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Reconstructing point patterns from spatially aggregated data
With an eye towards epidemiological modelling
JENS MICHELSEN
Department of Mathematics
Chalmers University of Technology

Abstract
In this thesis we explore the ability to reconstruct samples (point configurations)
from a point process, based only on the information contained in spatially aggregated
data, namely the number of points in the partitions of a larger region. The ability to
reconstruct a point configuration, in such a way that it retains most of it’s statistical
properties, could be useful in cases where one is faced with a mixed dataset; some
regions containing the full point configuration data, while other regions only contain
aggregated data, i.e. the counts of subregions. Our main motivation in this thesis
however, concerns epidemic modelling, where the locations of individual infections
are represented by point(-configuration)s, drawn from a hypothetical point process
model, and typically, data is only available in spatially aggregated form.
Here we present a scheme for reconstructing point configurations, as well as a collec-
tion of dissimilarity measures to assess the quality of reproduction. These are then
analysed (in part) theoretically and verified using simulation studies. We obtain
constraints regarding the size of the partitions/subregions in order for the recon-
structed point configuration to retain important statistical properties of the original
point process.

Keywords: lorem, ipsum, dolor, sit, amet, consectetur, adipisicing, elit, sed, do.

v





Acknowledgements
I would like to express my deepest gratitude to my supervisor Ottmar Cronie for
both inspiring and supporting me throughout this thesis. I would also like to thank
my examiner Moritz Schauer for being patient while I slowly finalised the thesis.
Finally I would like to thank my friends and family for supporting me and believing
in me.

Jens Michelsen, Gothenburg, March 2023

vii





Contents

1 Introduction 1
1.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Theory of finite point processes . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Point processes with fixed number of points . . . . . . . . . . 5
2.1.1.1 Binomial point process . . . . . . . . . . . . . . . . . 6
2.1.1.2 Gibbs process with fixed number of points . . . . . . 6
2.1.1.3 Area interaction process . . . . . . . . . . . . . . . . 7
2.1.1.4 Simulating point processes with fixed number of points 7

2.1.2 Point processes with random number of points . . . . . . . . . 8
2.1.2.1 Poisson point process . . . . . . . . . . . . . . . . . . 9
2.1.2.2 Interacting point processes . . . . . . . . . . . . . . . 10
2.1.2.3 Papangelou conditional intensity . . . . . . . . . . . 10
2.1.2.4 GNZ formula . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2.5 Generating point patterns through Metropolis-Hastings

MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Point processes on linear networks . . . . . . . . . . . . . . . . 13

2.2 Parameter inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Estimation by mapping to logistic regression . . . . . . . . . . 15

3 Methods 17
3.1 Point process models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Limitations of chosen point process models . . . . . . . . . . . 19
3.2 Partition and reconstruction process . . . . . . . . . . . . . . . . . . 20

3.2.1 Reconstruction process . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Measures of quality of reconstruction . . . . . . . . . . . . . . . . . . 22

3.3.1 Direct (non-statistical) dissimilarity . . . . . . . . . . . . . . . 23
3.3.1.1 Distance between point configurations . . . . . . . . 23

3.3.2 Statistical dissimilarity . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2.1 Stoyan-Grabarnik residuals . . . . . . . . . . . . . . 24

4 Results 27
4.1 Theoretical analysis of reconstruction process . . . . . . . . . . . . . 27
4.2 Reconstructing a Poisson point process . . . . . . . . . . . . . . . . . 30

ix



Contents

4.3 Reconstructing homogeneous interacting point processes . . . . . . . 32
4.3.1 Geyer process . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1.1 Distribution of quadrat counts . . . . . . . . . . . . 36
4.3.2 Area interaction process . . . . . . . . . . . . . . . . . . . . . 39

4.4 Reconstructing point processes with spatially inhomogeneous covariates 40
4.4.1 Inhomogeneous Poisson point process . . . . . . . . . . . . . . 42

4.4.1.1 Reconstructing using inhomogeneous binomial point
process . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1.2 Reconstructing inhomogeneous interacting point pro-
cess . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Reconstructing point processes on
linear networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion 51
5.1 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

x



1
Introduction

Following the outbreak of Covid-19, there has been renewed interest in epidemic
modelling and forecasting. Traditional methods focus on modelling the time evo-
lution of spatially aggregated statistics, such as the number of infected, Ni(t) =
N(Ai, t), in a certain geographical region, Ai, at time t. The time evolution can be
modelled either through deterministic differential or difference equations, such as
the SIR-model and various extensions and variations thereof, or through stochastic
propagator models, taking into account regional differences as well as infection rates
in neighbouring regions (see eg. [1, 2] for recent applications to Covid-19). Infer-
ence about model parameters in each region may thus provide insight into regional
differences in behaviours and/or rate of spread between regions while also allowing
for prediction of regional rates of infection. Additionally, one might imagine also
modelling the parameters themselves by using covariates such as population density,
data from public transportation, cell phone data from radio masts, etc.
While certainly useful and, to a certain degree, successful at predicting the aggre-
gated rates of infection, ultimately these methods describe the spread of disease
(which at its core is a very local process) at a spatially aggregated level, disregard-
ing spatial inhomogeneities of key predictors (such as population density, levels of
movement, etc) within the regions themselves. Furthermore, the localized nature
of typical methods of infection suggest that infection events should appear in lo-
calized clusters, typically at much smaller scales than the extent of typical regions.
A superspreader event in close proximity of a border between two regions would
lead to a local cluster affecting the aggregate infection rates of both regions, leading
to a strong correlation between said regions, even though the aggregate levels of
movement between the regions may not be particularly high.
An alternative approach could be to model the epidemic as a spatio-temporal point
process, X = {(Xj, Tj)}j=1,...,NX

, with each element of the process (Xj, Tj) repre-
senting an infection event, i.e. a person being infected at a random time Tj, and
location Xj. Such a localized model could depend on local spatio-temporal predic-
tors based on e.g. data on population density, proximity to major roads or public
transportation hubs, local (in space and time) regulatory interventions, etc. Spatio-
temporal data on individual infections could provide valuable details about local
characteristics of the spread such as clustering, the velocity of growth of such clus-
ters, and could potentially allow one to pinpoint common spatio-temporal pathways
of the spread, which could lead to more efficient policies directed at stopping the
spread. It could also provide a better representation of a persons individual risk, as
opposed to the community level risk of infection.
Unfortunately, such spatio-temporal data sets on individual infection events is excep-
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1. Introduction

tionally rare (see for example Varicella data [3]), primarily due to privacy concerns;
While in principle the Health Departments may have data on time and location
(e.g. home adress) of individuals who have received positive Covid tests, privacy
regulations would clearly prohibit the use (and certainly publication) of such data
in any meaningful way. Thus, more than likely, we are left with data aggregated
spatially at a regional level, and temporally at the level of reporting intervals (daily,
weekly, etc), i.e. counts of new infections, Ni(τj) = N(Ai × τj), in region Ai during
the time interval τj = [tj, tj + ∆t]. Nevertheless, it would seem reasonable that if
one could make the regions and reporting intervals (i.e. spatio-temporal intervals
Ai× τj) small enough, most of the information contained in the point process could
be retained in the aggregated statistics. In this extreme case, one could faithfully
reproduce the underlying point process from knowledge of the aggregate statistics.
It would also stand to reason that there exists an intermediate regime of sizes for the
spatio-temporal intervals where one could approximately reproduce the underlying
point process from the aggregate statistics, at least in the sense that it preserves
most of its core properties.

It is the aim of this study to examine the conditions under which this is possible.
To make this endeavour as manageable and concrete as possible, we shall restrict
ourselves to point processes on two dimensional surfaces, as well as simple and
regular partitions of these. The main interest of this study is to explore how well
these reconstructions hold up as a function of size of the subregions, which we shall
refer to as "quadrats". The basic approach of the study is discussed in more detail
in the next section.

1.1 Main approach
To investigate the ability to adequately reproduce the core properties of a point
process from aggregate statistics, we propose the following basic approach:

1. Specify a family of point process models, pθ(x), and associated parameters, θ.
2. Generate a sample realization (point pattern), x, of the point process over a

window, W .
3. (a) Given a partition of the window into disjoint regions, Ai ⊂ W , (b) com-

pute aggregated counts Ni = Nx(Ai) = ∑
x∈x Ix∈Ai

. The number of regions
(inversely proportional to the size of each region) will be referred to as the
resolution of the partition.

4. (a) Given these aggregated counts, simulate new patterns, x̃i consisting of Ni

(e.g. homogeneously distributed) events over corresponding region Ai. (b)
Then combine these into a point pattern x̃ = ∪ix̃i over the entire window W ,
which we shall call the reconstructed point pattern.

5. (a) Compare the reconstructed pattern x̃ to the original pattern x, and (b)
try to ascertain whether the reconstructed pattern x̃ could be considered a
reasonable approximation of a "typical" realization of the original point process
model pθ(x). In order to evaluate (a) and (b) we introduce different measures
of dissimilarity of point patterns.

2



1. Introduction

model

pθ, θ

original, x

reconstructed, x̃

aggregate counts

simulate new pattern

conditional on counts

Figure 1.1: Illustration of the main approach.

1.2 Outline of the thesis

In chapter 2 we introduce the theory of finite point processes along with most of
the concepts used in the thesis. In particular, we present the the main types of
point process models that shall be used, as well as methods of generating point
patterns, parameter inference and important properties that shall later be used
when constructing dissimilarity measures and theoretical analysis. The intention is
for the thesis to be as self-contained as possible.
In chapter 3 we discuss in detail the methods and models that shall be used in
the study. Specifically, we present the reconstruction process in more detail, and
give a couple of variations of these. We specify the particular point process models
that we shall use and discuss their advantages and limitations. We also present the
dissimilarity measures that shall be used to evaluate the quality of reconstruction.

3



1. Introduction

In chapter 4 we present the results of our study. This includes a theoretical analysis
of the reconstruction process itself, and the results of simulations. Finally, our
results are summarised and discussed in chapter 5.

Code used in this thesis
All numerical computations as well as figures presented in this thesis were generated
using a package in the Julia programming language written by the author specif-
ically for this thesis. Samples from point processes were generated according to
the algorithms described in chapter 2, while reconstruction and numerical analysis
was performed according to the algorithms in chapter 2-3. The code is available on
GitHub: https://github.com/jens81/PointProcessReconstruction

4
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2
Theory

In this chapter, we present the theoretical background underlying the methods and
models used in the thesis. The aim is for this section to be as self contained as
possible, but for more details we recommend [4],[5],[6] and [7] on which most of this
introduction is based.

