is described 

using the statistic, 

𝐷 = 𝑋 − 𝑌 (1) 

where 𝑋  and 𝑌  are the approximately normally distributed variable for the two populations 

being compared. If 𝑋 and 𝑌 consists of 𝑛𝑋 respectively 𝑛𝑌 points, the resulting test statistic for 

hypothesis testing will be, 

𝑇 =
𝐷 − 𝜇𝑑

𝑆
     (2) 
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where 𝑆 =  √
𝑆2

𝑋

𝑛𝑋
+

𝑆2
𝑌

𝑛𝑌
  is the standard deviation for 𝐷, the mean for the sample difference, and 

𝜇𝑑 =  𝜇𝑥 − 𝜇𝑦 is the hypothesis testing variable, which is usually set to zero (no change) for 

the null hypothesis (H0). This distribution follows a T(i-1) distribution, granted H0 is true. 

 

Benjamini-Hochberg Procedure 
Given some H0 and an approximately normally distributed dataset, there will be a value given 

by Equation (2) which corresponds to the probability of the dataset occurring at random, given 

that H0 is true. This probability is commonly known as the p-value. One implication of the 

existence of this probability is that some of the data will speak for accepting H0, even if it is not 

true. When H0 is not true, accepting it is known as committing a type I error. 

Since sampling datapoints which speak for committing a type I error is impossible to avoid, 

using the data will undoubtedly influence statistical accuracy. In situations where statistical 

analyses compound one another, so does the errors and tracing the errors may indeed be 

difficult. A common way of controlling the type I error incidence is by utilizing the Benjamini-

Hochberg (BH) method. 

The BH method operates on the distribution of p-values among all possible p-values. It can be 

proven that when samples come from a single distribution, the p-values of the samples should 

be evenly distributed across all possible p-values, e.g., there should be equally many p-values 

between 0 and 0.05 as there are between 0.5 and 0.55. When samples are taken from two 

different distributions, the distribution of p-values is shifted to the lower end, i.e., there are more 

smaller p-values than there are larger.  

As described by Agresti (2012), the BH procedure starts by ordering all p-values in ascending 

order and assigning a rank to each p-value in the same order, after which the BH critical value, 

𝑃𝐵𝐻, is calculated. This is performed by multiplying the chosen false discovery rate, q, with the 

rank, k, of the p-values and dividing by the total number of p-values, n. 

𝑃𝐵𝐻 = 𝑞
𝑘

𝑛
      (3) 

The next step is to search for the largest p-value that is still smaller than the BH critical value. 

If this value is positioned such that no following p-value is smaller than their respective BH 

critical value, this is the cut-off point. All values above the cut-off are to have H0 rejected with 

a q chance of committing a type I error. 

Using these values, a graph which plots the p-value to the rank can be generated which either 

has an exponential or linear shape. If the shape is linear, there are equally many p-values for 

any given p-value bin and the data speaks for H0. If the shape is exponential, there are more 

smaller p-values than there are larger and therefore data which speaks for rejecting H0. 
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Statistical Analysis 

The data was evaluated using Welch’s t-test with a BH adjusted p-value in the program R 4.2.2. 

The data was loaded into Microsoft Excel, where reformatting was performed, and relevant data 

was sorted into a more interface friendly state for the user and R. The processed data was then 

loaded into R where a Welch’s t-test was performed, whereby each group with an injected 

activity over 0 kBq in the adult and young categories had their protein abundance tested against 

the abundance of the 0 kBq group in their respective category. The p-values were saved and the 

BH correction was applied. The false discovery rate was set to 5% and all BH corrected p-

values below this limit was considered statistically significant. A multiplicative change factor 

of protein abundance relative the reference, known as fold change (FC), limit of 1.5 was set to 

indicate that relevant changes in protein abundance for a protein was considered an increase or 

decrease of 50%. 

Proteins were identified using UniProt (EMBL-EBI, 2023). The proteins with a statistically 

changed abundance and FC of 1.5 or more had their accession codes fed into UniProt where 

information on GO annotations were collected. The same was done for the human equivalent 

of the rat proteins by identifying the gene which produces a specific protein and checking if it 

is present in humans and what protein the gene produces in humans. Tissue expression data for 

the human equivalent proteins were collected from Human Protein Atlas (2023; Uhlén, et.al, 

2015). 
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Results 

The results were a list of each rat’s protein abundance, measured in FC, for every detectable 

protein. 7386 proteins were detected, out of which 4681 were analyzed with statistics and the 

rest were omitted due to insufficiently accurate quantity data. Every group of rats had a mean 

FC and standard deviation for the occurrence of every analyzed protein. The irradiated groups 

also had BH corrected p-values and mean values which were relative to the groups’ control 

group. 

