
Feature Selection for Microarray Data
via Stochastic Approximation

Master’s thesis in Computer science and engineering

Erik Rosvall

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2024

Master’s thesis 2024

Feature Selection for Microarray Data
via Stochastic Approximation

Erik Rosvall

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2024

Feature Selection for Microarray Data via Stochastic Approximation
Erik Rosvall

© Erik Rosvall, 2024.

Master’s Thesis 2024
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2024

iv

Feature Selection for Microarray Data via Stochastic Approximation
Erik Rosvall
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis explores the challenge of feature selection (FS) in machine learning, which
involves reducing the dimensionality of data. The selection of a relevant subset
of features from a larger pool has demonstrated its effectiveness in enhancing the
performance of various machine learning algorithms. By reducing noise, improving
model interpretability, and minimizing computational costs, FS plays a crucial role
in optimizing algorithm outcomes.

This research specifically focuses on FS in the domain of machine learning for mi-
croarray data, which frequently involves large and high-dimensional datasets. Mi-
croarray data is widely utilized in biological research and holds significant value.
While filter-based methods, which employ statistical properties to rank features, are
commonly used to address this challenge, they often overlook the connections with
the classification algorithm, resulting in suboptimal classification accuracy.

To address this limitation, this study analyses the performance of a novel wrapper-
based feature selection approach known as SPFSR, as proposed in Akman et al.
(2022) [1]. Unlike filter-based methods, SPFSR considers classification accuracy
and demonstrates its capability to handle large datasets. By incorporating the clas-
sification algorithm in the feature selection process, this approach aims to improve
the overall performance and effectiveness of machine learning models in microarray
data analysis.

Keywords: Feature selection, feature ranking, microarray data, stochastic approxi-
mation, Barzilai and Borwein method, Machine Learning, AI.

v

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Dr. Milad Malekipir-
bazari, for his invaluable guidance, unwavering support, and exceptional mentorship
throughout the course of this project. His expertise, encouragement, and dedication
have been instrumental in shaping the direction and success of this work.

I am also deeply thankful to Dr. David Akman for his generous assistance with the
code, which significantly expedited the development process and enhanced the qual-
ity of the results. His expertise and willingness to help were crucial to overcoming
various technical challenges.

I extend my appreciation to Jakob Sjölén for his creative input and contributions to
the design of the PCR model.

This project would not have been possible without the collective effort, expertise,
and encouragement of these individuals, and I am sincerely grateful for their contri-
butions.

Erik Rosvall, Gothenburg, 2024-02-01

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Microarray Data . 2

1.2.1 Microarray Experimental Setup 3
1.3 Feature Selection . 4
1.4 Filters . 5
1.5 Wrappers . 6
1.6 SPFSR . 7

1.6.1 Feature selection using stochastic approximation with Barzilai
and Borwein non-monotone gains [43] 8

1.6.2 k-best feature selection and ranking via stochastic approxima-
tion [1] . 8

1.7 Related Works . 9
1.8 Contribution . 12

2 Theory 13
2.1 SPSA . 13
2.2 Barzilai and Borwein . 14
2.3 SPFSR . 16

3 Methods 19
3.1 Workflow . 19
3.2 Classification . 20

3.2.1 Multiclass classification . 20
3.2.2 Naïve Bayes . 20
3.2.3 K-Nearest Neighbours . 20
3.2.4 Decision Tree . 21
3.2.5 Support Vector Machine . 21
3.2.6 Cross-validation . 21

3.3 Data . 22
3.3.1 Benefits and Limitations of Open Source Microarray Data . . 22

3.4 Evaluation framework . 22

ix

Contents

4 Results 25
4.1 Sensitivity Analysis . 25

4.1.1 Stall Limit . 25
4.1.2 Max Iterations . 27
4.1.3 Number of Gradient Averaging 28

4.2 Comparison of the Algorithms . 29

5 Conclusion 37

Bibliography 39

A Appendix 1 I
A.1 Sample Collection . I
A.2 RNA Extraction . I
A.3 Amplification . I
A.4 Labelling . III
A.5 Hybridization . IV
A.6 Data Collection and Images . IV
A.7 Data Analysis . V

B Appendix 2 VII
B.1 Methods . VII

B.1.1 Naïve Bayes . VII
B.1.2 K-Nearest Neighbours . VIII
B.1.3 Decision Tree . IX
B.1.4 Support Vector Machine . X
B.1.5 Cross-validation . XII

C Appendix 3 XV
C.1 Sensitivity analysis . XV

C.1.1 Stall limit . XV
C.1.2 Max iterations . XV
C.1.3 Number of Gradient Averaging XVI
C.1.4 Hot start range: RFI . XVI
C.1.5 Hot start range: FScore . XVI
C.1.6 Hot start range: InfoGain . XVI

D Appendix 4 XVII
D.1 Result plots . XVII

x

List of Figures

1.1 Steps involved for conducting microarray experiment 3

3.1 Workflow of the thesis illustrating the sequential steps. 19
3.2 Cross-validation for evaluation . 24
3.3 One iteration of the evaluation methodology 24

4.1 Mean CV accuracy percentages for different classifiers based on dif-
ferent stall limit values. 26

4.2 Mean CV accuracy percentages for different classifiers based on dif-
ferent maximum number of iterations. 27

4.3 Mean CV accuracy percentages for different classifiers based on dif-
ferent gradient averaging values. 28

4.4 The average accuracy - Chowdary . 31
4.5 The average accuracy - Khan . 32
4.6 The average accuracy for each classifier 33
4.7 Percentage point improvement of the FR methods for each wrapper. . 34
4.8 SPFSR’s percentage of wins, ties, and losses in the classification job

when compared to other FR approaches. 36

A.1 Visual representation of the important DNA sequence II
A.2 Visual representation of the PCR process III
A.3 A visual representation of how an image after hybridization is repre-

sented for a one-channel microarray experiment. V

D.1 The average accuracy - Alon . XVIII
D.2 The average accuracy - Boroveki . XIX
D.3 The average accuracy - burczynski . XX
D.4 The average accuracy - Christensen XXI
D.5 The average accuracy - Chin . XXII
D.6 The average accuracy - Chiaretti . XXIII
D.7 The average accuracy - Gordon . XXIV
D.8 The average accuracy - Golub . XXV
D.9 The average accuracy - Gravier . XXVI
D.10 The average accuracy - Nakayama . XXVII
D.11 The average accuracy - Pomeroy . XXVIII
D.12 The average accuracy - Shipp . XXIX
D.13 The average accuracy - Singh . XXX

xi

List of Figures

D.14 The average accuracy - Sorlie . XXXI
D.15 The average accuracy - Su . XXXII
D.16 The average accuracy - Subramanian XXXIII
D.17 The average accuracy - Sun . XXXIV
D.18 The average accuracy - Tian . XXXV
D.19 The average accuracy - West . XXXVI
D.20 The average accuracy - Yeoh . XXXVII

xii

List of Tables

1.2 Details of the related literature. 9
1.1 Count of FS methods used in the literature. 11
1.3 Count of unique FS approaches used in the literature. 12

3.1 Benchmark datasets used for benchmarking 23

4.1 Parameters for SPFSR . 25
4.2 The average classification accuracy of the FS methods with 5, 10, 15,

20 and 25 features . 35

C.1 Performance of SPFSR parameter: stall limit XV
C.2 Performance of SPFSR parameter: max iterations XV
C.3 Performance of SPFSR parameter: number of gradients average . . . XVI
C.4 Performance of hot_start_range - RFI XVI
C.5 Performance of hot_start_range - FScore XVI
C.6 Performance of hot_start_range - InfoGain XVI

xiii

List of Tables

xiv

1
Introduction

The first chapter of this thesis provides an overview of the microarray experimental
setup and the problem of feature selection in the context of microarray data anal-
ysis. Feature selection is an important preprocessing step that aims to identify a
subset of relevant features from a large set of potential candidates. In the context of
microarray data analysis, this task is particularly challenging due to the high dimen-
sionality, sparsity, and noise inherent in the data. This chapter begins by stating the
motivation of this study, the details of the microarray experimental setup, and intro-
ducing the concept of feature selection. We then describe a novel feature selection
algorithm, called SPFSR, which is based on a stochastic approximation framework.
Finally, we review the related literature on feature selection for microarray data and
outline the contribution of this thesis to this field.

1.1 Motivation
This section intends to give a broad overview of the problems and obstacles faced in
microarray data analysis, with a specific emphasis on high data dimensionality. It
also emphasizes the need of using effective feature selection methods as a solution
to these problems. These methods help enhance interpretability and performance of
downstream studies by reducing data dimensionality and selecting the most relevant
genes.

Over the last two decades, microarray technology has revolutionized the investiga-
tion of gene expression levels in diverse biological systems [2]. The examination of
microarray data, on the other hand, presents substantial obstacles. The existence of
noise, technological variability, and batch effects, which can produce false positives
and false negatives and weaken the reliability and reproducibility of the results, is
one of the key issues [2]. Another important issue, which is the focus of this thesis,
is the data’s high dimensionality, in which the number of genes on the microarray
vastly outnumbers the number of samples. Overfitting and poor performance of ma-
chine learning models can result from this imbalance [3]. Addressing this challenge
is critical to ensuring accurate interpretation and useful insights from microarray
data analysis.

To address the challenges associated with microarray data analysis and to identify
the most relevant genes, a key focus is on employing effective feature selection meth-
ods. Please note that in this thesis, the terms gene expression and feature are used

1

1. Introduction

interchangeably. These methods play a critical role in reducing the dimensionality
of the data and identifying the most relevant genes for further analysis. Specifically,
the focus is on investigating and evaluating the performance of a novel wrapper-
based feature selection approach called SPFSR, proposed in Akman et al. (2022)
[1]. This method takes into account classification accuracy and is designed to handle
large datasets. By selecting the most relevant genes using SPFSR, this project aims
to enhance the identification of gene patterns and relationships and enhance the in-
terpretability and performance of subsequent analyses, aiding in the understanding
of underlying molecular mechanisms of diseases and facilitating the development of
new therapies and drugs [4].

1.2 Microarray Data
Microarray technology is a powerful tool for analysing gene expression in various
biological samples, including tissues, cells, and bodily fluids. It enables researchers
to investigate the expression levels of thousands of genes simultaneously and iden-
tify molecular signatures associated with various biological conditions. Microarray
technology has revolutionized the field of genomics, providing a cost-effective and
high-throughput method for gene expression profiling. The development of microar-
ray technology has led to many breakthroughs in basic and clinical research, includ-
ing the discovery of new biomarkers for disease diagnosis and the development of
targeted therapies for cancer [5], [6].

Microarray technology involves printing thousands of small spots of DNA or RNA
probes onto a glass slide or a microchip. These probes are designed to hybridize
with specific messenger RNA (mRNA) molecules, which are extracted from the
biological sample being analysed. The mRNA molecules are fluorescently labelled
and hybridized to the probes on the microarray, allowing the expression levels of
thousands of genes to be measured simultaneously. This process generates a large
amount of data, which requires sophisticated computational tools for analysis and
interpretation. The data generated by microarray experiments can be preprocessed
to remove noise, normalize the data, and correct for systematic biases [7], [8].

Microarray data can be analyzed using various statistical and machine-learning tech-
niques to identify differentially expressed genes, gene regulatory networks, and other
patterns of gene expression associated with various biological conditions. These anal-
yses can provide valuable insights into the molecular mechanisms underlying com-
plex biological processes, such as disease development and drug response. Statistical
techniques such as t-tests, ANOVA, and regression analysis can be used to identify
genes that are significantly differentially expressed between two or more conditions.
Machine learning techniques such as clustering, classification, and FS can be used
to identify patterns of gene expression associated with different biological conditions
[9]–[11].

Microarray data has been widely used in various domains, including cancer research,
drug development, and personalized medicine. In cancer research, microarray data
has been used to identify gene expression signatures associated with disease progres-

2

1. Introduction

sion, prognosis, and treatment response [12]. For instance, Cappuzzo et al. (2010)
used microarray data to identify a gene expression signature associated with response
to specific cancer therapy in patients with non-small cell lung cancer. The identified
signature was then validated in an independent cohort of patients, demonstrating
the potential of microarray data for identifying biomarkers of treatment response
[13].

Despite its many advantages, microarray technology also has several limitations.
One major limitation is the potential for cross-hybridization, where non-specific
binding between probes and non-targeted molecules can lead to false-positive results.
Microarray experiments can be expensive and time-consuming in some instances.
Furthermore, in recent years, RNA sequencing (RNA-seq) has emerged as a viable
alternative to microarray technology [14], [15].

In summary, microarray technology has revolutionized the field of genomics and
provided unprecedented insights into the complex molecular mechanisms underlying
various biological processes. Despite its limitations, it remains an important tool for
researchers in many domains, particularly for the analysis of archived samples and for
identifying candidate genes for further study. However, as newer technologies such
as RNA-seq continue to improve and become more accessible, the use of microarray
technology may continue to decline [16], [17].

1.2.1 Microarray Experimental Setup

Biologists can create gene expression profiles that differentiate the functionality of
each gene in the genome based on the transcription levels of genes measured under
different biological conditions. These profiles are organized into a matrix called the
gene expression matrix, which biologists use to find new targets in their experimental
data. Microarrays can range in size from microscope slides to square silicon chips,
with each area carrying a large number of identical DNA molecules. Sample col-
lection, RNA extraction, amplification, labeling, hybridization, and data processing
are all critical steps in creating a microarray dataset. This permits single-stranded
DNA molecules to be fixedly bound to a solid substrate with a grid of dots on which
genetic material from known sequences is structured in a logical manner. Microarray
data analysis strives to answer concerns concerning gene functions, regulation, ex-
pression, and their significance in cellular processes and disorders through effective
analysis and display of the data [18]. These steps that are performed to generate
a microarray dataset are shown in Figure 1.1 and are explained in more detail in
Appendix A.

Figure 1.1: Steps involved for conducting microarray experiment

3

1. Introduction

1.3 Feature Selection

Feature selection (FS) is a critical step in machine learning and data mining, where
the aim is to identify the most relevant subset of features from a larger set of
features in a dataset. This process is essential to improve model accuracy and
efficiency, reduce overfitting, and simplify interpretation. The impact of FS extends
far beyond the field of microarray data analysis and is increasingly recognized as a
critical step in many areas of research and industry. To illustrate the wide-ranging
applications of FS, we will discuss several important domains that have benefited
from its use, including image recognition, text classification, bioinformatics, and
finance [19], [20].

In bioinformatics, FS is used to identify relevant genes for disease diagnosis and
prognosis. In finance, it is used to identify relevant financial ratios for predicting
bankruptcy. In image recognition and text classification, FS is used to identify the
most informative visual or textual features that can distinguish between different
categories [21]. In natural language processing, FS is used to identify the most
informative linguistic features that can distinguish between different text categories.
This can include features such as word frequency, part-of-speech tags, and semantic
information. This has important implications for text classification tasks such as
sentiment analysis, topic modelling, and named entity recognition, where accurate
and efficient classification depends on the selection of relevant features [21], [22].