2.1 Theory of finite point processes

A point pattern is an unordered collections of points, x = {x1, x2, . . .}, each in
the same space xi ∈ X , and as such, it can be seen as a subset x ⊂ X . If the
number of points in the set, |x|, is fixed and/or known, we will sometimes suffix the
symbol of the set by the number of points, e.g. xn = {x1, . . . , xn}. A point process,
is a stochastic process for generating random point patterns, X = {X1, X2, . . .},
where, in general, both the locations Xi ∈ X , i = 1, 2, . . ., and the number of points
|X| are random. In the next two sections, I will follow Illian, et al. [6] and first
introduce point processes with a fixed number of points in section 2.1.1, and then
point processes with a random number of points in section 2.1.2. This way, one can
gradually introduce some of the intricacies of point processes, as well as the notation
which will be used in this thesis.

2.1.1 Point processes with fixed number of points
When working with a set of points xi ∈ X , i = 1, . . . , n, it is convenient to work
in the space X n. However, since a point pattern xn = {x1, . . . , xn}, or point con-
figuration as it is sometimes called, is an unordered set, it refers to the equivalence
class of the n! possible points (xϕ(1), . . . , xϕ(n)) ∈ X n, where ϕ is an element of the
permutation group, Pn of n items. The space, S(n), of point configurations with
n-points is given by the quotient space X n/Pn. There are several ways to deal
with this issue, as laid out in [7]. In this thesis we shall consider only functions
h(xn) = h(x1, . . . , xn) which are symmetric with respect to their arguments, and
the redundancy this brings about will be taken care of explicitly. The expecta-
tion of such a function, represented abstractly as an integral with respect to some
probability measure P over the configuration space, can be rewritten in terms of an
integral over the space X n:

E[h(Xn)] =
∫

S(n)
h(xn) dP(xn) =

∫
X n

h(xn)fn(xn)dx1 · · · dxn

n! ,
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2. Theory

where the n-point probability density fn(xn) is also symmetric with respect to its
arguments and, in this sense, puts equal weight on all of the equivalent points
(xϕ(1), . . . , xϕ(n)) ∈ X n. The factor 1/n! is to account for the double counting that
occurs due to treating these n! points as separate.
The probability density fn(xn) is normalized to unity in the sense that∫

X n
fn(xn)dx1 · · · dxn

n! = 1,

while in some literature one uses instead the Janossy density jn(xn) = fn(xn)/n!
which has the simpler normalization∫

X n
jn(xn) dx1 · · · dxn = 1.

2.1.1.1 Binomial point process

If the points are distributed independently, the Janossy density can be factorized
jn(xn) = ∏n

i=1 j(xi), where j(xi) is the individual probability density of each point,
xi, i = 1, . . . , n. Note that the interchangeability of the points necessitates that
they have the same distribution. When the points are uniformly distributed, i.e.
j(xi) = 1/|X |, the process is called a Binomial point process, with corresponding
densities:

jn(xn) = 1
|X |n

, fn(xn) = n!
|X |n

.

We shall later use the more general case where the points are independently dis-
tributed, but j(xi) ̸= 1/|X |, in which case we refer to this as an inhomogeneous
Binomial point process.

2.1.1.2 Gibbs process with fixed number of points

Dependence can be introduced in a systematic fashion by rewriting1

fn(xn) = 1
Z

e−V (xn), V (xn) =
n∑

i=1
ϕ1(xi) +

n∑
i,j=1

ϕ2(xi, xj) + . . . ,

where Z is a normalization coefficient, chosen such that
∫

X n fn(xn) dx1 · · · dxn/n! =
1, and V (xn) is the "potential" of the point configuration, expanded in a series with
ϕ1 being a single point potential, ϕ2 being a pair-potential, etc. Keeping only the
single point potential ϕ1 reduces to the inhomogeneous Binomial point process:

fn(xn) = 1
Z

n∏
i=1

e−ϕ1(xi) =
n∏

i=1
j(xi),

while keeping only the pair-potential, and requiring it to be homogeneous and
isotropic, ϕ2(xi, xj) = ϕ2(|xi − xj|) leads us to what is known as a Gibbs process

fn(xn) = 1
Z

e−
∑

i ̸=j
ϕ2(∥xi−xj∥).

1The exponential form originates from statistical mechanics where it is obtained by maximising
the entropy −E[ln fn(Xn)] under the constraint of constant energy (here potential) E[V (Xn)] =
const.

6



2. Theory

For example, a hard core Strauss model [8] assigns lower probability to point con-
figurations which have many points in close vicinity by setting

ϕ2(∥xi − xj∥) = γI∥xi−xj∥<R.

where γ, R > 0 are the parameters of the interaction potential. In other words,
the potential in the hard core Strauss model counts the number of pairs of points
xi, xj ∈ xn that are within a distance R from each other:

fn,S(xn) = 1
Z

e−VS(xn), VS(xn) = γ
∑
i ̸=j

I∥xi−xj∥<R.

This type of process, which promotes configurations with points far from each other,
are called inhibitive or regular processes. In this thesis, however, we shall be more
interested in attractive or clustering processes, i.e. those that promote clustered
point configurations. One might assume that such a process can easily achieved by
reversing the sign of γ in the Strauss process. Unfortunately, such a process would
not be well defined when moving to the more general case of random number of
points. Intuitively, this can be understood from the fact that, for a fixed number of
points, the probability density of such a process would be maximized when all points
are within a distance R from each other, and when allowing a random number of
points, the probability density can be made infinite by putting an infinite amount
of points within a distance R from each other. Thus we here consider instead a
regularized version, known as the Geyer model[9].
In the Geyer model, the probability density is given by

fn,G(xn) = 1
Z

e−VG(xn), VG(xn) = −γ min
(

s∗,
∑
i ̸=j

I∥xi−xj∥<R

)
,

where apart from changing the sign in front of γ, we also introduced a saturation
parameter, s∗, ensuring that, while the process promotes point configurations with
points close to each other, it does not do so beyond a threshold, s∗, of points within
a distance R from each other.

2.1.1.3 Area interaction process

The potential, V (xn), can also be modeled without directly specifying k-point in-
teractions, as illustrated by the area interaction model[10] which is defined by

fn,A(xn) = 1
Z

e−VA(xn), VA(xn) = η |∪ibR(xi)| ,

where bR(xi) = {x ∈ X : ∥x− xi∥ < R}, is the ball centered at xi, of radius R.

2.1.1.4 Simulating point processes with fixed number of points

In the case of independently distributed points, one can sample each point indepen-
dently from the 1-point distributions j(xi). For the homogeneous Binomial point

7



2. Theory

process, this means sampling each point uniformly over X , whereas the inhomoge-
neous case might require using e.g. rejection sampling if the distribution j(xi) is not
easy to sample from.
Gibbs point processes with fixed number of points can easily be simulated by using
a birth-death MCMC sampling scheme as described in [6]. Here one starts with
an initial point configuration x(0)

n , then in subsequent steps t = 0, 1, . . ., iteratively
deleting one of the points, say xk, from x(t)

n at random with probability 1/n, leaving
you with a temporary set, x(t)

n \ {xk}. Then the number of points is restored by
sampling a new point, u, from the conditional 1-point probability density function:

f1
(
u | x(t)

n \ {xk}
)

=
fn

(
{u} ∪

(
x(t)

n \ {xk}
))

∫
X fn(x(t)

n ) dxk

,

and then setting x(t+1)
n = {u} ∪

(
x(t)

n \ {xk}
)
. Here,

∫
X fn(x(t)

n ) dxk is the marginal
distribution of the remaining points x(t)

n \ xk. Upon convergence the point configu-
rations generated by this method will represent draws from the distribution fn(xn).
Using some computation, one can show that the 1-point conditional probability
density, when keeping terms up to the pair-potentials, reduces to

f1(u | x \ {xi}) ∝ e−Ṽ (u;xn\{xi}), Ṽ (u; xn \ {xi}) = ϕ1(u) +
∑

x∈xn\{xi}
ϕ2(∥u− x∥).

Sampling from this distribution can be done using, e.g. rejection sampling, provided
that one can determine an upper bound M > exp(−Ṽ (u; xn \ {xi})). In the case
of the (homogeneous, i.e. ϕ1(u) = constant) Geyer process, this kind of bound is
naturally set by the saturation parameter, s∗, in which case M = e−γ·s∗ .

2.1.2 Point processes with random number of points
Allowing for a random number of points, we must extend the space of configurations
to S = ∪nS(n), and the expectation of a function h(X), still invariant with respect
to its (unspecified number of) arguments can be written

E[h(X)] =
∞∑

n=0

∫
S(n)

h(xn) dP(n)(xn) =
∞∑

n=0

∫
X n

h(xn)p(xn)dx1 · · · dxn

n! .

Here, the probability density p(x) is normalised to unity in the sense that
∞∑

n=0

∫
X n

p(xn)dx1 · · · dxn

n! = 1,

while upon integration only over a specific slice S(n) with a fixed number of points
yields the probability, pn, of observing exactly n-points within the space X :∫

X n
p(xn)dx1 · · · dxn

n! = E[Ix∈S(n) ] = P{x ∈ S(n)} = pn.

Thus we can define the location density fn(xn) = p(xn)/pn, which is normalised to
unity over the subset of the configuration space with n points:∫

X n
fn(xn)dx1 · · · dxn

n! = 1,

8



2. Theory

and thus this location density is equivalent to the n-point density function fn from
the previous section. Again, sometimes it may be preferable to work with the
Janossy density jn(xn) = fn(xn)/n!, which satisfies the simpler normalisations∫

X n
jn(xn) dx1 · · · dxn = 1.

To help the reader navigate the different types of densities, I provide the following
set of equations relating the three to each other:

p(xn) = pnfn(xn) = n!pnjn(xn).

We note, for later use, that the probability density p(xn) can be interpreted as the
joint probability density p(x, n) ≡ p(x∩{x ∈ S(n)}) or simply p(x∩{|x| = n}). In
this sense, the location density fn(xn) = p(xn)/pn = p(x, n)/P{|x| = n} is formally
the probability density conditioned on the number of points:

fn(xn) = p(x | n) = p(x | {|x| = n}).

In the same sense, the Janossy density is related to the conditional probability
density of the point configuration through:

jn(xn) = p(x | n)/n!.

2.1.2.1 Poisson point process

Following the approach in the section on point processes for fixed number of points,
we consider first the case where point locations are independently distributed, in
which case the Janossy density factorises jn(xn) = ∏n

i=1 j(xi). If we also require
the points to uniformly distributed over X we have jn(xn) = 1/|X |n. Finally,
requiring the number of points be Poisson distributed with some parameter Λ, i.e.
pn = Λne−Λ/n! we get:

p(xn) = n!pnjn(xn) = n! · Λ
ne−Λ

n! · 1
|X |n

=
(

Λ
|X |

)n

e−Λ.

Setting Λ = λ|X | we get
p(xn) = λne−λ|X |,

where λ is known as the local intensity of the homogeneous Poisson point process.
The process can be generalised to an inhomogeneous Poisson point process by intro-
ducing a location dependent intensity function λ(u), in which case the probability
density becomes:

p(xn) = e−
∫

X λ(u) du
n∏

i=1
λ(xi),

corresponding to an independent process with 1-point densities j(xi) ∝ λ(xi), i.e.
j(xi) = λ(xi)/

∫
X λ(u) du.

