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ABSTRACT

Complex systems often display chaotic dynamics, characterised by being
exponentially sensitive to changes in initial conditions. Such systems are in
general difficult to analyse, due to the large number of nonlinearly interacting
degrees of freedom. Dynamical-systems theory provides a framework for
analysing such systems. One of the tools from this theory is the Lyapunov
exponent, which quantifies the rate at which initially nearby trajectories
converge or diverge over time. The exponent can be used to study how the
stability of a complex system depends on different system parameters. The
finite-time Lyapunov exponent can be used to reveal organising structures
in the phase space of the system that separate it into different characteristic
regions. These structures are referred to as Lagrangian coherent structures.

In this thesis, the Lyapunov exponent and Lagrangian coherent structures
are used to explore the properties of complex systems. In the two presented
papers, artificial neural networks are analysed, which are machine-learning
algorithms with a large number of interconnected nonlinear computational
nodes. We show that these systems can be analysed as complex dynamical
systems, and show, among other things, how this perspective helps shed-
ding light on how the neural networks learn to perform classification tasks.
Additionally, a project on how microswimmers can escape through trans-
port barriers in flows using orientational diffusion is presented, where the
transport barriers are Lagrangian coherent structures.
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1 Introduction

Chaotic systems are ubiquitous in nature and engineering. Characterised by
an exponentially sensitive dependence on initial conditions, chaotic systems
are generally difficult to study. Complex systems – systems with a large num-
ber of nonlinearly interacting components – often exhibit chaotic behaviour.
In physics, the weather [1], the motion of celestial bodies [2], and the dynam-
ics of particles in turbulent flows [3, 4, 5] are examples of a chaotic system.
In biology, the brain has been suggested to operate at the edge of chaos [6],
and population dynamics often display chaotic behaviour [7]. In chemistry,
the Belousov–Zhabotinsky reaction is an example of chaotic dynamics in
chemical reactions [8].

While the sensitivity to initial conditions makes predicting chaotic dy-
namics difficult, the sensitivity can also yield insight into the structure of the
system. For instance, artificial neural networks, machine-learning models
used in classification tasks, can display transient chaos [9], and as is shown in
Paper A, the networks exploit this property to become sensitive to differences
in input signals which help them separate data into different classes.

Lyapunov exponents, a tool from dynamical-systems theory [10, 11], quan-
tify this sensitivity. More precisely, the exponents quantify the average ex-
ponential convergence or divergence of nearby trajectories of a dynamical
system, and a positive exponent is an indication of chaotic dynamics. The
Lyapunov exponents carry a lot of information about the dynamical system.
For example, if the sum of Lyapunov exponents is negative, the system is
dissipative and information about the initial condition is lost over time. A
zero-valued Lyapunov exponent tends to indicate that a symmetry exists in
the system [12]. The Lyapunov exponents are asymptotic quantities, calcu-
lated in the limit of large times, which, if they exist, are independent of initial
conditions [10, 13]. Their finite-time counterpart, the finite-time Lyapunov
exponents (FTLE), are position dependent. The FTLEs have been used exten-
sively in studying complex dynamics, such as the alignment of particles in a
fluid [14, 15], the detection of transport barriers [16, 17, 18], and transport
and mixing processes [19, 20, 21].

Another tool to explore complex dynamics are Lagrangian coherent struc-
tures [22, 23], which are closely related to FTLEs. These structures organise
the dynamics into different characteristic regions, much like invariant man-
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ifolds in dynamical systems, with the benefit of being easily extendable to
finite-time settings and time-varying dynamics [24].

In this thesis, Lyapunov exponents and Lagrangian coherent structures
are used to understand the structure of complex systems. The work includes
two papers where artificial neural networks are analysed, and an on-going
project on transport barriers for microswimmers in fluid flows. This text is
meant as an introduction to the theory required to understand the results
of the work, and as a summary of results and conclusions. To this end, the
thesis will begin with a theory section where dynamical-systems theory, the
Lyapunov exponent and related topics are presented, followed by theory on
Lagrangian coherent structures. Next, theory on artificial neural networks
is presented, since much of the work is dedicated to their analysis. Finally,
a section on microswimmers is presented. With the theory out of the way,
a summary of the results and conclusions of the two published papers and
the on-going project is presented, together with a section with conclusions,
open questions.
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PART I

BACKGROUND
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2 Dynamical systems, Lyapunov exponents, and
time-delay embedding

In this section, some concepts from dynamical systems theory are intro-
duced that are used in the presented work. Dynamical-systems theory is a
framework used for studying the dynamics of complex systems. Complex
systems, like the weather or the brain, are nonlinear, and closed form solu-
tions are most often impossible to find. Instead, dynamical-systems theory
focuses on studying qualitative properties of the dynamics, such as whether
the system is sensitive to perturbations, whether the system displays period-
icity, and whether the evolution of the system is bounded to some attractor
or is divergent.

2.1 Dynamical systems

A dynamical system [11] is defined by an evolution rule F (x , t ) and a space
referred to as phase space in which F (x , t ) maps an initial position x (0)
to a later position x (t ), that is, x (t ) = F (x (0), t ). The parameter t usually
represents time. The evolution rule generates unique trajectories1 through
phase space, and the entire trajectory passing through x (0) is referred to as
an orbit. If t is a real-valued parameter, the dynamical system is said to be
continuous, while if t is an integer, the dynamical system is discrete. Usually,
an m-dimensional continuous dynamical system is realised by defining a
set of first order differential equations

ẋ (t ) = f (x (t ), t ), x (0) = x 0, x ∈Rn , t ∈R. (2.1)

where f is a vector field in Rm . The dynamical system is referred to as non-
autonomous if f explicitly depends on t , and autonomous otherwise.

An m-dimensional discrete dynamical system is similarly realised by
defining

x (n +1) = f (x (n ), n ), x (0) = x 0, x ∈Rn , n ∈N. (2.2)

where f is a map inRm . Usually, the evolution rule F (x , t ) cannot be written
explicitly, and so the dynamical system is given by the solutions to these

1The trajectories are unique almost surely, as there may be a set of measure zero of initial
conditions for which the trajectories are not defined.
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sets of equations. A dynamical system in which a volume evolving in phase
space remains constant over time is said to be conservative (e.g. Hamiltonian
dynamics). If volumes in phase space shrink over time, the dynamical system
is dissipative and therefore not invertible.

Dynamical-systems theory studies the long-term behaviour of time-varying
systems. Of particular interest is the stability of the system; that is, whether
trajectories diverge or if they are bounded to some region of phase space.
Attractors are regions in phase space towards which trajectories converge
and remain in. Examples of attractors are fixed points, limit cycles or tori,
and strange attractors. The set of initial conditions that converge to the at-
tractor is called the basin of attraction. A dynamical system may have several
such basins to different attractors. If a region in phase space is an attractor
backwards in time, the region is called a repeller. If, for example, a fixed point
is an attractor, it is said to be stable, while it is said to be unstable if it is a
repeller.

The stability of attractors/repellers may be studied through linear stability
analysis to determine whether a small perturbation away from them will
grow or shrink over time. This analysis, however, requires one to first identify
the attractors/repellers, which can be difficult. Another approach, which is
used to study local stability of trajectories, is to consider how the distance
between two initially infinitesimally nearby trajectories evolve over time. The
growth or shrinkage of this distance is quantified by the Lyapunov exponents.
These will be introduced in the next section.

Why is studying the stability of dynamical systems interesting? As will
be seen in the work presented herein, sensitivity to changes to initial con-
ditions can reveal structures of the phase space that define the dynamics.
These structures turn out to define decision boundaries for artificial neural
networks and transport barriers for microscopic swimmers in fluid flows. Ad-
ditionally, stability determines whether a system will be able to synchronise
to a driving signal; a necessary property in the design of some time-series
prediction algorithms.

2.2 Lyapunov exponents

In this section, the Lyapunov exponent, which is the central tool in this work,
is introduced. The section starts with a definition of Lyapunov exponents and
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Lyapunov vectors, followed by a description of how they can be computed
numerically.

2.2.1 Definition and properties

Lyapunov exponents describe how initially small separations between tra-
jectories defined by a dynamical system evolve in magnitude over time. For
some continuous or discrete m-dimensional dynamical system, denoting
the initial, infinitesimal separation at time t0 as δx (t0) =δx 0 and the separa-
tion at a later time t as δx (t ), the maximal Lyapunov exponent is defined
as

λ1 = lim
t→∞

lim
||δx 0||→0

t −1 ln
||δx (t )||
||δx 0||

, (2.3)

where || · || is some norm2. In words, the maximal Lyapunov exponent quan-
tifies the typical average exponential rate of separation between trajectories
in the dynamical system. Hence, a positive exponent signifies a growth in
the separation, while the converse is implied by a negative exponent. The
word ‘typical’ is used here because a typical perturbation δx (0)will have a
component in the direction in phase space associated with the maximal Lya-
punov exponent, and so its rate of separation will be completely dominated
by this exponent in the considered limit (assuming non-degeneracy). In
fact, a spectrum of m Lyapunov exponents can be defined, with associated
orthogonal Lyapunov vectors spanningRm . In what follows I will define the
Lyapunov spectrum more thoroughly, beginning by defining the monodromy
matrix, whose singular values and vectors will turn out to be closely related
to the Lyapunov spectrum.

The monodromy matrix and Lyapunov exponents

Consider a continuous dynamical system defined through

ẋ = f (x ). (2.4)

Given two initial coordinates separated by the infinitesimal vector δx 0 =
x ′(0) − x (0), the dynamics of the separation can be obtained through the
linearised dynanamics:

δ̇x ≈∇ f (x )δx . (2.5)

2The definition of the Lyapunov exponent is independent of the employed norm [12].
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The solution to Eq. 2.5 is formally given by

δx (t ) =M(t0, t )δx 0 (2.6)

whereM(t0, t ) = exp
�

∫ t

t0
∇ f (x (τ))dτ

�

. The matrixM thus maps the initial

separation δx 0to later separation δx (t ) and is referred to as the monodromy
matrix. Note that taking the time derivative ofM(t0, t ) yields a matrix differ-
ential equation

Ṁ=∇ f (x (t ))M, M(t0, t0) = I (2.7)

which is referred to as the variational equation [25]. The evolved monodromy
matrix can thus be computed by integrating the dynamical system together
with the variational equation.

Since we are interested in how the magnitude of the perturbation changes
over time, we compute the Euclidian norm of δx ,

||δx (t )||=
q

δx ⊤0M⊤Mδx 0. (2.8)

The matrixM⊤M is referred to as the right Cauchy-Green matrix, and is a
central object of study in continuum mechanics, used for example to study
instabilities in plastic deformation [26], crack initiation [27], and the align-
ment of rods in fluids [14, 28]. We now decompose the monodromy matrix
using singular value decomposition to obtainM = USV⊤, where U and V
are orthonormal matrices whose column vectors u i (t ) and v i (t ) are the left
and right singular vectors respectively, and S is a diagonal matrix with non-
negative entries Si j =σiδi j , whereσi are the singular values ofM. These are,
without loss of generality, arranged in descending order so that σi ≥σi+1.
Inserting this expression into Eq. 2.8, we find that

||δx (t )||=
q

δx ⊤0VS2V⊤δx 0. (2.9)

That is, the eigenvalues of the right Cauchy-Green matrix are the squared sin-
gular values ofM and its eigenvectors are the right singular vectors v i (t). The
geometric interpretation of v i (t ) is that an initial perturbation δx 0 tangent
with this direction will be scaled by a factorσi . Going back to the definition
of the Lyapunov exponent (Eq. 2.3), selecting the perturbation δx 0 to be
tangential to one of the eigenvectors v i we have

λi (t ) = t −1 lnσi (2.10)
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which is referred to as the i :th finite-time Lyapunov exponent (FTLE). The as-
sociated right singular vector v i (t ) is the finite-time Lyapunov vector (FTLV).
To obtain the Lyapunov exponent, we take the infinite-time limit. The con-
vergence

λi = lim
t→∞

t −1 lnσi (2.11)

is ensured by Oseledec’s theorem [12, 13], which holds if the dynamics are
stationary and ergodic. The theorem also shows that the FTLVs converge to
the Lyapunov vectors, which are non-random.

Interpretation and properties

Now let us consider an arbitrary initial perturbation, which we write in the
basis of the FTLVs,

δx 0 =
∑

i

ci v i (t ). (2.12)

The squared magnitude of the perturbation at time t will then be

||δx (t )||2 =
∑

i

c 2
i e 2tλi (t ), (2.13)

where we have written the singular values in terms of the FTLEs. Assum-
ing λ1(t ) > λ2(t ), we see that the growth of the perturbation is completely
dominated by the maximal FTLE in the large-t limit. Since the Lyapunov
exponent has units [1/s ], the inverse of the Lyapunov exponent represents a
characteristic time scale of the dynamical system and is called the Lyapunov
time. If the maximal Lyapunov exponent is positive, this time scale quantifies
for how long the dynamics can be accurately predicted, since any deviation
when measuring the dynamics will have become significant beyond this
point in time.

Now consider a unit cube C (0) in Rm spanned by the FTLVs. Evolving the
FTLVs using the monodromy matrix will result in a parallelepiped spanned
by the scaled left singular vectors σi u i . Since the left singular vectors are
orthogonal, the resulting volume is given by the product of singular values.
Hence, again writing the singular values in terms of the FTLEs, the evolved
volume will be

Vol[C (t )] = e t
∑n

i=1λi . (2.14)



LYAPUNOV EXPONENTS 9

Thus, we see that the sum of Lyapunov exponents tell us the rate of contrac-
tion/expansion of volumes in phase space. If the sum is negative, the volume
will shrink, yielding dissipative dynamics. If the sum equals zero, volume is
conserved and the dynamics are conservative.

Random-matrix theory

Sometimes the dynamics of a discrete-time system are best modelled as a
product of random matrices. Examples of such systems include disordered
systems like spin models with random interactions, or chains of harmonic
oscillators with random masses [13]. Random-matrix products also arise in
the context of artificial neural networks, which are studied in this work. Here,
some results concerning the Lyapunov exponents of systems governed by
random-matrix products are presented.

Consider an m-dimensional discrete dynamical system governed by the
dynamics

x (n +1) =An x (n ), x (0) = x 0, (2.15)

whereAn is an m ×m random matrix sampled from some distribution. The
state at time step n can then be written as

x (n ) =An−1An−2 . . .A0x 0 =M(0, n )x 0. (2.16)

If the distribution is chosen so that the singular values of An are bounded,
the Furstenberg theorem [13] states that the following limit exists:

λ1 = lim
n→∞

n−1 ln (σ1(M)). (2.17)

Here,σ1(M) is the maximal singular value of the random realisationM of the
matrix product. The theorem also states that this limit is non-random, i.e.

λ1 = lim
n→∞

n−1〈ln (σ1(M))〉, (2.18)

where the average is taken over the distribution of matrix products. Another
result is Oseledec’s theorem for products of random matrices, which states
that the following limit holds:

lim
n→∞

�

M(0, n )⊤M(0, n )
�1/2n

=V. (2.19)

The logarithm of the eigenvalues ofV are the Lyapunov exponents, and the
eigenvectors are the Lyapunov vectors.
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2.3 Numerical computation of Lyapunov exponents

Finding analytic expressions for Lyapunov exponents is in general difficult.
Instead, it is more common to resort to numerical approximation schemes.
To obtain the Lyapunov exponents, one must compute the singular values
of the monodromy matrix M(t0, t ). Unfortunately, the singular values of
the matrix grow or shrink exponentially with time, making directly applying
singular value decomposition inaccurate. A way to circumvent this numer-
ical overflow is to decompose the monodromy matrix into time steps and
compute the average expansion/contraction performed at each time step.
In the continuous case, one discretises the variational equation (Eq. 2.7) as

M(t0, t +δt ) =M(t0, t ) +δt [J(t )M(t0, t )] = [I+δt J(t )]M(t0, t ). (2.20)

and writesM(t0, t ) as

M(t0, t ) = [I+δt J(t −δt )][I+δt J(t −2δt )] . . . [I+δt J(0)]. (2.21)

For discrete dynamics, the decomposition is straight forward:

M(n0, n ) = J(n −1)J(n −2) . . .J(0). (2.22)

For notational brevity, we will continue with the discrete case only. The
procedure is equivalent for the continuous case. Denoting the matrices in the
decomposition asAi , we decomposeA1 =Q1R1, whereQ1 is an orthonormal
matrix andR1 is an upper triangular matrix. Then, we decompose the matrix
A2Q1 =Q2R2. This procedure continues for all n matrices, resulting in that
the monodromy matrix can be written as

M(n0, n ) =QnRnRn−1 . . .R1 =QnR, (2.23)

whereR is also an upper triangular matrix, whose diagonal elements are the
sums of the diagonal elements of the Rk -matrices. One can then show that
[29, 30] the Lyapunov exponents can be computed as

λi = lim
n→∞

1

n

n
∑

k=1

ln |Rk ,i i |. (2.24)

This method is accurate in computing the Lyapunov exponents where as
many iterations as is needed can be used. However, the algorithm intro-
duces errors when computing FTLEs. To combat this error, T. Okushima
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[31] introduced a correction scheme based on the LR method for finding the
eigenvalues of theM⊤Mmatrix. The LR method decomposes a matrix into
a lower and upper triangular matrix A1 =L1R1. Then, a new matrix is pro-
duced throughA2 =R1L1 which has the same eigenvalues asA1. By iterating
this algorithm, An will converge to a lower-triangular matrix as n→∞. The
eigenvalues can then be read off from the diagonal. The method presented
in [31] is a combination of the QR method and the LR method.