Moreover, to better understand the methods used for feature selection, it is helpful to
first define and contrast the main approaches: filters, wrappers, embedded methods,
and hybrids. In the following paragraphs, we will describe the main characteristics
and limitations of each of these methods, beginning with filters.

Filter methods are one of the most popular FS approaches that rely on statistical
techniques to assess the intrinsic properties of the data and identify the most impor-
tant features. These methods use a scoring function to rank features based on their
individual relevance to the target variable, without requiring a machine learning
model. The most common scoring functions used in filter methods are correlation-
based measures, mutual information, and chi-squared test [23] (see Section 1.4 for
more in-depth description).

Wrapper methods are another type of FS technique that uses a machine learning
model to evaluate subsets of features and select the optimal subset based on model
performance. These methods select a subset of features, train a model on that sub-
set, and evaluate the model on a validation set. This process is repeated for all or
some of the possible subsets of features, and the subset that yields the best perfor-
mance is selected as the final set of features. Wrapper methods are computationally
expensive, but they can identify highly informative features that may be missed by
filter methods [24], [25] (see Section 1.5 for further description).

Embedded methods combine FS with the model training process, selecting the most
informative features during model training. These methods are commonly used in
linear models and decision trees, where the importance of features can be measured

4

1. Introduction

directly. In embedded methods, FS is integrated into the model-building process,
so the model can learn which features are most relevant to the target variable [19],
[26].

Hybrid feature selection methods, on the other hand, combine the strengths of both
filter and wrapper approaches by using filter methods in combination with other
FS methods, such as wrapper methods. As discussed earlier, wrapper methods use
machine learning models to evaluate the importance of features by considering the
interactions between them and evaluating the performance of a model trained on
different subsets of features. In contrast, filter methods select features based on their
intrinsic properties, such as their statistical measures of relevance or redundancy. By
combining filter and wrapper methods, hybrid approaches can improve the efficiency
of filter methods while leveraging the effectiveness of wrapper methods in handling
feature interactions. Brownlee (2019) provides an overview of hybrid FS methods,
highlighting their potential benefits in handling both real and categorical data. For
instance, these methods can reduce the computational cost of wrapper methods
while still achieving high prediction accuracy [27]. Liu and Motoda (1998) discuss
FS for knowledge discovery and data mining, including the use of filter and wrapper
methods, as well as their combinations [20].

While we have briefly touched on the two main approaches to feature selection -
filters and wrappers - these methods are fundamental to our discussion and will be
described in more detail in subsequent sections.

1.4 Filters
Filter methods are a popular approach for FS that uses statistical techniques to
identify the most important features in a dataset. These methods do not rely on
a machine learning model but instead evaluate the intrinsic properties of the data
to determine feature relevance. Filter methods are particularly useful when the
number of features in the dataset is high, as they can help reduce dimensionality
and improve the accuracy and efficiency of machine learning models [19], [20].

Filter methods typically use a scoring function to rank the features based on their
individual relevance to the target variable. Features with high scores are considered
more relevant and are retained, while features with low scores are discarded. Com-
mon scoring functions used in filter methods include correlation coefficients, mutual
information, and statistical tests such as t-tests and ANOVA [19], [28]–[30].

Filter methods have several advantages over other FS methods, including their sim-
plicity and computational efficiency. They are also less prone to overfitting than
wrapper methods, as they do not rely on a machine learning model. However, they
may not always select the optimal subset of features, as they do not consider the
interactions between features [19], [23], [31].

One common type of filter method is the chi-squared test, which is used to evaluate
the independence of categorical variables. The chi-squared test is used to determine
whether there is a significant relationship between two variables, and is often used

5

1. Introduction

in FS for text classification tasks [32].

There are many variations of filter methods, including univariate, multivariate, and
hybrid approaches. In univariate filter methods, each feature is evaluated indepen-
dently of the others, while in multivariate filter methods, the interactions between
features are taken into account. Hybrid methods combine filter methods with other
FS techniques, such as wrapper methods, to overcome the limitations of each ap-
proach. For instance, Liu et al. (2015) used a hybrid method to select features
for predicting heart disease. The study used a filter method to pre-select the most
informative features and then used a wrapper method to select the final subset of
features [20], [27], [33].

In conclusion, filter methods are a popular approach for FS that uses statistical
techniques to rank the importance of features based on their intrinsic properties.
They are simple and computationally efficient, making them an attractive option
for large datasets. However, they may not always select the optimal subset of
features, as they do not consider the interactions between features. Nonetheless,
filter methods have been successfully used in many applications and continue to be
an important tool in FS [19], [34]–[36].

1.5 Wrappers
Wrapper methods are another popular approach for FS that uses machine learn-
ing models to evaluate the importance of features. Unlike filter methods, wrapper
methods consider the interactions between features by evaluating the performance
of machine learning models trained on different subsets of features [19], [20], [24],
[25].

Wrapper methods use a search algorithm to explore the space of possible feature
subsets and select the subset that maximizes the performance of the machine learn-
ing model. One common search algorithm used in wrapper methods is the recursive
feature elimination (RFE) algorithm, which iteratively removes the least important
feature from the subset until the desired number of features is reached [37].

Wrapper methods can be computationally expensive, as they require training and
evaluating multiple machine learning models on different subsets of features. How-
ever, they can often select a better subset of features rather than filter methods, as
they consider the interactions between features and the performance of the machine
learning model [38].

Somon et al. (2005) compared the effectiveness of filter- versus wrapper-based FS
methods for credit scoring, demonstrating the relevance and potential applications of
wrapper methods in the finance industry [39]. Another study by Afolabi et al. (2020)
used a wrapper method to select financial ratios for predicting financial distress in
the finance industry [40]. In image analysis, wrapper methods have been used to
select the most informative features for image segmentation and classification, as
shown in a review by Zhang et al. (2018) [41].

In conclusion, wrapper methods are a powerful approach for FS that consider the

6

1. Introduction

interactions between features and the performance of a machine learning model.
They can often select a better subset of features rather than filter methods but
at the cost of increased computational complexity. Wrapper methods have been
successfully used in many applications and continue to be an important tool in FS
[19], [24], [42].

1.6 SPFSR
As discussed, FS is a crucial step in machine learning pipelines that aims to reduce
the dimensionality of datasets by identifying the most informative and relevant fea-
tures, and a range of filter and wrapper methods have been proposed to achieve
this goal. In this work, we focus on SPFSR, a wrapper-based FS technique that
has demonstrated promising results in various applications [43]. Unlike univariate
filter methods, SPFSR takes into account the interactions between features and con-
siders the performance of a given model on a subset of features to evaluate their
relevance. Moreover, as a flexible and generalizable approach, SPFSR can be used
with a range of classifiers or regressors of choice. In what follows, we describe the
main elements of the SPFSR method, including the Stochastic Perturbation Stochas-
tic Approximation (SPSA) algorithm, the Barzilai-Borwein (BB) approach, and the
feature selection procedure. We also discuss the advantages and limitations of this
approach. We begin with an overview of the SPSA algorithm, which serves as the
optimization building block for SPFSR.

Simultaneous Perturbation Stochastic Approximation (SPSA) is a multivariate opti-
mization algorithm developed by J.C. Spall (1992) [44]. This optimization procedure
makes use of gradient approximation, and in order to approximate the solution, the
components of the solution vector are subjected to random perturbations produced
by a precisely defined probability distribution. This strategy of simultaneously mod-
ifying the components of the solution vector results in a gradient approximation [45].
As an alternative, we can indirectly calculate the Hessian matrix [1]. The secant
equation serves as the basis of quasi-Newton techniques, and the Barzilai-Borwein
(BB) approach, developed by Barzilai and Borwein in 1988, offers an estimate of the
Hessian matrix using a two-point approximation of the secant equation. The BB
methodology generates a succession of step size values, which may not decrease in
a predictable way, in contrast to other approaches that directly calculate the Hes-
sian matrix. A series of step size numbers that are not necessarily monotonically
decreasing are produced by this approximation [43].

To further elaborate on the SPFSR technique, it is important to note that the
method for FS was proposed in two recent studies of [43] and [1] by Akman et al.
In this thesis, we will discuss these two papers that proposed the SPFSR method
and used it for different applications. The first paper [43] introduced the BB gain
sequence with gradient averaging and gain smoothing into the SPSA algorithm for
feature selection tasks. The second paper [1] proposed the SPFSR technique as a
constrained optimization problem for feature selection and ranking that seeks to
identify and rank the k best features. They evaluated the performance of SPFSR
against other feature selection methods. In the following sections, we will provide

7

1. Introduction

a detailed discussion of these papers and their contributions to the development of
the SPFSR method.

1.6.1 Feature selection using stochastic approximation with
Barzilai and Borwein non-monotone gains [43]

This paper proposes a new method for feature selection using stochastic approxima-
tion. The authors suggest a non-monotone stochastic approximation algorithm that
is based on Barzilai and Borwein gains to solve the optimization problem that arises
in feature selection.

The proposed method selects the best subset of features by optimizing an objective
function that balances the accuracy and complexity of the feature subset. The
objective function is a weighted sum of two terms: the first term is the classification
accuracy of the feature subset, and the second term is a measure of the complexity
of the feature subset. The authors use a stochastic gradient ascent algorithm to
optimize this objective function.

The novelty of this method lies in the use of the Barzilai and Borwein gains, which
enable the algorithm to converge faster to the optimal solution compared to other
stochastic approximation methods. Moreover, the non-monotonicity of the gains
allows the algorithm to escape local optima and explore the search space more
efficiently.

The authors validate the proposed method on several benchmark datasets from
the UCI machine learning repository and compare it with several state-of-the-art
feature selection methods. The experimental results show that the proposed method
achieves better classification accuracy and selects smaller feature subsets compared
to other methods.

1.6.2 k-best feature selection and ranking via stochastic ap-
proximation [1]

The k-best feature selection method is a popular approach to selecting the most
informative features from a high-dimensional dataset. This method involves ranking
the features based on their performance in a classification or regression model, and
selecting the k-best features with the highest ranking scores.

Stochastic approximation is a method used for the iterative optimization of a func-
tion. In the context of feature selection, the stochastic approximation can be used
to iteratively improve the ranking of the features based on their contribution to the
classification or regression model.

The k-best feature and ranking via the stochastic approximation method starts with
an initial feature ranking based on their individual performance in a classification or
regression model. Then, the algorithm iteratively updates the feature rankings using
stochastic approximation with the non-monotone gain function. At each iteration,
the algorithm selects the k-best features based on the updated rankings and trains

8

1. Introduction

a classification or regression model using only these features. The performance of
the model is evaluated, and the process is repeated until the algorithm converges to
a stable set of k-best features.

In summary, the k-best feature and ranking via the stochastic approximation method
is a powerful approach to feature selection that combines the ranking of individual
features with iterative optimization using stochastic approximation. This method
can be applied to a wide range of classification and regression problems and has
been shown to outperform other popular feature selection methods in some cases.

1.7 Related Works
In this section, we review and compare various feature selection strategies that are
routinely employed in high-dimensional datasets for cancer classification, such as mi-
croarray gene expression data. Due to the increasing availability of high-throughput
gene expression data, there has been substantial attention on microarray data anal-
ysis in biomedical informatics. One of the main challenges is identifying significant
features within these datasets, which is crucial for understanding biological path-
ways and developing diagnostic and prognostic tools for diseases such as cancer. To
address this difficulty, several feature selection methods have been developed and
proposed in the literature.

Table 1.1 summarizes the various FS methods discussed in this section. The table
also includes the acronyms for each method, the types of FS, and the number of
times each method was used.

To summarize, feature selection is an important preprocessing step for microarray
data analysis, and several approaches have been developed to solve this issue. Wrap-
per and filter methods have been combined, and hybrid approaches have been shown
to improve classification accuracy while reducing the number of selected genes. Ad-
ditionally, ensemble approaches that incorporate several filter-based procedures have
yielded encouraging results. Furthermore, distributed computing frameworks have
been used to speed up the computation of feature selection. These approaches have
contributed significantly to the identification of important genes in cancer diagnos-
tics and other microarray-based applications.

Table 1.2: Details of the related literature.
Article Type Methods Data
Nuklianggraita et
al. (2020) [46]

Filter RFE
PCA

The Colon Tumor dataset from the Gene
Expression Omnibus (GEO)
The Leukemia dataset from the University
of California, San Francisco (UCSF)

Continued on next page

9

1. Introduction

Table 1.2 – continued from previous page
Article Type Methods Data
Bolón-Canedo et
al. (2014) [47]

Filter

Wrapper

CFS
PCA
MIFS
RFE
RF-FS

Acute lymphoblastic leukaemia (ALL)
Acute myeloid leukaemia (AML) patients
Colon cancer dataset
Prostate cancer
Breast cancer
Lung cancer
Glioma
Lymphoma

Zhu et al. (2007)
[48]

Filter ReliefF
mRMR
CFS
JMI
SFS
GA

Colon Cancer (Alon)
Prostate Cancer (Singh)
Lung Cancer (Bhattacharjee)

Meyer et al.
(2008) [49]

Filter IG
SU
MRMR
mRMR

not specified

Apolloni et al.
(2016) [50]

Hybrid Two methods Kent Ridge Biomedical Dataset Reposi-
tory

Pirooznia et al.
(2008) [51]

Filter

Wrapper

Chi Squared
CFS
SVM-RFE

not specified

Chuang et al.
(2011) [52]

Hybrid RPSO + SVM ALLAML (subtypes:
Acute lymphoblastic leukemia (ALL)
Acute myeloid leukemia (AML))

Ghosh et al.
(2019) [53]

Filter t-Test
Fisher Score
Gini Index
ReliefF

GCM
CLL/SLL

Bolón-Canedo et
al. (2015) [54]

Filter DF
DRF

Colon
DLBCL
CNS
Leukemia
Prostate
Lung
Ovarian
Breast

Wang et al.
(2005) [55]

Filter IG
ReliefF
GA

no specifics specified
(Stanford Microarray Database (SMD)
and the National Cancer Institute (NCI))

Liu et al. (2012)
[20]

Filter CFS
PCA
MIFS
GA

no specifics specified
(Stanford Microarray Database (SMD)
and the National Cancer Institute (NCI))

10

1. Introduction

Table 1.1: Count of FS methods used in the literature.