9



2. Theory

2.1.2.2 Interacting point processes

Similar to section 2.1.1.2 we can specify:

p(xn) = 1
Z

e−V (xn), V (xn) = ϕ0 n +
n∑

i=1
ϕ1(xi) +

n∑
i,j=1

ϕ2(xi, xj) + . . .

While the constant ϕ0 could be absorbed, e.g. by the 1-point potential ϕ1(xi), we
keep it separate to highlight its role as a "chemical activity". Sometimes one uses
instead z = e−ϕ0 to denote the "activation". If we turn the potentials off, we get
p(xn) = znZ−1, and pn =

∫
X n p(xn) dx1 · · · dxn/n! = (z|X |)n Z−1. Normalising such

that ∑∞
n=0 pn = 1, i.e. Z = ∑∞

n=0(z|X |)n/n! = ez|X | yields finally pn = (z|X |)n e−z|X |,
and p(xn) = zne−z|X |. Hence, in this limit we recover the homogeneous Poisson point
process with local intensity λ = z. In general, however, the distribution pn depends
on both the activation z = e−ϕ0 , as well as the interactions. Of course, in the more
general case the normalisation Z is also intractable, so we can not obtain a closed
form expression for pn. This implies that in general the likelihood p(xn) is also
intractable and therefore maximum likelihood estimation as well.
We also define the area interaction point process for random number of points similar
to 2.1.1.3:

pA(xn) = 1
Z

e−VA(xn), VA(xn) = ϕ0n + η |∪ibR(xi)| .

In the same sense as before, the process reduces to the Poisson point process when
η = 0.

2.1.2.3 Papangelou conditional intensity

While the exact form of p(x) is intractable due to the normalization factor, there
is a very useful quantity known as the Papangelou conditional intensity[11], here
defined as

λ(u; x) = p({u} ∪ x)
p(x) .

It can be used in an MCMC scheme to sample patterns from any distribution (see
section 2.1.2.5) for which the Papangelou conditional intensity has a tractable form,
it also facilitates a class of relations for expectations that can be used for model
checking (section 2.1.2.4) and parameter inference (section 2.2 and specifically 2.2.1).
Therefore, we shall present the Papangelou conditional intensities for the point pro-
cesses considered so far (note that the Papangelou conditional intensity can only be
specified for point processes with random number of points):

Poisson: λ(u; x) = λ = e−ϕ0

Geyer: λ(u; xn) = e−(ϕ0+ϕ1(u)+γ tR(u;xn))

Area int.: λ(u; xn) = e−(ϕ0+ϕ1(u)+η CR(u,xn))

where CR(u; xn) = |⋃x∈x∪{u} bR(xi)| − |
⋃

x∈x bR(xi)| and tR(u; x) = ∑
x∈x I∥u−x∥.
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2.1.2.4 GNZ formula

Many observables can be expressed as a sum over the individual points x, in relation
to the other points in the set X, i.e. of the form ∑

x∈X h(x; X \ {x}). A result from
Georgii-Nguyen-Zessin [12][13] contends that the expectation of such a function
satisfies the following relation (often called the GNZ formula)

E
[∑

x∈x

h(x; X \ {x})
]

= E
[∫

X
h(u; X)λ(u; X) du

]
The relation can be proven pretty straight-forwardly by starting from the RHS
expectation:

E
[∫

X
h(u; X)λ(u; X) du

]
=

∞∑
n=0

∫
X n

(∫
X

h(u; xn)λ(u; xn) du
)

p(xn)dx1 · · · dxn

n!

=
∞∑

n=0

∫
X n+1

h(u; xn) λ(u; xn)p(xn)︸ ︷︷ ︸
p(xn∪{u})

dx1 · · · dxn du

n!

Defining now the set xn+1 = xn ∪ {u}, and relabeling the points {x1, . . . , xn+1},
while also utilising that the points of the set xn+1 are interchangeable, so that we
can replace the integral over u by an integral over any of the points x1, . . . , xn+1, or,
as is done below, by a sum of integrals over each of them, and dividing by n + 1:

E
[∫

X
h(u; X)λ(u; X) du

]
= . . .

=
∞∑

n=0

∫
X n+1

1
n + 1

n+1∑
i=1

h(xi; xn+1 \ {xi}) p(xn+1)
dx1 · · · dxi · · · dxn+1

n!

=
∞∑

m=1

∫
X m

m∑
i=1

h(xi; xm \ {xi}) p(xm)dx1 · · · dxi · · · dxm

m!

= E

∑
x∈X

h(x; X \ {x})


where in going to the third line we set m = n + 1 and in the last step utilised the
fact that ∑x∈∅ . . . = 0 by definition, such that the m = 0 case can be included.
As a special case of the GNZ-formula, we note the case when h(x; X \ {x}) = h(x):

E

∑
x∈X

h(x)
 = E

[∫
X

h(u)λ(u; X) du
]

=
∫

X
h(u)ρ(u) du, ρ(u) = E[λ(u; X)]

known as the Campbell-Mecke theorem. Here ρ(u) is the 1-point intensity function.
In particular, using the number of points |X ∩ A| = ∑

x∈X Ix∈A in a given subset
A ⊆ X we get

E
[
|X ∩ A|

]
= E

∑
x∈X

Ix∈A

 = E
[∫

X
Iu∈Aλ(u; X) du

]
=
∫

A
ρ(u) du

i.e. the expected number of points in A is given by the integral of the 1-point
intensity over A.

11
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2.1.2.5 Generating point patterns through Metropolis-Hastings MCMC

Point processes can be generated through iterative MCMC algorithms[4],[6]. In
this section we present the Metropolis-Hastings birth-death algorithm. It starts at
t = 0 with an initial configuration x(0), that does not violate the basic conditions
of the point process. Then in iterative steps, one proposes randomly a "birth", i.e.
addition of a point to the point configuration x(t), or a "death", i.e. a deletion of
a point from the point configuration, x(t). Denote the probability of a "birth" to
be q(x(t)) and the probability of a "death" to be 1 − q(x(t)). Let’s also denote the
probability density for the location of the new point as b(u; x(t)), and the probability
of deleting point xi ∈ x(t) by d(xi; x(t)). Suppose also the proposals are accepted
with probability A(xold; xnew). The detailed-balance condition is then given by (here
using the shorthand x = x(t) for notational convenience):

q(x)b(u; x)A(x, x∪{u})p(x) = (1−q(x∪{u}))d(u; x∪{u})A(x∪{u}, x)p(x∪{u})

The Hastings-ratio is then given by

A(x, x ∪ {u})
A(x ∪ {u}, x) = (1− q(x ∪ {u}))

q(x)
d(u; x ∪ {u})

b(u; x) · p(x ∪ {u})
p(x) = r(u; x)

where we immediately recognise the Papangelou conditional intensity λ(u; x) =
p(x ∪ {u})/p(x).
Convenient choices for the probabilities are

q(x) = 1
2 , b(u; x) = 1

|X |
, d(xi; x) = 1

|x|

i.e. equal probability of "birth" or "death" proposals, uniform proposal of new point,
and uniform proposal of point to be deleted. With these choices, the Hastings ratio
becomes

r(u; x) = |X |
|x|+ 1λ(u; x)

It can be easily verified that the choice

A(x, x ∪ {u}) = min
(

1, r(u; x)
)

, A(x ∪ {u}, x) = min
(

1,
1

r(u, x)

)

satisfies the detailed balance condition. Thus, a "birth" with new point u added to x,
is accepted with probability min(1, r(u; x), whereas a "death" with a deleted point
xi ∈ x, is accepted with probability min(1, 1/r(xi, x)). The following pseudocode
provides the Metropolis-Hastings MCMC birth-death algorithm:

1: Choose q ∈ (0, 1) for probability of "birth" proposal.
2: Set t = 0 and initialise a point configuration x(0).
3: for t = 1 : T do
4: Draw r ∼ Uniform([0, 1])
5: if r < q then
6: Draw point to be added: u ∼ Uniform(X ), and rb ∼ Uniform([0, 1])

12
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7: if rb < min(1, r(u; x(t−1))) then
8: Accept "birth" and set x(t) = x(t−1) ∪ {u}.
9: else

10: Set x(t) = x(t−1).
11: end if
12: else
13: Draw point to be deleted: xi ∼ Uniform(x(t)), and rd ∼ Uniform([0, 1])
14: if rd < min(1, 1/r(xi; x(t−1))) then
15: Accept "death" and set x(t) = x(t−1) \ {xi}.
16: else
17: Set x(t) = x(t−1).
18: end if
19: end if
20: end for
Assuming the MCMC chain has reached convergence by t = T , the resulting point
configuration x(T ) will be a sample from p(x). Convergence can be monitored by
analysing trace plots of some point configuration statistics, such as the number of
points for instance. It should be noted that there exists also methods for "per-
fect simulations" where the Markov process itself indicates when its equilibrium is
reached.
In the implementation used in this thesis, we also added a third option, besides
"birth" and "death", denoted "move", where a point is deleted and subsequently a
new point is added at a random location in X , all in one step, effectively moving
the point to a new, random location. It has been observed that the addition of this
step improves mixing and thus convergence of the MCMC chain.

2.1.3 Point processes on linear networks
A linear network, L, is a finite set of line segments, ℓ, that end at vertices [10].
Furthermore, line segments are only allowed to intersect at vertices. As such, we
can view a linear network as embedded in a space X , i.e. L ⊂ X . The length, or
measure, of L is given by the sum of lengths of line segments ℓ:

|L| =
∑
ℓ∈L

|ℓ|

A point u ∼ Uniform(L) can be drawn uniformly from L by first selecting a specific
line segment, ℓ, randomly with probabilities ℓ/|L|, and then drawing a point from
the selected line segment ℓ randomly u ∼ Uniform(L). The last step is achieved
by first parametrising the line segment ℓ by t → ℓ, t ∈ [0, 1], and drawing t ∼
Uniform([0, 1]).
Gibbs processes as described in sections 2.1.1 and 2.1.2 can be defined also on a
linear network, although care needs to be taken with respect to the choice of distance
function. Often, the appropriate distance is computed on the linear network, e.g.
shortest path, or something similar. In this thesis, however, the distance used will
be the euclidean distance in the embedded space X , i.e. the distance is of the
birds-view-type.

13
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Point processes on linear networks will, in this thesis, be generated using the same
Metropolis-Hastings MCMC birth-death algorithm as described in 2.1.2.5, but re-
placing X by L, together with the sampling scheme described above to sample
uniformly form L, although the matter can be somewhat delicate, see [14].