 

Study Results 

The following images of the results are volcano plots of the proteins’ BH corrected p-values, 

−𝑙𝑜𝑔10(𝑃), plotted against the groups’ mean abundance relative to the control mean abundance 

of the same protein, −𝑙𝑜𝑔2(𝐹𝐶), at the specified dose. The points in the volcano plot represent 

various proteins’ BH corrected p-value and FC. Vertical lines mark the FC limit of 1.5 and 

horizontal lines mark the FDR limit of 5%. Grey dots represent proteins without a statistically 

significant change in abundance and not enough of a difference in abundance to be considered 

a relevant change from the mean of the control groups. Green dots represent a sufficient 

difference in protein abundance from the mean of the control groups without being statistically 

significant. Red dots represent proteins that are statistically significant as well as differing 

sufficiently in abundance from the mean of the control groups. 

 

Adult Rats 
Figure 1 shows volcano plots of the BH corrected p-values against the mean relative FC for the 

analyzed proteins in each activity group for the adult groups. The sub-figures A, B, C, and D 

show results for the activity groups 500, 50, 5, and 0.5 kBq respectively. 

As seen in Figure 1, no significant proteomic change was registered for the adult rats at the 

tested doses. Plenty of large fold changes were observed, but nothing was measured as 

significant with a 5% FDR and an FC cut-off of 1.5. The figure also shows that there was no 

significant change at any FC cut-off, even for a higher FDR. The FDR seemed to also be 

increasing for an increased dose, since the -log10(p) generally seemed to decrease with an 

increased dose, creeping extremely close to 0 at 50 and 500 kBq.  
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Figure 1: Volcano plots for the tested proteins for the adult rats, for the different activity groups 0.5, 5, 50 and 500 kBq. NS 

stands for non-significant, Log2 FC stands for relevantly changed FC. The x-axis shows the log2(fold change) and the y-axis 

shows the -log10(B.H. corrected p-value). 

 

Young Rats 
Figure 2 shows volcano plots of the BH corrected p-values against the mean relative FC for the 

analyzed proteins in each activity group for the young main group. The sub-figures A, B, C, 

and D show results for the activity groups 500, 50, 5, and 0.5 kBq respectively. 

Like for the adult rats, the FC varied, but only one protein was discovered with a 5% FDR and 

a FC cut-off of 1.5 (Figure 2). The -log10(p) seemed to decrease with increased dose and reach 

close to 0 at 1 and 500 kBq. The only statistically significantly altered abundance registered 

was an upregulation in a protein called thioredoxin-disulfide reductase (TRXR3). This was only 

seen for 0.5 kBq and was not present at any other dose. 

A 500 kBq B 50 kBq 

C 5 kBq D 0.5 kBq 
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Figure 2: Volcano plots for the tested proteins for the young rats, for the different activity groups 0.5, 5, 50 and 500 kBq. NS 

stands for non-significant, Log2 FC stands for relevantly changed FC. The x-axis shows the log2(fold change) and the y-axis 

shows the -log10(B.H. corrected p-value) 

 

 

  

A 500 kBq B 50 kBq 

C 5 kBq D 0.5 kBq 
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Result Accuracy 

The following figures are plots of the p-values for each protein against their respective rank as 

assigned by the BH method. These plots contain information on accuracy via the shape of the 

trend in p-value to rank.  

 

Adult Rats 
Figure 3 shows the p-value-to rank for the sub-figures A, B, C, and D which show results for 

the activity groups 0.5, 5, 50, and 500 kBq respectively. Overall, the curves have an S-like shape 

(sigmoidal), starting slow and then increasing more rapidly. This trend is becoming less and less 

prominent with higher activity, whereby the last curve looks almost linear. The curves have a gentle 

upward slope at first, indicating more proteins for lower p-values. As the rank continues to rise, the 

slope steepens, showing fewer proteins at high p-values.  
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Figure 3: P-values ordered in ascending order plotted against their rank for the adult rats at the different investigated 

activity levels 0.5, 5, 50 and 500 kBq. 

D 500 kBq C 50 kBq 

A 0.5 kBq B 5 kBq 
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Young Rats 

Figure 4 shows the p-value-to rank for the sub-figures A, B, C, and D which show results for 

the activity groups 500, 50, 5, and 0.5 kBq respectively. Subfigures A and B look similar to an 

exponential curve, with more proteins at lower p-values. As the rank increases, the slope 

becomes steeper, indicating a faster increase in p-values. The opposite is true for subfigures C 

and D, with more proteins at lower p-values, followed by a progressively increasing amount of 

proteins at higher p-values showing itself as a flattening trend. This is particularly pronounced 

for subfigure D, and the trend resembles a logarithmic curve. 