Method Acronym Type Count
Correlation-Based Feature Selection CFS Filter/ Wrapper/ Embedded 4
Relief-Based Feature Selection ReliefF Filter/ Wrapper 3
Genetic Algorithm GA Filter/ Wrapper/ Embedded 3
Information Gain IG Filter/ Embedded 3
Principal Component Analysis PCA Filter 3
Recursive Feature Elimination algorithm RFE Filter 2
Minimum Redundancy Maximum Relevance mRMR Filter/ Wrapper 2
Mutual Information-Based Feature Selection MIFS Filter/ Embedded 1
Random Forest-Based Feature Selection RF-FS Hybrid 1
Joint Mutual Information JMI Filter/ Wrapper 1
Symmetrical Uncertainty SU Filter/ Embedded 1
Gini Index — Filter 1
Distributed Filter DF Hybrid/ Embedded 1
Distributed Ranking Filter DRF Hybrid/ Embedded 1
Random Particle Swarm Optimization RPSO Hybrid 1
Fisher Score — Filter 1
t-Test — Filter 1
Sequential Forward Selection SFS Wrapper 1
Chi Squared — Filter 1
SVM recursive feature elimination SVM-RFE Wrapper 1

The main strategy for FS, as demonstrated in Table 1.2, is a filter or a filter in
conjunction with a wrapper (hybrid). As remarked, filter methods are based on
statistical measures or other criteria, and each feature is evaluated independently of
the others. They are computationally efficient and widely employed. Correlation-
based feature selection (CFS), t-test, Fisher score, information gain (IG), ReliefF,
and Gini index are the most commonly utilized filter methods in the studies.

Wrapper approaches analyze subsets of features and measure their classification per-
formance using a machine learning algorithm. They are computationally costly, yet
they have the ability to locate the best feature subset. Recursive feature elimination
(RFE), sequential forward selection (SFS), and genetic algorithm (GA) are examples
of wrapper approaches employed in the investigations.

Embedded approaches embed feature selection within the learning algorithm, elimi-
nating the need for a separate feature selection phase. Decision tree (DT), random
forest (RF), support vector machine (SVM), and logistic regression (LR) are exam-
ples of embedding approaches employed in the investigations.

11

1. Introduction

Table 1.3: Count of unique FS approaches used in the literature.

FS Approach Count
Filter 14
Embedded 7
Wrapper 5
Hybrid 4

Table 1.3 provides a summary of the different types of FS techniques employed in
previous studies on microarray data. As indicated in the table, the number of stud-
ies that employed wrapper and embedded techniques are less frequent compared
to the filter. This outcome is consistent with the assumption stated in Section 1.1
that earlier research on microarray data has generally utilized a filter or a combi-
nation of filter and wrapper techniques. Nevertheless, the results show that filter
techniques have been more widely used than wrapper and embedded techniques in
earlier attempts at FS for microarray data.

1.8 Contribution
Researchers face significant challenges due to the complexity and size of large-scale
transcriptomics. In an era of rapidly expanding transcriptomics, feature selection
approaches are viewed as an excellent solution because they can greatly reduce data
complexity, allowing us to assess and convert the data into relevant information.

This work aims to investigate the efficacy of novel feature selection approaches and
compare their performance to established methods in order to address the challenge
of feature selection in transcriptomics. We will conduct experiments and evaluate
the effectiveness of SPFSR, a novel feature selection approach, in microarray data
classification. Our goal with this study is to compare this novel approach with dif-
ferent feature selection algorithms for transcriptomics, with a particular emphasis
on evaluating the performance of the SPFSR algorithm. This method will be inves-
tigated and refined in order to maximize its efficacy in transcriptomics. We believe
that our research will help to develop practical applications and new insights into
gene expression data analysis, as well as improve gene expression analytics interpre-
tation.

12

2
Theory

The goal of feature selection in machine learning is to identify a subset of rele-
vant features that can improve the performance of a predictive model. This chapter
provides a theoretical understanding of three important optimization algorithms: Si-
multaneous Perturbation Stochastic Approximation (SPSA), Barzilai and Borwein
(BB), and Simultaneous Perturbation Stochastic Approximation for Feature Selec-
tion and Ranking (SPFSR). The SPSA and BB algorithms are well-known optimiza-
tion techniques that have been used in a wide range of applications such as machine
learning, signal processing, and control engineering. SPFSR is a novel feature selec-
tion method that extends the SPSA and BB algorithms in order to identify the best
subset of features. We aim to provide a comprehensive understanding of the theory
behind SPFSR and how it can be applied to solve feature selection problems by
thoroughly examining these algorithms. By the end of this chapter, readers should
have a firm grasp on the mathematical principles underlying each algorithm.

2.1 SPSA
SPSA is a powerful optimization algorithm that is used for problems with noisy,
black-box objective functions. The algorithm uses random perturbations to estimate
the gradient of the objective function and then performs a stochastic approximation
update to find the optimal solution. To ensure the convergence of the algorithm, at
each iteration k, the step size sequence αk is typically chosen to satisfy the Robbins-
Monro conditions, which ensure convergence of the algorithm. One common choice
is:

αk = ak

(bk + k)γ

where ak, bk, and γ are constants that depend on the problem.

Algorithm 1 explains the steps involved in the SPSA algorithm. Based on the steps
outlined in Algorithm 1, SPSA is a stochastic optimization algorithm that aims to
find the optimal solution vector x∗ for a given objective function f(x). At each
iteration, the algorithm generates random perturbation vectors and uses them to
estimate the gradient of the objective function. The solution vector is then updated
using a stochastic approximation update. The process repeats until the termination
criterion is satisfied. The output of the algorithm is the optimal solution vector x∗.

13

2. Theory

Algorithm 1 Simultaneous Perturbation Stochastic Approximation (SPSA)
Input: Objective function f , initial parameter values θ, step sizes an, cn, number

of iterations N , and gradient estimate parameter An

Output: Optimal parameter values θ̂
1 Initialize k ← 0, θk ← θ, yk ← f(θk); while k < N do
2 Generate random vector ∆k where each component ∆k,i is drawn independently

from the Bernoulli distribution with parameter 0.5; Compute δk and δ̃k using
the formulas:

δk = ak/(k + 1 + ck)Ak δ̃k = −ak/(k + 1 + ck)Ak (2.1)

Compute the gradient estimate gk using the formula:
3

gk, i = f(θk + ∆kδkei)− f(θk + ∆kδ̃kei)
∆k(δk − δ̃k)

(2.2)

4 Compute the next iterate θk + 1 using the formula:

θk + 1 = θk − akgk (2.3)

5 Set k ← k + 1, yk ← f(θk);
6 end
7 return θ̂ ← argmin θkyk

2.2 Barzilai and Borwein
The Barzilai and Borwein (BB) algorithm is a powerful optimization algorithm that
is particularly useful for non-quadratic or non-convex functions. To determine the
step size in the BB algorithm, a non-monotone line search is used, which is designed
to minimize a quadratic function. This function is defined as:

ϕ(α) = f(x− αg)− f(x)− cαgT g

where f(x) is the objective function, g is the estimated gradient of f at x, and c
is a positive constant. The parameter c controls the trade-off between the step size
and the change in the objective function. A larger value of c leads to smaller steps,
while a smaller value leads to larger steps [43].

The step size is selected by solving the optimization problem:

min
α>0

ϕ(α)

This problem can be solved analytically by computing:

14

2. Theory

αk = |xk − xk−1|2

(xk − xk−1)T (gk − gk−1)

where |.| denotes the Euclidean norm, xk is the solution vector at iteration k, and
gk is the estimated gradient of f at xk. This update rule ensures that the step
size is inversely proportional to the dot product of the difference between the so-
lution vectors and the difference between the gradient estimates. By selecting the
appropriate step size, the BB algorithm can effectively escape local minima and
find better solutions for non-quadratic or non-convex optimization problems. The
algorithm iteratively updates the solution vector x by using the estimated gradient
g and the non-monotone step size that takes into account the past few iterations of
the algorithm. To update the solution vector x, we use the following update rule:

xk+1 = xk − βkgk

where βk is the step size at iteration k and gk is the gradient estimate obtained from
the perturbations. The step size βk is computed as follows:

βk = γk
||gk||
||∆k||

where γk is a non-monotone gain sequence typically chosen to satisfy certain con-
ditions, ||gk|| is the norm of the gradient estimate, and ||∆k|| is the norm of the
perturbation vector [43].

Notice that the BB method can also be applied to non-linear optimization problems
by approximating the Hessian with a suitable matrix. However, the convergence
properties of the method are not as well understood in the non-linear case.

The step size βk in the stochastic gradient descent algorithm is obtained from the
gradient estimate gk and the non-monotone gain sequence. This gain sequence is
chosen to satisfy certain conditions and is typically non-monotone, allowing the
algorithm to escape local minima and find better solutions. The step size βk is
computed as follows [43]:

1. Initialize the algorithm by choosing an initial point x0, a step size α0, and a
tolerance ϵ > 0.

2. Compute the gradient gk of the function f at the current point xk.

3. Compute the next iterate xk+1 by the formula: xk+1 = xk − αkgk

|gk| where | · | is
the Euclidean norm.

4. Compute the gradient estimate gk+1 as the average of gk+1,1, . . . , gk+1,m (gra-
dient averaging)

5. Compute the step size αk+1 using the Barzilai-Borwein formula: αk+1 =
|gk+1−gk|2

|(xk+1−xk)T (gk+1−gk)| where gk+1 is the gradient at the next iterate xk+1.

15

2. Theory

6. If |gk+1| < ϵ, stop the algorithm and return xk+1 as the solution. Otherwise,
set k = k + 1 and repeat from Step 2.

Algorithm 2 Barzilai-Borwein (BB) Algorithm
Procedure BB f(x), x0, t0, stopping criterion Compute ∇f(x0)
Choose a search direction p0 that is a descent direction of f at x0
Compute step size α0 using the Barzilai-Borwein formula:

α0 = t0
|p0|2

p⊤
0∇f(x0)

Update the solution vector: x1 = x0 − α0p0
Compute ∇f(x1)
while termination criterion not satisfied do

1 Choose a search direction pk that is a descent direction of f at xk

2 Compute step size αk using the Barzilai-Borwein formula:

αk = t0
|pk|2

p⊤
k (∇f(xk)−∇f(xk−1))

3 Update the solution vector: xk+1 = xk − αkpk

end
return x∗ = xk

The procedures for the Barzilai-Borwein algorithm are explained in Algorithm 2.
The algorithm 2 has been shown to be effective in minimizing non-convex and ill-
conditioned functions. The non-monotone gain sequence allows the algorithm to
escape from local minima and find better solutions. Note that the choice of the ini-
tial point, the search directions, and the stopping criterion are problem-dependent
and may require some trial and error. The BB algorithm is usually applied to uncon-
strained optimization problems and may require some modifications for constrained
problems. The algorithm has been shown to have fast convergence rates and good
numerical stability properties in practice [43].

2.3 SPFSR
The SPSFR algorithm is a powerful feature selection technique that aims to en-
hance a model’s performance by identifying a subset of features from a larger set.
To achieve this, the algorithm utilizes a stochastic approximation method, which
involves selecting a random subset of features, assessing the model’s performance
using that subset, and then updating the importance weights of each feature based
on the performance improvement obtained by adding or removing it. This iterative
process continues until the algorithm converges or reaches a fixed number of itera-
tions, and it ultimately returns the best subset of features based on the performance
measure. The SPFSR algorithm is described in the Algorithm 3.

16

2. Theory

The algorithm updates the importance weight for each feature in the subset based on
the performance improvement achieved by adding or removing that feature. Specif-
ically, at each iteration t, the algorithm computes a weight vector of size k, where
wt,i represents the importance weight of the ith feature in the subset St. Initially,
all weights are set to 1/k. By utilizing this approach, SPSFR, as described in
Algorithm 3, effectively selects the most relevant features and discards the least
significant ones, leading to improved model performance.

• If adding feature i to St improves performance, then wt+1,i = wt,i × (1 + γ),
where γ is a small positive constant.

• If removing feature i from St improves performance, then wt+1,i = wt,i×(1−γ).

• Otherwise, wt+1,i = wt,i.

Note that the sum of the weights is always equal to 1.

Once the weights are updated, the algorithm selects the new subset St+1 by sampling
k features from X with replacement, where each feature i is selected with probability
proportional to its weight wt+1,i. The algorithm repeats this process for a fixed
number of iterations or until convergence and returns the best subset of features
based on the performance measure.

Algorithm 3 SPFSR Algorithm
Input: ŵ1, c, M , m, t, k, amin, amax

for i = 1 to M do
for j = 1 to m do

Simulate ri,j a Rademacher random vector
ŵ±

i,j = ŵi ± cri,j // weight perturbation
1 ŵ±

i,j = I(ŵ±
i,j) // I(•): indicator vector of k largest elements

2 y±
i,j = L(ŵ±

i,j) + ε±
i,j // (noisy) function measurement

3 ĝi,j(ŵi) =
(

y+
i,j−y−

i,j

2c

)
ri,j // ĝi,j(ŵi): gradient estimate

ĝi(ŵi) = 1
m

∑m
j=1 ĝi,j(ŵi) // gradient averaging

4 âi = ∆ŵT ∆ŵ
∆ŵT ∆ĝ(ŵ) // âi: BB step size

5 âi = B(âi) // B(•): [amin, amax] bounding operator
6 âi = 1

t′
∑i

n=i−t′+1 ân, where t′ = min{t, i} // gain smoothing
7 ŵi+1 = ŵi − âiĝi(ŵi) // weight updating

Output: I(ŵM+1)

17

2. Theory

18

3
Methods

In this chapter, we present data classification methodology based on three popular
classifiers: Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine
(SVM). The purpose of this research is to provide a thorough comparison of these
classifiers, evaluating their performance on a variety of datasets with varying char-
acteristics. We also go over multiclass classification, which involves predicting an
instance’s class label from multiple classes. The chapter begins with an introduc-
tion to the classification and multiclass classification, and then goes on to explain
these classifiers in detail, including their mathematical foundations. In addition,
we describe the use of cross-validation, a common technique for evaluating classi-
fier performance, and present the evaluation framework for this study. Finally, we
summarize the datasets used in this study, which range in size, type, and complexity.

3.1 Workflow

The thesis involves the following steps: (1) data selection, (2) feature selection,
(3) classification, and (4) evaluation. In the data selection step, we determine the
data sets to be used in the study (see Table 3.1 for more details). Once the data
sets are chosen, the next step is feature selection. The primary method used in
this study is SPFSR, which is elaborated in Chapter 2.3. Additionally, there are
several other feature selection methods available based on the related works, which
are presented in Table 1.1. After selecting the FS methods, we proceed to choose a
sample of classification algorithms for the classification stage. These classifiers will
be described later in this chapter. Finally, we evaluate the results of the classifiers
using cross-fold validation. Figure 3.1 displays this workflow in a sequential manner.

Select Data Feature Selection Classification Evaluation

Figure 3.1: Workflow of the thesis illustrating the sequential steps.

19

3. Methods

3.2 Classification
In the field of machine learning, classification is a widely used supervised learning
technique. Its objective is to build a function that maps input variables to output
variables, where the output variable represents a class or category. Typically, input
variables are a set of features or attributes that describe the objects or instances
being classified. Various practical applications, such as image recognition, spam
filtering, fraud detection, and medical diagnosis, utilize classification [42].

To achieve accurate and reliable classification results, data scientists must carefully
prepare the data, perform feature engineering, and select appropriate classification
algorithms. Skiena (2017) discusses the strengths and limitations of several popular
classification algorithms, including decision trees, logistic regression, support vector
machines, and neural networks [42].