2.2 Parameter inference
Given a point pattern x, over an observation window W , and a model with a prob-
ability density pθ(x) = p(x | θ), with parameters θ = (θ1, θ2, . . .), there are different
ways to estimate these parameters. In this thesis, we shall primarily be interested in
families of exponential Gibbs models, i.e. Gibbs models with probability densities
that can be written in the form

pθ(x) = 1
Zθ

e
∑

i
θiϕi(x)

with corresponding Papangelou conditional intensities

λθ(u; x) = e
∑

i
θiSi(u;x), Si(u; x) = ϕi(x ∪ {u})− ϕi(x)

The most straight forward approach uses maximum likelihood:

θ̂ = arg max
θ

pθ(x)

or equivalently, maximising the log likelihood:

θ̂ = arg max
θ

log pθ(x) = arg max
θ

(
log Zθ +

∑
i

θiϕi(x)
)

However, given that the normalisation Zθ is generally intractable, this is usually not
a feasible approach, although there exist Monte-Carlo methods (including Bayesian
approaches with priors) [15].
A separate approach determines the parameters θ by instead maximising the pseudo-
likelihood [16, 17, 18],

PL(θ) = e−
∫

W
λθ(u;x) du

∏
xi∈x

λθ(xi; x \ {xi})

which is equivalent to the likelihood for (inhomogeneous) Poisson models, i.e. Gibbs
models in the absence of interactions, if we replace the intensity function by the
Papangelou conditional intensity. Maximising the log pseudolikelihood

θ̂ = arg max
θ

log PL(θ) = arg max
θ

(
−
∫

W
λθ(u; x) du +

∑
xi∈x

log λθ(xi; x \ {xi})
)

for an exponential model yields the equations∫
W

Sj(u; x) du =
∑
xi∈x

Sj(xi; x \ {xi})
λθ(u; x \ {xi}

, j = 1, 2, . . .
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The integral can be difficult to compute, and usually one uses a quadrature scheme,
by replacing the integral by a sum over points v ∈ D, weighting each term by
w(u) = |B(v)|/|W |, i.e. the relative measure of the region, Bv, the point should
represent, ∑

v∈D

Sj(v; x)w(v) =
∑
xi∈x

Sj(xi; x \ {xi})
λθ(u; x \ {xi}

, j = 1, 2, . . .

Extending the number of points used in the sum to also include xi ∈ x, i.e. summing
over the points u ∈ D ∪ x, is referred to as the Berman-Turner device [19]. Here
the weights w(v) = |x ∩ B(v)| · |B(v)|/|W | are multiplied by the number of points
x ∈ x∩B(v). In this approach the log pseudolikelihood can be written as one sum:

log PL(θ) =
∑

u∈D∪x

[
Iu∈x

w(u) log λθ(u; x \ {u})− λθ(u; x)
]

w(u)

which can be mapped onto the log likelihood of weighted Poisson regression [20]:

|x∪D|∑
i=1

[yi log λi − λi] wi, yi = Iui∈x/wi

where λi = λ(ui; x \ {ui}) and wi = w(ui). This has the advantage that one can
use standard regression software to estimate θ. Unfortunately, this method requires
quite a lot of dummy points (far more than the number of data points x ∈ x), and
that it is only asymptotically unbiased and typically underestimates the interaction
parameters if the number of dummy points is not large enough.

2.2.1 Estimation by mapping to logistic regression
Baddeley, et al. [21] proposed an estimating function

eθ(X, D) =
∑
u∈X

ρ(u)S(u; X \ {u})
λθ(u; X \ {u}) + ρ(u) −

∑
u∈D

S(u; X)λθ(u; X)
λθ(u; X) + ρ(u)

where D is an independent "dummy" point process (for example a binomial point
process), and ρ(u) its 1-point intensity function. An estimating function here is one
which has an expected value of 0, when θ is chosen correctly (i.e. the true parameter
values). To show that this function has this property, we use the GNZ formula for
the point process X on the first sum, while using the Campbell-Mecke formula for
the point process D given X, for the second sum:

E

∑
u∈X

ρ(u)S(u; X \ {u})
λθ(u; X \ {u}) + ρ(u)

 = E
[∫

W

ρ(u)S(u; X)λθ(u; X)
λθ(u; X) + ρ(u) du

]

E

∑
u∈D

S(u; X)λθ(u; X)
λθ(u; X) + ρ(u) |X

 = E
[∫

W

ρ(u)S(u; X)λθ(u; X)
λθ(u; X) + ρ(u) du

]
,

thus showing that E[eθ(X, D)] = 0, when the expectation is taken with respect
to both X and D. The equation eθ(x, D) = 0 can be obtained by maximising a
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function:

log L(θ) =
∑
u∈x

log
(

λθ(u; x \ {u})
λθ(u; x \ {u}) + ρ(u)

)
+
∑
u∈D

log
(

ρ(u)
λθ(u; x) + ρ(u)

)

=
∑

u∈x∪D

(
Y (u) log p(u) + (1− Y (u)) log(1− p(u))

)

which is formally equivalent to the log likelihood of a set of Bernoulli trials with
data Y (u) = Iu∈x and probability

P[Y (u) = 1] = p(u) = λθ(u; x \ {u})
λθ(u; x \ {u}) + ρ(u) =

exp
(
θT S(u; x \ {u})− log ρ(u)

)
1 + exp (θT S(u; x \ {u})− log ρ(u))

which where is parametrised by a logit-link with offset − log ρ(u). As such, one can
again use standard statistical software that can handle logistic regression to infer the
parameters. Importantly, this provides an unbiased estimation, independent on the
number of dummy points used (though of course the accuracy is better the larger
the number of dummy points).
This is the method primarily used in this report when estimating parameters for
exponential Gibbs models.
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3
Methods

This chapter outlines the specific methods and models used to explore the feasibility
of reconstructing point patterns from spatially aggregated counts. To limit the
scope of the simulation study, we shall limit ourselves to a few point process models,
a simple and tractable scheme to partition the observation window into smaller
subregions, as well as a few methods of reconstruction. We also outline the methods
used in this thesis to evaluate the quality of reconstruction.

3.1 Point process models
Given that at least some of the motivation behind this simulation study is based
on the possibility of using point processes to model the spread of disease, we shall
limit ourselves to the class of attractive or clustering point process models. Disease is
usually transmitted locally between people in close proximity to each other resulting
in local clusters. We can imagine associating with each infected individual a region of
exposure to others, based on the mechanisms of transmission but more importantly
on the movement of the individual during the infectious stage. A very simple model
could stipulate a spatial radius of infection, R, i.e. a maximum distance in either
direction from the infected persons location of residence. This associates with each
infected individual a disc within which the risk of infection of other individuals is
increased.
Of course, the observation window, which itself represents a subregion (a country,
state or county) is not an isolated system, so one also needs to take into account an
influx of infected, possibly due to residents coming back from a trip outside of this
subregion. This could be modeled by a background intensity, or risk of infection,
causing infected individuals to pop up randomly around the observation window,
even without having any infected nearby.
At the same time, population density is typically not constant, but organised into
city centers, suburbs, etc, and a significant portion of the region might in fact
be unpopulated. A higher population density typically implies more interactions
between people, and thus a higher risk of infection. Some regions (like shopping
malls, etc) may not be highly populated, but still have a large rate of interactions
and thus represent regions of higher risk of infection. This increase in risk may be
modeled by allowing the background intensity (or risk of infection) to be spatially
inhomogeneous, with a larger risk in highly populated or highly visited regions.
Furthermore, people tend to live in close proximity to roads and other transportation
networks and hubs. These can be represented as linear networks, and thus we can
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define point processes directly on these, as we have seen in section 2.1.3.
At the same time, we wish to use a point process model which is highly interpretable
and easy to work with. In the theory chapter 2, we have introduced the theory of
finite point processes and focused mainly on the Gibbs point processes. This class of
point process naturally includes the notions of a background intensity (homogeneous
or inhomogeneous) as well as interactions between points/events. We also outlined
methods to generate point configurations from these models, to perform parameter
inference as well as diagnostic tools that could be used to compare an original point
configuration with a reconstructed point configuration.
Given these specifications and constraints, we choose to work with the exponential
family of Gibbs models with Papangelou intensities of the form

λθ(x) = exp
(
θT S(u)

)
= exp

( 2∑
i=0

θiSi(u; x)
)

.

Here θ = (θ0, θ1, θ2) are the parameters of the model, which together with

S(u; X) = (1, S1(u), S2(u; x))

specifies the model in the following sense: θ0S0(u; x) = θ0 corresponds to the con-
stant background intensity, θ1S1(u) models the spatial inhomogeneity of this back-
ground intensity, where S1(u) is a covariate density function, e.g. the population
density. Finally θ2S2(u; x) models the interaction between points, or events. In
other words, it models the propensity of events to appear close to each other, i.e. it
controls the clustering of events.
To interpret the model in more detail, consider the interpretation of the Papangelou
conditional intensity λ(u; x) as the intensity (or risk of infection) at a location u
given the locations of the points/events in x. In this sense, a larger value of θ1S1(u)
implies a larger risk at this location, due to e.g. a higher population density (if
this is what S1(u) describes). A larger value of θ2S2(u; x) implies a larger intensity
at location u due to the presence of other points close by. In an epidemiological
context, this would represent a higher risk of infection at location u due to many
other infected in close proximity.
These three parameters, along with specification of S1(u) and S2(u; x) allows us to
cover most of the considerations in the paragraphs above outlining how one might
model the spread of disease using point processes. Of course, in this report we do
not intend to accurately model an epidemic, nor do we work with real data or a real
geographical region. Rather, the aim of this thesis is to explore the feasibility to
reconstruct a point process based on spatially aggregated data. In light of this, we
shall consider two specific, simple, models for the interaction, described below.

Geyer process
The Geyer process is briefly discussed in section 2.1.1, and it’s Papangelou condi-
tional intensity is presented in section 2.1.2.3. In the context of exponential Gibbs
models, this corresponds to the interaction specification:

S2(u; x) = min
s∗,

∑
x∈x\{u}

I∥u−x∥<R

 .
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In other words, S2(u; x) returns either the number of points within a distance R of
the location u, or a saturation constant s∗, whichever is smallest. In an epidemio-
logical context, this would imply that the risk of infection at a location u increases
exponentially with every other infection within a radius R of that location, up until
a specific count s∗, when the region is deemed saturated. If there are more infections
than s∗ within this radius, the risk no longer increases with the number of infected.

Area interaction process
While the Geyer process utilises pair-wise interactions, in the sense that it depends
on the distances between u and other points of x, the area interaction process
depends on the total area covered by discs around the points in x. Specifically, in
the exponential model, the interaction is specified by

S2(u; x) = −
∣∣∣∣∣∣

⋃
x∈x∪{u}

bR(x)

∣∣∣∣∣∣−
∣∣∣∣∣ ⋃
x∈x

bR(x)
∣∣∣∣∣
 .

Here bR(x) is a disc of radius R and center x. Thus |⋃x∈x bR(x)| represents the total
area covered by the discs with centers at x ∈ x. Thus the interaction S2(u; x) yields
the negative of the increase in total area caused by adding a disc with center u. This
way, the intensity at a location u is larger if it’s associated disc overlaps significantly
with the discs with centers in x. In the generation of point configurations this
promotes points in close proximity with each other, i.e. clustering.
A different, but equivalent up to renormalised parameters, way to express the area
interaction is given below:

S2(u; x) = −
∣∣∣∣∣bR(u) \

⋃
x∈x

bR(x)
∣∣∣∣∣ /πr2.