2.4 Time-delay embedding

When observing the evolution of a chaotic dynamical system, one may only
have access to a single, 1-dimensional observable of the system, say ϕ(x (t )).
However, due to Takens’ embedding theorem, the history of this observable
is enough to reconstruct the dynamics of the system. Suppose thatϕ(x (t )) is
measured at a discrete set of delays, and construct a dynamical system out
of these delayed observations,

y1(t ) =ϕ(x (t )),

y2(t ) =ϕ(x (t −τ)),
...

yk (t ) =ϕ(x (t − (N −1)τ)).

(2.25)

As long as a multiple of the delay τ does not coincide with a period of the
system, and the observable ϕ fulfils some mild regularity conditions [32],
Takens’ embedding theorem states that, if k > 2dA , the dynamical system in
Eq. 2.25 is an embedding of the underlying dynamical system in Rk . Here,
dA is the box-counting dimension of the attractor of the chaotic dynamical
system [10].

Takens’ embedding theorem does not impose any further conditions on
the delay τ, but some delays may be more efficient than others. A common
way of finding a good time delay is to find the first local minimum of the av-
erage mutual information between delayed observations as the time delay is
increased [32]. Mutual information is a concept borrowed from information
theory, where the mutual information between two variables quantifies how
much information about one of the variables is obtained by observing the
other. Here, ‘information’ is quantified through information entropy [33],
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where gaining information results in a decrease in the entropy. By finding
the first local minimum of the average mutual information among the time-
delayed variables, the amount of information obtained from observing all
variables is maximised.

3 Lagrangian coherent structures

The study of dynamical systems relies on identifying attractors and repellers
in phase space which determine the long-term behaviour of the dynamics.
Oftentimes, identifying such structures is not easy, for example when the dy-
namical system is not defined through a known set of differential equations.
One may instead search for structures that organise phase space by being
coherent structures that persist on significant time scales. Coherent struc-
tures can be defined in several ways, such as being regions with persistent
vorticity [34, 35], regions where fluid particles display distinct statistics [36],
regions through which diffusive transport is extremised [37] or regions with
distinct FTLE distributions [38, 39]. Lagrangian coherent structures (LCS)
[23] have received much attention in the past decade [40, 41, 42, 43], defined
as structures that locally maximises/minimises deformations of phase-space
elements over some time span [t0, t ]. We proceed by presenting this defini-
tion. LCS have been used to study mixing in fluids [44], detecting attractors
and repellers in inertial particle dynamics [45], predicting pollution transport
patterns [46], and for optimal navigation in unsteady flows [18]. Since these
structures are Lagrangian, they are made up of trajectories of the dynamical
system. Hence, no trajectories can cross through the LCS, making them
transport barriers.

3.1 Definition

Consider a dynamical system with evolution rule F (x , t ). Let M0 be some
smooth surface of initial positions in phase space at time t0. Applying the
evolution rule to each point in M0 will result in an evolved surface Mt =
F (M0, t ). Letting n 0(x ) be an infinitesimal normal vector of the initial surface
at x ∈ M0, we can evolve the vector using the monodromy matrix of the
dynamical system. The evolved vector n̂ 0 =Mn 0(x ) is in general not the
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normal vector of the evolved surface, which is instead given by n t =M⊤n 0(x )
[25].

As previously mentioned, the definition of the LCS are the structures
which maximally/minimally deforms phase-space elements. If the dynamics
in phase space near x causes elements to be normally repelled from the
surface, the evolved initial normal vector n̂ 0 will become tangential with
the evolved surface’s normal vector. If, on the other hand, the dynamics
near x shears elements along the surface, n̂ 0 will align more in a direction
orthogonal to the evolved surface’s normal vector. Normalising these vectors,
the component of n̂ 0 orthogonal with n t is defined as the tangential shear,
whereas the component tangential with n t is the normal repulsion.

The LCS can now be defined as follows. A hyperbolic LCS is defined as
a surface M0 whose normal repulsion is locally maximal or minimal over
the time span [t0, t ] for all x ∈M0. If the normal repulsion is maximal, the
hyperbolic LCS is a repelling hyperbolic LCS, whereas the surface associated
with the minimal normal repulsion is an attracting hyperbolic LCS. Similarly,
a surface which maximises or minimises the tangential shear is called a
parabolic LCS. An elliptic LCS is a parabolic LCS, but where the surface M0 is
closed.

It has been shown [47] that for a surface to be an LCS, it must be or-
thogonal to a vector field associated with the right singular vectors of the
monodromy matrix. For hyperbolic LCS, this is the vector field associated
with the largest/smallest singular values for repelling and attracting LCS
respectively. In the case of parabolic and elliptic LCS, the orthogonal vector
field is given by [47]

η±(x 0, t ) =

√

√ σ1

σ1+σ3
v 1±

√

√ σ3

σ1+σ3
v 3. (3.1)

This condition provides a means of detecting LCS when the dynamical system
under consideration is in R3, as described below.

LCS are associated with the FTLEs of the dynamical system. For exam-
ple, repelling hyperbolic LCS coincides with ridges of positive FTLE, while
maximally shearing parabolic and elliptic LCS coincide with ridges where
|σ1 −σ3| is maximal [47]. Importantly, however, for ridges of FTLEs to be
LCS, the ridge must be orthogonal to the associated vector field.
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3.2 Finding the structures

To find the LCSs of a dynamical system, one must first compute the mon-
odromy matrix using the variational equation (Eq. 2.7). Once the deforma-
tion matrix is known over a dense grid of initial conditions in the domain
of interest, the vector field associated with the LCS can be obtained and
interpolated. From this point, if the LCS is in R3, we can use the fact that
the LCS must be orthogonal to a known vector field as follows, where we use
the parabolic LCS as an example. Introduce a plane with normal vector n⊥.
Now, if the plane passes through the elliptic LCS, the cross product between
n⊥ and η±(x 0, t )will produce a vector that is necessarily tangential with the
LCS. Hence, we can construct a dynamical system that will have the LCS as
an attractor or repeller:

ẋ =n⊥ ∧η±(x , t ). (3.2)

Closed trajectories of this method maps out elliptic LCS. The same procedure,
using the maximal or minimal FTLV can be used to detect hyperbolic LCS.
In computing the LCS, one must choose a grid that is sufficiently dense.
Additionally, the considered time interval [t0, t ] over which the monodromy
matrix for each grid point is integrated should be chosen using the fact
that the FTLV converge to be normal to the LCS exponentially with a rate
proportional to t −1 lnσ1/σ2 [17].

4 Artificial neural networks

The past decade has seen an explosion in the interest in artificial neural net-
works due to their demonstrated ability to produce state-of-the-art results
in classification [48, 49], generative [50, 51], and time-series prediction tasks
[52]. Arguably one of the primary reasons for this success lies in the univer-
sal approximation theorem [53], which shows that any sufficiently smooth
function can be approximated by an ANN, given that the network is wide
enough. However, even narrow networks can model complex functional
relationships if hidden layers, i.e. intermediate, consecutive computational
layers between input and output, are introduced, resulting in a deep neural
network (DNN). Such networks display exponential expressivity [9], which
allows them to unfold intricate data manifolds at an exponential rate per
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layer. This results in that DNNs are able to identify highly intricate features
in datasets. In Paper A, we investigate how this exponential expressivity is
exploited by the network.

While DNNs have shown promising results in applications, we still lack
a complete understanding of what and how the network learns. As for the
“what" question, the above exposition leads to the question “if the network
can identify such complex features, how do we know what it has actually
learnt?". This question is at the heart of the blackbox problem of DNNs
[54, 55, 56] – the fact that we cannot easily read off what information has been
captured by a trained network from its parameters. By testing the network
against an independent test dataset, we can verify whether the network
has captured the global features contained in the training dataset that are
relevant for the task, but this does not exclude the possibility that the network
has learnt additional, spurious relationships. This is an important question
as it can compromise the safety of using DNNs in high-stake situations such
as autonomous driving, medical diagnostics or policy making [57, 58, 59].

The question of how the network learns is also important, as answering it
can help optimise training, understand the limitations of the network, and
allow us to design learning algorithms that minimise spurious outcomes.
As nonlinear, high-dimensional functions consisting of a large number of
parameters, they are generally difficult to analyse.

Dynamical-systems theory turns out to be a useful tool to study DNNs.
By studying the propagation of input signals through the network, progress
has been made in understanding how a network should be initialised so
that information carried by the input signals is mapped faithfully to the
output, making training more efficient [60]. The exponential expressivity of
neural networks was first described in terms of the maximal singular value
of the monodromy matrix of the neural network [9], and the information-
propagation depth, that is, the number of layers information about the input
signal can propagate before it dissipates, was quantified using the Lyapunov
time of the network [61].

By viewing the layers of a DNN as a time index, the propagation of the
signal can be analysed as a discrete dynamical system. One should keep in
mind that the mapping between each consecutive layer changes and may
even change dimension. For recurrent networks such as Hopfield networks
[62, 63], autoencoders [64], and reservoir computers [65], the interpretation
as dynamical systems is more straightforward, as the output of the network
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Figure 4.1: Example schematic of a feed-forward neural network architecture.
The shown network has an input layer with 4 neurons, 4 layers with 5 neurons
per layer, and an output layer with 3 neurons. Reproduced from [62] with
permission.

is used as an input for the next iteration. Hence, the full network serves as
the map, and the discrete dynamics are evolved by applying the map and
feeding the output back as an input.

In what follows, the network architectures which have been studied in
this work will be presented. These are the feed-forward architecture, made
of layers of computational nodes that propagate an input signal forward, and
the echo-state network. The echo-state network is a recurrent neural with
the primary difference being that only the parameters associated with the
output layer are trained, while the remaining parameters remain fixed.

4.1 Feed-forward neural networks

One of the most basic realisations of a neural network is the feed-forward
architecture, consisting of consecutive layers of neurons, each receiving
inputs from the previous layer and propagating their outputs to the next
layer, as shown in Fig. 4.1. The computation performed by each neuron is



FEED-FORWARD NEURAL NETWORKS 17

given by [62]

x (ℓ)i = g
�

b (ℓ)i

�

, b (ℓ)i =
Nℓ
∑

j=1

w (ℓ)
i j x (ℓ−1)

j −θ (ℓ)i . (4.1)

Here, x (ℓ)i is the output of the i :th neuron in the ℓ:th layer, b (ℓ)i is referred
to as the local field of the neuron, g is a nonlinear1 function referred to as
the activation function, w (ℓ)

i j is the weight connecting the j :th neuron in

the preceding layer to the current neuron, and θ (ℓ)i is the threshold (or bias,
if the sign is flipped) of the neuron. The weight matrix whose entries are

w (ℓ)
i j is denotedW(ℓ). Setting the input neurons to x (0) = x , where x is some

input signal, Eq. 4.1 provides the discrete dynamics with which the signal
is propagated through the network. Since the map changes per layer, the
dynamics of the signal propagation could be compared to a non-autonomous
discrete dynamical system. However, since the map may also change in
dimension, this analogy is not straightforward. Nevertheless, tools from
dynamical-systems theory can be employed to analyse the neural networks,
as is shown below.

4.1.1 Supervised learning

In a supervised learning task, an input x µ is associated with a ground-truth
output y µ, where µ denotes the index of the input-output pair. The goal of
the learning task is to select the network parameters that minimise some

error function H =
∑p
µ=1L (y µ, ŷ µ), where ŷ µ = x (L+1)

µ is the output of the
network and L is a convex function referred to as the cost function with
its minimum at y µ = ŷ µ for all µ. A common choice ofL is the quadratic

cost function using the Euclidian norm,L (y µ, ŷ µ) =
1
2 ||y µ − ŷ µ||2, though

many other choices exist [66]. One may also modify the energy function
by for example introducing terms that penalise large parameter values, e.g.
L1- or L2-regularisation [62]. With the energy function defined, the network
parameters are updated through gradient descent:

W(ℓ)t+1 =W
(ℓ)
t −η∇W(ℓ)t

H , (4.2)

1If a linear activation function is used, a deep neural network is equivalent to a network
without hidden layers, since the action of the network will be a linear transformation of the
input.
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with the thresholds updated similarly. Here, a time index t has been intro-
duced, referring to the training epoch. The parameter η is called the learning
rate. A large number of modifications to the standard gradient descent algo-
rithm exists. Among the most standard extensions is the stochastic gradient
descent, where noise is introduced to the update rule by training the network
on a random subset of the training dataset every iteration. This is done so
that the network is able to escape local minima, which the standard gradient-
descent algorithm is prone to get stuck in. More sophisticated modifications
exist, such as Adam [67], which uses an adaptive learning rate.

4.1.2 Network initialisation and the unstable gradient problem

How should the network parameters be initialised? This question becomes
particularly relevant when many hidden layers are used, because of the
unstable gradient problem (UGP) which makes training difficult. The UGP
can be understood through the lens of dynamical-systems theory as follows
[62].

Consider the gradient of the energy function with respect to threshold
θ (ℓ), and let us assume that we only have a single input pattern p = 1 to
simplify notation and since it is not relevant for the argument. Computing
this gradient yields

∇θ (ℓ)H =δy ⊤D(L )W(L ) . . . D(ℓ+1,µ)W(ℓ+1)D(ℓ) =δy ⊤M(ℓ, L )D(ℓ), (4.3)

where δy = dL
dŷ is the error vector (e.g. for the quadratic cost function,

δy = y − ŷ ), and D(ℓ) is a diagonal matrix with elements D (ℓ)i j =
dg
db

�

�

b=b (ℓ)i
δi j .

As will be seen later,M is the monodromy matrix of the dynamics of a sig-
nal propagating forward through the network. If we assume that both D(ℓ)
and W(ℓ) have entries that are independent and, respectively, identically
distributed2 with finite variance, the following non-random limit exists ac-
cording to the Furstenberg theorem (Section 2.2.1),

λ1 = lim
(L−ℓ)→∞

1

L − ℓ
〈ln (σ1)〉, (4.4)

whereσ1 is the maximal singular value ofM, and the average is taken over
the ensemble ofM-matrices. The interpretation is that the magnitude of

2In [9] it was shown that this assumption on D(ℓ) is a good approximation for randomly
initialised, infinitely wide networks.
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the error vector has an average exponential growth rate per layer given by
the maximal Lyapunov exponent λ1. Hence, if λ1 > 0, the error vector will
explode in magnitude given sufficiently many layers, or vanish in magnitude
if λ1 < 0. This is the essence of the UGP. One would therefore like to initialise
the network so that λ1 ∼ 0 so that the error vector neither explodes nor
vanishes [60]. As we will see later, the Xavier [68] and He [69] initialisation
schemes achieves this, at least for wide networks.

4.1.3 Network dynamics

It is not only the backward propagation of errors that is affected by the UGP.
Consider two similar input signals x and x ′whereδx 0 = x−x ′ and ||δx 0|| ≪ 1.
The evolution of the magnitude of δx 0is described by the linearised network
dynamics,

δx (ℓ)≈D(ℓ)W(ℓ) . . . D(1)W(1)δx 0 =M(0,ℓ)δx 0. (4.5)

Here, we see thatM is in fact the monodromy matrix of the discrete dynamics
of the neural network3. If λ1 < 0 for large L , the difference between the two
input signals disappear (i.e. they become completely correlated). If on the
other hand λ1 > 0, the input signals will become completely decorrelated,
and the information contained in their correlation disappears. The charac-
teristic depth that information can travel in a feed-forward neural network
was computed in [61], and is closely related to the Lyapunov time of the signal
dynamics. When λ1 = 0, this depth diverges.

The chaotic dynamics displayed by neural networks is the source of their
exponential expressivity. As shown by Poole et al. [9], an infinitely wide
network using the tanh activation function initialised in the chaotic regime is
able to attenuate the curvature of a data manifold with a rate associated with
the maximal Lyapunov exponent of the system. Due to the boundedness of
the nonlinear activation function, however, the data manifold may also be
folded by the network dynamics. Hence, the network dynamics are similar
to chaotic dynamical systems where volumes in phase space are stretched
and folded over time.

This result was derived in the infinite-width case, where the maximal
Lyapunov exponent may be approximated using mean-field theory, as was

3In the machine-learning literature [9, 60, 61], the matrix M(0, L ) is referred to as the
input-output Jacobian.
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shown in [60, 62]. In this case, the maximal Lyapunov exponent is given by

λ1 ≈ lim
N→∞

1

2
ln (G Nσ2

W ), (4.6)

where σ2
W is the variance of the entries of the weight matrices W(ℓ) and

G = 〈[D (ℓ)i i ]
2〉. Using the tanh activation function, the variance of the elements

of theD(ℓ)-matrices is shown to converge rapidly over layers to a fixed value
dependent on σ2

W and the variance of the thresholds. In Section 6.2, an
expression for the maximal Lyapunov exponent is derived for finite widths.
This expression is shown to equal Eq. 4.6 as the large-N limit is taken.