3.2.1 Multiclass classification
The goal of multiclass classification is to assign a single input to one of several pos-
sible categories or classes. It is a type of supervised learning problem. In multiclass
classification, the output variable is a discrete value representing the predicted class,
rather than a continuous value as in regression. One common method for perform-
ing multiclass classification is to train several binary classifiers, each distinguishing
between one class and the others, and then combine their outputs using a voting
system or decision function. The time complexity of multiclass classification algo-
rithms can be expressed in terms of the number of classes (denoted by k) and the
number of training instances (denoted by n), with O(kn2) for some algorithms like
the Support Vector Machine with the One-versus-All approach and O(knlog(n)) for
others like softmax regression [56].

3.2.2 Naïve Bayes
Naïve Bayes is a probabilistic classification algorithm that is often used for text
classification, spam filtering, and sentiment analysis [42], [43]. The algorithm is
based on Bayes theorem, which provides a way to calculate the probability of a
hypothesis given some evidence. To use Nave Bayes, we must first do two steps:
training and prediction. The training and prediction stages of this method are
described by the algorithms 1 and 2. See Appendix B.1.1 for more details regarding
Naïve Bayes.

3.2.3 K-Nearest Neighbours
The k-Nearest Neighbors (k-NN) algorithm is a well-known and straightforward clas-
sification algorithm. It works on the proximity principle and produces predictions
by locating the k closest neighbors to a given data point. One vital stage in the
k-NN technique is to establish a distance metric that evaluates the closeness or dis-
similarity of data points. Metrics like Euclidean distance and Manhattan distance

20

3. Methods

quantify the spatial separation between points in a feature space [57]. See Appendix
B.1.2 for more information.

3.2.4 Decision Tree

A Decision Tree is a hierarchical tree structure that is commonly used for classifi-
cation and regression problems. It recursively splits the data into subsets based on
the values of the features in the dataset. The splits are chosen based on the feature
that provides the most information gain, calculated using metrics such as the Gini
impurity or entropy. Information gain is a measure of the reduction in uncertainty
that is achieved by splitting the data based on a particular feature. The Gini impu-
rity, on the other hand, is a measure of how often a randomly chosen element from
the set would be incorrectly labelled if it was randomly labelled according to the
distribution of labels in the subset. To split the data, the Decision Tree algorithm
considers all possible splits for each feature and chooses the one that maximizes the
information gain. This process is repeated recursively until a stopping criterion is
met, such as a maximum depth or a minimum number of samples in a leaf node [56],
[57]. More in-depth details regarding DT see Appendix B.1.3.

3.2.5 Support Vector Machine

Support Vector Machines (SVM) is a powerful machine learning algorithm that
finds the best possible boundary to separate two classes in input data. It does so by
finding a hyperplane in the input space that maximally separates the two classes,
with the hyperplane chosen so that the distance between the hyperplane and the
nearest data points from each class is maximized. These nearest data points are
called support vectors, and the hyperplane that separates the two classes is defined
as wT x + b = 0, where w is the weight vector, x is the input vector, and b is the bias
term. To achieve this, the SVM algorithm optimizes a cost function that penalizes
misclassifications and encourages a large margin between the hyperplane and the
nearest data points. The cost function is typically a convex optimization problem
that can be solved using optimization algorithms like gradient descent [56], [57]. See
Appendix B.1.4 for more information.

3.2.6 Cross-validation

Cross-validation is a powerful technique for assessing the performance of a machine-
learning model when the amount of available data is limited. It involves dividing the
available data into k non-overlapping folds, each containing approximately the same
number of instances. The model is trained on k−1 folds and tested on the fold that
was held out. This process is repeated k times, with each fold being used exactly
once as the test set, to provide a reliable estimate of the model’s generalization
performance [56], [57].

21

3. Methods

3.3 Data
Table 3.1 provides a list of open-source datasets used for feature selection benchmark-
ing. It contains information such as the dataset’s name, the number of instances, the
number of features, the number of classes, and the dataset’s source. A careful selec-
tion of datasets is required to ensure that the results of the FS benchmarking study
are generalizable and meaningful. We can evaluate the performance of FS methods
across different types of data by selecting a variety of datasets from various sources,
with varying numbers of features and classes.

• Name: This column contains the name of the open-source dataset.

• Instances: This column contains the number of instances or observations in
the dataset.

• Features: This column contains the number of features or variables in the
dataset.

• Classes: This column contains the number of classes or categories in the
dataset.

• Sources: This column contains the source or origin of the dataset, such as
the website or repository where it can be found.

3.3.1 Benefits and Limitations of Open Source Microarray
Data

The use of open-source microarray data provides several benefits, such as reducing
the cost and time required to collect and generate data, increasing the transparency
and reproducibility of research, and allowing for the validation of existing findings.
However, there are also limitations to using open-source microarray data, such as
the potential for variability in experimental conditions, differences in data quality
and preprocessing, and the lack of control over the original experimental design [17],
[80], [81].

3.4 Evaluation framework
To assess the accuracy of the model training, cross-validation (CV) is used. Figure
3.2 shows a visual representation of how CV is designed. Each row is divided into
equal data chunks. The green boxes represent test data, while the red boxes represent
train data. The test data is moved one block up after each iteration (row). There
are k chunks of data and k iterations to validate our model. For each iteration,
the validation data is shifted one block further to avoid overfitting/underfitting and
reuse the same data for multiple training sessions.

For each iteration in the validation process, several steps are done to the model.
Figure 3.3 represents the steps taken. Firstly, the Inputs is sent to the classifier
and the dataset is divided into chucks (training and testing), 1− 1/k training data

22

3. Methods

Table 3.1:
Benchmark datasets used for benchmarking

Name Instances Features Classes Disease Source
Alon 62 2000 2 Colon Cancer Alon, et al. (1999) [58]
Borovecki 31 22283 2 Huntingtons Disease Broovecki, et al. (2005) [59]
Burcyznski 127 22283 3 Crohns Disease Burcyznski, et al. (2006) [60]
Christensen 217 1413 2 not specified Christiansen, et al. (2009) [61]
Chin 118 22215 2 Breast Cancer Chin, et al. (2006) [62]
Chowdary 104 22283 2 Breast Cancer Chowdary, et al. (2006) [63]
Chiaretti 31 12625 2 Leukemia Chiaretti, et al. (2004) [64]
Gordon 181 12533 2 Lung Cancer Gordon, et al. (2002) [65]
Golub 72 7129 2 Leukemia Golub, et al. (1999) [66]
Gravier 168 2905 2 Breast Cancer Gravier, et al. (2010) [67]
Khan 63 2308 4 SRBCT Khan, et al. (2001) [68]
Nakayama 105 22283 10 Sarcoma Nakayama, et al. (2007) [69]
Pomeroy 60 7128 2 CNSET Pomeroy, et al. (2002) [70]
Shipp 77 6817 2 Lymphoma Shipp, et al. (2002) [71]
Singh 102 12600 2 Prostate Cancer Singh, et al. (2002) [72]
Sorlie 85 456 5 Breast Cancer Sorlie, et al. (2001) [73]
Su 102 5565 4 not specified Su, et al. (2002) [74]
Subramanian 50 10100 2 not specified Subramanian, et al. (2005) [75]
Sun 180 54613 4 Glioma Sun, et al. (2006) [76]
Tian 173 12625 2 Myeloma Tian, et al. (2003) [77]
West 49 7129 2 Breast Cancer West, et al. (2001) [78]
Yeoh 248 12625 6 Leukemia Yeoh, et al. (2002) [79]

and 1/k test data. The only processing on the test data is FS, otherwise is the
test data not touched for the remanding until the model is tested on it respectively.
Furthermore, the training data is run through the FS. Notice, the "FS Method"
has only one path, the wrapper. This is because the wrapper is dependent on the
classifier to perform FS. As mentioned in Chapter 1, filters perform a statistical
calculation (ranking) instead of depending on the classifier. Afterwards, when the
FS has been performed, the data is fitted into the classifier model. Lastly, the
trained model is evaluated and the Output is the classification accuracy.

23

3. Methods

...

...

...

...

...

1 2 3 k

...

1

2

3

k

..
.

...

Figure 3.2: Cross-validation for evaluation

Figure 3.3: One iteration of the evaluation methodology

24

4
Results

4.1 Sensitivity Analysis
In this section, a comprehensive sensitivity analysis is performed to fine-tune the
parameters of the SPFSR algorithm when utilized with microarray data. This al-
gorithm is integrated with several classifiers, including the decision tree, k-nearest
neighbour, support vector machine, and naive Bayes. Three significant parameters
of the SPFSR algorithm - the number of gradient averaging (num_avg_grad), stall
limit1 (stall_limit), and the maximum number of iterations (max_iterations) - are
examined in this analysis. These were selected due to their considerable influence
on the algorithm’s efficiency. Through the systematic adjustment of these param-
eters within a predetermined range, and subsequent evaluation of the associated
performance metrics, we aim to boost the accuracy of SPFSR in feature selection
for microarray data. It’s important to note that this analysis is conducted on the
Alon dataset, a representative sample chosen for its typical structure of microarray
datasets, comprising 62 instances and 2000 features.

The sensitivity analysis is constructed in the following way. The parameters men-
tioned above are set to their default values. For the analysis, only one value at a
time is changed, see Table 4.1 for the default values.

Table 4.1: Parameters for SPFSR

Parameters value
M (max no. of iterations) 100
Stall limit 35
m (no. of gradient averaging) 4
num_features 10

4.1.1 Stall Limit
Figure 4.1 illustrates the impact of varying the stall limit parameter on the perfor-
mance of four distinct classifiers: Decision Tree, Naive Bayes, K-Nearest Neighbor,
and Support Vector Machine. This visual representation allows for a more intuitive

1The algorithm stops if there are no improvements in the objective function during an interval
of steps equal to stall limit.

25

4. Results

understanding of the influence of the stall limit on the efficiency of these classifiers.
For exact numerical values related to these variations, please refer to Appendix
C.1.1.

15 20 25 30 35 40 45 50
Stall limit

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

DT
KNN
NB
SVM

Figure 4.1: Mean CV accuracy percentages for different classifiers based on different
stall limit values.

The findings show that the accuracy of the DT classifier varies as the stall limit
parameter is changed. However, the accuracy remains within a narrow range of
71.59% to 75.85%. Notably, the accuracy reaches a peak of 75.85% at stall limit
35. Given the pattern and the fact that the variations in accuracy are so minor, it
may not be required to fine-tune the stall limit value any further. The default value
of 35 appears to provide enough performance, and there is no discernible benefit to
adjusting it to the other levels examined.

The analysis reveals that the variations in the accuracy of the NB classifier remain
within a range of around 79.00% to 82.31%. It is noteworthy that the accuracy
reaches a peak of 82.31% at stall limit 35, which is greater than the other values
examined. Thus similar to DT, it may not be required to fine-tune the stall limit
value any further. The default value of 35 seems sufficient to produce acceptable
performance without requiring extra iterations.

Regarding the KNN classifier, similar to NB, the variations in accuracy are rather
slight, with the accuracy remaining within a range of 72.77% to 76.54%. Note that
the accuracy reaches its peak at maximum iterations 30, with a value of 76.54%.
Following that, the accuracy reduces significantly for stall limit 35 and 40 before
returning to normal. Accordingly, based on the observed trend and the very slight
fluctuations in accuracy, fine-tuning the stall limit parameter will produce a slightly
higher result. Hence, the parameter value should be changed to 30 for the KNN

26

4. Results

classifier.

For the SVM classifier, the accuracy remains within a range of roughly 80.03% to
82.28%. Surprisingly, the highest accuracy is attained at stall limit 15, with 82.28%
accuracy. However, for maximum iterations between 20 and 45, the accuracy stays
very stable, with values ranging from 80.03% to 81.92%. As the stall limit of 35 still
provides acceptable performance in terms of accuracy values, we prefer to stick to
this default setting for the SVM classifier.

4.1.2 Max Iterations
Figure 4.2 shows the impact of setting different values for the parameter of maximum
iteration on the performance of four classifiers for feature selection methods (See
Appendix C.1.2 for the exact percentages).

70 80 90 100 110 120 130
Max iteration

74

75

76

77

78

79

80

81

Ac
cu

ra
cy

 (%
)

DT
KNN
NB
SVM

Figure 4.2: Mean CV accuracy percentages for different classifiers based on different
maximum number of iterations.

Based on these results, it appears that setting the maximum number of iterations
to 90 provides the DT classifier with the highest performance. Accordingly, we set
this parameter for DT as 90 across our numerical experiments.

NB and SVM classifiers seem to be insensitive to changes in the max iterations
parameter. Accordingly, modifications in the max iterations parameter have little
effect on the accuracy of these classifiers. Thus we set this parameter for both
classifiers to the default value.

In general, unless there are compelling reasons to investigate additional iterations,
setting the max iterations option to 100 (the typical value) should be adequate for
obtaining decent performance with minimal computational overhead. It’s always

27

4. Results

important to achieve a balance between computing expense and performance, and
sticking with the default setting of 100 iterations seems fair in this case. This is also
true for the KNN classifier as the increase in performance with high values of the
max iterations is minor, so fine-tuning the max iterations parameter for the KNN
classifier may also not be necessary. Any value within the range of iterations tested,
including the default should be sufficient to deliver acceptable performance without
the need for more iterations.

4.1.3 Number of Gradient Averaging
Figure 4.3 demonstrates the effect of different numbers of gradient averaging on the
performance of the four classifiers. The exact percentages are reported in Appendix
C.3.

1 2 3 4 5 6 7
Number of gradient averaging

70

72

74

76

78

80

82

84

Ac
cu
ra
cy
 (%

)

DT
KNN
NB
SVM

Figure 4.3: Mean CV accuracy percentages for different classifiers based on different
gradient averaging values.

The DT classifier’s accuracy varies as the gradient averaging parameter is changed.
The accuracy reaches a maximum of 75.85% at the maximum iteration of 4. It
is critical to choose a suitable value for the gradient averaging option based on
the observed pattern. Setting the maximum number of iterations to 4 may be a
good decision because it achieves the highest accuracy and subsequent increases in
iterations result in insignificant changes in performance.

We observe that the accuracy of the NB classifier does not vary much as the gradient
averaging parameter is changed. That’s why we decided to set this parameter to
the default value of four.

For the KNN classifier, the accuracy reaches its peak of 78.44% after the gradient
averaging of two. Notably, after four cycles of gradient averaging, the accuracy drops

28

4. Results

marginally to 75.20%. Therefore, we set the number of gradient averaging for our
experiments to two as it achieves the maximum accuracy.

The accuracy of the SVM classifier varies as the number of gradient-averaging it-
erations changes. The accuracy reaches its peak of 83.56% without any gradient
averaging. However, lower numbers for gradient averaging may result in the SPFSR
algorithm not converging effectively. Thus, setting the number of gradient aver-
aging to the default value of 4 may be a good decision as it achieves acceptable
accuracy, and additional increases in this parameter result in insignificant changes
in performance.