In this form S2(u; x) is given by (the negative of) the fraction of the area of the
disc around u which does not overlap with discs centered around x. Due to being
somewhat easier to compute, this is the representation of the area interaction process
that we shall use in this thesis.
It should be noted, that since the interaction function S2(u; x) is negative, it’s actual
function is to suppress the intensity (when the location u is far from other points
in x) rather than to increase it. Therefore, one typically needs a larger background
intensity to compensate.

3.1.1 Limitations of chosen point process models
Gibbs models are known to be somewhat deficient when it comes to modelling
clustered point processes. In particular, it is difficult to obtain large isolated clusters.
To understand why, we can look at the maximum and minimum of the Papangelou
conditional intensities. In the following we shall consider statistically homogeneous
models, i.e. the case where θ1S1(u) = 0.
For the Geyer process, the conditional intensity is bounded between the values:

eθ0 ≤ λθ(u; x) ≤ eθ0+θ2s∗
.
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Recalling that expected number of points in a given subregion A is given by

EN(A) = E|X ∩ A| = E
[∫

A
λθ(u; X) du

]
,

we can see that the expected number of points in a subregion A is bounded by

eθ0|A| ≤ EN(A) ≤ eθ0+θ2s∗|A|.

If we wish to simulate patterns with isolated clusters, we want there to be regions
with very few points, and some regions with a very high number of points. This
would correspond to a very low background intensity, eθ0 , and large intensity due
to interactions, eθ2s∗ . At the same time, in simulation studies like this one, it is
important to keep the samples generated from a specific model as similar as possible,
so we might also want to control the total number of points in the observation
window W , say within a window of N(W ) ∈ [Nmin, Nmax]. In other words, it is
undesirable if half of the generated point patterns have only a few points, while the
other half have 2000 points. However, since Nmin = eθ0|W | and Nmax = eθ2s∗|W |,
this condition also limits the ability to create isolated clusters. In particular, Nmin,
already determines the background intensity, and thus the number of points in
regions which are not clusters. While Nmax limits the number the number points in
regions within a cluster. To really allow large isolated clusters we need to also allow
large fluctuations in the total number of points in the observation window, W .
This behaviour is not limited to the Geyer process, as we have similar bounds for
the area interaction process:

eθ0−θ2 ≤ λθ(u; x) ≤ eθ0 .

While this problem can be mitigated by considering instead Gibbs processes with
a fixed number of points, these point processes instead have the problem that the
Papangelou conditional intensity can not be defined, and thus the GNZ formula can
not be applied, meaning the inference method outlined in section 2.2 can not be
used, as well as several of the diagnostic tools used to compare the original point
configuration with the reconstructed one (see next sections).

3.2 Partition and reconstruction process
Being interested mainly in the principle of whether we can faithfully reconstruct
a point pattern, the shape and dimensions of our observation window is not of
immediate importance, and we anticipate that the results and conclusions can be
scaled appropriately and applied to arbitrary sizes. Therefore, we will usually use
an observation window W = [0, 1]2, i.e. a square with length 1, and area |W | = 1
(arbitrary units).
As for the partition into subregions, the relative size and shape of these subregions
are likely important factors, but it would be difficult to explore and analyse both
of them in a systematic fashion. Therefore, in this thesis we limit ourselves to ex-
plore the ability to reconstruct point processes using partitions consisting of equally
sized subregions. Thus, the general scheme we adopt here is by partitioning the
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observation window into k2 equally sized quadrats, Ai, i = 1, . . . , k2, each of size
|W |/k2 = 1/k2 and side length 1/k2. By varying the number of partiotions, k2, we
are able to investigate the quality of reconstruction as a function of the size of the
quadrats.

3.2.1 Reconstruction process
Starting with an "original" point configuration x over an observation window W ,
and a partition W = ⋃k2

i=1 Ai, this point configuration can then also be split into k2

separate sub-point configurations, xi = x ∩ Ai, i = 1, . . . , k2. After counting and
recording the number of points in each quadrat, ni = |xi|, the point configuration is
then reconstructed by first distributing ni points randomly within the corresponding
subregion Ai, creating the local point configurations x̃i over Ai, which are then com-
bined into the full reconstructed point process x̃ over W . The process is summarised
in the diagram below.

W −→ A1
⋃

A2
⋃ · · · ⋃ Ak2

x −→ x1
⋃

x2
⋃ · · · ⋃ xk2

↓ ↓ ↓
n1 n2 · · · nk2

↓ ↓ ↓

x̃ ←− x̃1
⋃

x̃2
⋃ · · · ⋃ x̃k2

It remains to discuss the manner in which the ni points are distributed over Ai to
produce x̃i. The most ignorant, or non-informative, manner is to distribute the
points using a (homogeneous) binomial point process,

x̃i ∼ BinomialPointProcess(ni, Ai).

On the other hand, if we have reason to suspect that the point process intensity
depends on some known covariate density, e.g. population density, we could use
this information to obtain a better reconstruction. In this case we might use an
inhomogeneous binomial point process,

x̃i ∼ BinomialPointProcess(ni, Ai; f),

where f(u) is the covariate density on which the intensity is assumed to depend on.
Finally, we might have some knowledge about the interaction of the point process.
In the context of disease spread we might have a rough idea about the radius of
infection, or we might have plausible models (and parameters) from a previous
analysis in some other region or of a disease with similar transmission properties.
If the model is assumed to be a Geyer process, or a an area interaction process, or
any other type of Gibbs process, one might get better results by reconstructing the
point process over each region using a Gibbs process with fixed number of points:

x̃i ∼ GibbsProcess(ni, Ai; θ̃).
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However, care should be taken when reconstructing an interacting point process
over each subregion individually. Since the probability of points being in a given
location depends on the location of the other points (within an interaction radius)
the points in the different subregions need to be aware of the points in neighbouring
subregions. This can be achieved by involving all the subregions in an MCMC
simulation. In this thesis this is achieved by first initialising each subregion using
a binomial point process, and then in each step of the birth+death MCMC scheme
described in section 2.1.1.4 first choosing the subregion to be updated randomly,
and then to delete (death) and add (birth) a point within the subregion, conditional
on the points in the entire observation window.
Of course, including too much information (and assumptions) in the reconstruction
process might distort point configuration more than a non-informative reconstruc-
tion would. Even worse, if the goal is to use the reconstructed point configuration
for parameter inference and predictions, these may be influenced by the information
provided in the reconstruction process and thus introduce an artificial bias.

3.3 Measures of quality of reconstruction
To evaluate whether the point configuration x̃ is a faithful reconstruction of the
original point configuration x, i.e. if they are sufficiently similar, we must first
specify in which sense this is meant. In the following we shall distinguish two
notions of similarity, or rather dissimilarity.
The first notion, which we shall call direct or non-statistical dissimilarity, concerns
the locations of the points, in the absence of any underlying statistical model. Here
we simply ask how much the points have been moved around. This approach does
not require any knowledge of the model that was used to generate the point config-
uration, but also does not really compare the statistical properties of the two point
processes. Depending on the purpose of the reconstruction process this may not
necessarily be what we want. Instead one might be more interested in producing
a reconstructed point configuration that shares the same statistical properties but
does not necessarily have point locations close to the original point configuration.
Using a specific example, consider an original point pattern x which is a realisation
of a homogeneous Poisson point process. Reconstructing this point configuration
using a binomial point process x̃i ∼ BinomialPointProcess(ni, Ai) for each quadrat
Ai, the resulting point configuration x̃ = ⋃k2

i=1 x̃i will again be a Poisson point pro-
cess, with the same intensity. Then, in a statistical sense, the point configurations
x and x̃ can both be considered samples from the same point process, and thus
share the same statistical properties. Nevertheless, their point locations may not
necessarily be close to each other, and thus the two point configurations may have
a large direct dissimilarity.
Therefore, we also consider a notion of statistical dissimilarity, where the interest lies
rather in whether the two point configuration share the same statistical properties.
The diagnostic tools we shall use for this notion of dissimilarity typically utilise
some knowledge of the model used to generate the original point configuration,
typically in the form of the Papangelou conditional intensity. Most of these measures
have previously been used for diagnostics, model selection and sometimes even for
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parameter inference. In this thesis however, we intend to use them as a means to
compare the original and reconstructed point configurations.
In the following sections we describe the different measures used in the two types of
dissimilarity.

3.3.1 Direct (non-statistical) dissimilarity

3.3.1.1 Distance between point configurations

To determine how close, or similar, two point configurations are, we need a mesure of
similarity, or disimilarity. One such measure, is the Earth Mover Distance (EMD)
which, given two point configurations xn, yn, consisting of an equal number of
points, n, is defined by

EMD(xn, yn) = min
ϕ∈Pn

n∑
i=1
∥xi − yϕ(i)∥,

where the bijections ϕ : {1, . . . , n} 7→ {1, . . . , n} are elements of the permutation
group Pn of n elements. In other words, it is the minimum sum of pairwise euclidean
distances over all possible complete pairings between two point configurations. One
may think about it as the minimum total distance, or cost, required to move the
points in xn to the locations of the points in yn. Indeed, the earth mover’s distance
is a solution to the so called assignment problem, where in it’s simplest form, we have
a set of n tasks that can be performed by n workers. The workers may be differently
skilled at different tasks, and thus there is a cost Ci,j when worker i performs task
j. Every task must be completed and each worker can only complete one task. The
problem then consists in matching the task to the workers in an optimal way, i.e.
at the lowest cost. This lowest cost is given by minϕ∈Pn

∑n
i=1 Ci,ϕ(i). While for large

n it would be a daunting task to go through all n! permutations, fortunately, there
exist more clever algorithms. In this thesis we shall use an implementation of the
Hungarian algorithm, which solves this problem in polynomial time [22, 23].

3.3.2 Statistical dissimilarity
To compare the statistical properties of the two point processes we shall make use
of three different methods.
The first, Stoyan-Grabarnik residuals [24], is a type of innovation, or point process
residual [25]. It makes use of the GNZ-formula to obtain an expression which has
zero expectation, provided that the point configuration is sampled from the original
point process. In this sense, one might say that it measures whether the point
configuration corresponds to a typical realisation of the original point process. The
next section is devoted to describing this approach in more detail.
In the second approach, we use the parameter inference method outlined in 2.2.1 for
both point configurations, and compare estimates between the two. If the purpose of
reconstruction is to create a point configuration based on aggregated counts which
can then be used to infer the parameters of the underlying point process, then this
could be seen as the most relevant method. If the parameter estimates, θ, θ̃ are
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sufficiently similar when using x and x̃ one could conclude that the reconstructed
point configuration is sufficient in terms of parameter estimation.
On the other hand, we might not necessarily be interested in the parameters them-
selves, but rather in the conditional intensity, λ, which characterises the point pro-
cess. Two quite distinct sets of parameters θ and θ̃ could potentially result in very
similar conditional densities, λθ and λθ̃. For this reason, we also consider a third
approach, the Mean Integrated Square Error (MISE):

MISEθ,θ̃(x, x̃) =
∫

W
(λθ(u; x)− λθ̃(u; x̃))2 du.