4.1.4 Infinite-width limits

As mentioned before, since neural networks are nonlinear, high-dimensional
functions, they are in general difficult to analyse. However, significant progress
has been made when taking the infinite-width limit, where the evolution of
the network during training becomes deterministic. Different limits exist de-
pending on how the network parameters are scaled. In Eq. 4.1, the so-called
standard [70] scaling is used. If the local field is instead computed as

b (ℓ)i =
1

p

Nℓ

Nℓ
∑

j=1

w (ℓ)
i j x (ℓ−1)

j −θ (ℓ)i , (4.7)

i.e. by introducing the scaling 1/
p

Nℓ, the infinite-width limit will corre-
spond to the neural-tangent kernel (NTK) limit [71]. The NTK limit has been
popular in recent years, as it was shown that the evolution of a neural net-
work during training through gradient descent is given by a linear differential
equation with constant parameters. The parameters of the differential equa-
tion are dependent on the network parameters, which, although the network
is trained, are shown to barely change. This phenomenon is referred to as
lazy-learning [72]: the changes in the individual network parameters are
negligible, but the collective effect on the network is significant. Using the
standard scaling, the infinite-width limit also results in lazy-learning [70],
as is confirmed by results in Paper A. If the weights in Eq. 4.1 are instead
scaled by N −1

ℓ , referred to as mean-field scaling [73], lazy-learning is not in-
duced in the infinite-width limit. Instead, the network evolves according to
a partial differential equation of diffusion-type. This type of learning, where
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the network parameters change significantly, is known as feature-learning.
Limits exist for other scalings, but each of them either fall into either the
lazy-learning or feature-learning category [70].

4.2 Echo-state networks

The echo-state network (ESN) [65] is a type of recurrent neural network where
only the parameters associated with the output layer is trained, while the
remaining parameters remain fixed from initialisation. ESNs belong to a
branch of machine learning referred to as reservoir computing. In reservoir
computing, a large network of nonlinearly interacting computational nodes
– the ‘reservoir’ – is driven by some input signal. The connections between
these nodes form loops, making the dynamics recurrent and providing the
reservoir with a dynamic memory. Under certain conditions, the dynamics
of the reservoir can synchronise with the input signal, making the dynam-
ics of the reservoir a high-dimensional embedding of the input dynamics.
Linear combinations of the reservoir states can then be used to, for example,
predict the dynamics of the input signal for time-series prediction tasks. The
interest in reservoir computing can be contributed to two primary factors:
(1) reservoir computing algorithms have shown state-of-the-art performance
compared to recurrent neural network, while being much easier to train since
only the parameters associated with the output are trained [74, 75, 76], and
(2) reservoir computing can be implemented in physical systems with a large
number of degrees of freedom that interact nonlinearly, such as optical node
arrays, analog electric, circuits laser cavities [77], and, intriguingly, a bucket
of water [78]. Implementing reservoir computing in physical systems can
yield highly efficient analog computers, operating in a completely different
way from standard computers.

An ESN is a particular realisation of a reservoir computer (Fig. 4.2). The
network dynamics during training is given by

ri (t +1) = g

 

N
∑

j=1

ai j r j (t ) +
n
∑

k=1

w (in)
i k xk (t )

!

, (4.8a)

yi (t +1) =
N
∑

j=1

w (out)
i j f (r j (t +1)) (4.8b)
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Figure 4.2: Schematic of an echo-state network with three input nodes, a
reservoir layer, and three output nodes.

where the matrices A andW(in) have randomly initialised elements ai j and

w (in)
i j respectively, ri (t ) is the i :th reservoir state at time t and xi (t ) is the input

signal that drives the reservoir dynamics during training. The activation
function g is usually selected to be the tanh activation function, although
other choices are possible as long as the activation function is monotonically
increasing and bounded [65]. The function f is applied to the reservoir states
before they are projected to output space using the output weightsW(out).
While f is usually selected to be the identity function, other choices exist [76].
It should also be noted that, while Eq. 4.8b is the standard way of projecting
the reservoir states to output space, modifications such as the Lu readout [79]
have been introduced. When using the Lu readout, in addition to projecting
the reservoir states ri (t ), the squared reservoir states r 2

i (t ) are also projected,
making the output weight matrixW(out) have the dimension n ×2N , where
n is the output dimension. This is done to break symmetries in the reservoir
dynamics, as these symmetries might otherwise cause the network to learn
mirrored versions of the input time series.

When using the ESN for time-series prediction, once the ESN has been
trained, the input signal is replaced by the output yi (t ) to form the au-
tonomous dynamics

ri (t +1) = g

 

N
∑

j=1

ai j r j (t ) +
n
∑

k=1

w (in)
i k yk (t )

!

, (4.9a)

yi (t +1) =
N
∑

j=1

w (out)
i j f (r j (t +1)), (4.9b)
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so that the ESN can be used to generate predictions of the input time series.
Since the map remains the same for each iteration, the ESN is a discrete
dynamical system.

4.2.1 Echo-state property

For it to be possible to use the ESN for time-series prediction, the parameters
of the network must be chosen to that the reservoir dynamics synchronise
with the input dynamics. This is called the echo-state property. The echo-
state property is the requirement that, given two different initial conditions
of the same network driven by the same input signal, the reservoir-state
dynamics will synchronise in the asymptotic limit. That is, given r (0) = r 0

and r ′(0) = r ′0, the following will hold for an ESN with the echo-state property:

lim
t→∞
||r (t )− r ′(t )||= 0. (4.10)

It is clear that this condition is fulfilled if the ESN dynamics has a maximal
Lyapunov exponent that is negative. Importantly, it is the driven dynamics
(Eq. 4.8a) that should have a negative Lyapunov exponent. Once the network
has been trained and the driving signal x (t ) in Eq. 4.8a is replaced by y (t ),
the Lyapunov exponent of the autonomous dynamics should match that of
the predicted time series.

4.2.2 Initialisation and hyperparameters

When designing an ESN, several design parameters must be selected. Among
these are the dimension of the reservoir N , connection sparsity s (in this
work, if s = 0, the weight matrixA is a zero-matrix, whereas s = 1 implies that
A is dense), topology of the connection matrix, scale ofA (e.g. spectral radius,
maximal singular value, variance of matrix entries σ2

A), scale of the input
matrix, and distribution of the two matrices. Furthermore, parameters exter-
nal to the reservoir architecture must be selected, such as the rate at which
a continuous input signal is sampled δt , the total training time δt T , and
the choice of hyperparameters used in training. Ridge regression (Tikhonov
regularization [80]) is used in most recent works to train the output weights,
where the ridge parameter is the relevant hyperparameter. As of yet, we lack
insight on how these parameters should be selected to optimally train the
ESN and tune its dynamical properties. Several works have focused on how
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the network-specific parameters affect performance. It has been shown that
increasing the reservoir dimension monotonically increases the prediction
performance [81]. Several topologies have been investigated without show-
ing significant differences in performance [76, 82]. The spectral radius has
been extensively discussed. In the original paper of Jaeger [65]where the ESN
was introduced, it was suggested that the spectral radius should be chosen to
reflect the time scale of the input signal, e.g. a larger spectral radius should
be chosen for slower dynamics. In general, the design of ESNs is based on
heuristics, which is the motivation for Paper B, where we investigate why
some parameter choices work while others do not.

4.2.3 Training the echo-state network

To train the ESN for time-series prediction, the target values t (t ) are set to
be equal to the input time series. Then, one minimises an energy function
H =

∑T
t=1 ||t (t )−y (t )||2, where T is the number of iterations during training.

This is usually [76, 83] done through ridge regression

W(out) =YR⊤(RR⊤+k I)−1. (4.11)

Here,Y is a matrix whose columns are given by y (t ), andR is a matrix whose
columns are given by r (t ). The ridge parameter k is introduced to combat
overfitting. In Paper B, we show that if this parameter is set too large, it may
prevent the ESN from predicting chaotic dynamics.

5 Microswimmers and transport barriers

The dynamics of small, self-propelled particles, known as microswimmers,
are studied in many contexts, ranging from the modelling of plankton and
bacteria [84, 85], to artificial particles such as Janus rods [86]. Microswimmers
range in sizes from micro- to nanometers [87], and hence operate in the low
Reynolds regime where viscosity dominates. In many of the settings where
microswimmers are studied, one seeks to find optimal navigation strategies
to achieve certain goals, such as efficient upward migration against gravi-
tation [88], or evasion of predators [89]. The navigation strategy is affected
by the motion of the fluid in which the microswimmer is submerged, as it
may give rise to transport barriers which prevent the it from reaching regions
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in the flow [24, 90]. The shape of the particle may also affect the dynamics:
non-spherical, rod-like particles have been shown to cluster and preferen-
tially align [91, 92, 93]. In an on-going project, we study transport barriers in
the phase space of the deterministic dynamics of a self-propelled spheroidal
microswimmer, with the aim to understand how introducing random motion
to the swimming dynamics may help the microswimmer to escape through
the barriers. In this section, we present the microswimmer model and flow
used in the project.

5.1 The model

We consider a 2-dimensional spheroidal particle. Its shape is determined by
a shape factor

Λ=
λ2−1

λ2+1
, (5.1)

where λ is the aspect ratio between the semi-axis in the swimming direction
and the perpendicular semi-axis. Thus, for example, if Λ= 0, the swimmer is
a sphere. The swimmer has a constant swimming speed vp . The size of the
particle is assumed to be small enough so that its swimming does not affect
the surrounding fluid, and its dynamics are completely dominated by the
flow. Hence, if the swimming speed is set to zero, the swimmer will move as a
tracer. The phase space of the microswimmer is 3-dimensional, because its
orientation is an additional degree of freedom. The orientation is affected by
the vorticity of the flow, and, if the particle is non-spherical, the flow strain
due to Jeffrey torque [94]. Thus, the dynamics of the microswimmer is

ẋ =u (x , t ) + vp n̂ , (5.2a)

θ̇ =
1

2
ω f ∧ n̂ +Λn̂ ∧S(x , t )n̂ , (5.2b)

where u (x , t ) is the fluid flow, n̂ is the orientation of the swimmer, ω f =
∇∧u is the vorticity, and S is the strain rate tensor. The strain rate tensor is
the symmetric part of the spatial gradient of the flow [25]. This model has
been widely used to model plankton such as copepods [88, 92, 93, 95], with
additional terms to account for gyrotaxis which we do not consider here.
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5.2 The flow

We study the swimmer in the Taylor-Green vortex (TGV) flow [96], which
is a solution to the Navier-Stokes equation in Cartesian coordinates. The
TGV flow shares some of the properties of statistically uniform isotropic
turbulence, and is often studied as a model flow for microswimmers [97, 98,
99]. We study the steady TGV flow, which is given by

ux (x , y ) = u0 cos
� x

L

�

sin
� y

L

�

, (5.3a)

u y (x , y ) =−u0 sin
� x

L

�

cos
� y

L

�

, (5.3b)

where u0 is the maximal flow speed, and L is the characteristic length scale of
the flow. When studying the dynamics of the microswimmer in the TGV, the
nondimensionalise the dynamics using the dimensionless variables x̂ = x /x0

and τ= t /t0, where x0 = L and t0 = L/u0. In performing this nondimension-
alisation, the swimming speed is also rescaled, resulting in the dimensionless
swimming speed vs = vp/u0.
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6 Finite-time Lyapunov exponents of deep neu-
ral networks

Deep neural networks display exponential expressivity as discussed in Sec-
tion 4. The expressivity allows the network to disentangle complicated data
manifolds through its chaotic signal-propagation dynamics. For this to be
possible, the network must have a positive finite-time Lyapunov exponent
(FTLE). These results, derived by Poole et al. [9], deals with randomly ini-
tialised networks of infinite width. In this limit, the FTLE becomes constant
and input independent, as shown by the mean-field result (Eq. 4.6). If the
network is instead of finite width, the FTLE follows a distribution. Initially,
this distribution is centred around the infinite-width limit according to some
random-matrix distribution1. An interesting question, which is studied in
Paper A, is what this distribution looks like once the network is trained. What
structures can be discerned in the distribution that reflects what the network
has learnt? The main question of the paper is how a deep neural network
makes use of its exponential expressivity to learn classification tasks.

In order to analyse this, we construct a simple 2-dimensional, binary
classification task (Fig. 6.1), where coordinates that lie inside a circle of
radius 1 have assigned target value -1, and the ones outside have target value
1. This classification task allows us to visualise the FTLE distribution. Using
this dataset, we compute the FTLE for each input and study the effects of
changing the width and depth of the network. Our analysis is also applied to
a more realistic classification task, the MNIST dataset of handwritten digits
[100]. We find that the conclusions made for the simpler classification task
transfers to this task as well, although the input space is 28×28-dimensional.

What can we expect the distribution to look like? Since the network must
learn to distinguish between classes, a small perturbation that move an input
coordinate to a different class should yield a significant change in the output
of the network. Hence, there should be positive exponents at the boundary
between classes. Furthermore, the direction in which the largest rate of
separation occurs (i.e. the maximal Lyapunov vector) ought to be orthogonal

1The large-deviation form of this distribution can be interesting to study in order to
understand how likely unstable-gradient problems are to arise as a function of network
width.
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Figure 6.1: 2-dimensional classification task, where the data points marked by
a green square have target value yµ = 1, while those marked by a black square
have target value yµ =−1. Figure taken from Paper A with permission.

to the boundary between classes.
How is the distribution affected by architecture? We know that a deeper

network has greater expressivity, meaning that smaller structures in the input
data manifold can be resolved. This could yield finer structures in the FTLE
distribution. As for the width, we know that a network whose width tends
to infinity may enter the lazy-learning regime. How is this reflected in the
distribution?

6.1 Learning regimes

Figure 6.2 shows the FTLE distribution of networks trained on the 2-dimensional
classification task for different widths N and depths L . Importantly, what is

shown is Lλ(L )1 (x ) and not just the maximal FTLE λ(L )1 . This quantity shows
how much the magnitude of a perturbation is changed across the entire
network, as the FTLE is the average rate of separation per layer. This quantity
turns out to converge to a fixed value once L becomes large enough, because
the network only needs to separate the data on a magnitude of order 1 (the

output should be either 1 or -1). If λ(L )1 (x ) had been used, the magnitude of
the FTLE field would have decreased for large L , because the same amount
of separation should be performed for a larger number of layers, meaning
that the contribution of each layer becomes less significant. This turns out
to be an important detail when considering the L →∞ limit, which we
will discuss later in Section 6.1.1. Another important point is that the FTLE
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Figure 6.2: FTLE distribution in input space for different widths N and depths
L of fully connected feed-forward neural networks trained on the dataset from
Fig. 6.1. The heatmap shows Lλ(L )1 at different input coordinates, and the
dashed lines are the associated FTLVs. Figure reproduced from Paper A with
permission.

λ(L )1 (x ) is computed up until the last hidden layer L , and not until the output
layer at L + 1. This is done so that the action of the hidden layers can be

discerned. Had λ(L+1)
1 (x ) been used, the result would have not been affected

by changing width and depth. The dashed lines are the maximal finite-time
Lyapunov vectors (FTLV) associated with the FTLEs. No direction is assigned
to these, as the vectors are only defined up to a sign. The result shows that
there appear to be two distinct parameter regimes: for large L and small N ,
there are strong ridges at the boundary between the two classes, whereas for
large N and small L , no structure can be discerned. We refer to these two
regimes as the ridge-learning and random-embedding regimes, respectively.
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6.1.1 Ridge learning

In the ridge-learning regime, the network creates basins of attraction for each
class, separated by a ridge of positive exponents. We see that the maximal
FTLV are orthogonal to the ridges, showing that these ridges can be compared
to hyperbolic Lagrangian coherent structures (LCS). As we discuss in the
paper, one should keep in mind that the dimension may change per layer
in a neural network, while LCSs are usually defined in dynamical systems
where the dimension remains constant between time steps. Nevertheless,
the observed structures reveal how the network has learnt to partition the
input space such that it solves the classification task.

Studying Fig. 6.2, we see that in the case when N = 10 and L = 12, there is
a weak ridge situated at the upper left corner, away from the strong circular
ridge. This ridge is a spurious structure not shared by other realisations of
the same network, as opposed to the strong ridge structure that appears for
any realisation. It appears the network is sensitive to changes in a region
of input space that is within the same class. In this way, the weak ridges
provides a way to understand how networks has learnt spurious structures,
showing how this framework may be used to better understand what the
network has learnt.

What happens as L keeps increasing? As mentioned above, the magni-

tude of Lλ(L )1 (x ) eventually stabilises to a fixed value. This means that as L
becomes large, the FTLE on the ridge converges to zero. Furthermore, we
find that the ridge does not continue to shrink in width. The surrounding
distribution keeps decreasing. Denoting the average FTLE within the circle
(the same result is obtained if the average FTLE outside the circle is used) as

〈λ(L )1 (x )〉c , we find the following relationship numerically:

L〈λ(L )1 (x )〉c ≈−Cc L + log N , (6.1)

where Cc ≥ 0 is some constant. Dividing by L and taking the large-L limit
while keeping N ≪ e L , this relationship suggests that

lim
L→∞
〈λ(L )1 (x )〉c =−Cc , (6.2)

i.e. that the FTLE converges to some non-zero constant away from the ridge.
Since the ridge does not continue to becoming narrower as L increases, the
FTLE field will not be coordinate independent in the large-L limit. Had the
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network not been trained, this limit would have converged to a constant (we
derive the expression for this constant in Section 6.2). Hence, training breaks
ergodicity.