4.2 Comparison of the Algorithms
In this section, we delve into the performance evaluation of various FS approaches,
particularly focusing on their accuracy across different classifiers and datasets.
Through a series of figures, tables, and statistical tests, we aim to provide a com-
prehensive understanding of how each method performs, with a special emphasis on
the SPFSR technique. The discussions and visual representations will clarify the
comparative strengths and weaknesses of these methods, offering insights into their
efficacy in feature selection tasks.

The mean accuracy for each FS approach, as applied to each classifier, is depicted in
Figure 4.4 and Figure 4.5 for the Chowdary and Khan datasets, respectively. Results
for other datasets can be found in Appendix D. Additionally, Figure 4.6 presents the
average accuracy across all FS techniques for each classifier, considering all datasets.
These plots showcase the mean accuracy achieved by various FS methods for each
classifier. Within each plot, the performance of different FS techniques is compared
in terms of mean accuracy. The x-axis represents the features selected by each FS
method, while the y-axis indicates the corresponding accuracy percentage. Notably,
the SPFSR technique exhibits a marginally superior accuracy compared to other
methods, as evident in the figures.

When analysing Figure 4.6, it becomes evident that in the case of the Naive Bayes
and Decision Tree models, the proposed SPFSR exhibits comparable performance.
However, upon closer examination, it is apparent that the secondary feature selec-
tion methods differ for these classifiers. For Naive Bayes, the FScore ranks second,
whereas for the Decision Tree, RFI takes the second spot, albeit with the FScore
closely trailing behind. Transitioning to the evaluation of KNN and SVM, we observe
that SPFSR consistently delivers strong performance, although it doesn’t secure the
top position. In the case of KNN, RFI emerges as the superior feature selection
method, even though SPFSR achieves slightly lower accuracy. Furthermore, SPFSR
outperforms the remaining feature selection methods in terms of accuracy. The per-
formance of SVM stands out as well. SFS leads as the primary feature selection
method, with GA taking second place. Interestingly, the accuracy of GA improves
with an increasing number of features. SPFSR follows closely behind GA in terms
of accuracy, with only a slight difference in percentages.

Figure 4.7 displays boxplots of the mean accuracy attained by the FS methods for

29

4. Results

each distinct classifier, without accounting for the number of features. These visuals
provide a summary of the performance of various FS techniques across different
classifiers. The x-axis denotes the FS methods, while the y-axis indicates their
respective accuracy percentages. As with earlier figures, it’s evident that SPFSR
outperforms other approaches in the feature selection task.

Table 4.2 presents the average cross-validation accuracy percentages of SPFSR and
the other eight FR methods across all datasets, along with the number of features
selected for each classifier. For additional context, the table also includes the average
classification accuracy when using all available features. A review of the average
results in Table 4.2 reveals that SPFSR stands out, achieving an impressive average
classification accuracy of 72.46%.

Figure 4.8 showcases the win-tie-loss results from a paired t-test, performed at a
5% significance level, pitting SPFSR against other FR methods across all classifiers
for each dataset. Our findings underscore SPFSR’s consistent edge over other FS
techniques. While there were instances where the performance was neck-and-neck,
SPFSR’s overall dominance was evident. Broadly speaking, SPFSR emerged as the
top method for all four classifiers in most scenarios. Specifically, in over 93.8%
of the tests, SPFSR either matched or significantly surpassed the performance of
other FR algorithms. Delving deeper, SPFSR exhibited a statistically significant
improvement in more than 69% of the tests.

30

4. Results

5 10 15 20 25

Number of Selected Features

35

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

DT - chowdary
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - chowdary
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

NB - chowdary
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - chowdary
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure 4.4: The average accuracy - Chowdary
31

4. Results

5 10 15 20 25

Number of Selected Features
40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - khan
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

KNN - khan
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

NB - khan
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

60

62

64

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

SVM - khan
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure 4.5: The average accuracy - Khan
32

4. Results

5 10 15 20 25

Number of Selected Features
40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

DT

CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
40

50

60

70

80

Ac
cu

ra
cy

 (%
)

KNN

CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

NB

CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy

 (%
)

SVM

CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure 4.6: The average accuracy for each classifier

33

4. Results

SFS
MRMR GA

Re
lief

F

Inf
oG

ain CFS
FSc

ore RFI
SP

FSR
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

DT

SFS
MRMR GA

Re
lief

F

Inf
oG

ain CFS
FSc

ore
SP

FSR RFI
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

KNN

MRMR GA SFS RFI

Re
lief

F

Inf
oG

ain CFS
FSc

ore
SP

FSR
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

NB

MRMR RFI

Re
lief

F

Inf
oG

ain CFS
FSc

ore
SP

FSR GA SFS
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SVM

Figure 4.7: Percentage point improvement of the FR methods for each wrapper.

34

4. Results

Table 4.2: The average classification accuracy of the FS methods with 5, 10, 15, 20
and 25 features

Classifier CFS FScore GA InfoGain MRMR RFI ReliefF SFS SPFSR

DT 62.67 67.18 53.67 62.36 40.90 67.69 62.24 40.45 68.75
KNN 68.39 70.22 55.34 66.40 48.91 81.40 64.20 42.46 71.67
NB 70.63 71.71 57.23 67.77 49.32 66.41 67.95 55.51 72.75
SVM 73.10 73.19 77.49 70.04 69.55 64.60 69.90 81.67 76.66

Average 68.70 70.58 60.93 66.64 52.17 70.02 66.07 55.02 72.46

35

4. Results

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss

 of
 SP

FS
R (

%)

65.0%

28.7%

6.2%

CFS

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss
 of

 SP
FS

R (
%) 80.4%

15.2%

4.3%

FScore

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss
 of

 SP
FS
R (

%)

63.7%

22.5%

13.8%

GA

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss
 of

 SP
FS
R (

%)

67.7%

19.6%

12.7%

InfoGain

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss

 of
 SP

FS
R (

%) 81.2%

16.2%

2.5%

MRMR

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss

 of
 SP

FS
R (

%)
56.2%

41.2%

2.5%

ReliefF

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss

 of
 SP

FS
R (

%)

65.0%

27.5%

7.5%

RFI

Win Tie Los
s

0

10

20

30

40

50

60

70

80

90

Pe
rce

nt
ag

e o
f W

in-
Tie

-Lo
ss
 of

 SP
FS

R (
%)

75.0%

20.0%

5.0%

SFS

Figure 4.8: SPFSR’s percentage of wins, ties, and losses in the classification job
when compared to other FR approaches.

36

5
Conclusion

In our research, we conducted a comprehensive benchmarking of the SPFSR algo-
rithm, comparing it with various FS methods tailored for microarray data. The
SPFSR algorithm excels in finding informative features while effectively discarding
the irrelevant ones. This can be interpreted as categorizing features with top-ranking
weights among the highest k elements as “important” and relegating the rest as
“unimportant”. A notable aspect of SPFSR is its utilization of the non-monotone
BB search approach, which ensures rapid convergence. This is further enhanced by
integrating gradient averaging and gain smoothing, mitigating the effects of noise in
gradient estimation and loss function evaluation.

Our empirical analysis spanned classification tasks across 22 datasets, assessing the
performance of SPFSR through a 5-repeated 5-fold cross-validation. This evaluation
was compared against models using the complete feature set and other prominent
FR techniques, such as CFS, FScore, GA, InfoGain, MRMR, ReliefF, RFI, and SFS.

The results compellingly indicate that SPFSR, on average, surpasses other models
across the assessed machine learning algorithms. When compared against individual
FS methods, SPFSR consistently showcased either a statistically equivalent or a sig-
nificant improvement, achieving this distinction in nearly 94% of the experiments.

37

5. Conclusion

38

Bibliography

[1] D. V. Akman, M. Malekipirbazari, Z. D. Yenice, et al., “k-best feature selection
and ranking via stochastic approximation,” Expert Systems with Applications,
vol. 213, p. 118 864, 2023.

[2] T. Barrett, D. B. Troup, S. E. Wilhite, et al., “NCBI GEO: Mining Tens of
Millions of Expression Profiles–Database and Tools Update.,” Nucleic Acids
Res, vol. 35, no. Database issue, pp. D760–5, Jan. 2007.

[3] J. Chen, E. E. Bardes, B. J. Aronow, and A. G. Jegga, “ToppGene Suite
for gene list enrichment analysis and candidate gene prioritization.,” Nucleic
Acids Res, vol. 37, no. Web Server issue, W305–11, Jul. 2009.

[4] D. M. Mutch, A. Berger, R. Mansourian, A. Rytz, and M.-A. Roberts, “Mi-
croarray data analysis: a practical approach for selecting differentially ex-
pressed genes,” Genome Biology, vol. 2, no. 12, preprint0009.1, 2001.

[5] H.-Y. Chen, S.-L. Yu, C.-H. Chen, et al., “A Five-Gene Signature and Clinical
Outcome in Non–Small-Cell Lung Cancer,” New England Journal of Medicine,
vol. 356, no. 1, pp. 11–20, 2007.

[6] E. R. Gamazon, R. S. Huang, M. E. Dolan, and N. J. Cox, “Copy number
polymorphisms and anticancer pharmacogenomics,” Genome biology, vol. 12,
no. 5, pp. 1–12, 2011.

[7] P. Du, W. A. Kibbe, and S. M. Lin, “lumi: a pipeline for processing Illumina
microarray,” Bioinformatics, vol. 24, no. 13, pp. 1547–1548, May 2008.

[8] B. M. Bolstad, R. A. Irizarry, M. Åstrand, and T. P. Speed, “A comparison
of normalization methods for high density oligonucleotide array data based on
variance and bias,” Bioinformatics, vol. 19, no. 2, pp. 185–193, 2003.

[9] H. Jiang, Y. Deng, H.-S. Chen, et al., “Joint analysis of two microarray gene-
expression data sets to select lung adenocarcinoma marker genes,” BMC bioin-
formatics, vol. 5, no. 1, pp. 1–12, 2004.

[10] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection techniques
in bioinformatics,” bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007.

[11] Y. H. Yang, S. Dudoit, P. Luu, et al., “Normalization for cDNA microarray
data: a robust composite method addressing single and multiple slide system-
atic variation,” Nucleic acids research, vol. 30, no. 4, e15–e15, 2002.

[12] A. A. Alizadeh, M. B. Eisen, R. E. Davis, et al., “Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling,” Nature, vol. 403,
no. 6769, pp. 503–511, 2000.

[13] F. Cappuzzo, M. Varella-Garcia, H. Shigematsu, et al., “Increased HER2 Gene
Copy Number Is Associated With Response to Gefitinib Therapy in Epider-

39

Bibliography

mal Growth Factor Receptor–Positive Non–Small-Cell Lung Cancer Patients,”
Journal of Clinical Oncology, vol. 23, no. 22, pp. 5007–5018, 2005.

[14] Draghici, Sorin and Khatri, Purvesh and Bhavsar, Pratik and Shah, Abhik
and Krawetz, Stephen A and Tainsky, Michael A, “Onto-Tools, the toolkit of
the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-
Translate.,” Nucleic Acids Res, vol. 31, no. 13, pp. 3775–3781, Jul. 2003.

[15] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for
transcriptomics,” Nature reviews genetics, vol. 10, no. 1, pp. 57–63, 2009.

[16] C. Wang, B. Gong, P. R. Bushel, J. Thierry-Mieg, and Thierry-Mieg, “The
concordance between RNA-seq and microarray data depends on chemical treat-
ment and transcript abundance.,” Nat Biotechnol, vol. 32, no. 9, pp. 926–932,
Sep. 2014.

[17] L. Shi and Campbell, “The MicroArray Quality Control (MAQC)-II study
of common practices for the development and validation of microarray-based
predictive models,” Nature Biotechnology, vol. 28, no. 8, pp. 827–838, 2010.

[18] K. Raza, “Analysis of microarray data using artificial intelligence based tech-
niques,” in Handbook of Research on Computational Intelligence Applications
in Bioinformatics, IGI Global, 2016, pp. 216–239.

[19] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[20] H. Liu and H. Motoda, Feature selection for knowledge discovery and data
mining. Springer Science & Business Media, 2012, vol. 454.

[21] C. F. Aliferis, I. Tsamardinos, and A. Statnikov, “HITON: a novel Markov
Blanket algorithm for optimal variable selection,” in AMIA annual symposium
proceedings, American Medical Informatics Association, vol. 2003, 2003, p. 21.

[22] Y. Yang and J. O. Pedersen, “A Comparative Study on Feature Selection in
Text Categorization,” in International Conference on Machine Learning, 1997.

[23] M. Dash and H. Liu, “Feature selection for classification,” Intelligent data
analysis, vol. 1, no. 1-4, pp. 131–156, 1997.

[24] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[25] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial
intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[26] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using ran-
dom forests,” Pattern recognition letters, vol. 31, no. 14, pp. 2225–2236, 2010.

[27] J. Brownlee, How to Choose a Feature Selection Method For Machine Learn-
ing, howpublished = https: // machinelearningmastery. com/ feature-
selection - with - real - and - categorical - data/ , Accessed: 2023-03-1,
2021.

[28] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 27, no. 8,
pp. 1226–1238, 2005.

[29] M. A. Hall, “Correlation-Based Feature Selection for Discrete and Numeric
Class Machine Learning,” in Proceedings of the Seventeenth International Con-

40

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

Bibliography

ference on Machine Learning, ser. ICML ’00, San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 359–366, isbn: 1558607072.

[30] D. Suriyamurthi and V. Thambusamy, “A Comprehensive survey on Filter
approach to feature selection methods for High Dimensional Data,” Jan. 2015.

[31] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,”
Data classification: Algorithms and applications, p. 37, 2014.

[32] J. Han and M. Kamber, Data mining: Concepts and techniques, en. 2012.
[33] J. Abdollahi and B. Nouri-Moghaddam, “A hybrid method for heart disease di-

agnosis utilizing feature selection based ensemble classifier model generation,”
Iran Journal of Computer Science, vol. 5, no. 3, pp. 229–246, 2022.

[34] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8,
pp. 1226–1238, 2005. doi: 10.1109/TPAMI.2005.159.

[35] M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data
Analysis, vol. 1, no. 1, pp. 131–156, 1997.

[36] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques
in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–2517, Aug. 2007.

[37] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for can-
cer classification using support vector machines,” Machine learning, vol. 46,
pp. 389–422, 2002.

[38] K. Kira and L. A. Rendell, “The Feature Selection Problem: Traditional Meth-
ods and a New Algorithm,” in AAAI Conference on Artificial Intelligence,
1992.

[39] P. Somol, B. Baesens, P. Pudil, and J. Vanthienen, “Filter-versus wrapper-
based feature selection for credit scoring,” International Journal of Intelligent
Systems, vol. 20, no. 10, pp. 985–999, 2005.

[40] B. A. Md. Alamgir Sarder Md. Maniruzzaman, “Feature Selection and Clas-
sification of Leukemia Cancer Using Machine Learning Techniques,” Machine
learning, vol. 5, pp. 18–27, 2020.