To conclude this section, we go into some more detail about the Stoyan-Grabranik
residual.

3.3.2.1 Stoyan-Grabarnik residuals

The GNZ-formula can be used to define innovations [25]:

Ih(A; X) =
∑

x∈X∩A

h(x, X \ {x})−
∫

A
h(u; X)λ(u; X) du,

the expectation of which is 0 if X is a point process with Papangelou conditional
intensity λ(u; X), which we may sometimes write symbolically as X ∼ λ. A par-
ticularly simple form is obtained when using h = 1/λ:

R(A; X) = I 1
λ
(A; X) =

∑
x∈X∩A

1
λ(x; X \ {x}) − |A|,

provided A is the support of λ. This particular choice of innovation was first con-
sidered by Stoyan and Grabarnik [24] as a diagnostic tool, which is why we shall
refer to this innovation as the Stoyan-Grabarnik residual.
The Stoyan-Grabarnik residuals has a nice interpretation if one defines the "mass"
function m(x; X) = 1/λ(x; X \ {x}). Then we the sum of masses in a region A is
given by MX(A) = ∑

x∈X∩A m(x; X) and has expectation |A|. Thus we can write
the Stoyan-Grabarnik residual as:

R(A; X) = MX(A)− E[MX(A)]

The interpretation of Mx(A) is that of a weighted counting measure. Each point
in A is weighted according to the inverse of the conditional intensity. Points with
high conditional intensity (under the model and conditioned on x) will have low
weights, while points with very low conditional intensity will have large weights.
Thus if A contains a large number of points with unlikely positions, the weighted
counting measure will return a large value. On the other hand, too small a number
of points in A will automatically lead to a low value of Mx(A), thus we subtract
the expected weighted point count E[MX(A)] = |A|. This way, (strongly) negative
values of Rθ(A; x) is likely due to there being not enough points (according to the
model) in A, whereas (strongly) positive values are likely due to there being too
many points and/or that they have unlikely positions.
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Furthermore, while the diagnostic can be evaluated over the whole window W to
obtain an overall score, one could also evaluate it separately over the different regions
Ai, thus allowing to identify outlier regions. Even more local, one can mark the
points x ∈ x of the pattern by their weights m(x; x) and display these in a plot to
identify outlier points.
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4
Results

Before presenting the results from the simulation studies, we shall present some
theoretical considerations that will help us to better interpret and analyse the results.
In the following section, we recall the reconstruction process presented in section 3.2,
and analyse it theoretically. In section 4.2 we consider the special case when the
original point process is a Poisson point process, to be used as a benchmark, while
in section 4.3 we then present the results from the simulation studies for interacting
(i.e. clustering) point processes. We then add inhomogeneity in section 4.4, and
then point processes on linear networks in section 4.5.

4.1 Theoretical analysis of reconstruction process
Following the discussion in 3.2 we shall only consider the restricted point process
XW = X ∩W over the observation window W = [0, 1]2. The observation window is
then partitioned into disjoint quadrats: W = ⋃k2

i=1 Ai, where each quadrat has the
measure |Ai| = 1/k2. The partition also splits the point process

XW =
k2⋃

i=1
X i, where X i = X ∩ Ai.

We shall denote the number of points in each subregion Ai, by Ni = |X i|. The
multivariate distribution

pn1,...,nk2 = P(N1 = n1, N2 = n2, . . . , Nk2 = nk2),

is typically intractable analytically. Indeed, even the marginal distribution pni
=

P(Ni = ni) can not typically be obtained analytically. Nevertheless, in section 4.3
we produce some arguments that the distribution may factorise for large quadrats,
and in section 4.3.1.1 we investigate these claims via simulations.
Based on the quadrat counts (N1, . . . , Nk2), we generate new point processes

X̃ i | Ni ∼ BinomialProcess(Ni, Ai)

over the quadrats Ai. The reconstructed point process over W is given by

X̃W =
k2⋃

i=1
X̃ i.
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Given a Janossy density jni
(x̃i), the conditional probability density (i.e. the location

density), given Ni = ni, is given by

p(x̃i | ni) = ni!jni
(x̃i),

and the joint pdf p(x̃i, ni) ≡ p(x̃i ∩ {Ni = ni}) is given by

p(x̃i, ni) = p(x̃i | ni)P(Ni = ni) = ni!pni
jni

(x̃i).

The full reconstructed point process X̃W is determined by {X̃ i}k2
i=1 which are inde-

pendent conditional on (Ni)k2
i=1. Thus

X̃W | N1, . . . , Nk2
d= (X̃ i | Ni)k2

i=1,

with conditional pdf

p(x̃W | N1, . . . , Nk2) =
k2∏

i=1
p(x̃i | Ni),

and the joint pdf is then given by

p(x̃W , n1, . . . , nk2) =
 k2∏

i=1
p(x̃i | ni)

P(N1 = n1, . . . , Nk2 = nk2)

=
 k2∏

i=1
p(x̃i | ni)

 · pn1,...,nk2

.

Inserting the Janossy density of a binomial point process, jni
(x̃i) = 1/|Ai|ni , by

recalling that p(x̃i | ni) = ni!jni
(x̃i) we get

p(x̃W , n1, . . . , nk) =
 k2∏

i=1

ni!
|Ai|ni

 pn1,...,nk2 .

While the probability density appears to be independent of the locations of the
points, this is not quite true, since the counts ni determine the number of points in
each quadrat, Ai.

Small quadrat limit

As the quadrat size becomes smaller, the part of the configuration space of X i

and X̃ i with any significant probability mass becomes smaller. This is both due to
the reduction of the target space Ai, but also due to the fact that the small size
reduces the probability that the quadrat contains multiple points. At some point,
most quadrats will be empty, while others contain 1 point. In section 4.2 we show
that the expected distance between a randomly displaced point, and its randomly
positioned original, is proportional to the side length a of the quadrat Ai. Thus in
the limit when |Ai| → 0, we expect that p(x̃i | ni) → p(xi | ni), and we trivially
have p(x̃W ) = p(xW ), i.e. the original- and reconstructed point processes have the
same statistical distribution.
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Large quadrat limit: Poisson approximation

If N1, . . . , Nk2 are approximately independent, such that pn1,...,nk2 ≈ pn1 · · · pnk2 ,
then

p(x̃W , n1, . . . , nk2) =
k2∏

i=1

[
p(x̃i | ni)pni

]
=

k2∏
i=1

p(x̃i, ni).

If furthermore the quadrat counts approximately follow a Poisson distribution, with
some intensity Λi, such that pni

= Λni
i e−Λi/ni!, then

p(x̃i, ni) = ni!pni
jni

(x̃i) = ni! · Λni
i

e−λi

ni!
· 1
|Ai|ni

=
(

Λi

|Ai|

)ni

e−λi ,

setting Λi = λi|Ai|, we have

p(x̃i, ni) = λni
i e−λi|Ai|,

and finally obtain

p(x̃W , n1, . . . , nk2) =
k2∏

i=1
λni

i e−λi|Ai|, (4.1)

which is simply a set of independent Poisson point processes for each quadrat (not
surprisingly). The Papangelou conditional intensity is simply given by

λ(u; x̃W ) =
k2∑

i=1
Iu∈Ai

p(x̃W ∪ {u}, n1, . . . , ni + 1, . . . , nk2)
p(x̃W , n1, . . . , ni, . . . , nk2) =

k2∑
i=1

Iu∈Ai
λi, (4.2)

i.e. a piecewise constant function.
If the intensities are also equal (which should be the case if the original point process
was homogeneous), then

p(x̃W , n1, . . . , nk2) = λ
∑k2

i=1 nie−λ
∑k2

i=1 |Ai| = λnW e−λ|W |,

where nW = n1 + . . . + nk2 = |xW | is the total number of points of X in W . Thus
p(x̃W , n1, . . . , nk2) = p(x̃W , nW ) is the pdf of the usual Poisson point process, i.e.
x̃W ∼ PoissonProcess(λ).
The same results as above can be obtained by approximating (N1, . . . , Nk2) | (N1 +
. . . + Nk2 = NW ) ∼ Multinomial(q1, . . . , qk2 ; NW ), i.e. given a fixed total number of
points in W , each point is independently distributed among the k2 quadrats with
probabilities qi, i = 1, . . . , k2. The probability mass function of N1, . . . , Nk2 then
becomes

pn1,...,nk2 = nW !
n1! · · ·nk2 !

 k2∏
i=1

qni
i

 · P(NW = nW ),

and the probability density of X̃W becomes:

p(x̃W , n1, . . . , nk2) = nW !P(NW = nW )
k2∏

i=1

(
qi

|Ai|

)ni

.

29



4. Results

If the total number of points, NW , in W , is approximately Poisson distributed,
P(NW = nW ) ≈ αnW e−α/nW !, and we define λi = α qi/|Ai| we get again

p(x̃W , n1, . . . , nk2) =
k2∏

i=1
λie

−λi|Ai|,

where we used that ∑i qi = 1 and thus α = ∑
i α qi = ∑

i λi|Ai|.

4.2 Reconstructing a Poisson point process
To start off our analysis of, we can choose to explore the properties of a Poisson point
process under reconstruction. Although this is an exceptionally simple problem, and
therefore may seem uninteresting, it may act as a benchmark for our analysis of more
interesting point processes. The problem becomes simple since the reconstructed
point process X̃ obtained via the reconstruction process described in 3.2.1 from the
original point process X ∼ PoissonPointProcess(λ), will also be a poisson point
process, with the same intensity λ, i.e. X̃ ∼ PoissonPointProcess(λ). This can be
seen as a result of the displacement theorem [26], but is also shown explicitly in this
setting in section 4.1.
When both the original and reconstructed point configurations x and x̃ are samples
from the same distribution we expect them to have the same statistical properties.
Indeed, the Stoyan-Grabarnik residual for a Poisson point process becomes simply

R(W ; x) =
∑

x∈x∩W

1
λ
− |W | = |x ∩W |

λ
− |W |,

and can easily be checked to have expectation 0 (using E|X ∩W | = λ|W |). More
importantly, since |x ∩W | = |x̃ ∩W | = NW , the original and reconstructed point
patterns will always have the same value for the Stoyan-Grabarnik residual.
Furthermore, for a Poisson point process, parameter inference is simple, and one
can directly use maximum likelihood estimates: λML = |x ∩W |/|W |, which again
will lead to the same estimates for the original and reconstructed point configura-
tions. Similarly, the MISE scores will also automatically be the same for both point
configurations, and thus all of our measures of statistical dissimilarity will be 0.