Why does the ridge maintain a finite width? The explanation may lie in
the finite dataset. The finite sample size means that there is a smallest dis-
tance between sample points, which introduces a region where classification
is arbitrary between the classes. The finite width of the ridge reflects the
network uncertainty. In fact, as we show for the MNIST dataset, there is a
strong positive correlation between uncertainty (quantified as information
entropy, see definition in Paper A) and the FTLE. If we were to increase the
sample size, the ridge does indeed become narrower. Letting the sample
size and depth go to infinity, we would therefore have a ridge occupying a
measure-zero set.

6.1.2 Random embedding

Equation 6.1 only holds while we have sufficiently small N , because as N >
e L , the average FTLE away from the ridge saturates to the value on the ridge so
that the distribution becomes uniform, as shown in the case where N = 250
and L = 2 in fig. 6.2. We refer to this regime as the random-embedding
regime, because the network embeds data without any clear structure. In
this regime, we also find that it is sufficient to train the output layer of the
network while keeping the remaining layers fixed from initialisation. This is
possible because of Cover’s theorem [101]; the larger the dimension, the more
likely it is that a random embedding of a dataset in that dimension will make
samples from different classes linearly separable. Hence, once the input
has been mapped to the output layer, the output neuron can discriminate
between the classes with a linear decision boundary.

Since wide networks can immediately separate classes linearly, the net-
work parameters do not have to change. This indicates that the network is in
the lazy-learning regime. As discussed in Section 4.1.4, this is expected for
the chosen scaling of the local fields. Whether the network would enter into
the random-embedding regime, or remain in the ridge-learning regime if
the mean-field scaling is used is an open question.
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6.1.3 Parameter initialisation

We find that the results in Fig. 6.2 are independent of initialisation. That is,
regardless of whether the network is initialised such that the average FTLE is
positive or negative, the distribution will evolve to look like in the figure. This
means that even if the network is initialised in the vanishing-gradient phase,
the training dynamics will eventually make the network escape this phase.
The deeper the network is in the vanishing-gradient phase, the longer it takes
to escape. The network may also escape the exploding-gradient phase: if the
limiting distribution is centred around zero, as is the case for small values
of N and large values of L , the training can make the network escape this
phase.

6.2 Lyapunov exponent for randomly initialised neural
networks

While not part of Paper A, we present this result here as it may be interesting
for future investigations of the network dynamics of feed-forward neural net-
works. We derive an expression for the maximal Lyapunov exponent of a deep
neural network with randomly initialised parameters. The expression is valid
for a network with constant width and piece-wise linear activation functions
whose derivative takes the values 0 or 1, as is the case with the ReLU activa-
tion function and the hard-tanh activation function2. The derivation starts
by considering the dynamics of an infinitesimal perturbation δx (0), which
evolves according to the linearised network dynamics. The perturbation at
the L :th layer is then given by

δx (L ) ≈D(L )W(L ) . . .D(1)W(1)δx (0) =M(0, L )δx (0). (6.3)

The matrices D(ℓ) are diagonal with elements D (ℓ)i j δi j =
d

db g (b (ℓ)i ). Hence, for
the considered activation functions, these matrices take on the values 0 and

2The hard-tanh activation function is the piecewise linear approximation of the tanh
function with

Hardtanh(x ) =











−1, x <−1

x , −1≤ x ≤ 1

1, x > 1
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1. Poole et al. [9] showed that for an infinitely wide network, the distribution

of the local fields b (ℓ)i converges rapidly as ℓ increases, making each matrix
D(ℓ), and therefore also D(ℓ)W(ℓ), independent and identically distributed.
Hence, the diagonal matrices can be modelled as matrices whose diagonal
elements are Bernoulli distributed with probability p of being 1 and 1−p
of being 0. Although this is shown for infinitely wide networks, we find
numerically that this holds also for finite-width networks. The derivation is
heavily based on the derivation by Newman [102] for products of random
Gaussian matrices. In that paper, two assumptions are made about the
matrices in the random product. Firstly, the matrices are independent and
identically distributed. Secondly, the matrices must fulfil a certain symmetry;
that is, for some matrix A, one must have that Q⊤A⊤AQ follows the same
distribution asA⊤A, whereQ is an orthogonal matrix. In our case, the first
condition is fulfilled as previously stated. The second condition requires that
[W(ℓ)]⊤D(ℓ)W(ℓ) is rotationally symmetric, which it is, at least numerically.

The argument then goes as follows: consider the definition of the Lya-
punov exponent in Eq. 2.3. In the discrete case, this definition can be rewrit-
ten as

λ1 = lim
t→∞

lim
||δx 0||→0

t −1
t−1
∑

k=0

ln
||D(k )W(k )δx (k )||
||δx (k )||

. (6.4)

Now, since the matrices in each summand are independent and identically
distributed, and since the quantity in the logarithm is equally distributed
regardless of orientation (following from the symmetry assumption), the
maximal Lyapunov exponent may be evaluated as

λ1 = 〈ln ||D(k )W(k )n̂ (k )||〉, (6.5)

where the law of large numbers has been invoked, and the average is com-
puted over the distribution of D(k )W(k )-matrices. Here, n̂ (k ) is the normal
vector oriented in the same direction as δx (k ). Now, we can again invoke
the symmetry assumption to write

〈ln ||D(k )W(k )n̂ (k )||〉= 〈ln ||D(k )W(k )Qn̂ (k )||〉. (6.6)

Now, sinceQ is arbitrary, we may chooseQ so thatQn̂ = ê 1, where ê 1 selects
the first column of D(k )W(k ). Hence, we find that the maximal Lyapunov
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exponent can be evaluated as

λ1 =
1

2

*

log





N
∑

i=1

 

N
∑

j=1

Di j Wj 1

!2




+

. (6.7)

This expression is evaluated in the Appendix, yielding

λ1(σ
2
W , p , N ) =

1

2

N
∑

n=1

�

N

n

�

p n (1−p )N−n (ln 2+ lnσ2
W +ψ(n/2)) (6.8)

where ψ(·) is the digamma function. This equation is derived under the
assumption that none of the D(ℓ) are a zero matrix. The probability of this
happening was derived by A. Dubey [103] and becomes negligible for large
enough N . From Fig. 6.3 we can see a good agreement between the theory
and simulations, and that the standard deviation of the FTLE distribution
around the mean shrinks as N increases. This expression is similar to that
of Newman [102]: it is the expected value of the Lyapunov exponent of a
product of Gaussian random matrices where the dimension is sampled from
a binomial distribution.

Let us consider the large-N limit. Using the asymptotic expansion of the
digamma function for large arguments, we haveψ(n ) = ln n+O (n−1). Hence,
Eq. 6.8 becomes

lim
N→∞

λ1(σ
2
W , p , N ) =

1

2

�

lnσ2
W + 〈ln n〉n∼Binom(p)

�

. (6.9)

Expanding the logarithm around the mean of the distribution N p , neglecting
terms of order N −1 or smaller, we arrive at

λ1(σ
2
W , p , N ) =

1

2
ln
�

p Nσ2
W

�

(6.10)

which coincides with the mean-field result [62]. Due to the unstable gradi-
ent problem (Section 4), initialisation should be done so that the maximal
Lyapunov exponent is zero. From the mean-field expression we see that we
should initialise the weights to have a varianceσ2

W = (p N )−1. Initialising a
network with a varianceσ2

W =N −1 is popular and is called Xavier initialisa-
tion [68]. If the ReLU activation function is used, p ≈ 0.5 because the local
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Figure 6.3: Lyapunov exponent calculated using Eq. 6.9 and the QR method for
a feed-forward neural network employing the hard-tanh activation function
and with a weight varianceσ2

W =N −1 and threshold varianceσ2
b = 1.

fields b (ℓ) will be distributed symmetrically around zero, justifying the He
initialisationσ2

W = 2N −1 [69].

7 Constraints on parameter choices for success-
ful time-series prediction with echo-state net-
works

Echo-state networks (ESN), a type of recurrent neural network where only
the output weights are trained, have been shown to perform on par with
state-of-the-art time-series prediction algorithms [83]. This is despite the
fact that the input and recurrent connections remain fixed from initialisation.
In initialising ESNs, one must make choices on the design of the network
such as its dimension N and the distribution from which the weights are
sampled. One must also decide on parameters for the training of the output
weights and the frequency at which the time series to be predicted will be
sampled. At the time of writing Paper B, these choices were guided primarily
by heuristics, except for the requirement that the initialisation must be such
that the ESN displays the echo-state property. The most common heuristics
employed, introduced by Jaeger [65] in his original paper on ESNs, are that
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the network should be initialised such that the reservoir states display ‘rich’
dynamics and that the time scale of the network dynamics should match
that of the predicted time series. By ‘rich’ is meant that each reservoir state
displays a different mode of the time-series dynamics.

In Paper B, we aim to understand under what parameter choices time-
series prediction is successful. Our first finding is that prediction perfor-
mance is based on a combination of parameters that are usually tuned sep-
arately. Secondly, we find qualitatively different parameter dependencies
based on whether full or partial information is provided to the network dur-
ing training.

7.1 Lyapunov exponent of the reservoir dynamics

In Paper B, we find that the maximal Lyapunov exponent in the large-N limit
of the driven ESN dynamics is given by

λT =
1

2

�

ln (s Nσ2
A + ln

�

N −1
N
∑

i=1

〈D 2
i i (t )〉

��

. (7.1)

Here, N is the number of neurons in the reservoir,σ2
A is the variance of the

reservoir weights sampled from a random distribution with zero mean, s is
the sparsity (a matrixAwith s ∈ [0, 1] has a fraction 1− s of the elements ran-
domly set to zero), and Di i =

d
dbi

g (bi ). The average is taken over an ensemble
of reservoir states, where it is assumed that the underlying dynamics is sta-
tistically stationary and ergodic. The parameters s , N , and σ2

A are usually
tuned separately in literature [74, 104, 105], but as can be seen from Eq. 7.1,
the combined parameter s Nσ2

A is what is important. In fact, what we find is
that the combined parameter is what matters for performance. In Fig. 7.1,
the prediction performance is measured in how many Lyapunov times the
ESN is able to successfully predict a time series. The ESN is trained on the
y -component of the Lorenz dynamics,

d

dt
x =σ(y − x ),

d

dt
y =ρx − y − x z

d

dt
z = x y −β z

(7.2)
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Figure 7.1: Prediction performance of an ESN with dimension N = 500 and
input varianceσ2

in = 0.1 trained on the y -component of the Lorenz dynamics.
The time-series was sampled with a time step δt = 0.01 and trained using ridge
regression with a ridge parameter k = 0.001.

where setting σ = 10, ρ = 28, and β = 8/3 will yield chaotic dynamics [1].
Three cases are considered: (1) A initialised densely with Gaussian weights,
(2)A initialised with Gaussian weights where 95% of the weights are randomly
set to zero, and (3)A initialised densely with uniform weights. As can be seen,
all performance curves collapse, showing that what controls the performance
is the Lyapunov exponent λT depending on the combined parameter. In
Paper B, we also show that 〈D 2

i i (t )〉 depends on the combined parameter and
the variance of the input weightsW(in).

7.1.1 Efficient computation of Lyapunov exponent

Equation 7.1 shows us that the important tuning parameter is s Nσ2
A , but

it also provides us with a more efficient way of computing the Lyapunov
exponent than using the QR method, which can be costly due to the large
dimension of the reservoir. Since s Nσ2

A is known from initialisation, by stor-
ing the values of the diagonal matrices D(t ) during training, and computing
the variance of the reservoir states over time, the Lyapunov exponent can be
obtained efficiently. In Fig. 7.2 is shown the Lyapunov exponent obtained
using the QR method and our mean-field approximation over a range of
different parameter values, where a very good agreement is found.
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Figure 7.2: Lyapunov exponent computed using the QR method and the mean-
field approximation in Eq. 7.1 for different input scales nσ2

in.

7.2 Full and partial information

With the parameter search space constrained, we sweep s Nσ2
A and nσ2

in to
find for what values prediction is successful. This is done for two different
chaotic time series: the Lorenz system [1] and the Halvorsen system [106],
both being 3-dimensional and continuous. The result, taken from Paper B,
is shown in Fig. 7.3. We performed the sweep for two cases: full and partial
information. In the full-information case, all three phase space coordinates
are shown to the network during training. This means that the network
must essentially model a Markov process; all information for the next time
step is contained in the current time step. In the partial-information case,
the network only has access to a single coordinate in phase space. In this
context, the network must perform time-delay embedding to reconstruct the
dynamics, as was shown in [107]. Our contribution is to show that the region
in parameter space where prediction is successful is qualitatively different
for the two cases. The red line in Fig. 7.3 shows where the maximal Lyapunov
exponent during training λT is zero. As expected, a necessary condition for
successful prediction is that the exponent is negative. However, the result
makes it clear that this is only a necessary but not sufficient condition.

The results in Paper B were obtained for continuous dynamical systems.



40
CONSTRAINTS ON PARAMETER CHOICES FOR SUCCESSFUL TIME-SERIES

PREDICTION WITH ECHO-STATE NETWORKS

���


����

���

sN
σ2 A

���

��
��
��

��������������
���
����������������

���
 ���� ���

nσ2in

���


����

���

sN
σ2 A

�	�

�
��
��

��
��

���
 ���� ���

nσ2in

�
�

���

���

���

��	

���

	��

������������������
�����������������

���

Figure 7.3: Prediction performance, measured as the average Lyapunov time,
for an ESN with dimension N = 500, trained on the Lorenz and Halvorsen sys-
tems system with (a,c) full and (b,d) partial information. The red line indicates
where the maximal Lyapunov exponent of the training dynamics λT = 0, the
blue line indicates where the network dynamics bifurcate from fixed-point
dynamics to oscillations, and the green line shows where Rank(RR⊤) = 100
(details in text). The prediction performance was obtained by averaging over
50 independent trials. The figure was copied from Paper B with permission.
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Figure 7.4: Prediction performance of a reservoir with dimension N = 500
predicting the chaotic Ikeda map. The performance is averaged over 10 inde-
pendent trials.

Here, we include an additional result of an ESN predicting the discrete Ikeda
map [108]

x (t +1) = 1+u [x (t )cos (τ)− y (t )sin (τ)],

y (t +1) = u [x (t )cos (τ) + y (t )sin (τ)],
(7.3)

where u = 0.8 and τ= 0.4−6/(1+ x 2(t )+ y 2(t )), in Fig. 7.4. For the chosen
parameter value, the maximal Lyapunov exponent is λ1 = 0.241.

7.2.1 Full information

In the full-information case, successful prediction is independent of s Nσ2
A ,

and the reservoir connections can in fact be set to zero, resulting in the ESN
becoming a nonlinear mapping to an N -dimensional space. As was shown
in [109], this is equivalent to nonlinear vector autoregression. The depen-
dence on the input strength nσ2

in is explained, at least for the lower bound,
by the constraints set by the training method used to obtain the output
weightsW(out). As previously mentioned, once the network has been trained,
the ESN dynamics are made autonomous by replacing the driving signal
x (t ) byW(out)r (t ). The autonomous dynamics will have a different maximal

1This result was computed using the QR method.
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Lyapunov exponent from the non-autonomous training dynamics. This is
because the dynamics of a perturbation during training is governed by a prod-
uct of matrices on the formD(t )A, whereas a perturbation of the autonomous
dynamics is evolved through matrices on the formD(t )[A+W(in)W(out)]. The
autonomous dynamics must have the same Lyapunov spectrum as the pre-
dicted dynamics to faithfully reproduce it. However, we show that when
ridge regression is employed to obtainW(out), because the ridge parameter
limits the magnitude of the elements of the matrix, the input strength nσ2

in
must be large enough in magnitude so that the autonomous dynamics has a
positive maximal Lyapunov exponent. The blue line in Fig. 7.3 shows where
the autonomous dynamics bifurcates from a fixed point to a periodic or-
bit which eventually evolves into chaotic dynamics as nσ2

in increases. We
show that the bifurcation occurs at larger values as the ridge parameter is
increased. The upper bound for nσ2

in appears because the tanh activation
function saturates for large arguments. Hence, information about the time
series is lost and prediction fails.

7.2.2 Partial information

In the case where only partial information is provided, a smaller region of
parameter phase space results in successful prediction. As mentioned, the
ESN performs time-delay embedding in this context [107]. In order for this to
be possible, the ESN must be able to sample the dynamics at different time
scales. This connects to the heuristic about the ‘richness’ of the dynamics:
the dynamics of the different reservoir states ri (t )must represent the dif-
ferent time scales. We quantify this by considering the correlation between
the N different time series generated by reservoir states. Constructing an
N ×T matrix R whose rows represent the reservoir dynamics over T time
steps during training, the rank of the matrix RR⊤ becomes smaller the more
correlated the time series are. The higher the rank, the more time scales the
ESN has at its disposal to construct a time-delay embedding. In Fig. 7.3, the
green line is drawn where the rank of RR⊤ equals 100. Above the line, the
rank increases gradually, improving the approximation.