. 
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Variance 

Figure 5 is a complex of plots showing the number of proteins for a given FC variance interval 

for each of the activity groups, 0, 0.5, 5, 50, and 500 kBq, in the two main groups, adult, and 

young. The plots were truncated to a log2(FC) variance of 1. All plots contain the same 

cumulative number of proteins. There were few proteins with a low FC variance in the control 

and the two highest activity groups in both the young and adult main groups while the activity 

groups, 0.5 and 5 kBq, had a higher number of low FC variance proteins. 

Figure 4: P-values ordered in ascending order plotted against their rank for the young rats at the different investigated 

activity levels 0.5, 5, 50 and 500 kBq. 

D 500 kBq C 50 kBq

 
 

A 

B 5 kBq

 
 

A 

A 0.5 kBq 
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Discussion 

When looking at Figures 1 and 2 it can be seen that there is a distinct lack of findings except at 

0.5 kBq for the young rat population where TRXR3 was found to be the exception. In the cell, 

TRXR3 is active in the cytosol, mitochondrion, and nucleoplasm. Some biological processes it 

is involved with are blastocyst formation, cell redox homeostasis, cellular oxidant 

detoxification, and glutathione metabolic processes. Its functions relates to enabling flavine 

adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADP) 

binding. 

The rat protein, TRXR3, is encoded by the Txnrd3 gene, which is also present in humans. In 

humans, TXNRD3 produces the human protein, thioredoxin reductase 3 (TRXR3, denoted here 

as TRXR3-h for distinguishing between human and rat proteins). TRXR3-h can be found in 

most of the human body’s organs and is expressed the most in the gastrointestinal tract, bone 

marrow, and lymphoid tissue. TRXR3-h is expressed in the thyroid and more so in the 

parathyroid. Beyond the places and functions of TRXR3, TRXR3-h can be found in the 

endoplasmic reticulum and microsomes but is not actively a part of any process in the 

endoplasmic reticulum or in microsomes. It is also present in cell differentiation and 

spermatogenesis but is not a part of glutathione metabolic processes. 

Research would indicate that insufficient activity of Txnrd3 leads to cancer inhibition and the 

presence of TRXR3 prevents inhibition. In a study by Liu, et al., (2022) it was found that 

knocking out the Txnrd3 gene led to necrosis from an increased number of reactive oxygen 

species (ROS) in colon cancer cells, causing increased oxidative stress and therefore inhibiting 

Figure 5: Frequency plots of the groups' log2(FC) variance 
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tumor proliferation. Liu, et.al, (2022) presented this as reason to why focusing on Txnrd3 could 

be useful in treatment of cancer. Other studies indicated that elevated abundance of thioredoxin 

reductase proteins had a protective effect on the cancer cells by providing control over redox 

reactions therefore improving cancer cell survival (Patwardhan, et.al, 2022; Sabharwal and 

Schumacker, 2014). Therefore, the use of TRXR3 inhibitors was proposed as a possible cancer 

treatment. By blocking the TRXR3 activity the levels of ROS in the tumor cell will increase, 

causing a higher level of oxidative stress, which could potentially lead to cell death. 

The only protein with a statistically significantly altered abundance being connected to redox 

homeostasis could suggest a possible disruption of redox homeostasis. Since TRXR3 is present 

in redox activity and redox detoxification, a significant upregulation could suggest an increase 

in redox activity. In turn, increased redox activity could suggest a higher-than-normal 

abundance of free radicals or other sources which directly induce oxidation. This could be 

evidence of increased cell death and cancer occurrence (Branzei and Foiani, 2005; Branzei and 

Foiani, 2007). However, drawing general conclusions from one protein found at one dose is not 

advised, but its existence may also point towards something. 

No clear dose dependency was observed. The only conclusion Figure 1 and 2 could have offered 

for dose dependency was decreasing statistical significance for all observed proteins as the dose 

increased. Other studies (Larsson, et.al, 2020; Larsson, et.al, 2022) would imply that the 

abundance of some proteins should be significantly increased or decreased at a medium dose 

as well as low, which is different from this study as no such phenomenon was observed. Hence, 

these inconsistencies would make it prudent to continue studying dose dependency. 

The similarity between the proteins, TRXR3 and TRXR3-h, would suggest that an altered 

abundance of TRXR3 implies similar implications in humans as in rats. However, the only 

significant result for TRXR3 was found at 0.5 kBq for the young rats and nowhere else. If the 

protein cannot consistently be significantly changed in abundance across various doses, it 

cannot be used as a biomarker for 131I exposure. This also rules out the possibility of using it as 

a dosimetric biomarker since it needs to not only be consistently changed, but also differentially 

so. Hence, TRXR3 and therefore TRXR3-h cannot be qualified as a good candidate for 

biomarking thyroidal 131I exposure or absorbed dose. 