More interesting is the direct (or non-statistical) dissimilarity, specifically the EMD
distance between x and x̃. While the two point configurations are statistically the
same, the points are generally in different locations, but how different? And does the
distance depend on the resolution of the reconstruction process, i.e. the number, k2,
of subregions, or quadrats. Equivalently, we might ask if the EMD distance depends
on the side length a = 1/k of the quadrats.
To answer this question, it is useful to first consider the case of very small quadrats,
a2 ≪ |W |. Let’s suppose that such a small quadrat, A = [0, a]2, contains only
one point, x, which is located at a random (uniform) position in the small quadrat.
Then, under the reconstruction method, we redistribute this point again randomly
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(uniformly) over the quadrat, resulting in x̃. The question then becomes, what is
the expected distance between two points distributed at random (uniform) over a
square of side a, i.e.

E∥x− x̃∥ =
∫

A

∫
A
∥x− x̃∥ d2x d2x̃

=
∫ a

0

∫ a

0

∫ a

0

∫ a

0

√
(x1 − x̃1)2 + (x2 − x̃2)2 dx1 dx2 dx̃1 dx̃2

= 2 +
√

2 + 5 log(
√

2 + 1)
15 · a ≈ 0.52 a.

The computation of the integral is arduous, and the precise computation shall not
be presented in this thesis. Instead, we simply note that in this limit, the EMD
score becomes

EMD(xn, x̃n) ≈ n · 0.52 a, a ≲
1√
n

, (4.3)

where we added a more informative condition: if the quadrat has side length a =
1/
√

n, then na2 = 1, i.e. there is on average one point per quadrat. Thus we expect
this relationship to hold approximately whenever a ≲ 1/

√
n (or a ≲

√
|W |/n for

arbitrary window size).
In the other limit, when a ≈ 1, i.e. when the quadrat covers the entire window, the
reconstructed point process is a new Poisson point process over the same observation
window. Thus the question becomes, what is the expected earth mover’s distance
between two poisson point processes (or rather binomial point process) with an equal
number of points? While we have not found a result about this in the literature,
and have not managed to derive an expression ourselves, we can identify a lower
bound. In the best case scenario (in the sense of yielding the lowest EMD), each
point x ∈ x has it’s optimal partner x̃ as the closest neighbour among the set x̃.
Thus, in this optimal case, we want to find the expected distance minx̃∈x̃ ∥x − x̃∥
for a given points x and it’s nearest neighbour x̃ ∈ x̃. To this end, we can consider
the void probability:

P(x̃ ∩ br(x) = ∅) = e−λ|br(x)| = e−λπr2
.

That is, the probability that there are no points in x̃ within a radius r. Thus, the
probability that there is at least one (the nearest neighbour) is given by

1− P(x̃ ∩ br(x) = ∅) = 1− e−λπr2 = F (r),

where F (r) is the cumulative distribution function of the random variable corre-
sponding to the nearest neighbour distance. The probability density function is
then given by f(r) = dF (r)

dr
= 2πλre−λπr2 and the expected distance is

E
[
min
x̃∈x̃
∥x− x̃∥

]
=
∫ ∞

0
rf(r) dr = 1

2
√

λ
,

which can be approximated as 1/2
√

n, where n = |x| = |x̃|. Thus, a lower bound for
the earth mover’s distance is given by EMD(xn, x̃n) > n·1/2

√
n =
√

n/2. Of course,
this optimal situation is unlikely to occur. Oftentimes there will be multiple points
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in x, which have the same closest neighbour in x̃), but this neighbour can only be
assigned to one of them. For point processes with a medium intensity 50 < λ < 500
we find that multiplying the lower bound by a factor of 2 yields the approximate
value of the EMD. Therefore, we use as an approximation in the large quadrat limit:

EMD(x, x̃) ≈
√

n, a ≈ 1. (4.4)

The results from simulations, along with these approximations, are plotted in figure
4.1.

Figure 4.1: The mean (solid lines), and variance (errorbars) of the EMD for two
Poisson point processes with λ = 150 (left) and λ = 400 (right). The EMD was
computed for 200 pairs of original and reconstructed point configurations. Each
original was reconstructed at different resolutions k, or equivalently, quadrat side
lengths, a = 1/k. Also depicted are the small and large quadrat approximations,
as well as a vertical dividing line 1/

√
n which determines when the small quadrat

approximation is expected to be valid.

4.3 Reconstructing homogeneous interacting point
processes

We now turn to our interacting models, more specifically the Geyer model and the
area interaction model. We expect the analysis in the previous section on the earth
mover distance to still be approximately valid. In the small quadrat size limit,
a ≲ 1/

√
n, the same argument holds, and the argument in the large quadrat limit

a ≈ 1, should also be somewhat valid since the reconstructed point pattern, x̃, in
this limit is still a sample from a Poisson point process, with intensity, λ = |x|/|W |.
Thus, for any given point in x (which is not a poisson point process), the nearest
neighbour is still determined by the void distribution of the reconstructed (Poisson)
point process.
As for the statistical dissimilarity measures, we expect that in the very small quadrat
limit a < 1/

√
n, and a < R, where R is the interaction distance, the reconstructed

point process will retain most of the statistical properties of the original point pro-
cess. This is simply a consequence of the quadrats being small enough so that the
points cannot be moved significantly, in other words the same reason as why the
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EMD tends to zero in this limit. Similarly, we expect in the large quadrat limit,
a ≈ 1, the statistical properties will approach those of a Poisson point process.

In the intermediate regime, the deviation from the Poisson approximation depends
on the deviation from the independence of the counts N1, . . . , Nk2 , i.e. on pn1,...,nk2 =
P(N1 = n1, . . . , Nk2 = nk2). For pairwise interactions we can split the interaction
potential into contributions from contained interactions and exterior interactions:

∑
x,y∈x
x ̸=y

ϕ2(x, y) =
k2∑

i=1

∑
x,y∈xi

x ̸=y

ϕ2(x, y)

︸ ︷︷ ︸
contained interactions

+
k2∑

i=1

k2∑
j=1
j ̸=i

∑
x∈xi
y∈xj

ϕ2(x, y)

︸ ︷︷ ︸
exterior interactions

.

Here, the contained interactions are between points within the same quadrat, whereas
the exterior interactions are between points in different quadrats. It is then reason-
able to expect that the relative strength of these two terms depends on the available
area for each of them. For instance, given a interaction radius R, only points within
a distance R from the border of a quadrat are capable of interacting with points
in other quadrats. Likewise, only points that are at least a distance R away from
the borders of the quadrats are certain to interact only with points within the same
quadrat.
More generally, we can express the Gibbs probability density, p(x) = p(⋃k2

i=1 xi)
through

p(x) = p(x) = 1
Z

e−V (x) = 1
Z

e−
∑k2

i=1 Vc(xi)−
∑k2

i=1 Ve(xi,x\xi) = 1
Z

k2∏
i=1

e−Vc(xi)e−Ve(xi,x\xi),

where Vc(xi) incorporates the activation and local potentials, as well as all the inter-
actions between points within xi, and Ve(xi, x\xi) incorporates all the interactions
between points in xi and those in the exterior, x \ xi. Defining pi(xi) = 1

Zi
e−Vc(xi)

and fi(x) = 1− Zi

Z
e−Ve(xi,x\xi) we can write

p(
k2⋃

i=1
xi) =

k2∏
i=1

pi(xi) (1− fi(x)) .

In this form, the limit when Ve(xi, x \ xi) → 0 implies fi(x) → 0, and thus the
factorisation of the probability density in terms of xi. If the contribution to the
Gibbs potential from the exterior interactions, Ve(xi, x \ xi), can be considered
small, fi(x) could be interpreted as the lowest nontrivial term in a power series
expansion e−Ve(xi,x\xi) ≈ 1 − Ve(xi, x \ xi) + O(V 2

e ), i.e. fi(x) ≈ Ve(xi, x \ xi).
From the discussion above, we expect the relative strength of Ve to depend on the
available area for these interactions.
From this discussion, we hypothesise that the interdependence of the quadrat counts
N1, . . . , Nk2 is some function of the fraction of edge/exterior area, Fe, or inversely,
the independence depends on the fraction of contained area (see Figure 4.2):

Fc = (a− 2R)2

a2 , Fe = 1− Fc. (4.5)
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Figure 4.2: Left: Illustration of quadrats with areas within R of its borders marked
in gray. It is only within these regions that points are capable of interacting with
points in neighbouring quadrats. The three quadrats illustrate the progression from
small to large quadrats. Right: Graphs of the fraction of contained area, Fc =
(a− 2R)2/a2, with points not capable of interacting with neighbouring points as a
function of side length a for various values of the interaction range R.

4.3.1 Geyer process
In this subsection we present the results for a Geyer process presented in 3.1. In all
figures, 200 original samples of the process was generated, and subsequently recon-
structed using the method outlined in 3.2.1, with resolution k ∈ {1, 2, 4, 8, 16, 32, 64}.
The dissimilarity measures are then plotted against the quadrat side length a = 1/k,
as well as against the fraction of contained area for the statistical dissimilarities.
Figure 4.3 shows a sample of a Geyer process with θ0 = log 100, θ2 = log 1.25 as
well as the EMD (direct) dissimilarity measure. As expected, the EMD dissimilarity
measure between the originals and reconstructions shows a very similar behaviour
as the one obtained from reconstructing a Poisson point process. Indeed, the small
quadrat (a ≲ 1/

√
nW ) and large quadrat (a ≈ 1) approximations appear to be useful

even for interacting point processes.
Figures 4.4 and 4.5 show the Stoyan-Grabarnik residuals and parameter estimates
for the reconstructed point configurations, x̃, both against the side length a = 1/k
for the quadrats, as well as against the fraction of contained area, Eq. 4.5. Again
we can clearly identify the two regimes of small quadrats (a ≲ 1/

√
n) and large

quadrats a ≈ 1. In the limit of very small quadrats, both Stoyan-Grabarnik resid-
uals and parameter estimates approach the values obtained from the original point
configurations, whereas in the large quadrat limit they approach values expected for
the corresponding Poisson approximation.
As described in the introduction to this section, we expect in the intermediate regime
that the deviation from the independent Poisson approximation, is determined by
the fraction of contained area. This is verified by the right side figures, in which
the Stoyan-Grabarnik residuals as well as the parameter estimates are plotted not
against the side length, but rather against the fraction of contained area. The plots
reveal an almost linear relationship in this intermediate regime.
In figure 4.6 we also show the same graphs, including a graph of the root mean
integrated square error for a more clustered Geyer process, with a lower activation
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Figure 4.3: Left: Sample point configuration, x, of a Geyer process with θ0 =
log 100, θ2 = log 1.25, and nuisance parameters R = 0.05 and s∗ = 4. Right:
The mean (solid lines), and variance (errorbars) of the EMD direct dissimilarity
measure, each point is computed using 200 original and corresponding reconstructed
point configurations. Also displayed are the small quadrat limit, as well as the
large quadrat limit (Poisson approximation), as well as two vertical lines indicating
possibly important length scales, a = 1/

√
n, and a = R.