Another common heuristic [65] is that the reservoir connection strength
s Nσ2

A should be chosen so that the characteristic time scale of the ESN dy-
namics matches those of the predicted time series. This is not supported
by our results. While the sampling time for time-delay embedding can be
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Figure 7.5: Prediction performance, measured in Lyapunov times, of an ESN
with weight matrix elements given by Ai j =α

i
N δi j , predicting the Lorenz time

series sampled at different rates δt . The result is obtained by averaging over
200 independent trials. Reproduced from Paper B with permission.

optimised (Paper B, Fig. 4), Takens’ embedding theorem does not rely on
the sampling time. Instead, it sets a lower bound for the required number
of delays to be sampled. Hence, as long as the ESN can sample sufficiently
many time scales from the dynamics, it does not matter which time scales
are being sampled. We demonstrate that the time scale of the ESN dynamics
and the predicted time series are unrelated by deterministically construct-
ing a reservoir weight matrix A whose elements are Ai j = α

i
N δi j for some

constantα [110]; that is, where the reservoir states ri (t ) only connect to them-
selves with increasing strength as i increases. The time scales sampled by
this reservoir are directly given by the diagonal elements of A. Now, if the
time scale of the ESN should be matched with the predicted time series, it
would be necessary to change the weights ofAwhen changing the rate δt at
which the input time series is sampled, as an iteration of the ESN dynamics
would correspond to a different time scale. However, as seen in Fig. 7.5, the
reservoir time scale at which prediction is successful remains the same de-
spite changing the rate by an order of magnitude. The increase in prediction
performance when increasingδt can be attributed to thatδt = 0.1 lies closer
to the optimal sampling rate of the Lorenz time series given by considering
the mutual information between time steps, as discussed in Section 2.4. For
the Lorenz time series, the optimal sampling rate is roughly δt = 0.17 [32].
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8 Transport barriers for microswimmers with
orientational diffusion

We study transport barriers for microswimmers in the Taylor-Green vortex
(TGV) flow as described in Section 5. Since the flow contains vortices, we look
for elliptic LCS in the flow, which are closed transport barriers through which
the swimmer cannot escape. Getting stuck in such a structure could prevent
optimal foraging or migration of swimmers [111], and could increase the
risk of being captured by predators [112, 113]. The structures may also affect
navigation strategies between different locations of interest [18, 114]. Elliptic
LCS are closed transport barriers that cannot be crossed by the deterministic
trajectories of the dynamical system. However, the locomotion of microswim-
mers is known to induce diffusion in their orientation [87, 115]. This random
motion may be exploited by the microswimmers to pass through the elliptic
LCS. The aim of this project is to study how orientational diffusion can be
used by microswimmers to escape through transport barriers. Why would
these transport barriers be relevant if the dynamics are no longer determin-
istic? While the variational definition presented in Section 3 is the most
commonly used, LCS have also been defined as regions in phase space where
transport due to weak diffusion is extremised [37, 116]. While the equiva-
lence between the two definitions has only been shown for 2-dimensional
dynamical systems with isotropic diffusion, numerical results show that the
barriers tend to overlap [37].

So far, only spherical particles (Λ= 0) have been studied, in which case
the swimming dynamics are conservative. The orientational diffusion is
introduced in the model by adding a white-noise term to the orientational
dynamics with variance 2Dθ t .

8.1 Deformation of transport barriers

As a first result, we find that elliptic LCS indeed exist for the dynamical system
described in Eq. 5.2b. These structures are found using the method described
in Section 3. Furthermore, we find that as the swimming speed increases,
the elliptic LCS is deformed, eventually disappearing, as seen in Fig. 8.1.
The swimming speed at which the structure disappears agrees with earlier
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Figure 8.1: Elliptic LCS in the dynamics of a spherical microswimmer in the
TGV flow for different swimming speeds. The vertical axis corresponds to the
orientation of the swimmer, while the two horizontal axes correspond to the
location of the swimmer.

results [117] where, for the same model, it was shown that the dynamical
system bifurcates from having a trapping region to being completely chaotic
at a certain swimming speed. Naturally, if the swimming speed vs = 0, the
swimmer cannot escape through the barrier using diffusion, since the spatial
dynamics decouple from the orientational dynamics. We see, however, that
as the swimming speed increases, the deformation creates regions in the
elliptic LCS through which vertical transport is possible. Fig. 8.2 shows the lo-
cations where swimmers with weak orientational diffusion Dθ = 0.001 escape
through the structure. The more tangential with the horizontal direction the
normal of the LCS is, the less likely it is for the swimmer to escape through
the structure. Hence, we expect that the deformation of the LCS will lead to
that escaping using orientational diffusion is faster the larger the swimming
speed.
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Figure 8.2: Locations where swimmers with a swimming speed vs = 0.1 and
orientational diffusion Dθ = 0.001 escape through the LCS.
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9 Conclusions and Outlook

Closed-form solutions to complex, chaotic dynamical systems are in general
difficult, and most often impossible, to find. In this work, tools borrowed
from dynamical-systems theory – Lyapunov exponents and Lagrangian co-
herent structures – have been used to gain insight into three different kinds
of complex systems; feed-forward neural networks, echo-state networks, and
the dynamics of microswimmers. The tools allow us to discern structures
in phase space that determine properties of the complex system. Below, I
summarise the conclusions from the presented work together with some
open questions and outlooks.

9.1 Finite-time Lyapunov exponents of deep neural net-
works

In the case of feed-forward neural networks, it was found using maximal
finite-time Lyapunov exponents (FTLE) that the dynamics of a network
trained on a classification task are particularly sensitive to changes in the
input near boundaries between different classes. This results in the existence
of ridges of large FTLEs at these boundaries. The direction in input space as-
sociated with the high sensitivity, the maximal finite-time Lyapunov vectors
(FTLV), were found to be orthogonal to the ridges, making these structures
akin to hyperbolic Lagrangian coherent structures. The ridges were found
to be strongly correlated with the network’s prediction uncertainty; a result
leading us to conclude that the ridges are indeed associated with the decision
boundaries of the neural network. We also found that, as the width of the
network increases to be much larger than its depth, these ridges disappear
and the network instead performs random embedding of the inputs in high-
dimensional space. It is found that as the ridges disappear, the network no
longer has to be trained (apart from the output weights), as the network is
already able to make inputs from different classes be linearly separable from
initialisation.

All in all, the FTLEs of feed-forward neural networks yield insight into
how the network views the input space and how it learns to separate inputs
from different classes. This is a step forward in the endeavour to understand
the inner workings of neural networks. However, many questions remain to
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be answered. For instance, we do not yet know whether this framework is
applicable to other network architectures such as convolutional or recurrent
neural networks. Additionally, the dependence on width has only been
shown when the standard scaling of the local fields is used, where it is known
that the network enters the lazy-learning regime for large widths. Will the
ridges remain if the local fields are instead scaled in such a way that the
network does not enter this regime, and in such a case, can the variance
of the FTLE across input space be used as a metric for whether networks
learn features or not? Another question is whether the disappearance of
ridges in the large-width limit can be connected to the observation that wide
networks are more difficult to perform adversarial attacks on than narrow
ones: if the network dynamics is uniformly sensitive across input space,
designing adversarial examples may be difficult.

9.2 Constraints on parameter choices for successful time-
series prediction with echo-state networks

As for echo-state networks (ESN), our work reveals that the maximal Lya-
punov exponent of the network dynamics during training is a key parameter
determining the network performance for time-series prediction. The Lya-
punov exponent is computed in the mean-field limit and is shown to depend
on a combination of parameters that are usually tuned separately. These are
the network dimension N , the sparsity of the connections between reservoir
neurons s , and the variance of these connectionsσ2

A . Our results reveal that
it is the combined parameter s Nσ2

A that determine prediction performance.
Hence, this minimises the search space when tuning network parameters,
at least for networks large enough for the mean-field approximation to be
accurate. We then explore the reduced parameter space and find that there
is a qualitative difference in the parameter dependence when networks are
provided with full or partial information about the input time series. The
region where time-series prediction is successful is then explained borrow-
ing insight from time-delay embedding and bifurcation analysis. It is, for
instance, found that the degree with which the different reservoir states are
correlated over time impacts the performance of the network. This is be-
cause the more correlated the reservoir states are, the fewer time scales the
reservoir dynamics sample. The more time scales that are sampled, the more
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accurate the model becomes.
The ESNs in Paper B were initialised randomly with a large number of

computational nodes so that mean-field theory could be applied. Can the
insight that prediction performance is improved when more time scales of
the input are sampled be used to deterministically construct a reservoir with
good prediction performance? Another question concerns the time scale
of the ESN dynamics. Since the prediction performance does not seem to
be related to tuning the the characteristic time scale of the ESN training
dynamics (the Lyapunov time) to the input time series, is the best perfor-
mance achieved by simply maximising the number of time scales sampled
by the reservoir? In Paper B, an ESN was deterministically constructed as so
that each neuron only connected with itself. The connection strength was
different for each neuron to facilitate the sampling of different time scales.
While this was only used to demonstrate that the ESN characteristic time
scale is independent of the characteristic time scale of the predicted time
series, the ability to directly tune the time scale of the ESN may be used to
further investigate the relation between prediction performance and the dy-
namic memory of the reservoir. Other simple, deterministic topologies may
also be investigated, as how the topology of the reservoir affects prediction
performance is still largely an open question [118, 119]. Finally, it would
be interesting to see whether the conclusions found in Paper B transfer to
physically realised reservoir computers.

9.3 Transport barriers for microswimmers with orienta-
tional diffusion

In the on-going project on microswimmers, our results reveal that elliptic
LCS exist in the swimming dynamics of a microswimmer in the TGV flow.
Furthermore, the results show that the LCS deforms as the swimming speed
increases. The deformation causes the structure to have regions where es-
cape using orientational diffusion is possible.

In the future, we intend to find the average flux through the LCS as a
function of swimming speed and diffusion strength. Additionally, we wish to
study how the LCS is affected when the shape of the swimmer is no longer a
sphere, so that the dynamics are no longer conservative. Having quantified
the rate of escape for swimmers with orientational diffusion, we will compare
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this to the rate of escape for swimmers that can preferentially sample in which
direction to reorient, given some flow signal such as local strain. Training
such a swimmer to maximise escape rate using reinforcement learning, we
will study how the swimmer exploits its orientational dynamics to escape
the LCS. This will be done for different swimming speeds and shape factors.
Do different strategies emerge when the swimmer is non-spherical, and
does the deformation of the LCS allow for different escape strategies to be
used? Other optimisation goals may also be considered, such as how the
energy expended by the swimmer to escape the structure can be minimised.
Another interesting question is how the escape strategy changes when the
swimmer performs run-and-tumble [120, 121] instead of Brownian motion.
A continuation of this work is to consider time-varying flows such as isotropic
turbulence instead of the TGV flow, to see whether similar conclusions can
be drawn from the vortex structures found in such flows.

Understanding how orientational diffusion can be used to escape LCS may
help in understanding the swimming strategies of real-world microswim-
mers such as plankton and bacteria, and may help in the design of optimal-
navigation strategies of artifical microswimmers.
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PART III

APPENDIX

A Maximal Lyapunov exponent of a randomly
initialised neural network

Here, we show the calculation of the maximal Lyapunov exponent of a feed-
forward neural network, starting from the expression in Eq. 6.7.

λ1 =
1
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As the D matrix is diagonal, we may simplify Eq. A.1 to obtain

λ1 =
1

2
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log
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. (A.2)

We wish to know the PDF of the random variable ZN =
∑N

i=1 (Di i Wi 1)
2 and

start by finding the PDF of X =Di i Wi 1:

FX (x ) = Pr[X ≤ x ] = Pr[Di i Wi 1 ≤ x ] = p Pr[Wi 1 ≤ x ] + (1−p )Pr[0≤ x ]

= pΦ(x ) + (1−p )θ (x )
(A.3)

where Φ(x ) is the Gaussian CDF and θ (x ) is the Heaviside function. The PDF
of X is then obtained by taking the derivative

fX (x ) =
d

dx
FX (x ) = pφ(x ) + (1−p )δ(x ) =

p
p

2πσ2
e −

x 2

2σ2 + (1−p )δ(x ), (A.4)

where δ(x ) is the delta function. Next, we find the PDF of Y = X 2 through a
change of variables, as g (x ) = x 2 is a monotonic function for x ≥ 0:
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(A.5)
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The multiplication by 2 comes from the fact that the PDF of X is symmetric
around zero and is not constrained to positive values. The first term in the
sum in Eq. A.5 is a scaled χ2-distribution of order 1, and we rewrite the
expression as

fY (y ) =
p

σ

1

21/2Γ (1/2)
y 1/2−1e −

y
2σ2 + (1−p )δ(y 1/2)y −1/2, y ≥ 0. (A.6)

The latter term of the sum in Eq. A.6 can be rewritten using the following
relation

δ(g (y )) =
1

|g ′(y )|
δ(y )

which leads to a cancellation of y −1/2. We now proceed to calculate the
distribution of ZN =

∑N
i=1 (Di i Wi 1)

2 as the N convolutions of Eq. A.6. Starting
with the case where N = 2, we have
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(A.7)

which simplifies to

( fY ∗ gY )(z ) =
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Performing the change of variables in the integral t = y /z we have
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where the integral is equal to the Beta function B (1/2,1/2) = Γ (1/2)Γ (1/2)Γ (1/2+1/2) and
hence
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Thus, the result becomes
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For any N we find

fZN
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We now calculate the expression for the maximal Lyapunov exponent as
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The first integral is calculated in e.g. [102], yielding an expression containing
the digamma function ψ(x ). The second integral equals negative infinity.
The probability of the monodromy matrix M(0, L ) to have zero rank was
calculated by A. Dubey [103] to be

Pr[rank(M) = 0] = 1−
�

1−
�

1−p
�N �L

. (A.14)
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Since our derivation is based on the expected logarithm of the magnitude
of a single matrixD(k )W(k ) (Eq. 6.5), the pre-factor in Eq. A.13 corresponds
to the case where L = 1 in Eq. A.14. Conditional on that the rank of D(k ) is
non-zero, we ignore this term and obtain the final result

λ̃1 =
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2

N
∑

n=1

�

N

n

�

p n (1−p )N−n
�

log 2+ logσ2+ψ (n/2)
�

. (A.15)
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We compute how small input perturbations affect the output of deep neural networks, exploring an
analogy between deep feed-forward networks and dynamical systems, where the growth or decay of local
perturbations is characterized by finite-time Lyapunov exponents. We show that the maximal exponent
forms geometrical structures in input space, akin to coherent structures in dynamical systems. Ridges of
large positive exponents divide input space into different regions that the network associates with different
classes. These ridges visualize the geometry that deep networks construct in input space, shedding light on
the fundamental mechanisms underlying their learning capabilities.
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Deep neural networks can be trained to model com-
plex functional relationships. The expressivity of such
neural networks—their ability to unfold intricate data
structures—increases exponentially as the number of
layers increases [1]. Recent breakthrough applications
of neural networks [2] use deep feed-forward layouts with
many layers of neurons [3]. These are hard to train due to
the multiplicative amplification of signals propagating
through the layers, causing signals to either explode or
vanish in magnitude if the number of layers is too large.
Mathematical analysis in the asymptotic limit of infinitely
wide layers reveals how deep networks can nevertheless
learn to solve classification tasks [4–7]. Recent results
indicate that finite-width networks may learn in different
ways [8–10]. It is not understood, however, when and
how such networks use their exponential expressivity to
represent data features needed for a classification task,
how the representation affects prediction accuracy and
uncertainty, and how it depends on the network layout.
Here we use dynamical-systems theory to answer these

questions. Deep feed-forward networks [Fig. 1(a)] are
discrete dynamical systems. Inputs xð0Þ are mapped iter-

atively through xðlÞi ¼ gðPNl
j¼1 w

ðlÞ
ij xðl−1Þj − θðlÞi Þ, where

gð·Þ is a nonlinear activation function [11], the layer index
l ¼ 0;…; Lþ 1 plays the role of time, L is the number of
hidden layers, Nl is the number of neurons in layer l, and

the weights wðlÞ
ij and thresholds θðlÞi are parameters.

Sensitivity of xðlÞ to small changes in the inputs xð0Þ ¼ x
corresponds to exponentially growing perturbations in a
chaotic system with positive maximal Lyapunov expo-

nent [12,13] liml→∞ λðlÞ1 ðxÞ, with growth rate λðlÞ1 ðxÞ ¼
l−1 log jδxðlÞj=jδxj. The latter is called maximal finite-time
Lyapunov exponent (FTLE).
The network weights wðlÞ

ij are usually initialized as
random numbers, independently Gaussian distributed with
zero mean and variance σ2l. In this case, the Lyapunov
exponents are initially determined by a product of random
matrices, and the multiplicative ergodic theorem guarantees

that λðLÞ1 ðxÞ converges as L → ∞, to a limit that is
independent of x [14]. In the limit Nl ¼ N → ∞, one

finds λðLÞ1 ∼ logðGNσ2Þ, explaining why the initial weight
variance should be chosen so that GNσ2 ¼ 1, because then
signals neither contract nor expand [15–17], stabilizing
initial stages of the learning (the constant G depends on the
choice of activation function [15]).