It would feel natural to equate overexpression of the gene, Txnrd3, with a greater amount of 

TRXR3, but this would be a mistake. Depending on suppression by translation regulatory 

proteins, the final amount of TRXR3 becomes uncertain, which could have various implications 

on cancer proliferation. Indisputable is the fact, however, that an increased level of TRXR3 

could still point to oxidative stress caused by increased ROS levels, which is a frequently the 

case in cancer cells (Patwardhan, et.al, 2022). As such, the presence of high levels of TRXR3 

in a tissue could signify cancer, which would make it a theoretical candidate for biomarking 

cancer. 
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Analysis 

There seemed to have been something which affected the accuracy of the results negatively. 

When plotting the uncorrected p-values against their rank (Figure 3 and 4), the pattern should 

ideally have either equal distribution of all ranks among all p-values (suggesting no difference 

between the control and research groups) or more smaller p-values than higher (suggesting a 

difference between the control and research groups). In some of the results, the case was a local 

logarithmic increase. This would imply that the number of low p-values was decreased, i.e., 

errors had to have been introduced to skew the distribution of p-values.  

The error introduction seemed to be dose-dependent. Previous studies (Larsson, et.al, 2020) 

would suggest statistically significant changes in protein abundance across a wide range of 

doses, but this does not seem to be the case in this study. When looking at Figure 1 and 2, it 

seems the statistical accuracy was dose-dependent and that statistically significant changes in 

protein abundance for low doses became not significant and other proteins’ abundances became 

more insignificant at higher doses. This can also be seen in Figure 3 and 4 as (notably in the 

young groups) mostly the low-ranking p-values were larger for medium doses than low doses 

with a prominent logarithmic increase appearing for 500 kBq. 

There are similarities between this study and Larsson’s (2020). Larsson’s study involved a wider 

pool of analytical methods, containing results from gene expression microarray, proteomic LC-

MS/MS, ELISA, and a histological analysis. The proteomic analyses are, however, similar. For 

instance, the same dose in the same organ for the same age groups were analyzed with the same 

method. What this and Larsson’s study differ in besides the multitude of used methods is the 

time of euthanasia and final FDR limit. In Larsson’s study the time of euthanasia was 9 months, 

compared to this study’s 12 months and the final FDR limit for proteomic analysis was 

unspecified as samples were pooled and ELISA was used to validate its results. 

The similarities in study design and difference analysis method should mean some differences 

in results. With the difference in time until euthanasia being 3 months, there was time for 

potential additional changes in protein abundance to have developed within the dose groups of 

this study beyond that of what Larsson saw. The unspecified FDR limit of the LC-MS/MS 

analysis does pose potential for differences in results to occur, but it would be unwise to 

immediately dismiss them seeing as the results were validated through other means. This does 

still leave the specific FDR to question and means a statistical comparison of numbers becomes 

irrelevant as Larsson’s LC-MS/MS study contains no final numbers. ELISA is, however, a 

recognized reliable method. Instead of analyzing each rat’s thyroid by itself and performing a 

statistical analysis after, like in this study, Larsson’s study pooled each group into one sample 

and analyzed the pooled sample via LC-MS/MS. This does remove the ability to visualize the 

variance of each dose group, but again, ELISA is a well-recognized method so the pooling may 

not play as much of a role as one might think. Therefore, different results would be expected 

from this study compared to Larsson’s, but to what extent is difficult to visualize. 
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The tissue samples had an amount of additional non-thyroid tissue attached to them, most likely 

connective tissue. This could have been an introduction of error for some proteins. When 

analyzed, the extra tissue could have provided protein data common to several types of tissue. 

Since not all tissue has the same proteome, is equally radiosensitive, or responds in the same 

way, the additional tissue could have had its own change in protein abundance which interfered 

with the thyroid’s and increased the variance of protein abundance for some proteins in some 

groups, as seen in Figure 5. Varying responses to various doses coupled with interfering 

variance of various tissues could have increased the p-value generating the perplexing 

appearance of Figure 3 and 4. However, this does not completely explain the lack of results as 

there are some proteins which should not have this problem, like thyroglobulin which is only 

expressed in the thyroid. Langen et. al (2018) investigated the use of deconvolution to improve 

statistical accuracy of the method, significance analysis of microarrays. By adding information 

on tissue composition, the deconvolution algorithm produced a modified output which showed 

more significant findings compared to no deconvolution. Hence, deconvolution could improve 

statistical accuracy for proteomic LC-MS/MS. 