[41] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning:
A new perspective,” Neurocomputing, vol. 300, pp. 70–79, 2018.

[42] L. Igual, S. Segu, L. Igual, and S. Segu, Introduction to data science. Springer,
2017.

[43] V. Aksakalli, Z. D. Yenice, M. Malekipirbazari, and K. Kargar, “Feature selec-
tion using stochastic approximation with Barzilai and Borwein non-monotone
gains,” Computers & Operations Research, vol. 132, p. 105 334, 2021.

[44] J. C. Spall, “Multivariate stochastic approximation using a simultaneous per-
turbation gradient approximation,” IEEE transactions on automatic control,
vol. 37, no. 3, pp. 332–341, 1992.

[45] J. C. Spall, “An overview of the simultaneous perturbation method for efficient
optimization,” Johns Hopkins apl technical digest, vol. 19, no. 4, pp. 482–492,
1998.

[46] T. N. Nuklianggraita, A. Adiwijaya, and A. Aditsania, “On the Feature Se-
lection of Microarray Data for Cancer Detection based on Random Forest
Classifier,” JURNAL INFOTEL, vol. 12, no. 3, pp. 89–96, 2020.

41

https://doi.org/10.1109/TPAMI.2005.159

Bibliography

[47] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J. Bentez, and
F. Herrera, “A review of microarray datasets and applied feature selection
methods,” Information Sciences, vol. 282, pp. 111–135, 2014.

[48] Z. Zhu, Y.-S. Ong, and M. Dash, “Wrapper–Filter Feature Selection Algo-
rithm Using a Memetic Framework,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 37, no. 1, pp. 70–76, 2007.

[49] P. E. Meyer, C. Schretter, and G. Bontempi, “Information-Theoretic Feature
Selection in Microarray Data Using Variable Complementarity,” IEEE Journal
of Selected Topics in Signal Processing, vol. 2, no. 3, pp. 261–274, 2008.

[50] J. Apolloni, G. Leguizamón, and E. Alba, “Two hybrid wrapper-filter feature
selection algorithms applied to high-dimensional microarray experiments,” Ap-
plied Soft Computing, vol. 38, pp. 922–932, 2016.

[51] M. Pirooznia, J. Y. Yang, M. Q. Yang, and Y. Deng, “A comparative study
of different machine learning methods on microarray gene expression data,”
BMC Genomics, vol. 9, no. 1, S13, 2008.

[52] L.-Y. Chuang, C.-H. Yang, K.-C. Wu, and C.-H. Yang, “A hybrid feature selec-
tion method for DNA microarray data,” Computers in Biology and Medicine,
vol. 41, no. 4, pp. 228–237, 2011.

[53] M. Ghosh, S. Adhikary, K. K. Ghosh, A. Sardar, S. Begum, and R. Sarkar,
“Genetic algorithm based cancerous gene identification from microarray data
using ensemble of filter methods,” Medical & Biological Engineering & Com-
puting, vol. 57, no. 1, pp. 159–176, 2019.

[54] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “Distributed
feature selection: An application to microarray data classification,” Applied
Soft Computing, vol. 30, pp. 136–150, 2015.

[55] Y. Wang, I. V. Tetko, M. A. Hall, et al., “Gene selection from microarray
data for cancer classification—a machine learning approach,” Computational
Biology and Chemistry, vol. 29, no. 1, pp. 37–46, 2005.

[56] A. Geron, Hands-on machine learning with scikit-learn, keras, and TensorFlow,
2nd ed. Sebastopol, CA: O’Reilly Media, Oct. 2019.

[57] S. S. Skiena, The Data Science Design Manual (Texts in computer science),
en, 1st ed. Cham, Switzerland: Springer International Publishing, Jul. 2017.

[58] U. Alon, N. Barkai, D. A. Notterman, et al., “Broad patterns of gene expression
revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays.,” Proc Natl Acad Sci U S A, vol. 96, no. 12, pp. 6745–
6750, Jun. 1999.

[59] F. Borovecki, L. Lovrecic, J. Zhou, et al., “Genome-wide expression profiling
of human blood reveals biomarkers for Huntington’s disease.,” Proc Natl Acad
Sci U S A, vol. 102, no. 31, pp. 11 023–11 028, Aug. 2005.

[60] M. E. Burczynski, R. L. Peterson, N. C. Twine, et al., “Molecular classification
of Crohn’s disease and ulcerative colitis patients using transcriptional profiles
in peripheral blood mononuclear cells.,” J Mol Diagn, vol. 8, no. 1, pp. 51–61,
Feb. 2006.

[61] B. C. Christensen, E. A. Houseman, C. J. Marsit, et al., “Aging and environ-
mental exposures alter tissue-specific DNA methylation dependent upon CpG
island context.,” PLoS Genet, vol. 5, no. 8, e1000602, Aug. 2009.

42

Bibliography

[62] K. Chin, S. DeVries, J. Fridlyand, et al., “Genomic and transcriptional aberra-
tions linked to breast cancer pathophysiologies.,” Cancer Cell, vol. 10, no. 6,
pp. 529–541, Dec. 2006.

[63] D. Chowdary, J. Lathrop, J. Skelton, et al., “Prognostic gene expression signa-
tures can be measured in tissues collected in RNAlater preservative.,” J Mol
Diagn, vol. 8, no. 1, pp. 31–39, Feb. 2006.

[64] S. Chiaretti, X. Li, R. Gentleman, et al., “Gene expression profile of adult
T-cell acute lymphocytic leukemia identifies distinct subsets of patients with
different response to therapy and survival.,” Blood, vol. 103, no. 7, pp. 2771–
2778, Apr. 2004.

[65] G. J. Gordon, R. V. Jensen, L.-L. Hsiao, et al., “Translation of microarray data
into clinically relevant cancer diagnostic tests using gene expression ratios in
lung cancer and mesothelioma.,” Cancer Res, vol. 62, no. 17, pp. 4963–4967,
Sep. 2002.

[66] T. R. Golub, D. K. Slonim, P. Tamayo, et al., “Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring.,”
Science, vol. 286, no. 5439, pp. 531–537, Oct. 1999.

[67] E. Gravier, G. Pierron, A. Vincent-Salomon, et al., “A prognostic DNA sig-
nature for T1T2 node-negative breast cancer patients.,” Genes Chromosomes
Cancer, vol. 49, no. 12, pp. 1125–1134, Dec. 2010.

[68] J. Khan, J. S. Wei, M. Ringnér, et al., “Classification and diagnostic prediction
of cancers using gene expression profiling and artificial neural networks.,” Nat
Med, vol. 7, no. 6, pp. 673–679, Jun. 2001.

[69] R. Nakayama, T. Nemoto, H. Takahashi, et al., “Gene expression analysis of
soft tissue sarcomas: characterization and reclassification of malignant fibrous
histiocytoma.,” Mod Pathol, vol. 20, no. 7, pp. 749–759, Jul. 2007.

[70] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, et al., “Prediction of central ner-
vous system embryonal tumour outcome based on gene expression.,” Nature,
vol. 415, no. 6870, pp. 436–442, Jan. 2002.

[71] M. A. Shipp, K. N. Ross, P. Tamayo, et al., “Diffuse large B-cell lymphoma
outcome prediction by gene-expression profiling and supervised machine learn-
ing.,” Nat Med, vol. 8, no. 1, pp. 68–74, Jan. 2002.

[72] D. Singh, P. G. Febbo, K. Ross, et al., “Gene expression correlates of clinical
prostate cancer behavior.,” Cancer Cell, vol. 1, no. 2, pp. 203–209, Mar. 2002.

[73] T. Sørlie, C. M. Perou, R. Tibshirani, et al., “Gene expression patterns of
breast carcinomas distinguish tumor subclasses with clinical implications.,”
Proc Natl Acad Sci U S A, vol. 98, no. 19, pp. 10 869–10 874, Sep. 2001.

[74] A. I. Su, M. P. Cooke, K. A. Ching, et al., “Large-scale analysis of the human
and mouse transcriptomes,” Proceedings of the National Academy of Sciences,
vol. 99, no. 7, pp. 4465–4470, 2002.

[75] A. Subramanian, P. Tamayo, V. K. Mootha, et al., “Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression
profiles,” Proceedings of the National Academy of Sciences, vol. 102, no. 43,
pp. 15 545–15 550, 2005.

43

Bibliography

[76] L. Sun, A.-M. Hui, Q. Su, et al., “Neuronal and glioma-derived stem cell factor
induces angiogenesis within the brain.,” Cancer Cell, vol. 9, no. 4, pp. 287–300,
Apr. 2006.

[77] E. Tian, F. Zhan, R. Walker, et al., “The role of the Wnt-signaling antagonist
DKK1 in the development of osteolytic lesions in multiple myeloma.,” N Engl
J Med, vol. 349, no. 26, pp. 2483–2494, Dec. 2003.

[78] M. West, C. Blanchette, H. Dressman, et al., “Predicting the clinical status
of human breast cancer by using gene expression profiles,” Proceedings of the
National Academy of Sciences, vol. 98, no. 20, pp. 11 462–11 467, 2001.

[79] E.-J. Yeoh, M. E. Ross, S. A. Shurtleff, et al., “Classification, subtype discovery,
and prediction of outcome in pediatric acute lymphoblastic leukemia by gene
expression profiling.,” Cancer Cell, vol. 1, no. 2, pp. 133–143, Mar. 2002.

[80] M. N. McCall, P. N. Murakami, M. Lukk, W. Huber, and R. A. Irizarry,
“Assessing affymetrix GeneChip microarray quality,” BMC Bioinformatics,
vol. 12, no. 1, p. 137, 2011.

[81] J. Quackenbush, “Microarray data normalization and transformation,” Nature
Genetics, vol. 32, no. 4, pp. 496–501, 2002.

[82] D. K. Slonim and I. Yanai, “Getting started in gene expression microarray
analysis.,” PLoS Comput Biol, vol. 5, no. 10, e1000543, Oct. 2009.

[83] J. Sambrook and D. Russell, Molecular Cloning, 3rd ed. New York, NY: Cold
Spring Harbor Laboratory Press, Dec. 2000.

[84] A. Schroeder, O. Mueller, S. Stocker, et al., “The RIN: an RNA integrity
number for assigning integrity values to RNA measurements.,” BMC Mol Biol,
vol. 7, p. 3, Jan. 2006.

[85] L. Garibyan and N. Avashia, “Polymerase chain reaction.,” J Invest Dermatol,
vol. 133, no. 3, pp. 1–4, Mar. 2013.

[86] T. Nolan, R. E. Hands, and S. A. Bustin, “Quantification of mRNA using
real-time RT-PCR,” Nature Protocols, vol. 1, no. 3, pp. 1559–1582, 2006.

[87] M. A. Valasek and J. J. Repa, “The power of real-time PCR.,” Adv Physiol
Educ, vol. 29, no. 3, pp. 151–159, Sep. 2005.

[88] P. Hegde, R. Qi, K. Abernathy, et al., “A concise guide to cDNA microarray
analysis.,” Biotechniques, vol. 29, no. 3, pp. 548–550, Sep. 2000.

[89] A. L. Tarca, R. Romero, and S. Draghici, “Analysis of microarray experiments
of gene expression profiling.,” Am J Obstet Gynecol, vol. 195, no. 2, pp. 373–
388, Aug. 2006.

[90] D. J. Lockhart, H. Dong, M. C. Byrne, et al., “Expression monitoring by
hybridization to high-density oligonucleotide arrays.,” Nat Biotechnol, vol. 14,
no. 13, pp. 1675–1680, Dec. 1996.

[91] C. Romualdi, S. Trevisan, B. Celegato, G. Costa, and G. Lanfranchi, “Im-
proved detection of differentially expressed genes in microarray experiments
through multiple scanning and image integration.,” Nucleic Acids Res, vol. 31,
no. 23, e149, Dec. 2003.

[92] R. Shyamsundar, Y. H. Kim, J. P. Higgins, et al., “A DNA microarray survey
of gene expression in normal human tissues,” Genome Biology, vol. 6, no. 3,
R22, 2005.

44

Bibliography

[93] C. H. Wilson, A. Tsykin, C. R. Wilkinson, and C. A. Abbott, “1 - Experi-
mental Design and Analysis of Microarray Data,” in Applied Mycology and
Biotechnology, ser. Applied Mycology and Biotechnology, D. K. Arora, R. M.
Berka, and G. B. Singh, Eds., vol. 6, Elsevier, 2006, pp. 1–36.

[94] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for Can-
cer Classification using Support Vector Machines,” Machine Learning, vol. 46,
no. 1, pp. 389–422, 2002.

45

Bibliography

46

A
Appendix 1

A.1 Sample Collection
The significance of high-quality RNA samples in generating trustworthy microarray
data. They recommend that appropriate RNA isolation procedures be chosen based
on sample parameters such as tissue type or cell culture system. They also go into de-
tail on the potential causes of RNA degradation and the importance of using proper
sample storage methods to prevent RNA degradation prior to microarray analysis.
Physical damage to cells or tissues during sample collection, such as mechanical dis-
ruption or heat exposure, as well as enzymatic degradation by RNases found in cells,
tissues, and environmental samples, are both potential causes of RNA degradation.
Prolonged exposure to air or UV light, pH fluctuations, and the presence of metal
ions are all variables that can contribute to RNA breakdown. It is critical to adopt
adequate sample collecting protocols, including the use of RNA stabilizing reagents,
and to keep samples at optimum temperatures to prevent RNA degradation and for
accurate microarray analysis [82].

A.2 RNA Extraction
RNA extraction is another critical step in the microarray process, as it involves
the isolation and purification of RNA from the collected samples. This step can be
challenging, as RNA is a relatively unstable molecule that can be easily degraded
by RNases and other contaminants. Various methods for RNA extraction have been
developed, including organic extraction, column-based purification, and magnetic
bead-based purification, each with its own advantages and limitations [83]. Addi-
tionally, new methods for quality control of RNA samples, such as the use of RNA
integrity number (RIN) measurements, have been developed to ensure that the RNA
extracted from samples is of high quality and suitable for microarray analysis [84].

A.3 Amplification
Amplification is an essential step in microarray analysis, as the amount of RNA
that can be extracted from a single sample is often limited. However, traditional
amplification methods, such as the polymerase chain reaction (PCR). Figure A.1

I

A. Appendix 1

5'3'

3'5'

DNA

Sequence of

Interest

DNA

Sequence

5'3'

3'5'

Figure A.1: Visual representation of the important DNA sequence

depicts a DNA sequence, showing the specific DNA sequence that is of particular
interest and that we intend to reproduce. Following that, Figure A.2 depicts the
PCR method, which is used in microarray analysis to amplify the specific DNA
sequence.

PCR is a good method for making multiple copies of a specific portion of DNA from a
complex mixture of DNA. Kary Mullis described it as having the ability to "pick the
piece of DNA you’re interested in and have as much of it as you want.". PCR requires
template DNA, primers, nucleotides, and DNA polymerase. The DNA polymerase
enzyme is in charge of joining individual nucleotides together to generate the PCR
product. The nucleotides are the building blocks of DNA polymerase and are made
up of the four bases found in DNA: adenine, thymine, cytosine, and guanine (A,
T, C, G). Primers in PCR are small DNA fragments with a preset sequence that
complements the target DNA that we want to amplify. They serve as a foundation
for DNA polymerase, allowing us to target and amplify the desired DNA product
[85].