(a) (b)

FIG. 1. Classification with a fully connected feed-forward net-
work. (a) Layoutwith two input components xð0Þ1 and xð0Þ2 ,L hidden
layerswith five neurons each, and oneoutputxðLþ1Þ. (b) Input plane
(schematic) for a classification problem with a circular decision
boundary that separates input patterns with targets t ¼ þ1 (empty
green square) from those with t ¼ −1 (filled black square).
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In the limit N → ∞, the hidden weights of deep net-
works barely change under training [4,18,19]. For finite
width, by contrast, the weights tend to change [5]. How the
network output changes in response to the changing
weights indicates how the network learns.
To understand how the trained network expresses the

input-data features needed for classification, we ask how the
network output depends on small input changes, encoded in
the x dependence of the maximal-FTLE field λ1ðxÞ of the
trained network. For a classification problem with two-
dimensional inputs x, divided into two classes with targets
tðxÞ ¼ �1 [Fig. 1(b)], we determine how the x dependence
of the maximal FTLE changes when changingN and L. For
narrow networks, we find that the maximal-FTLE field
forms ridges in the input plane, much like Lagrangian
coherent structures in dynamical systems [20–22]. These
ridges provide insight into the learning process, illustrating
how the network learns to change its output by order unity in
response to a small shift of the input pattern across the
decision boundary. The ridges disappear as the network
width grows, suggesting a different learning mechanism.
Formore complex classification problems (MNIST [23] and
CIFAR-10 [24]), we show that FTLE structures in input
space explain variations in classification accuracy and
predictive uncertainty.
Finite-time Lyapunov exponents.—Figure 1(a) shows a

fully connected feed-forward network with L hidden
layers, N0 input components, N neurons per hidden layer,
and NLþ1 ¼ 1 output neuron. The network maps every
input xð0Þ ¼ x to an output xðLþ1Þ. Weights and thresholds
are varied to minimize the output error ½xðLþ1Þ − tðxÞ�2, so
that the network predicts the correct target tðxÞ for each
input x. The sensitivity of xðlÞ to small changes δx is
determined by linearization,

δxðlÞ ¼ DðlÞWðlÞ · · ·Dð2ÞWð2ÞDð1ÞWð1Þδx≡ Jlδx: ð1Þ

Here,WðlÞ are the weight matrices with elements wðlÞ
ij , and

DðlÞ are diagonal matrices with elementsDðlÞ
ij ¼ g0ðbðlÞi Þδij,

with bðlÞi ¼ PNl
j¼1 w

ðlÞ
ij xðl−1Þj − θðlÞi and g0ðbðlÞi Þ ¼

ðd=dbÞgðbÞj
b¼bðlÞi

. The Jacobian JlðxÞ characterizes the

growth or decay of small perturbations to x [12,13]. Itsmaxi-

mal singular value ΛðlÞ
1 ðxÞ increases or decreases exponen-

tially as a function of l, with rate λðlÞ1 ðxÞ ≡ l−1 logΛðlÞ
1 ðxÞ.

The singular values ΛðlÞ
1 ðxÞ > ΛðlÞ

2 ðxÞ > … are the square
roots of the non-negative eigenvalues of the right Cauchy-
Green tensor J⊤l ðxÞJlðxÞ. The maximal eigenvector of
J⊤l ðxÞJlðxÞ determines the direction of maximal stretching,
i.e. in which input direction the output changes the most.
FTLEs and Cauchy-Green tensors are used in solid

mechanics to identify elastic deformation patterns [25],
and to find regions of instability in plastic deformation [26]

and crack initiation [27]. More generally, FTLEs help to
characterize the sensitivity of complex dynamics to initial
conditions [28–31]. In fluid mechanics, they explain the
alignment of particles transported by the fluid [32,33],
providing valuable insight into the stretching and rotation
of fluid elements over time and space [34]. FTLEs allow us
to identify Lagrangian coherent structures [20–22]; fluid-
velocity structures that help to organize and understand
complex spatiotemporal flow patterns [35]. These geomet-
rical structures appear as ridges of large maximal FTLEs,
orthogonal to the maximal stretching direction.
In applying these methods to neural networks, one should

recognize several facts. First, in deep neural networks, the
weights change from layer to layer. Therefore the corre-
sponding dynamical system is not autonomous. Second, the
numberNl of neurons per layer may change as a function of
l, corresponding to a changing phase-space dimension.
Third, the neural-networkweights are trained. This limits the

exponential growth of the maximal singular value ΛðLÞ
1 , and

it causes the FTLE λðLÞ1 ðxÞ to remain x dependent, even in
the limit of largeL (discussed in more detail below). Fourth,
one can use different activation functions, such as the
piecewise linear ReLU function [11], or the smooth tanh
function [15]. Here we use gðbÞ ¼ tanhðbÞ, so that the
network map is continuously differentiable just like the
dynamical systems for which Lagrangian coherent struc-
tures were found and analyzed.
Two-dimensional dataset.—To illustrate the geometrical

structures formed by the maximal FTLE, we first consider a
toy problem. The dataset [Fig. 1(b)] comprises 4 × 104

input patterns, with 90% used for training, the rest for
testing. We trained fully connected feed-forward networks
on this dataset by stochastic gradient descent, minimizing
the output error ½xðLþ1Þ − tðxÞ�2. In this way we obtained
classification accuracies of at least 98%. We used different
layouts, changing the numbers of layers and hidden
neurons per layer. The weights were initialized as inde-
pendent Gaussian random numbers with zero mean and
variance σ2l ∼ N−1

l . The thresholds were initialized to zero
(see the Supplemental Material [36] for details). After
training, we computed the maximal FTLE in layer L and
the associated stretching direction from Eq. (1) as described
in Refs. [38,39].
The results are summarized in Fig. 2, which shows

maximal-FTLE fields for trained networks with different

layouts. We see that the ridges of large positive λðLÞ1 ðxÞ
align with the decision boundary between the two classes
[Fig. 1(b)]. The network learns by grouping the inputs into
two different basins of attraction for t ¼ �1, separated by a

ridge of positive λðLÞ1 ðxÞ. A small shift of the input across
the decision boundary leads to a substantial change in the
output. In other words, a large maximal FTLE quantifies
exponential expressivity of the network near the ridge. This
is consistent with the observation that the output is
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particularly sensitive to weight changes near decision
boundaries [8]. The ridges are most prominent for small
N and large L. The contrast between ridge and background
increases as L becomes larger, quantifying the exponential
expressivity of deep networks [1]. For larger L, the
network can resolve smaller input distances δx because
the singular values increase or decrease exponentially from
layer to layer.
The ridges of large maximal FTLE are Lagrangian

coherent structures, because the maximal stretching direc-
tions (solid lines in Fig. 2) become orthogonal to the ridges
for large L. This demonstrates that there is a stringent
analogy between the FTLE ridges of deep neural networks
and Lagrangian coherent structures.
The ridges gradually disappear as the numberN of hidden

neurons per layer increases, because the maximal singular
value of JLðxÞ approaches a definite x-independent limit as
N → ∞ at fixed L. But how can the network distinguish
inputs with different targets in this case, without ridges
indicating decision boundaries? One possibility is that the
large number of hidden neurons allows the network to
embed the inputs into a high-dimensional space where they
can be separated thanks to the universal approximation
theorem [40]. In this case, training only the output weights
(and threshold) suffices, as demonstrated by Fig. 3(a).
That the classification error with random hidden weights is
larger than that of the fully trained network is not surpris-
ing, since different random embeddings have different
classification errors when the number of patterns exceeds
twice the embedding dimension [11,41]. In summary,
large-N networks can classify with random hidden weights.
This implies that the hidden weights do not need to change

during training, just as in kernel regression with the neural-
tangent kernel [4,18]. In other words, the learning in this
regime is lazy [19].
Figure 3(b) describes in more detail the crossover

between the two learning regimes in Fig. 2. Shown are
local averages of the maximal FTLE on the decision

boundary, hλðLÞ1 ðxÞid, and in the center of the input plane,

hλðLÞ1 ðxÞic, as functions of N for different values of L. The
results were obtained by training for 200 epochs to reach
classification accuracies ≥ 99%. Although the details of the
maximal-FTLE field change upon training further, Fig. 3(b)
allows us to draw the following conclusions about the

transition. First, LhλðLÞ1 ðxÞid tends to an N-independent

constant as L increases, LhλðLÞ1 ðxÞid → Cd. This saturation
is due to training: the network learns to produce output
differences of the order of δxðLþ1Þ ∼ 1, and to resolve input
differences δx on the scale of the mean distance jδxð0Þj
between neighboring inputs over the decision boundary.
Second, the data shown in Fig. 3(b) suggest that

LhλðLÞ1 ðxÞic ≈ −CcLþ logN for large enough L. Third,
the contrast between ridges and background disappears
upon increasing N, when the background reaches the ridge

level, hλðLÞ1 ðxÞic ≈ hλðLÞ1 ðxÞid. At this point the learning
mechanism transitions from learning by ridges to random
embedding. In Fig. 3(b) this happens around Nc ∼
expðCd þ CcLÞ. While the precise form of the law may
depend on the training details, the general conclusion is
that Nc depends very sensitively on L, because the N
dependence of the relation is logarithmic, just as the
N → ∞ result for the Lyapunov exponent quoted above.
We remark that the L scaling discussed above implies that

λðLÞ1 ðxÞ remains x dependent for large L.

FIG. 2. Geometrical FTLE structures in input space for differ-
ent widths N and depths L of fully connected feed-forward neural
networks trained on the dataset from Fig. 1(b). Shown is the

magnitude of LλðLÞ1 ðxÞ, and the maximal stretching directions
(black lines).

FIG. 3. (a) Classification error for a fully connected feed-
forward network with L ¼ 2 hidden layers with untrained,
random hidden weights, and trained output weights, as a function
of N (solid black line). Also shown is the classification error
for the fully trained network (dashed line). Both curves
were obtained for the dataset shown schematically in Fig. 1.
(b) Quantification of the crossover seen in Fig. 2, for fully tra-

ined networks. Shown are the averages hλðLÞ1 ðxÞid (solid) and

hλðLÞ1 ðxÞic (dashed), see text. The data was obtained by averaging
over independent initial-weight realizations. Also shown is a fit to

LhλðLÞ1 ðxÞic ≈ −CcLþ logN (dotted).
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One may wonder how the FTLE fields in Fig. 2 depend
on the initial weight variance σ2. For GNσ2 < 1, the
FTLEs are negative on average, initially. This implies a
slowing down of the initial training (vanishing-gradient
problem). To see this, consider the fundamental forward-
backward dichotomy of deep neural networks [11]: weight
updates in the stochastic-gradient algorithm are given by

δwðlÞ
mn ∝ ΔðlÞ

m xðl−1Þn , where

½ΔðlÞ�T ¼ ½ΔðLÞ�TDðLÞWðLÞ � � �Dðlþ1ÞWðlþ1ÞDðlÞ; ð2Þ

and ΔðLÞ
j ¼ g0ðbðLþ1ÞÞ½xðLþ1Þ − tðxÞ�g0ðbðLÞj ÞwðLþ1Þ

j . It fol-
lows from Eq. (2) that negative FTLEs cause small weight

increments δwðlÞ
mn. Conversely, when the maximal FTLE is

positive and too large, the weights grow rapidly, leading to
training instabilities.
Remarkably, training has a self-organizing effect. After

training, the maximal-FTLE distribution becomes indepen-
dent of the initial σ2, provided that the initial maximal
FTLE is not too large (Fig. S1 in [36]). For small enoughN,
in particular, the distribution centers around zero. This is
explained by the fact that the network learns by creating
maximal-FTLE ridges in input space: in order to accom-

modate positive and negative λðLÞ1 ðxÞ, the distribution must
center around zero, alleviating the unstable-gradient prob-
lem. We remark that the shape of the distribution, the tails
in particular, continues to evolve as one trains further.
MNIST dataset.—This dataset consists of 60 000 images

of handwritten digits 0 to 9. Each grayscale image has
28 × 28 pixels and was pre-processed to facilitate machine
learning [23]. Deep neural networks can achieve high
precision in classifying this data, with accuracies of up
to 99.77% on a test set of 10 000 digits [42].
We determined the maximal-FTLE field for this dataset

for a network with L ¼ 16 hidden layers, each containing
N ¼ 20 neurons, and a standard softmax layer with ten
outputs [11]. To visualize the geometrical structures in
the 282-dimensional input space, we projected it onto two
dimensions as follows [43]. We added a bottleneck layer
with two neurons to the fully trained network, just before
the softmax-output layer. We retrained only the weights and
thresholds of this additional layer and the output layer,
keeping all other hidden neurons unchanged. The local
fields b1 and b2 of the two bottleneck neurons are the
coordinates of the two-dimensional representation shown
in Fig. 4(a). We see that the input data separate into ten
distinct clusters corresponding to the ten digits. The
maximal FTLEs at the center of these clusters are very
small or even negative, indicating that the output is not
sensitive to small input changes. These regions are delin-
eated by areas with significantly larger positive FTLEs [see
3× enlargement in panel (a)]. Figure 2 leads us to expect

that patterns with large λðLÞ1 ðxÞ are located near the decision
boundaries in high-dimensional input space. This is verified

by strong correlations between λðLÞ1 ðxÞ and both the classi-
fication error and the predictive uncertainty. Figure 4(b)
shows that the classification error on the test set is larger for

inputs x with larger λðLÞ1 ðxÞ, and that large values of λðLÞ1 ðxÞ
correlate with high predictive uncertainty, measured by the
entropy H of the posterior predictive distribution [44]. For

softmax outputs, where xðLþ1Þ
i can be interpreted as prob-

abilities, H ¼ −
P

ihxðLþ1Þ
i i loghxðLþ1Þ

i i, where h·i denotes
an average over an ensemble of networks with the same
layout but different weight initializations [45,46]. These
observations confirm that ridges of maximal FTLEs localize
the decision boundaries in input space. Similar conclusions
hold for other architectures (Fig. S2 in [36]), and for the
more complex CIFAR-10 dataset (Fig. S3).
Figure 4(a) also shows λðLÞ1 ðxÞ along a path generated by

an adversarial attack. The attack begins from a sample
within the cluster corresponding to the digit 9 and aims to
transform it into a digit 4 by making small perturbations to
the input data [47] toward class 4. We see that the maximal
FTLE is small at first, then increases as the path approaches
the decision boundary, and eventually decreases again. This

FIG. 4. Maximal-FTLE field for MNIST [23]. A fully con-
nected feed-forward network with N ¼ 20 neurons per hidden
layer, L ¼ 16 hidden layers, and a softmax layer with ten outputs
was trained to a classification accuracy of 98.88%. The maximal
FTLE was calculated for each of the 282-dimensional inputs and
projected onto two dimensions (see text). (a) Training data in the

nonlinear projection. For each input, the maximal FTLE λðLÞ1 is
shown color coded. The box contains 93% of the recognized
digits 0. A 3× zoom of this box is also shown. The colored line

represents an adversarial attack from 9 to 4 (see text), with λðLÞ1 ðxÞ
color coded. (b) Classification error on the test set and predictive

uncertainty H (see text) as functions of λðLÞ1 ðxÞ. (c),(d) Mean and
standard deviation of maximal-FTLE distribution versus N.
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indicates, first, that our conclusions regarding the correla-
tions between large maximal FTLEs and decision bounda-
ries extend to neighborhoods of the MNIST training set that
contain patterns the network has not encountered during
training. Second, the maximal stretching direction corre-
lates with the direction in input space found by the
adversarial attack (Fig. S4 [36]). Third, since it is hard
to locate the FTLE ridges in the high-dimensional input
space, we characterized the transition between the two
learning regimes in terms of the mean and the standard
deviation of the FTLE distribution. Figure 4(c) shows that
the mean becomes positive and that the variance tends to
zero as N grows, leading to the uniform FTLE field
characteristic of learning by random embedding.
Conclusions.—For deep neural networks trained on differ-

ent classification problems, we explored geometrical struc-
tures of finite-time Lyapunov exponents in input space. In
fluid mechanics, such Lagrangian coherent structures appear
as ridges of large exponents, and they are used with great
success to organize the phase space of complex spatiotem-
poral flow patterns. The same is true for deep neural
networks: FTLE ridges partition input space into different
regions associated with different classes. Our analysis shows
how the network exploits its exponential expressivity to form
the ridges. Their sharpness determines how quickly classi-
fication errors and prediction uncertainty decreases as one
moves away from the ridge. As the width of the network
increases, the contrast between ridge and background dis-
appears, leading to a different learning mechanism, random
embedding, with qualitative differences regarding classifi-
cation errors and predictive uncertainties. The transition to
this lazy-learning regime [4,18,19] occurs for very wide
networks, with widths ∼ expðLÞ. The transition may
explain why wider networks are more robust against
adversarial attacks [47]: the less important the ridges are
for representing the relevant data structures, the harder it is
to realize adversarial attacks. The geometrical method
presented here may extend to other network architectures,
such as resnets [48] or transformers [49], and could help to
visualize and understand the mechanisms that allow such
neural networks to learn, but this remains a question for
the future.
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Abstract
Echo-state networks are simple models of discrete dynamical systems driven by a time series. By
selecting network parameters such that the dynamics of the network is contractive, characterized
by a negative maximal Lyapunov exponent, the network may synchronize with the driving signal.
Exploiting this synchronization, the echo-state network may be trained to autonomously
reproduce the input dynamics, enabling time-series prediction. However, while synchronization is
a necessary condition for prediction, it is not sufficient. Here, we study what other conditions are
necessary for successful time-series prediction. We identify two key parameters for prediction
performance, and conduct a parameter sweep to find regions where prediction is successful. These
regions differ significantly depending on whether full or partial phase space information about the
input is provided to the network during training. We explain how these regions emerge.