Not all rats had to have developed any relevant change. As seen in Figure 1 and 2, plenty of 

proteins were statistically insignificantly abundant relative to the control groups and had an 

irrelevant change in FC. The implication here was that not all rats had to have developed any 

changes, since the damage caused by ionizing radiation especially at low doses is stochastic. 

This would mean that statistical significance on the whole sample population might not be the 

best way to proceed with an evaluation, as the non-indicative samples could drown the statistics 

and imply no change. The samples were also not entire thyroids, but bits from thyroids, meaning 

that if the response was not homogenous within the entire thyroid, the result might not be 

representative of the entire thyroid proteome. This could have further reduced the probability 

of finding proteins which might have had altered abundance. Hence, selecting individuals with 

changes in their proteome and analyzing the entire thyroid might be appropriate. However, as 

the population of individuals with confirmed change would need to be of a certain size, that 

size would dictate the total needed number of rats for experimentation which could imply 

ethical issues. 

There are many ways a cell’s proteome can be changed and how these changes could contribute 

to cancer development. One consequence of this is reduced detectability of cancer induction 

among irradiated groups, as the proteomes of cancer cells could differ. As such, analysis of 

individuals with confirmed oncogenic changes could be of use in mapping the proteome of 

these cells, but this does not directly solve the issue of reduced detectability. This data could be 

used in a comparison of cancer pathways between the young and old populations to find any 

differences in the type of cancer and carcinogenesis pathways which could be used to improve 

detectability of other studies through deconvolution (Langen, et.al, 2018). Any other 

information would have to be supplemented by additional studies, but this way may be a good 

way to explore proteomic change as studies of the proteome show differing results in which 

proteins have a significantly changed expression (Larsson, et.al, 2020; Larsson, et.al, 2022). 
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Proteomic analysis via LC-MS/MS has worked historically for detecting changes in protein 

abundance after exposure to 131I (Larsson, et.al, 2020; Larsson, et.al, 2022). Probably the 

greatest strength of proteomic LC-MS/MS is the direct measurement of the proteome, giving 

an unbiased cross section of concurrent events at the point of measurement. However, 

variability in the abundance of individual proteins between measurements, also known as batch 

effect, provide an obstacle to accuracy. To remove these effects is impossible, but they can be 

suppressed. An example of suppressing this is increased sample sizes, which in turnprovide 

ethical problems. Resampling techniques, such as bootstrapping (random resampling with 

replacement) and jackknifing (resampling by systematic omittion), could maybe also be used 

to improve statistical accuracy to reduce the ethical burden. 

Proteomic LC-MS/MS is not without its own problems. During the chromatographic step, the 

sample is sorted according to, for example size, with some resolution. The resolution ensures 

that analytes can be differentiated, but the limit of resolution counteracts this and causes 

analytes similar by the sorting order to be seen as the same. TMT MS/MS techniques quantify 

the best when only one particle is analysed (Rozanova, et.al, 2021). The practical implications 

of this would be that proteins are seen as others, which affects annotation and underestimates 

the peptide quantity (Rozanova, et.al, 2021). Adding more fragmentation to the MS/MS process 

has shown to counter this problem (Ting, et.al, 2011), but would probably add to the already 

existing issue of data handling as more information would require processing. In the context of 

this study and to improve the statistics, an alternative method could be non-destructive 

confirmation of late effects, followed by an analysis examining different pathways leading to 

the effects. While not cheap, a possibility is to use nuclear medical imaging techniques to detect 

the presence of tumour nodules in order to select contenders which would proceed to the next 

step of analysing their thyroid with other methods, which can be destructive to the thyroid 

tissue, such as LC-MS/MS or DNA methylation sequencing. Immunoassays, such as ELISA or 

western blot, could also be used for proteomic studies and would reduce the issues with data 

handling and quantification, but would require prior knowledge on which proteins should be 

studied. It should be noted that the entire thyroid would need to be used for analysis to properly 

catch the affected regions of the thyroid.  