To perform PCR, we put the components in a test tube or 96-well plate and place
them in a heat cycler. The test tubes or glass slides containing the PCR reaction
mixture are inserted through perforations in the heat block of this machine. The
thermal cycler progressively raises and lowers the block’s temperature. Denaturation
begins with heating the reaction solution above the melting point of the target
DNA’s two complementary DNA strands. The strands can now be separated. After
that, the temperature is decreased to allow the right primers to bind to the target
DNA segments. Hybridization or annealing occurs only when the primers and target
DNA are complementary in sequence (for example, A binding to T) [85].

When the temperature is raised again, the DNA polymerase can add nucleotides to
the developing DNA strand to extend the primers. With each repetition of these
three phases, the quantity of replicated DNA molecules doubles. Because PCR is so
sensitive, we only need trace amounts of DNA to make enough copies for analysis
[85].

II

A. Appendix 1

5'

5'
3'

3'

+
5'

5' 3'

3'

+

5'

3'

3'

5'

5'

5'

5'

5'

5'

5'

5'

5'

5'

5'

5'

5'

3'

3'

3'

3'

3'

3'

3'

3'

3'
3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

3'

5' 5'

5'

5'

5' 5'

5'

3'

3'

3'

3'

3'

3'

3'

3'

5' 5'

5'

5'

5' 5'

5'

3'

3'

3'

3'

3'

3'

3'

3'

5' 5'

5'

5'

5'

5'

5'

DNA

Sequence

of Interest

Figure A.2: Visual representation of the PCR process

A.4 Labelling
Many molecular biology techniques, such as microarray analysis and PCR, require
labelling. Labelling in microarray analysis entails adding fluorescent or biotinylated
nucleotides into cDNA to facilitate detection and quantification of the cDNA dur-
ing microarray hybridization [86]. PCR labelling, on the other hand, involves the
incorporation of fluorescent probes that bind specifically to the target DNA during
amplification, allowing for real-time detection and quantification of the amplified
DNA [87].

Traditional labelling approaches, such as indirect and two-step labelling, can inject
technical noise and variability into the data. Direct labelling approaches have been
developed to address these difficulties. Direct labelling eliminates the requirement
for amplification, lowering the possibility of amplification bias and producing more
accurate and dependable data. The Cy3/Cy5 direct labelling approach, for example,
uses reactive Cy3 and Cy5 dyes to identify RNA targets, which then hybridize
directly to the microarray probe without amplification. This method enables for
direct quantification of RNA targets while reducing the possibility of introducing

III

A. Appendix 1

technical noise or variability [88].

A.5 Hybridization
The hybridization process involves binding the labelled cDNA to complementary
DNA probes on the microarray, which results in the generation of a detectable and
quantifiable signal. This procedure is analogous to the hybridization stage used
in real-time PCR, in which specific primers are permitted to bind to target DNA
segments via annealing or hybridization. The binding between the probes and the
target DNA is dependent on their complementary sequences in both circumstances
[85].

A.6 Data Collection and Images
There are two distinct approaches to conducting a microarray experiment: one-
channel and two-channel. The terms “one” and “two” refer to the number of samples
used in the experiment. In the one-channel microarray experiment, there is only
one sample we are converting into data. The sample is treated with a binding agent.
This procedure aims to determine whether the binding agent effectively binds to the
single-stranded DNA. Since the sample is single-stranded DNA there is a possibility
that they bind together with the agent. If the genes are expressed, the probe on the
glass slide does give a glow depending on the amount of binding agent that actually
has bound to the DNA strain. The glass slide is put into a scanner, and each spot
on the glass slide is scanned and converted into a numerical value [89]–[91]. In the
two-channel approach, two different samples (infected tissue and control sample)
are used. Each sample is labelled with a fluorescent binding agent, but the agents
are coloured differently for easy differentiation. The subsequent steps are similar to
the one-channel approach, where the samples are placed on the glass slide, and the
scanner records the emitted light [89], [90], [92]. The datasets used in this thesis
belong to the one-channel category and for this reason, we describe this approach
in more detail below.

In the case of one-channel microarrays, a single sample is hybridized to each glass
slide. The fluorescent signal emitted by each probe on the microarray is evaluated
during the hybridization procedure to quantify the amount of binding agent attached
to it [89]. If a probe appears black, it indicates that none of the binding agents has
bound to the DNA segment at that specific location, implying no gene expression
(see Figure A.3 for a visual representation). The microarray glass slide is washed
before to scanning to eliminate any leftover binding agents that did not bind to the
single-stranded DNA. The emitted fluorescent signals from the microarray data are
then recorded using a scanner [93].

Each probe on the microarray corresponds to a unique DNA sequence representing
a specific gene. During hybridization, the intensity of the fluorescent signal emitted
from each probe reflects the overall brightness and indicates the level of gene expres-
sion. The standard deviation of the fluorescent signal provides valuable information

IV

A. Appendix 1

Figure A.3: A visual representation of how an image after hybridization is repre-
sented for a one-channel microarray experiment.

about the variation in signal strength among different probes, aiding in the mea-
surement process. Two crucial measurements obtained during scanning include the
intensity of the emitted light and the standard deviation of the signal. By knowing
the origin of each row on the glass slide, whether it pertains to a control or cancer
sample, further analysis and interpretation of the data obtained from the scanning
process can be conducted [90], [91].

A.7 Data Analysis
In microarray data processing, normalization procedures are used to normalize inten-
sity levels, assuring comparability across different microarrays within an experiment.
This standardization allows for meaningful comparisons of samples [90]. Gene ex-
pression data analysis includes processing and discovering patterns and relationships
between genes. The identification of a group of relevant genes that are most infor-
mative for a certain research issue is a critical step in microarray data analysis. In
this sense, machine learning approaches, particularly classification algorithms, have
grown in favour of the analysis of microarray data. These algorithms may effectively
identify samples and discover genes important for disease diagnosis and prognosis
[94].

V

A. Appendix 1

VI

B
Appendix 2

B.1 Methods
This section in the appendix provides more in-depth details regarding the classifiers
used in this study.

B.1.1 Naïve Bayes
Naïve Bayes is a probabilistic classification algorithm commonly employed in text
classification, spam filtering, and sentiment analysis [42], [43]. It utilizes Bayes
theorem to calculate the probability of a hypothesis based on evidence. The Naïve
Bayes process involves two key steps: training and prediction, detailed by algorithms
1 and 2.

The basic idea behind Naïve Bayes is to calculate the probability of a given data
point belonging to a particular class, based on the probabilities of the features of
the data point [56], [57]. Naïve Bayes assumes that the features are independent of
each other, which makes the calculations much simpler.

To calculate the probability of a class label given a new data point xnew, Naïve
Bayes uses Bayes theorem. According to Bayes theorem, the probability of a class
label y given a data point x is calculated based on the probability of observing the
data point x given that it belongs to class y(P (x|y)), the prior probability of class
y(P (y)), and the probability of observing the data point x(P (x)).

P (y|x) = P (x|y)P (y)
P (x)

P (xnew,1, xnew,2, ..., xnew,m|y) =
m∏

j=1
P (xnew,j|y)

Naïve Bayes uses a probability distribution to model each feature, depending on its
type. For example, it can use a Gaussian distribution for continuous features and
a categorical distribution for discrete features. To calculate the prior probability of
class y(P (y)), Naïve Bayes simply counts the number of data points in each class
and divides them by the total number of data points. To calculate the probability

VII

B. Appendix 2

of observing the data point x(P (x)), Naïve Bayes uses the law of total probability
[56], [57]. It calculates the sum of the products of the probability of observing the
new data point xnew given that it belongs to each class yi and the prior probability
of class yi.

P (xnew) =
k∑

i=1
P (xnew|yi)P (yi)

where P (xnew|yi) is the probability of observing the new data point xnew given that
it belongs to class yi, and P (yi) is the prior probability of class yi. Once Naïve
Bayes has calculated the probabilities for each class label, it chooses the one with
the highest probability as the predicted class label for the new data point xnew [56],
[57].

Algorithm 1 Naïve Bayes Training [56]
Input: Training dataset D = {(x1, y1), (x2, y2), ..., (xm, ym)} consisting of m sam-

ples, number of classes k
Output: Prior probabilities P (yi) for each class i and likelihood probabilities

P (xj|yi) for each feature j and class i
1 for i← 1 to k do
2 Let Di be the set of all samples in D with class yi Compute prior probability

P (yi) = |Di|/m for each feature j do
3 Compute likelihood P (xj|yi) using the training samples in Di (e.g., Gaussian

distribution for continuous features, multinomial distribution for discrete
features)

4 end
5 end

Algorithm 2 Naïve Bayes Prediction [56]
Input: Trained model: prior probabilities P (yi) and likelihood probabilities P (xj|yi)

for each feature j and class i, new sample x = (x1, x2, ..., xn) to be classified
Output: Predicted class for the new sample x

1 for i← 1 to k do
2 Compute P (yi|x) = P (yi) ∗ P (x1|yi) ∗ P (x2|yi) ∗ ... ∗ P (xn|yi) using the trained

model and the new sample x
3 end
4 Choose the class i with the highest posterior probability P (yi|x) and output it as

the predicted class for the new sample x;

B.1.2 K-Nearest Neighbours
The k-Nearest Neighbors (k-NN) algorithm is a straightforward classification method
widely recognized for its simplicity. It operates based on proximity, predicting out-
comes by identifying the k nearest neighbors to a specific data point. A crucial

VIII

B. Appendix 2

aspect of k-NN involves selecting a distance metric, such as Euclidean or Manhat-
tan distance, to measure the closeness or dissimilarity between data points in a
feature space [57].

Neither explicit model training nor parameter estimates are used in the k-NN ap-
proach. Instead, it uses previously stored training data to make predictions based on
their closeness to labeled occurrences. As a result, it is classified as a lazy learning
algorithm (see Algorithm 3 for the pseudo-code) [57]. To produce a forecast with the
k-NN algorithm, we first choose a value for k, which denotes the number of nearest
neighbors to take into account. Given a new data point, the method determines the
k nearest neighbors using the distance metric of choice and checks the class labels
of these neighbors. If the majority of the neighbors belong to the same class, the
algorithm labels the new data point with that class label [57].

It is vital to note that the value chosen for k has an effect on the algorithm’s
performance. A lower value of k, such as k = 1, may result in more flexible decision
boundaries, but it is more susceptible to noise in the data. A bigger value of k,
on the other hand, may create smoother decision limits but may also muddy the
distinctions between different classes [57].

Algorithm 3 k-Nearest Neighbors (k-NN) Algorithm
Input: Training dataset S = {(x1, y1), ..., (xn, yn)}, where xi is the i-th input vector

and yi is the corresponding target output (−1 or 1)
Output: Predicted class for a new input xnew

1 Choose the number of neighbors k foreach new input xnew do
2 Calculate the distance between xnew and each training sample xi Select the k

nearest neighbors based on the smallest distances Assign the predicted class
for xnew based on majority voting among the k neighbors

3 end
4 return Predicted class for xnew

B.1.3 Decision Tree
A Decision Tree is a hierarchical structure used for classification and regression. It
divides data into subsets based on feature values, selecting splits that maximize in-
formation gain (reduction in uncertainty) using metrics like Gini impurity or entropy.
The algorithm explores all possible splits for each feature, repeating recursively until
a stopping criterion, like maximum depth or minimum samples in a leaf node, is met
[56], [57].

As shown in the equations below, to calculate the information gain for a split, the
algorithm subtracts the weighted average of child entropies from the parent entropy.
The parent entropy is calculated by summing the negative product of the proportion
of each class label and the logarithm of the proportion (in base 2) for all the labels
in the parent node. The child entropies are calculated similarly, but weighted by the
proportion of samples in each child node. The Gini impurity can also be calculated
using a similar method, with the entropy term replaced by the Gini impurity [56],

IX

B. Appendix 2

[57].

Information Gain = Parent Entropy−Weighted Average of Child Entropies

Parent Entropy = −
n∑

i=1
pi log2(pi)

Algorithm 4 describes the process for Decision Trees. The algorithm recursively
splits the data into subsets based on the most informative feature, chosen using
information gain calculated using metrics such as the Gini impurity or entropy. The
algorithm considers all possible splits for each feature and chooses the one that
maximizes the information gain, repeating the process recursively until a stopping
criterion is met, such as a maximum depth or a minimum number of samples in a
leaf node. To calculate the information gain for a split, the algorithm subtracts the
weighted average of child entropies from the parent entropy, with both the parent
and child entropies calculated using the proportion of samples in each class label.
The resulting tree can be used for both classification and regression problems.

Algorithm 4 Decision Tree
Input: Training set S, sample x to be classified
Output: Prediction for x

1 Function DecisionTree(S, x):
2 if stopping criteria are met then
3 return leaf node with prediction
4 end
5 f, t← choose splitting criterion based on S; SL, SR ← split S based on f and t;

if xf < t then
6 return DecisionTree(SL, x)
7 end
8 else
9 return DecisionTree(SR, x)

10 end

B.1.4 Support Vector Machine
Support Vector Machines (SVM) is a powerful machine learning algorithm that seeks
to find the optimal hyperplane to separate two classes in input data. It maximizes
the distance between this hyperplane and the nearest data points from each class,
known as support vectors. The hyperplane is defined as wT x + b = 0, where w is
the weight vector, x is the input vector, and b is the bias term. SVM uses a cost
function to minimize misclassifications and maximize the margin, typically solved
through convex optimization techniques like gradient descent [56], [57].

The cost function for SVM is the hinge loss function, given by:

X

B. Appendix 2

L(w, b) = 1
n

n∑
i=1

max
(

0, 1− yi

(
wT xi + b

))
+ α

2
||w||2

Algorithm 5 SVM Training [56]
Input: Training set S = (x1, y1), ..., (xn, yn), where xi is the i-th input vector and

yi is the corresponding target output (−1 or 1)
Output: Weight vector w and bias term b

1 Initialize weight vector w and bias term b to zero or a small random value; Set
learning rate α and regularization parameter C; repeat

2 foreach training example (xi, yi) ∈ S do
3 Calculate predicted output ŷi = sign(wT xi + b); if yi(wT xi + b) ≥ 1 then
4 Set gradient to w = w − αCw and b = b;
5 else
6 Set gradient to w = w − α(Cw − yixi) and b = b− αyi;
7 end
8 end
9 Update weight vector w and bias term b by subtracting the average gradient;

10 until convergence or maximum number of iterations;
11 return w and b

As shown in Algorithm 5, n is the number of training instances, xi is the ith input
vector, yi is the corresponding target output, and α is a regularization hyperparam-
eter that controls the tradeoff between maximizing the margin and minimizing the
misclassifications. The first term in the cost function is the classification loss, which
penalizes misclassifications, and the second term is the regularization term, which
encourages a small weight vector. To optimize this cost function, one can use opti-
mization algorithms such as stochastic gradient descent or quadratic programming.
The optimal solution for the SVM algorithm is found when the weight vector w and
the bias term b are determined such that they minimize the cost function while
satisfying the constraints that ensure the hyperplane separates the two classes with
the maximum margin. Therefore, SVM is a linear model for binary classification
that tries to find the best possible boundary that can separate the two classes in the
input data by maximizing the margin between the hyperplane and the nearest data
points while minimizing misclassifications using the hinge loss function [56], [57].