1. Introduction

Many driven dynamical systems can be found in nature and engineering. Reservoir computing has recently
become popular to study in this context, as it yields simple models of such dynamical systems. By exploiting
signal-driven synchronization, where the dynamics of the reservoir neurons synchronizes with the input time
series, a reservoir computer can be trained to reproduce a time series autonomously [1–4]. A necessary
condition for the synchronization to occur is that the dynamics of the reservoir neurons is contractive; a
property ensured by the reservoir dynamics having a negative maximal Lyapunov exponent. In reservoir
computing literature, the ability to synchronize is referred to as the echo-state property, a term coined by
Jaeger in his original paper on echo-state networks (ESNs) [5], which is the most common realisation of
reservoir networks. The maximal Lyapunov exponent has been the focus of study in several papers due to its
close connection to the echo-state property [6–8]. There is some variation in how the maximal Lyapunov
exponent has been defined. In [6], the Lyapunov exponent is defined in the absence of input. However, as the
input has been shown to have a contractive effect on the reservoir dynamics when using the commonly
employed tanh activation function [7], the maximal Lyapunov exponent defined in the presence of input is
more naturally connected to the echo-state property.

While the echo-state property is a necessary condition for the reproduction of a time series, it is not
sufficient. The ability for a reservoir network to reproduce a time series has recently been formally connected
to time-delay embedding [9]. The result states that the embedding is possible because the dependence on
previous inputs decays at different rates for different neurons in the reservoir, creating an internal
representation that captures different time scales of the input time series. The rate at which dependence on
previous inputs of a given neuron decays is controlled by the strength of the input and recurrent
connections, as these control the strength of the driving and the time scale of the recurrent dynamics of that
neuron. In fact, using time delay embedding, it is possible to reproduce a time series with only partial phase
space information. By partial phase space information is meant that only a subset of the components of the
time series is used when making the prediction of the time series. The connection between the ability to
represent several time scales and prediction performance was first observed in [5, 10] and has inspired the

© 2022 The Author(s). Published by IOP Publishing Ltd
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design heuristic that the reservoir dynamics should be ‘rich’ in the sense that the different neurons should
display a wide range of dynamics that captures different time scales of the time series. However, other results
show that the reservoir connections, which allow the reservoir to represent temporal information, can be
removed while still maintaining good prediction performance [11, 12]. In this case, time delay embedding is
not possible. It is clear that such networks cannot reproduce dynamics with only partial phase space
information. The distinction between full and partial-information tasks in reservoir computing was made in
[13], labelled as non-temporal and temporal tasks respectively, but distinctions between how the reservoir
should be designed in the two cases were not discussed.

In this paper, we investigate the differences in parameter dependence when full or partial phase space
information is provided to an ESN. We begin by showing that, in the limit of large network dimension, and
for a given input time series, the maximal Lyapunov exponent depends only on two parameters that combine
several tuning parameters, namely the reservoir dimension, the scale of the reservoir connections (here
quantified as the variance of the connection weights), the sparsity of the reservoir connectivity matrix, and
the dimension and scale of the input. Sweeping the two parameters identified, we study the difference
between the regions where reservoir computing is successful for the cases of full and partial information, and
explain the shape of these regions. This includes showing why the maximal Lyapunov exponent has a lower
boundary in the case of partial information, and how the commonly employed ridge parameter introduces a
lower boundary of the input scale for successful reservoir computing. A condition for successful prediction
in the partial-information case is shown to imply that the commonly employed metric for linear
information,memory capacity [5], must be low, implying that maximizing this metric is counterproductive
when optimizing performance. Additionally, we show that results concerning the sampling rate in time-delay
embedding theory [14] can be applied to the case of partial information to improve performance.

The paper is structured as follows: First, we provide some background on the theory of ESNs and how
their predictive performance is evaluated. In the following section, we derive a mean-field expression for the
maximal Lyapunov exponent using random-matrix theory, arriving at the same result as in [7], but
extending it to more general input time series rather than Gaussian noise. This is followed by a section where
we describe the methods we use. We then present the results for the case of full and partial phase space
information. We conclude with a discussion of the results.

2. Background

2.1. Echo-state networks
The ESN training dynamics for a reservoir with N neurons and an input signal with n components are given
by [15]

ri(t+ 1) = g




N∑

j=1

Aijrj(t)+
n∑

α=1

W(in)
iα uα(t)


 , (1a)

vi(t+ 1) =
N∑

j=1

W(out)
ij f

(
rj(t+ 1)

)
. (1b)

Here ri(t) is the state of the i:th reservoir neuron at time t, and uα(t) is the α:th component of the input
signal. The matrix A is the reservoir connection matrix whose entries Aij represent the connection strength
between the reservoir nodes, whileW(in) are the connections between the input and the reservoir. g(·) is the
activation function, and f(·) is applied to the reservoir states before it is projected to the output space with
the output weight matrixW(out). The argument of the activation function is referred to as the local field. f(·)
is often set to be the identity function. In this work, to break the inherent symmetry of the reservoir
dynamics which causes the ESN to learn the reflected input series u→−u as well as the original, we employ
the Lu readout [3].

During prediction, we follow the standard procedure introduced in [5] and replace the input uα(t) by the
output vα(t) of the reservoir to form an autonomous system,

ri(t+ 1) = g




N∑

j=1

Aijrj(t)+
n∑

α=1

W(in)
iα vα(t)


 , (2a)

2
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vi(t+ 1) =
N∑

j=1

W(out)
ij f

(
rj(t+ 1)

)
. (2b)

This is the prediction dynamics.

2.2. Training and evaluation
In order to train the ESN, the training dynamics (1) is run for some time using the input time series to
ensure that the reservoir dynamics has synchronized with the input. Then, at time t= 0, an 2N×Tmax matrix
R is formed where each column is the reservoir state vectors r(t) and r2(t) concatenated (due to the Lu
readout) at each time t= 0, 1, . . . ,Tmax − 1. We wish to minimize the quadratic error between the output
v(t) and the target y(t) = u(t) and achieve this by employing ridge regression [16] to obtain

W(out) = YR⊤(RR⊤ + kI)−1. (3)

Here, Y is a matrix whose columns are given by y(t), and k≥ 0 is the ridge parameter which is introduced
to reduce overfitting. An additional effect of the ridge parameter is that the magnitude of the entries in
W(out) decreases as k increases.

OnceW(out) has been determined, the prediction dynamics (2) is used to autonomously predict how the
time series continues. We now define an error function which will be used to measure the prediction
performance of the trained network. In order to evaluate the prediction performance of the ESN, we monitor

εα(t) =

√
(yα(t)− vα(t))

2

σ2
yα

, (4)

where σ2
yα is the variance of the α:th component of the time series. The quantity εα(t) quantifies how many

standard deviations the α:th component of the prediction deviates from the target time series. When any of
the predicted components deviates more than some threshold value, the time is recorded as the successful
prediction time. We set the threshold value to 0.5. Decreasing this value does not qualitatively affect the
obtained results. As this quantity fluctuates depending on the random initialisation of the ESN and from
where in the time series the prediction started, the final performance score is determined by an average over
several random initialisations of both the ESN and initial value of the time series. As the quantity is
standardized, the metric is comparable for different time series.

2.3. Parameters
In designing an ESN, several parameters must be selected. As they are central to this work, we summarise the
relevant parameters here. The parameters that are mainly discussed in literature are the reservoir dimension
N, the scale of the reservoir connectivity matrix σ2

A, which is the variance of the entries in A (the spectral
radius is sometimes used instead as a scale metric), the sparsity of the connections in the reservoir s, which
takes the value s= 1 if all neurons are connected and s= 0 if no neurons are connected, the input dimension
n, and the scale of the input σ2

in, which is the variance of the entries ofW(in). These are parameters pertaining
to the architecture of the ESN. In addition, the ridge parameter k used during training and the sampling rate
δt of the time series are important tuning parameters. In this work, we assume that N is sufficiently large so
that the sum over reservoir states in (1a) and (2a) can be approximated as a random variable with a
Gaussian distribution with mean zero (due to the distribution of the reservoir connections Aij) and variance
sNσ2

A. In this limit, it is unnecessary to vary s, N, and σ2
A independently when selecting reservoir parameters,

which is often done in literature, see for example [5, 13]. For a given input series, the reservoir dynamics thus
only depends on two parameters, namely sNσ2

A and nσ2
in. In the remainder of the article, these two

parameters are used to investigate parameter regions where reservoir computing is successful.

3. Maximal Lyapunov exponent

The maximal Lyapunov exponent of a dynamical system describes the long term fate of the separation of two
initially nearby trajectories [17]. The quantity is computed under the assumption that the separation
remains small within the time frame of interest, and as such, we can consider the linearised dynamics of the
system to describe the evolution of the separation. For ESNs, it is possible to define three different Lyapunov
exponents by considering different dynamical systems: (i) system (1a) with σ2

in = 0, (ii) system (1a with
σ2
in > 0, and (iii) system (2) for a trained ESN. In [6], definition (i) was employed. However, definition

(ii) must be used if one wants to quantify the echo-state property, because the input has a contracting effect

3
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on the reservoir dynamics when the tanh activation function is employed [7]. It is therefore more natural to
study the latter definition. Finally, if an ESN has been trained successfully, the third definition of the
exponent approximate the maximal Lyapunov exponent of the input dynamics, as shown in [1]. We mainly
focus on definition (ii) and refer to this as the training Lyapunov exponent λT .

For an ESN employing the tanh activation function, we may compute the linearised separation of
reservoir states δr(t) in the presence of input as

δr(t+ 1) =D(t)Aδr(t), (5)

where D(t) is a diagonal matrix with entries Dii(t) = 1− tanh2 (bi(t)), where bi(t) =
∑N

j Aijrj(t)+∑n
αW

(in)
iα uα(t). The training Lyapunov exponent is obtained by computing [17]

λT = lim
t→∞

1

t
log

|D(t− 1)AD(t− 2)A . . .D(0)Aδr(0)|
|δr(0)| . (6)

Numerically, the product in (6) can be computed employing the QR method [18] and computing the
average maximal expansion of δr(t) per time step until the average has converged to some fixed value.

The training Lyapunov exponent has previously been derived in the limit of large N using mean-field
theory [7]. It was assumed that the reservoir dimension N is sufficiently large so that the sum

∑N
j=1Aijrj(t) is

distributed according to a normal distribution due to the central limit theorem. We employ the same
assumption and derive a similar result for the training Lyapunov exponent using random matrix theory. We
do not assume that the input is Gaussian random noise, but that it is a general, stationary time series with a
rapid decay of time correlations. We therefore do not require an i.i.d. input series. Using these assumptions,
we obtain an expression for the training Lyapunov exponent (see appendix):

λT =
1

2

[
ln
(
sNσ2

A

)
+ ln

(
N−1

N∑

i

⟨D2
ii(t)⟩

)]
. (7)

Here, ⟨·⟩ is the average taken over input samples and ensembles of A andW(in). This is the same result as
[7], for relaxed assumptions on the input time series. To obtain ⟨D2

ii⟩, we use the same procedure as [7] and
construct an iterative map for the variance of the reservoir states ri(t). Assuming that N is large enough so
that the sum

∑N
j=1Aijrj is normally distributed, we can compute the probability density function fb(x) of the

local field by using the convolution of the probability mass function of a normal distribution with zero mean
and variance sNσ2

Aσ
2
r , and the empirical probability mass function of the normalized input time series, given

an ensemble of input trajectories initialized with random initial values, scaled by σ2
in, to construct an iterative

map of the variance of ri(t) taken over input samples and ensembles of A andW(in),

σ2
r (t+ 1) =

ˆ ∞

−∞
db (g(b))2 fb(b; sNσ

2
A,σ

2
r (t),σ

2
in). (8)

In [7], it was shown that this map converges to a fixed point when the input is a Gaussian random
variable. A similar result was derived by Poole et al [19] for feed-forward neural networks, where the map
was also shown to rapidly converge. Our numerical results show that σ2

r (t) converges for non-Gaussian
inputs. Assuming t is large enough for the map to have converged, and denoting the converged variance by
(σ∗

r )
2, one finds

⟨D2
ii⟩= ⟨(1− r2i (t))

2⟩= 1− 2(σ∗
r )

2 + ⟨r4i ⟩, (9)

where the fourth moment of ri(t), which also converges as the distribution only depends the first and second
moments, can be computed as

⟨r4i ⟩=
ˆ ∞

−∞
db (g(b))4 fb(b; sNσ

2
A,(σ

∗
r )

2,σ2
in). (10)

Combining (7) and (9), we find that the predicted training Lyapunov exponent agrees very well with the
result obtained using the QR method when the reservoir dimension N is large. The result shows that λT , for
a given input time series, depends on sNσ2

A and nσ2
in. This agrees with the discussion in section 2.3.
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4. Method

To evaluate the prediction performance of ESNs when full and partial information is provided, we use the
ESN to predict a chaotic time series where we either input the ESN with the time series of all the components
of the time series, or only a single component. In the latter case, we use the ESN to predict the input
component. As the ESN has incomplete information for this case, it must construct a time-delay embedding
to reproduce the dynamics correctly. As examples of chaotic time series, we use the Lorenz63 system [20],
given by

d

dt
x= σ(y− x), (11a)

d

dt
y= ρx− y− xz, (11b)

d

dt
z= xy−βz, (11c)

with σ= 10, ρ= 28, and β = 8/3, which results in that the dynamical system has a Lyapunov spectrum of
λ1 = 0.901, λ2 = 0, and λ3 =−14.6 [21], and the Halvorsen system [21]

d

dt
x=−ax− 4(y+ z)− y2 (12a)

d

dt
y=−ay− 4(x+ z)− z2 (12b)

d

dt
z=−az− 4(x+ y)− x2, (12c)

with a= 1.3. The Lyapunov spectrum of the Halvorsen system is λ1 = 0.69, λ2 = 0, and λ3 =−4.9 when the
considered parameters are used [21].

We obtain a time series by discretizing the dynamical systems (11) and (12) with a sampling rate δt= 0.1.
This choice is informed by the work of Kantz and Schreiber (see p 151 in [14]) where the information
theoretical concept of mutual information is used to find an optimal step size for time delay embedding of
the Lorenz63 system. We use the same sampling rate for the Halvorsen time series. The effect of changing the
sampling rate is investigated in section 5.2. The ESN is trained on the Lorenz63 or Halvorsen system for
roughly 200 Lyapunov times, where one Lyapunov time is defined as λ−1

1 and λ1 is the maximal Lyapunov
exponent of the dynamical system. Before feeding the time series to the reservoir, the time series is
normalized such that the largest variance of any variable of the dynamical system over time equals unity. This
is to ensure that the dependence on nσ2

in is comparable for the different time series.

5. Results and discussion

5.1. Parameter dependence for full and partial information
We characterize the prediction performance in a phase diagram with axes sNσ2

A and nσ2
in (see figure 1), for

two cases: (i) Providing full phase space information to the reservoir (panels (a) and (c) in figure 1) and
(ii) providing only partial phase space information to the reservoir (panels (b) and (d) in figure 1). Different
aspects of the phase diagram in figure 1 are discussed below.

5.1.1. Maximal Lyapunov exponent
We first observe that the reservoir dynamics must contract (λT < 0) for successful prediction. This is
demonstrated by the red line in the phase diagrams. In [22], the transition between the successful and failed
prediction is shown to be smooth. However, we find that the transition becomes sharper as N increases. We
also note that the maximal Lyapunov exponent computed in the absence of input (dashed black line in
figure 1), used in [6], works well as long as nσ2

in is small. As nσ2
in becomes larger, the input variance has an

increasingly contractive effect on λT . It is clear from figure 1 that λT < 0 is a necessary but not sufficient
condition for successful prediction.

5
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Figure 1. Prediction performance, measured as the average Lyapunov time before the prediction fails (εα(t)> 0.5 for any α, see
section 2.2)., of an ESN of dimension N= 500, trained on (a) the Lorenz63 system provided with all three components, (b) the
Lorenz63 system provided with only the y-component, (c) the Halvorsen system provided with three components, and (d) the
Halvorsen system provided with only the y-component. Each result has been averaged over 50 independent trials. The red line
shows where the mean field theory predicts λT = 0, while the green line shows where rank(RR⊤) = 100. The latter choice is
discussed in section 5.1.3. The dashed line shows where the maximal Lyapunov exponent in the absence of input is zero, and the
blue line shows where the prediction dynamics (2) bifurcates from a stable fixed point when the ridge parameter k= 10−2, which
was used during training. The results were averaged over 50 independent trials.