The age groups were created to be representative of children and adults giving information on 

the differences between adult and young rats, but nothing on adolescence. Studying this period 

and comparing it to the younger and older groups could provide useful thyroid cancer 

information with regards to thyroid development which could yield knowledge on cancer 

pathway development by observing when the occurrence of thyroid cancer decreases after 

internal exposure to 131I. This would add complexity and make it less viable. The use of 

additional older groups would likely not contribute new information.  
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Conclusion 

One protein with statistically significantly change in relative abundance was found at 0.5 kBq 

for the young rats. The rat protein, TRXR3, was overexpressed beyond a fold change of 1.5 and 

is similar in function to the human equivalent, TRXR3, both of which are involved in oxidant 

detoxification and an over expression would imply the presence of oxidative stress. The 

implication of oxidative stress could not be confirmed with other significantly regulated 

proteins. The results pointed towards TRXR3 not being a good candidate biomarker for 131I 

exposure or absorbed dose due to the lack of appearance across all doses. The high variability 

within and between groups reduced statistical accuracy, which made it difficult to draw 

conclusions. Hence more research is needed about variations in response between young and 

adult individuals after internal irradiation from 131I. 
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APPENDIX 

R Code 

install.packages("tidyverse") 
install.packages("readxl") 
install.packages("writexl") 
 
if (!requireNamespace('BiocManager', quietly = TRUE)) 
    install.packages('BiocManager') 
BiocManager::install('EnhancedVolcano') 
 
library(tidyverse) 
library(readxl) 
library(writexl) 
library(knitr) 
library(EnhancedVolcano) 
 
setwd("") # Set work directory 
 
rm(list = ls()) # Delets the current workspace for easier debugging 
 
mydata <- read_xlsx("", sheet = "") # Select excel file and work sheet 
mydata <- mydata %>% drop_na 
 
exprdata <- mydata %>% select(c(X1:N4)) 
boxplot(exprdata, ylab="Relativee fold change", xlab="Group") 
 
# normalcy check 
hist(unlist(exprdata),breaks=100) 
 
exprdata_log <- log2(exprdata) 
hist(unlist(exprdata_log),breaks=100) 
 
exprdata_log_t <- t(exprdata_log) 
 
# principal component analysis 
pc <- prcomp(exprdata_log_t, center=TRUE, scale=TRUE) 
plot(pc) 
 
pc_comp <- pc$x 
 
col1="blue" 
col2="green" 
col3="yellow" 
col4="orange" 
col5="red" 
 
# principal component plots, same dose has same colour 
plot(pc_comp[1:nrow(pc_comp),1], pc_comp[1:nrow(pc_comp),2], col=rep(c("black", each=1)), 
xlab="PC1", ylab="PC2", pch=16) 
 
X=1:5 
text(pc_comp[X,1], pc_comp[X,2], colnames(exprdata_log)[X], col=col1, pos=2) 
 
I=6:10 
text(pc_comp[I,1], pc_comp[I,2], colnames(exprdata_log)[I], col=col2, pos=2) 
 
H=11:16 
text(pc_comp[H,1], pc_comp[H,2], colnames(exprdata_log)[H], col=col3, pos=2) 
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O=17:21 
text(pc_comp[O,1], pc_comp[O,2], colnames(exprdata_log)[O], col=col4, pos=2) 
 
R=22:27 
text(pc_comp[R,1], pc_comp[R,2], colnames(exprdata_log)[R], col=col5, pos=2) 
 
U=28:33 
text(pc_comp[U,1], pc_comp[U,2], colnames(exprdata_log)[U], col=col1, pos=4) 
 
E=34:38 
text(pc_comp[E,1], pc_comp[E,2], colnames(exprdata_log)[E], col=col2, pos=4) 
 
D=39:42 
text(pc_comp[D,1], pc_comp[D,2], colnames(exprdata_log)[D], col=col3, pos=4) 
 
C=43:47 
text(pc_comp[C,1], pc_comp[C,2], colnames(exprdata_log)[C], col=col4, pos=4) 
 
N=48:51 
text(pc_comp[N,1], pc_comp[N,2], colnames(exprdata_log)[N], col=col5, pos=4) 
 
exprdata_out <- cbind(Accession = mydata$Accession, 
                     exprdata,  
                     mean_Control_y = apply(exprdata[,U], 1, mean), 
                     mean_Control_o = apply(exprdata[,X], 1, mean), 
      mean_001Gy_y = apply(exprdata[,E], 1, mean), 
      mean_001Gy_o = apply(exprdata[,I], 1, mean), 
      mean_01Gy_y = apply(exprdata[,D], 1, mean), 
      mean_01Gy_o = apply(exprdata[,H], 1, mean), 
      mean_1Gy_y = apply(exprdata[,C], 1, mean), 
      mean_1Gy_o = apply(exprdata[,O], 1, mean), 
      mean_10Gy_y = apply(exprdata[,N], 1, mean), 
      mean_10Gy_o = apply(exprdata[,R], 1, mean)) 
head(exprdata_out) 
 
exprdata_out <- exprdata_out %>% mutate(log2FC_001Gy_y = log2(mean_001Gy_y/mean_Control_y)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_001Gy_o = log2(mean_001Gy_o/mean_Control_o)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_01Gy_y = log2(mean_01Gy_y/mean_Control_y)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_01Gy_o = log2(mean_01Gy_o/mean_Control_o)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_1Gy_y = log2(mean_1Gy_y/mean_Control_y)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_1Gy_o = log2(mean_1Gy_o/mean_Control_o)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_10Gy_y = log2(mean_10Gy_y/mean_Control_y)) 
exprdata_out <- exprdata_out %>% mutate(log2FC_10Gy_o = log2(mean_10Gy_o/mean_Control_o)) 
head(exprdata_out) 
 