The Sequential Minimal Optimization (SMO) algorithm is a popular method for
training SVMs. The SMO algorithm is described in Algorithm 6. One advantage of
SMO is that it can handle much larger datasets than a normal SVM. This is because
it only needs to work with a small subset of the training data at any given time.
Another advantage of SMO is that it can handle non-separable datasets by using a
soft margin, allowing some misclassifications in the training data for a more robust
model [56].

The SMO algorithm starts by initializing the Lagrange multipliers to zero and choos-
ing a kernel function and its parameters. It then computes the kernel matrix and

XI

B. Appendix 2

sets a tolerance threshold for convergence. In each iteration of the algorithm, it
selects two Lagrange multipliers to optimize and computes their bounds based on
the constraints imposed by the SVM’s dual problem. It then uses a closed-form
solution to update these multipliers, while ensuring that they satisfy the constraints.
The algorithm also updates the bias term and weight vector in each iteration [56].

The SMO algorithm continues to iterate until it converges to a solution, i.e., until all
Lagrange multipliers satisfy the Karush-Kuhn-Tucker (KKT) conditions within the
specified tolerance. At the end of the algorithm, the support vectors are identified
as the feature vectors with non-zero Lagrange multipliers. The bias term is then
computed using these support vectors, and the weight vector is updated accordingly.
Finally, the SVM classifier function is returned, which can be used to predict the
label of new feature vectors [56].

Although SMO has advantages, a normal SVM can be more accurate than SMO on
small datasets because it optimizes the objective function globally, whereas SMO
only optimizes it locally at each iteration. Additionally, a normal SVM can handle
more complex kernels, such as radial basis function (RBF) kernels, which can capture
more complex patterns in the data [56].

B.1.5 Cross-validation
One of the main advantages of cross-validation is that it allows us to assess the
performance of a model more reliably than using a single train-test split. By using
multiple splits of the data, we can get a better sense of how well the model will
perform on unseen data. Additionally, cross-validation can help us to tune the
hyperparameters of a model, such as the learning rate in a neural network or the
number of trees in a random forest. By assessing the model’s performance for
different hyperparameter values, we can select the best settings [56], [57].

The mathematical definition of the k-fold cross-validation algorithm involves the
following: Let D be the dataset with n instances x1, x2, ..., xn and corresponding
labels y1, y2, ..., yn. Let S be the set of indices 1, 2, ..., n. Let k be the number of
folds. Algorithm 7 summarizes the k-fold cross-validation algorithm. The algorithm
ensures that each instance in the dataset is used for testing exactly once and that
the model is trained on all the other instances.

XII

B. Appendix 2

Algorithm 6 Sequential Minimal Optimization (SMO) algorithm for training an
SVM classifier [56]
Input: Training set (x(i), y(i))m

i=1, where x(i) ∈ Rn and y(i) ∈ −1, 1
Output: The SVM classifier function f(x) = sign(wT x + b), where w ∈ Rn and b ∈ R

1 Initialize the Lagrange multipliers αi = 0 for i = 1, . . . , m;
2 Choose a kernel function K(x(i), x(j)) and kernel parameters, if any;
3 Compute the kernel matrix K, where Ki,j = K(x(i), x(j));
4 Set the tolerance threshold ϵ;
5 while not converged do
6 for i = 1 to m do
7 Compute the margin z(i) = wT x(i) + b; Compute the prediction ŷ(i) = sign(z(i));

Compute the error ε(i) = ŷ(i) − y(i); if (αi < C and y(i)ε(i) < −ϵ) or (αi >
0 and y(i)ε(i) > ϵ) then

8 Choose a second Lagrange multiplier αj uniformly at random from 1, . . . , m\ i;
Compute the kernel kij = K(x(i), x(j)); Compute the bounds L and H for αj ;
if L = H then

9 continue;
10 end
11 Compute the unclipped new value αnew,unc

j using Equation (12-16) in the book;
Clip the new value αnew

j to be within the bounds L and H; Compute the
change in αj as ∆αj = αnew

j − αj ; Compute the change in αi as ∆αi =
−y(i)y(j)∆αj ; Update the Lagrange multipliers αi ← αi+∆αi and αj ← αnew

j ;
Compute the bias term b using Equation (12-7) in the book; Update the weight
vector w←

∑m
i=1 αiy

(i)mathbfx(i);
12 else
13 end
14 if all Lagrange multipliers satisfy the KKT conditions within the tolerance ϵ then
15 break;
16 end
17 end
18 Compute the set of support vectors x(i) | αi > 0;
19 Compute the bias term b using Equation (12-5) in the book;
20 return The SVM classifier function f(x) = sign(wT x + b);

XIII

B. Appendix 2

Algorithm 7 K-fold Cross-Validation Algorithm [56]
Input: Dataset D with n instances
Output: Performance estimate of a machine learning model
Data: Number of folds k

1 Shuffle the dataset randomly;
Split the dataset into k groups;
for each unique group do

2 Take the group as a hold out or test data set;
Take the remaining groups as a training data set;
Fit a model on the training set and evaluate it on the test set;
Retain the evaluation score and discard the model;

3 end
4 Summarize the skill of the model using the sample of model evaluation scores;

XIV

C
Appendix 3

C.1 Sensitivity analysis

This section shows the exact values represented in the graphs for the sensitivity
analysis.

C.1.1 Stall limit

Table C.1: Performance of SPFSR parameter: stall limit

Classifier 15 20 25 30 35 40 45 50
DT 74.79 73.33 71.59 73.46 75.85 73.51 74.10 75.28
NB 80.03 81.21 81.31 81.03 82.31 79.00 81.03 81.03
KNN 75.13 72.77 73.97 76.54 75.20 74.05 73.59 74.41
SVM 82.28 80.03 81.64 81.26 81.31 80.05 81.92 80.67

C.1.2 Max iterations

Table C.2: Performance of SPFSR parameter: max iterations

Classifier 70 80 90 100 110 120 130
DT 74.59 73.97 76.49 75.85 74.90 75.51 74.21
NB 80.38 81.03 81.03 81.03 81.03 81.03 80.69
KNN 74.87 74.56 75.20 75.20 75.54 75.23 76.46
SVM 80.08 80.05 80.36 81.31 80.97 80.03 80.03

XV

C. Appendix 3

C.1.3 Number of Gradient Averaging

Table C.3: Performance of SPFSR parameter: number of gradients average

Classifier 1 2 3 4 5 6 7
DT 73.13 74.23 70.21 75.85 75.15 75.13 71.56
NB 81.67 79.46 81.62 81.03 80.00 82.31 80.95
KNN 74.08 78.44 74.28 75.20 77.05 76.18 76.99
SVM 83.56 80.67 79.36 81.31 80.95 81.03 81.90

C.1.4 Hot start range: RFI

Table C.4: Performance of hot_start_range - RFI

Classifier 0.1 0.2 0.5 1
KNN 76.30 76.88 76.68 77.16
DT 74.91 76.42 74.26 73.47
NB 81.37 81.33 80.35 81.33
SVM 81.24 80.90 81.88 82.62

C.1.5 Hot start range: FScore

Table C.5: Performance of hot_start_range - FScore

Classifier 0.1 0.2 0.5 1
KNN 75.42 75.76 75.26 76.15
DT 77.18 77.00 76.08 74.66
NB 79.67 79.17 80.05 79.86
SVM 81.14 81.63 81.88 82.62

C.1.6 Hot start range: InfoGain

Table C.6: Performance of hot_start_range - InfoGain

Classifier 0.1 0.2 0.5 1
KNN 76.30 75.76 75.63 74.92
DT 74.91 74.06 74.22 74.44
NB 78.23 79.83 79.89 78.90
SVM 80.72 81.59 81.65 82.71

XVI

D
Appendix 4

D.1 Result plots
This section of the appendix contains the results for the remaining plots.

XVII

D. Appendix 4

5 10 15 20 25

Number of Selected Features

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

DT - alon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

KNN - alon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

30

40

50

60

Ac
cu

ra
cy

 (%
)

NB - alon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - alon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.1: The average accuracy - Alon
XVIII

D. Appendix 4

5 10 15 20 25

Number of Selected Features
45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

DT - borovecki
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
45

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

KNN - borovecki
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

NB - borovecki
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

65

70

75

80

Ac
cu

ra
cy

 (%
)

SVM - borovecki
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.2: The average accuracy - Boroveki
XIX

D. Appendix 4

5 10 15 20 25

Number of Selected Features
50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

DT - burczynski
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
50

60

70

80

90

Ac
cu

ra
cy

 (%
)

KNN - burczynski
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

NB - burczynski
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

SVM - burczynski
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.3: The average accuracy - burczynski
XX

D. Appendix 4

5 10 15 20 25

Number of Selected Features

20

25

30

35

40

45

50

Ac
cu

ra
cy

 (%
)

DT - christensen
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
15

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

KNN - christensen
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

NB - christensen
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

SVM - christensen
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.4: The average accuracy - Christensen
XXI

D. Appendix 4

5 10 15 20 25

Number of Selected Features

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - chin
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - chin
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

NB - chin
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - chin
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.5: The average accuracy - Chin
XXII

D. Appendix 4

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - chiaretti
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - chiaretti
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

NB - chiaretti
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - chiaretti
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.6: The average accuracy - Chiaretti
XXIII

D. Appendix 4

5 10 15 20 25

Number of Selected Features
40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - gordon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

KNN - gordon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

NB - gordon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
56

58

60

62

64

66

68

70

72

Ac
cu

ra
cy

 (%
)

SVM - gordon
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.7: The average accuracy - Gordon
XXIV

D. Appendix 4

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - golub
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - golub
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

NB - golub
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ac
cu

ra
cy

 (%
)

SVM - golub
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.8: The average accuracy - Golub
XXV

D. Appendix 4

5 10 15 20 25

Number of Selected Features

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

DT - gravier
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

KNN - gravier
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

NB - gravier
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ac
cu

ra
cy

 (%
)

SVM - gravier
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.9: The average accuracy - Gravier
XXVI

D. Appendix 4

5 10 15 20 25

Number of Selected Features
25

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - nakayama
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - nakayama
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

30

35

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

NB - nakayama
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - nakayama
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.10: The average accuracy - Nakayama
XXVII

D. Appendix 4

5 10 15 20 25

Number of Selected Features

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

DT - pomeroy
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
55

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

KNN - pomeroy
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

NB - pomeroy
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Ac
cu

ra
cy

 (%
)

SVM - pomeroy
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.11: The average accuracy - Pomeroy
XXVIII

D. Appendix 4

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - shipp
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - shipp
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
45

50

55

60

65

Ac
cu

ra
cy

 (%
)

NB - shipp
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
50

52

54

56

58

60

62

64

66

Ac
cu

ra
cy

 (%
)

SVM - shipp
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.12: The average accuracy - Shipp
XXIX

D. Appendix 4

5 10 15 20 25

Number of Selected Features

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

DT - singh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

KNN - singh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

NB - singh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

 (%
)

SVM - singh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.13: The average accuracy - Singh
XXX

D. Appendix 4

5 10 15 20 25

Number of Selected Features
45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

DT - sorlie
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

KNN - sorlie
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

NB - sorlie
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

SVM - sorlie
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.14: The average accuracy - Sorlie
XXXI

D. Appendix 4

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - su
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu
ra
cy
 (%

)

KNN - su
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

55

60

65

70

Ac
cu
ra
cy
 (%

)

NB - su
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
54

56

58

60

62

64

66

68

Ac
cu

ra
cy

 (%
)

SVM - su
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.15: The average accuracy - Su
XXXII

D. Appendix 4

5 10 15 20 25

Number of Selected Features
35

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

DT - subramanian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - subramanian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

40

45

50

55

60

65

Ac
cu
ra
cy
 (%

)

NB - subramanian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

45

50

55

60

65

Ac
cu
ra
cy
 (%

)

SVM - subramanian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.16: The average accuracy - Subramanian
XXXIII

D. Appendix 4

5 10 15 20 25

Number of Selected Features

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

DT - sun
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
20

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

KNN - sun
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
20

30

40

50

60

Ac
cu

ra
cy

 (%
)

NB - sun
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
25

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - sun
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.17: The average accuracy - Sun
XXXIV

D. Appendix 4

5 10 15 20 25

Number of Selected Features
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

DT - tian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

KNN - tian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features
30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

NB - tian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

SVM - tian
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.18: The average accuracy - Tian
XXXV

D. Appendix 4

5 10 15 20 25

Number of Selected Features

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

DT - west
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

KNN - west
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

NB - west
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

SVM - west
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.19: The average accuracy - West
XXXVI

D. Appendix 4

5 10 15 20 25

Number of Selected Features

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

DT - yeoh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

KNN - yeoh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

55

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

NB - yeoh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

5 10 15 20 25

Number of Selected Features

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

SVM - yeoh
CFS
FScore
GA
InfoGain
MRMR
RFI
ReliefF
SFS
SPFSR

Figure D.20: The average accuracy - Yeoh
XXXVII

	List of Figures
	List of Tables
	Introduction
	Motivation
	Microarray Data
	Microarray Experimental Setup

	Feature Selection
	Filters
	Wrappers
	SPFSR
	Feature selection using stochastic approximation with Barzilai and Borwein non-monotone gains aksakalli2021feature
	k-best feature selection and ranking via stochastic approximation akman2023k

	Related Works
	Contribution

	Theory
	SPSA
	Barzilai and Borwein
	SPFSR

	Methods
	Workflow
	Classification
	Multiclass classification
	Naïve Bayes
	K-Nearest Neighbours
	Decision Tree
	Support Vector Machine
	Cross-validation

	Data
	Benefits and Limitations of Open Source Microarray Data

	Evaluation framework

	Results
	Sensitivity Analysis
	Stall Limit
	Max Iterations
	Number of Gradient Averaging

	Comparison of the Algorithms

	Conclusion
	Bibliography
	Appendix 1
	Sample Collection
	RNA Extraction
	Amplification
	Labelling
	Hybridization
	Data Collection and Images
	Data Analysis

	Appendix 2
	Methods
	Naïve Bayes
	K-Nearest Neighbours
	Decision Tree
	Support Vector Machine
	Cross-validation

	Appendix 3
	Sensitivity analysis
	Stall limit
	Max iterations
	Number of Gradient Averaging
	Hot start range: RFI
	Hot start range: FScore
	Hot start range: InfoGain

	Appendix 4
	Result plots