5.1.2. Full and partial information
A qualitative difference exists in the parameter dependence on prediction performance when full or partial
information is provided to the network. In the full information case, as long as λT < 0, the performance is
roughly independent of sNσ2

A. This is consistent with the result of [11, 12], where it was shown that the
connections between the reservoir neurons can be removed (setting A to zero) and still the reservoir allows
successful prediction. Removing the connections renders the ESN memory-less, and the algorithm simply
projects the input series nonlinearly to a high dimensional space and performs a function fitting. This is
possible because full phase space information is provided; only the current phase space coordinate is
necessary to determine the evolution of the dynamics. This is not the case for partial information. In [9], it
was shown that the reservoir computer employs time delay embedding to predict a time series. It is possible,
according to Takens’ embedding theorem, to embed a high dimensional time series using the history of a
single observable. The theorem states that, given at least 2df + 1 delays, where df is the box-counting
dimension of the attractor of the time series, the embedding is possible. In our case, this corresponds to
having at least 2df + 1 neurons representing different time scales of the input time series. The box-counting
dimension of the Lorenz63 system is 2.06 [21], implying that approximately five neurons are required.
However, as was pointed out in [9], while the embedding is possible, projecting the embedding back to the
original space linearly (2b) is not necessarily accurate. To resolve this, the universal approximation theorem
was evoked in [9], stating that with a sufficiently large sum of weighted nonlinear activation functions, any
functional relationship can be approximated. Hence, we need sufficiently many neurons representing
different time scales of the input time series to be able to predict the time series when only partial
information is provided. The different time scales are sampled by choosing reservoir and input weights such
that the dependence on previous inputs decays at different rates for different neurons.

5.1.3. Rank of RR⊤

In panels (b) and (d) in figure 1, the ESN must use time-delay embedding to reconstruct the input dynamics.
When sNσ2

Aσ
2
r ≪ nσ2

in, all reservoir states are highly correlated because they are all strongly driven by the
input signal. As sNσ2

Aσ
2
r ∼ nσ2

in, the reservoir states may develop different dynamics due to the randomly
sampled connections in A. This can be quantified using the rank of the matrix RR⊤, i.e. the number of
linearly independent (over time) reservoir neurons. We remind the reader that R is the matrix whose
columns are the reservoir states r(t) throughout the training sequence (see section 2.2). The rank of RR⊤
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Figure 2. (a) Performance of an ESN with dimension N= 500 predicting the y-component of the Lorenz63 attractor (same data
as in figures 1(a) and (b) rank of the RR⊤ matrix computed for the same reservoir computer, and (c) the memory capacity,
computed for the same reservoir dimension. The result has been averaged over 100 independent trials.

quantifies the ‘richness’ described by Jaeger in his original paper on ESNs. This is the effective number of
activation functions that the ESN can use to approximate the functional relationship between the reservoir
embedding and the original space. In figure 1, the green line shows where the rank is equal to 100. Along this
contour, the ESN can effectively employ 100 reservoir states to approximate the functional relationship
between the time-delay embedding performed by the reservoir and the output. Above the green line, the rank
increases gradually, making the approximation more accurate. As shown in figure 1, it is only once the rank
begins to increase that the reservoir is able to predict. The gradual increase of rank is reflected in a gradual
increase of performance. In panels (a) and (c), the rank of RR⊤ does not affect performance, because the
ESN does not need to perform a time-delay embedding to reconstruct the input dynamics.

That predictive performance depends on the rank of RR⊤ has several consequences. Firstly, the lower
bound depends on the effective number of reservoir states required to approximate the relation between the
reservoir embedding and the original space, and is independent of any time scale of the predicted time series.
Thus, it is incorrect to state that the scale of A (often the spectral radius is used) must be adjusted in
accordance with the time scale of the predicted time series [5]. In fact, as long as sufficiently many neurons
are uncorrelated and each neuron is an echo of the input, prediction is possible. Secondly, the result has
consequences for the linear memory capacity of a reservoir [5]. The memory capacityMC measures the
maximal achievable linear correlation between current reservoir states and previous inputs and is defined as

MC=
∞∑

τ=1

max
W(out)

cov2(v(t),u(t− τ))

σ2
vτσ

2
u

, (13)

where the input is a series of i.i.d. Gaussian random variables. A high memory capacity means that the
reservoir state r(t) contains linear information about an input u(t− τ) for some large τ . Hence, all reservoir
states between t− τ and τ should be highly correlated. The rank of RR⊤ is equal to its number of non-zero
singular values. This is equivalent to the number of non-zero singular values of R⊤R, which represents the
correlations between reservoir states at different times. Since a high rank reflects that the reservoir effectively
has a large number of reservoir states to use in its functional approximation, and a low rank reflects a high
memory capacity, maximizing linear memory capacity and functional approximation accuracy appear to be
mutually exclusive tasks. This is related to the well-known memory-nonlinearity trade-off [23]; the more
nonlinear the reservoir dynamics are, the shorter the memory becomes. This prediction is verified by
figure 2. Comparing panels (b) and (c), we see that when the memory capacity peaks, the rank is low.
Comparing panels (a) and (c), we conclude that high linear memory capacity is not indicative of high
prediction performance. This means that prediction performance does not rely on being able to reconstruct
the time series far back in time, but rather on the ability to represent several time scales of the input. Two
important points should be made: Firstly, the defined memory capacity only measures linear information,
and so the result does not imply that the reservoir does not need memory to perform a prediction. Indeed,
when only partial information is presented to the network, memory is necessary to construct a time-delay
embedding. When linear memory capacity is low, the reservoir can still retain nonlinear information about
the input. In [24], information processing capacity was introduced as a metric that extends memory capacity
to nonlinear cases. However, as shown in [23], nonlinearity inherently degrades memory of the input, and
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Figure 3. Bifurcation diagram of first component of the output v(t) of an ESN trained on the Lorenz63 time series with
sNσ2

A = 10−2. The ridge parameters are (a) k= 100, (b) k= 10−2, and (c) k= 10−4.

thus, long memory, which is only afforded by linear dynamics, and ‘rich’ reservoir dynamics, cannot be
achieved simultaneously. Secondly, memory capacity is computed using an i.i.d. input, meaning there are no
time correlations in the input series. In general, time correlations exist for input series, and so each input
carries with it information about previous inputs. This can affect the amount of linear correlation the
current reservoir state has with previous inputs, and so panel (c) cannot be used to directly infer the linear
memory of the reservoir in panel (a). However, we expect the parameter regions with high correlation with
previous inputs to be similar for the case of inputs with time correlations.

5.1.4. Saturation of activation function
The performance drops once nσ2

in becomes too large. In this limit, the local fields of the reservoir neurons
become so large that the activation function saturates and information about the input time series is lost.

5.1.5. Ridge parameter
When nσ2

in is small, prediction fails the full information case (see panels (a) and (c) in figure 1). To see what
causes this, consider that in order for the ESN to predict a time series, it must be able to reproduce the
Lyapunov spectrum of the input time series [1]. This means that the norm of the matrix A+W(in)W(out)

relevant for the prediction dynamics (2), must be sufficiently large. However, the ridge parameter k sets a
limit for how large the norm ofW(out) can be. Consider, for example, a chaotic time series. To predict the
chaotic time series, nσ2

in must exceed a threshold value so that the prediction dynamics can be chaotic.
The same line of arguments hold for the case when partial information is provided (panels (b) and (d)). To
observe the effect of changing the ridge parameter, we compute a bifurcation diagram of the reservoir
neurons in an ESN trained on the Lorenz63 system. In figure 3, we see how the ridge parameter changes at
what value of nσ2

in the prediction dynamics bifurcates from having a stable fixed point at zero. Beyond this
bifurcation, the prediction dynamics eventually becomes that of the Lorenz63 system. For smaller ridge
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Figure 4. Prediction performance, measured as the average Lyapunov time before the prediction fails (εα(t)> 0.5 for any α), and
RR⊤ of two simple ESNs trained on the y-component of the Lorenz63 system, sampled at different rates δt. The reservoir
dimension is N= 500, and the result was averaged over 200 independent trials.

parameters, the dynamics is more prone to become unstable. Indeed, the effect of the ridge parameter is to
regularizeW(out) such that its entries do not diverge to infinity due to RR⊤ having an undefined inverse
(see (3)). Thus, this instability is expected as k decreases. The bifurcation is shown in figure 1 as a blue line
and corresponds to the second panel in figure 3. In figure 1, the contour where the bifurcation occurs looks
different for the full and partial information case because, for the case when only partial information is
provided, the reservoir fails to embed the input dynamics and the prediction dynamics does not become
chaotic.

5.2. Independence of δt
To study the dependence on changing δt, we employ the ‘simple ESN’ architecture [25], where A is a diagonal
matrix. This is done because it allows us to control the time scale of the reservoir neurons explicitly. In the
result below, we deterministically set the diagonal elements of A to Aii = α i

N for a positive parameter α. The
time scale of each neuron is simply determined by the magnitude of its corresponding weight in A. If the
ESN depends on δt, and by extension, the memory requirements of the time series to be predicted, the
parameter region where prediction works should change when the sampling rate δt is changed. As seen in
figure 4, apart from decreasing the performance, decreasing δt does not shift the parameter region where
prediction works significantly, despite being altered by one order of magnitude. This is consistent with the
previous observation, that the performance depends on the number of uncorrelated reservoir states, as
measured by the rank of RR⊤. What changes is instead the prediction performance. This is consistent with
the result from [14], where δt= 0.1 is closer to the optimal sampling rate for time delay embedding of the
Lorenz63 system. We note that the rank is larger when δt is smaller.

6. Conclusions

Correctly selecting tuning parameters is crucial for successful reservoir computing. However, no clear
understanding of how the parameters should be selected exists, and the choice largely comes down to
heuristics. In this article, we explain how prediction performance depends on parameter selection when full
phase space information or partial phase space information is provided to the network.

We find that there is a qualitative difference between the two cases. When partial phase space information
is provided, the reservoir must construct a time-delay embedding of the input time series. To approximate
the functional relationship between the embedding and the original space of the time series, the reservoir
network uses a weighted sum of reservoir states; the more states, the more accurate the approximation. We
show that the effective number of available reservoir states used for the approximation is equal to the number
of independent states, quantifies by the number of non-zero singular values of the matrix RR⊤. This imposes
a condition on the relationship between the strength of the recurrent connections of the reservoir and the
strength of the input signal. If the input signal dominates the dynamics, the reservoir states are strongly
correlated, making the approximation of the functional relationship poor. On the other hand, no such
condition is found when full phase space information is provided. This is because all the information
required to predict the next time step is provided in the current time step. Hence, the reservoir network can
simply perform function fitting to model the input time series.
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That the approximation of the functional relationship between the reservoir embedding and the original
space becomes more accurate, thus improving the network’s prediction performance, when reservoir states
become uncorrelated has a consequence for the role of linear memory capacity. As memory capacity
increases when the linear correlation between the reservoir states at times t and t− τ increases, maximizing
memory capacity and predictive performance are mutually exclusive tasks. Memory capacity should
therefore not be used as a metric associated with predictive performance.

Our results also show that tuning the time scale of the reservoir in accordance with the time scale of the
input time series is unnecessary. In fact, the lower bound of the reservoir time scale for successful time-series
prediction is independent on the sampling rate of the input time series. Instead, it depends on when the
reservoir states start to become uncorrelated. However, we find that predictive performance can be improved
by tuning the sampling rate in the same way it can be optimized in time-delay embedding literature.

Finally, we find that a lower limit for the strength of the input exists for both the full and partial
information case due to that the ridge parameter limits the norm of the output connection strength. Limiting
the norm constrains the maximum achievable maximal Lyapunov exponent of the reservoir dynamics during
prediction. Hence, if this exponent is smaller than that of the input time series, prediction is impossible.

In conclusion, we have studied the parameter regions where reservoir computing is successful in the case
of full and partial information, and found they differ qualitatively. The result is a step in the direction of
clarifying how parameters should be selected in an informed way, instead of relying on heuristics. More
research is needed to understand how the reservoir can be optimally designed to develop uncorrelated
reservoir states to improve predictive performance.
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Appendix

The training Lyapunov exponent λT is defined as

λT = lim
t→∞

1

t
log

|D(t− 1)AD(t− 2)A . . .D(0)Aδr(0)|
|δr(0)| , (A1)

where D(t) is a diagonal matrix with entries

Dii(t) = 1− tanh2




N∑

j

Aijrj(t)+
n∑

α

W(in)
iα uα(t)


 , (A2)

and δr(t) is the separation between two initially infinitesimally nearby reservoir states. To derive (7), we start
from (A1) by writing δr(0) = δr0n, where n is the unit vector pointing in the direction of δr(0), and denote
the matrix product as Jt =D(t− 1)AD(t− 2)A . . .D(0)A. Using this, we write (6) as

λT = lim
t→∞

1

2t
ln
(
n⊤J⊤t Jtn

)
. (A3)
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Assuming the decay of correlation between consecutive D(t)Amatrices is exponential, and that the
distribution of the elements Dii(t) converge rapidly, we approximate the matrices D(t)A as independent and
identically distributed and use the Furstenberg theorem to obtain [26]

λT = lim
t→∞

1

2t
⟨ln
(
n⊤J⊤t Jtn

)
⟩, (A4)

where the average is taken over samples of inputs and ensembles of A andW(in) matrices. We assume that the
average over samples is equal to the time average of the input time series. The theorem states that in the limit
of large t, the Lyapunov exponent is a non-random quantity. If the entries of Jt reach a stationary
distribution, then the product n⊤J⊤t Jtn has a negligible variance in the limit of large N. In this limit, one
obtains

λT = lim
t→∞

1

2t
ln⟨n⊤J⊤t Jtn⟩. (A5)

We use the result derived by Newman for products of i.i.d. random matrices [26, 27] to simplify the
expression to

λT =
1

2
ln⟨n⊤(D(t)A)⊤D(t)An⟩. (A6)

The proof of this equivalence requires the distribution of the random variable |D(t)Az(t)|
|z(t)| , where z(t) is a

random N-dimensional vector, to be independent on z(t). Using the Euclidian norm, we have

|D(t)Az(t)|2
|z(t)|2 =

z⊤(t)A⊤D2(t)Az(t)

z⊤(t)z(t)
. (A7)

The elements of the matrix A⊤D2(t)A are sums of all the diagonal entries of D2(t), each weighted by the
product of two entries of A. As the elements of A are i.i.d. when N is large, this sum approaches a mean value
that is independent of the direction of z(t). The proof then proceeds by stating that, if the random variable
|D(t)Az(t)|

|z(t)| is independent of z(t), then

ln |Jtz(0)|=
t−1∑

k=0

ln
|D(k)Az(k)|

|z(k)| (A8)

is a sum of uncorrelated variables. The result in (A6) follows by employing the law of large numbers.
Proceeding by using the assumption that the entries of D(t)A are approximately i.i.d. (A6) can be evaluated
to be

λT =
1

2
lnN−1⟨tr

[
(D(t)A)⊤D(t)A

]
⟩. (A9)

The argument of the logarithm can be rewritten as

N−1⟨tr
[
A⊤D2(t)A

]
⟩= N−1

N∑

i

⟨
D2

ii(t)




N∑

j

A2
ij



⟩

= N−1
N∑

i

⟨
D2

ii(t)sNσ
2
A

⟩
= sσ2

A

N∑

i

⟨D2
ii(t)⟩. (A10)

Thus, we finally obtain

λT =
1

2

[
ln
(
sNσ2

A

)
+ ln

(
N−1

N∑

i

⟨D2
ii(t)⟩

)]
. (A11)

This result is equivalent to the logarithm of the square root of (10) in [7], derived there for Gaussian
white-noise inputs. Our derivation shows that (A11) is valid for general, stationary time series with rapid
decay of time correlations.

ORCID iD

B Mehlig https://orcid.org/0000-0002-3672-6538

11



Mach. Learn.: Sci. Technol. 3 (2022) 045021 L Storm et al

References

[1] Pathak J, Lu Z, Hunt B R, Girvan M and Ott E 2017 Chaos 27 121102
[2] Lim S H, Theo Giorgini L, Moon W and Wettlaufer J S 2020 Chaos 30 123126
[3] Lu Z, Pathak J, Hunt B, Girvan M, Brockett R and Ott E 2017 Chaos 27 041102
[4] Kim J Z, Lu Z, Nozari E, Pappas G J and Bassett D S 2021 Nat. Mach. Intell. 3 316–23
[5] Jaeger H 2001 Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 p 13
[6] Verstraeten D, Schrauwen B, d’Haene M and Stroobandt D 2007 Neural Netw. 20 391–403
[7] Massar M and Massar S 2013 Phys. Rev. E 87 042809
[8] Wainrib G and Galtier M N 2016 Neural Netw. 76 39–45
[9] Hart A, Hook J and Dawes J 2020 Neural Netw. 128 234–47
[10] Ozturk M C, Xu D and Principe J C 2007 Neural Comput. 19 111–38
[11] Pyle R, Jovanovic N, Subramanian D, Palem K V and Patel A B 2021 Phil. Trans. R. Soc. A 379 20200246
[12] Griffith A 2021 Essential reservoir computing PhD Thesis The Ohio State University
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