# t-tests for each group compared to the controll 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_001_y = apply(exprdata_log, 1, function(x) {t.test(x[E], x[U])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_001_o = apply(exprdata_log, 1, function(x) {t.test(x[I], x[X])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_01_y = apply(exprdata_log, 1, function(x) {t.test(x[D], x[U])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_01_o = apply(exprdata_log, 1, function(x) {t.test(x[H], x[X])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_1_y = apply(exprdata_log, 1, function(x) {t.test(x[C], x[U])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_1_o = apply(exprdata_log, 1, function(x) {t.test(x[O], x[X])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_10_y = apply(exprdata_log, 1, function(x) {t.test(x[N], x[U])$p.value})) 
exprdata_out <- cbind(exprdata_out,  
                      pvalue_10_o = apply(exprdata_log, 1, function(x) {t.test(x[R], x[X])$p.value})) 
 
exprdata_out <- cbind(exprdata_out, fdr_001_y = p.adjust(exprdata_out$pvalue_001_y, method="BH")) 
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exprdata_out <- cbind(exprdata_out, fdr_001_o = p.adjust(exprdata_out$pvalue_001_o, method="BH")) 
exprdata_out <- cbind(exprdata_out, fdr_01_y = p.adjust(exprdata_out$pvalue_01_y, method="BH")) 
exprdata_out <- cbind(exprdata_out, fdr_01_o = p.adjust(exprdata_out$pvalue_01_o, method="BH")) 
exprdata_out <- cbind(exprdata_out, fdr_1_y = p.adjust(exprdata_out$pvalue_1_y, method="BH")) 
exprdata_out <- cbind(exprdata_out, fdr_1_o = p.adjust(exprdata_out$pvalue_1_o, method="BH")) 
exprdata_out <- cbind(exprdata_out, fdr_10_y = p.adjust(exprdata_out$pvalue_10_y, method="BH")) 
exprdata_out <- cbind(exprdata_out, fdr_10_o = p.adjust(exprdata_out$pvalue_10_o, method="BH")) 
 
alfa=0.05 
FC=log2(1.5) 
labelsize = 0 # makes dots visible while text becomes minimal 
axislabelsize = 20 
titlesize = 30 
x=c(-3,3) 
y=c(0,1.7) 
 
sortorder001y = sort(exprdata_out$pvalue_001_y) 
sortorder001o = sort(exprdata_out$pvalue_001_o) 
sortorder01y = sort(exprdata_out$pvalue_01_y) 
sortorder01o = sort(exprdata_out$pvalue_01_o) 
sortorder1y = sort(exprdata_out$pvalue_1_y) 
sortorder1o = sort(exprdata_out$pvalue_1_o) 
sortorder10y = sort(exprdata_out$pvalue_10_y) 
sortorder10o = sort(exprdata_out$pvalue_10_o) 
 
# plots for analysis of accuracy 
mylayout = matrix(1:4,2,2,byrow = TRUE) 
layout(mylayout) 
plot(1:length(sortorder001y),sortorder001y, xlab = "rank", ylab = "p-value", main = "0.01 Gy, young") 
plot(1:length(sortorder01y),sortorder01y, xlab = "rank", ylab = "p-value", main = "0.1 Gy, young") 
plot(1:length(sortorder1y),sortorder1y, xlab = "rank", ylab = "p-value", main = "1 Gy, young") 
plot(1:length(sortorder10y),sortorder10y, xlab = "rank", ylab = "p-value", main = "10 Gy, young") 
win.graph() 
mylayout = matrix(1:4,2,2,byrow = TRUE) 
layout(mylayout) 
plot(1:length(sortorder001o),sortorder001o, xlab = "rank", ylab = "p-value", main = "0.007 Gy, adult") 
plot(1:length(sortorder01o),sortorder01o, xlab = "rank", ylab = "p-value", main = "0.07 Gy, adult") 
plot(1:length(sortorder1o),sortorder1o, xlab = "rank", ylab = "p-value", main = "0.7 Gy, adult") 
plot(1:length(sortorder10o),sortorder10o, xlab = "rank", ylab = "p-value", main = "7 Gy, adult") 
 
# volcano plots of BH corrected p-values over FC 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_001Gy_y",                         # value to plot in the X-axis 
                 y = "fdr_001_y",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "0.01 Gy, young",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                      # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_01Gy_y",                         # value to plot in the X-axis 
                 y = "fdr_01_y",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
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                 FCcutoff = FC,   # cut off for the fold change 
                 title = "0.1 Gy, young",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_1Gy_y",                         # value to plot in the X-axis 
                 y = "fdr_1_y",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "1 Gy, young",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_10Gy_y",                         # value to plot in the X-axis 
                 y = "fdr_10_y",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "10 Gy, young",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_001Gy_o",                         # value to plot in the X-axis 
                 y = "fdr_001_o",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "0.007 Gy, adult",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
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                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_01Gy_o",                         # value to plot in the X-axis 
                 y = "fdr_01_o",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "0.07 Gy, adult",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_1Gy_o",                         # value to plot in the X-axis 
                 y = "fdr_1_o",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "0.7 Gy, adult",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
win.graph() 
EnhancedVolcano(exprdata_out,                          # data to plot 
                 lab = exprdata_out$Accession,         # labels (protein name) 
                 x = "log2FC_10Gy_o",                         # value to plot in the X-axis 
                 y = "fdr_10_o",                         # value to plot in the Y-axis 
                 pCutoff = alfa,    # cut off for the pvalue 
                 FCcutoff = FC,   # cut off for the fold change 
                 title = "7 Gy, adult",        # Title of the plot 
                 subtitle = NULL,                      # Remove subtitle to create more space for the plot 
                 caption = NULL,                       # Remove caption to create more space for the plot  
       titleLabSize = titlesize, 
                                                         # (if you remove this line you will get the number of proteins plotted) 
                 legendPosition = "top",               # Position the legend on top of the plot 
                 axisLabSize = axislabelsize,                     # Set font size for axis labels 
                 labSize = labelsize,                        # Set font size for protein labels 
                 xlim = x,                       # Set x-axis limits to -3 and 3 so the plot is symmetric 
                 ylim = y)                       # Set y-axis limits to 0 and 7 
 
 
log2varX = diag(as.matrix(var(t(exprdata_log[,X])))) 
log2varI = diag(as.matrix(var(t(exprdata_log[,I])))) 
log2varH = diag(as.matrix(var(t(exprdata_log[,H])))) 
log2varO = diag(as.matrix(var(t(exprdata_log[,O])))) 
log2varR = diag(as.matrix(var(t(exprdata_log[,R])))) 
log2varU = diag(as.matrix(var(t(exprdata_log[,U])))) 
log2varE = diag(as.matrix(var(t(exprdata_log[,E])))) 
log2varD = diag(as.matrix(var(t(exprdata_log[,D])))) 
log2varC = diag(as.matrix(var(t(exprdata_log[,C])))) 
log2varN = diag(as.matrix(var(t(exprdata_log[,N])))) 
 
vardata <- cbind(Accession = mydata$Accession, 
 log2varX,log2varI,log2varH,log2varO,log2varR, 
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 log2varU,log2varE,log2varD,log2varC,log2varN) 
vardata = as.data.frame(vardata) 
 
x = c(0,1) 
y = c(0,1500) 
mybreaks = 400 
mytext = "Variance frequnecy," 
xname = "log2(FC) variance" 
yname = "Abundance" 
mylayout = matrix(1:10,2,5,byrow = TRUE) 
layout(mylayout) 
 
# Plotting of variance frequency historgrams 
win.graph() 
hist(as.numeric(vardata$log2varX), 
 breaks = mybreaks,  
 main = paste(mytext,"control, adult"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varI), 
 breaks = mybreaks,  
 main = paste(mytext,"0.007 Gy, adult"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varH), 
 breaks = mybreaks,  
 main = paste(mytext,"0.07 Gy, adult"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varO), 
 breaks = mybreaks,  
 main = paste(mytext,"0.7 Gy, adult"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varR), 
 breaks = mybreaks,  
 main = paste(mytext,"7 Gy, adult"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varU), 
 breaks = mybreaks,  
 main = paste(mytext,"control, young"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varE), 
 breaks = mybreaks,  
 main = paste(mytext,"0.01 Gy, young"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varD), 
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 breaks = mybreaks,  
 main = paste(mytext,"0.1 Gy, young"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varC), 
 breaks = mybreaks,  
 main = paste(mytext,"1 Gy, young"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 
hist(as.numeric(vardata$log2varN), 
 breaks = mybreaks*2,  
 main = paste(mytext,"10 Gy, young"), 
 xlab = xname, 
 ylab = yname, 
 xlim = x, 
 ylim = y) 