Figure 4.4: The mean (solid lines), and variance (errorbars) of the Stoyan-
Grabarnik residuals for a Geyer process with θ0 = log 100, θ2 = log 1.25, and
nuisance parameters R = 0.05 and s∗ = 4. Left: SG-residuals plotted against
side length, a of the quadrats. Right: SG-residuals plotted against the fraction of
contained area, Eq. 4.5. Also displayed are the theorietical expectation, = 0, for the
originals (dashed line), as well as a filled region representing the variance obtained
form the SG-residuals of the originals. Finally there are two vertical lines indicating
possibly important length scales.

θ0 = log 60, stronger interaction parameter θ2 = log 1.35 as well as larger interac-
tion range, R = 0.75 and saturation limit s∗ = 8. The chosen parameters lead to
an increase in the average number of points in the observation window (≈ 500 as
compared to ≈ 120). This results primarily in a failure of the large quadrat approx-
imation for the EMD, while the approximations of the statistical dissimilarities still
seem to hold up quite well.
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Figure 4.5: Parameter estimates when using the reconstructed point configurations
of a Geyer process with θ0 = log 100, θ2 = log 1.25, and nuisance parameters R =
0.05 and s∗ = 4. Top row: Means (solid lines), and variance (errorbars) of the
estimates of parameters θ0, Bottom row: Means and variance of estimates of θ2. In
the left column the estimates are plotted against side lengths, a, while in the right
column the estimates are plotted against the fraction of contained area, Eq. 4.5.

4.3.1.1 Distribution of quadrat counts

In this subsection we want to investigate two of the properties needed for the inde-
pendent Poisson approximation for large quadrats (a ≈ 1).

1. Quadrat counts N1, . . . , Nk2 are approximately independent for large quadrats.
2. The marginal distribution of Ni is approximately Poisson, for large quadrats.

From the discussion in section 4.1 we saw that approximating pn1,...,nk2 by a multino-
mial distribution, with equal probabilities for each quadrat, resulted in the Poisson
approximation. The independence can then be checked by use of the χ2-test statistic:

X2 =
k2∑

i=1

(Oi − Ei)2

Ei

, Ei = 1
k2

k2∑
i=1

ni, Oi = ni.

Under the hypothesis of independent counts, X2 is a sample of the χ2 distribution
with k2− 1 degrees of freedom, i.e. X2 ∼ χ2

k2−1. In figure 4.7 we present the results
obtained by drawing 200 samples of a Geyer process, computing the X2 statistic at
different resolutions k, and averaging the results over the sample values, for each
k. Since the mean of the χ2 distribution is k2 − 1, which grows rapidly with k, we
divide our test statistic by k2 − 1. Thus, a result of X2/(k2 − 1) above 1, means
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Figure 4.6: Same as in figures 4.3, 4.4, 4.5, but for a Geyer process with θ0 = log 60,
θ2 = log 1.35, R = 0.075, s∗ = 8. Additionally, the root mean integrated square error
(RMISE) (last row).

the test statistic is larger than the mean of the χ2-distribution. To better assess
the "extremeness" of our values, we also show the area between the 10th and 90th
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quantile of the χ2 distribution (divided by k2 − 1). These results are then plotted
against quadrat side length, a, as well as fraction of contained area Fc, with the
expectation that the X2 values become more and more extreme as the quadrat
size is lowered (and thus also the fraction of contained area). Indeed, this what is
observed in figure 4.7 as the values of the X2/(k2 − 1) statistic goes above the 90th
quantile of the χ2-distribution for small quadrats, and stays solidly inside the 10th
and 90th quantile for larger quadrats (although it does not quite approach the mean
value, 1, of the χ2-distribution).

Figure 4.7: The blue line indicates empirical mean of X2/(k2−1) for a 200 samples
from a Geyer process with θ0 = log 100, θ2 = log 1.25, and nuisance parameters
R = 0.05 and s∗ = 4. Also indicated is the range between the 10th and 90th
quantile of the χ2 distribution (divided by k2 − 1). Left: Plotted against quadrat
side length, a = 1/k, and Right: plotted against fraction of contained area, Fc. Note
that the range between the 10th and 90th quantile divided by the degrees of freedom
(and mean), k2 − 1, becomes smaller as the degrees of freedom is increased.

To investigate the validity of the independent Poisson approximation in the large
quadrat limit further, we can examine the empirical distribution of quadrat counts
over many experiments. In figure 4.8 we display the empirical marginal distributions,
p̂ni

, of the counts ni over 200 simulations in the form of a histogram of occurrences.
As can be seen, the counts mostly seem to follow a Poisson distribution (even at
high resolutions, i.e. high values of k), and in this visualisation it is difficult to
observe any major deviation.
To check deviations of the quadrat counts from the Poisson distribution, we can also
compute the dispersion index:

D = s2

n̄
, n̄ = 1

k2

k2∑
i=1

ni, s2 = 1
k2 − 1

k2∑
i=1

(ni − n̄)2,

which for a Poisson process should be closes to 1, while for an aggregated/clustering
process we expect a value > 1, i over-dispersed, due to a larger variation in quadrat
counts (some empty, some containing clusters). However, some algebra readily shows
that D = X2/(k2 − 1), and thus the precise plot already shown in figure 4.7.
A related measure is given by the Morisita index,

M =
k2∑

i=1

ni(ni − 1)
1

k2 nW (nW − 1) , nW =
k2∑

i=1
ni, (4.6)
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Figure 4.8: Histogram of quadrat counts, ni, averaged over 200 samples of a Geyer
process with θ0 = log 100, θ2 = log 1.25, and nuisance parameters R = 0.05 and
s∗ = 4. Also displayed are the corresponding theoretical distribution of counts
from a Poissson point process (red dashed lines) for comparison. From the top
left to the bottom right, the plots correspond to a quadrat schemes/partitions with
increasingly lower resolution k (where k2 is the number of quadrats), i.e. increasingly
larger quadrats, with sides a = 1/k.

which is roughly the sum over the ratios of observed number of pairs of points
in each quadrat, ni(ni − 1), and the expected number of pairs of point in each
quadrat nW (nW − 1)/k2. Some (not so simple) algebra shows that this index is a
linear transformation of D, depending on both the total number of points, nW , and
the number of quadrats k2, D = k2

k2−1 ((nW − 1)M − (n̄− 1)) so in essence it does
not contain any new information compared to X2 and D, but rather presents the
information in a different way, and with a related but slightly different interpretation.
The index, plotted (see figure 4.9) against quadrat side length a = 1/k, as well as
fraction of contained area, shows a strong deviation from the expected value 1 for a
Poisson point process for small quadrats, while approaching 1 for larger quadrats. In
fact when plotted against the fraction of contained area, the relationship is almost
linear in the intermediate regime.
We interpret the results presented in this section as further evidence of our hy-
pothesis that the independence of the quadrat counts N1, . . . , Nk2 , as well as the
Poisson-like marginal distribution and thus the validity of the Poisson approxima-
tion for large quadrat sizes, depends on the fraction of contained area, Fc, given in
Eq. 4.5.

4.3.2 Area interaction process
While the argument for the Poisson approximation for large quadrats, and it’s de-
pendence on the fraction of contained area, seems reasonable for the local pairwise
interactions of the Geyer model, it is not immediately clear whether this would also
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Figure 4.9: Morisita index as definded in Eq. 4.6, plotted against quadrat side
length, a = 1/k (left) and fraction of contained area, Fc (right).

hold for the area interaction process, which is not based on pairwise interactions,
but rather on the area covered by the disks with centers at all x ∈ x (and is thus
inherently nonlocal). We therefore spend an extra subsection on examining the same
properties that we previously examined for the Geyer process, but now apply it to
the area interaction process.
Fortunately, the results derived from the analysis of the Geyer process seem to
readily apply also to the area interaction process (see figure 4.10), thus suggesting
that they could potentially apply to all Gibbs processes.

4.4 Reconstructing point processes with spatially
inhomogeneous covariates

In the previous sections we have found that for a homogeneous interacting point
process, with nothing else but the counts in the different subregions, it is quite
difficult to reconstruct a point configuration with the method outlined in this thesis,
both in the direct (non-statistical) sense, as well as in the statistical sense. Typically,
the quadrats need to be small enough so that either all points could potentially
interact with points in other subregions, i.e. a ≲ 2R, or small enough such that
each subregion only contains one point a ≲ 1/

√
nW .

One might initially suspect that a more complicated point process, that also depends
on some spatially inhomogeneous covariate, would be even harder to reconstruct
with the method proposed so far in this thesis. On the other hand, a spatially
inhomogeneous intensity of the point process could significantly reduce the volume
of configuration space associated with higher probabilities. In other words, having
areas with low- and high- intensity provides the point process more structure that
can be picked up by the quadrat counts, and used in the reconstruction process.
Furthermore, if the information about the covariates is accessible to us, we could use
it to improve the reconstruction process. In an epidemiological context for example,
we might have access to data on population density, which would most likely act as
a covariate for disease spread. It therefore would be reasonable to also use this data
in the reconstruction process.
In the following section we first investigate how well the usual reconstruction pro-
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Figure 4.10: Same as in figures 4.6, but for an area interaction process with
θ0 = log 185, θ2 = log 2.7, R = 0.05.

cess (using homogeneous Biniomial point process to reconstruct the points in the
quadrats) works for an inhomogeneous point process. Then we attempt to recon-
struct the point process using knowledge of the spatially inhomogeneous covariate

41



4. Results

used to generate the point configuration.
For our spatial covariate, S1(u), we shall use a weighted sum of Gaussians:

S1(u) =
m∑

i=1
wi exp

(
−(ux − vx,i)2

2σ2
x,i

− (uy − vy,i)2

2σ2
y,i

)
, (4.7)

with weights wi, centers vi = (vxi
, vy,i) and widths σx,i and σy,i, for i = 1, . . . , m.

4.4.1 Inhomogeneous Poisson point process
As with the homogeneous point processes, we shall start out simple. In figure 4.11
we illustrate the importance of the scale of variation of the covariate density in
the reconstruction process. The original point configuration is a sample from an
inhomogeneous Poisson point process, with λ(u) = exp(θ0 + θ1S1(u)), where S1(u)
is a single Gaussian with a center and width chosen such that the peak is mostly
contained in one of the partitions when k = 4, or equivalently, the side length is
a = 0.25. It can be clearly seen that the reconstructed point configuration begins to
qualitatively differ from the original configuration only once a > 0.25. Of course it
should come as no surprise that the resolution needs to be higher than the typical
scale of variation of the covariate density, in order for the reconstruction to capture
the spatial variation of the intensity. Covariate densities encountered in real life
situations will, however, usually not have a single scale, but several, or even contain
a continuum of scales. For this reason, we turn next to somewhat more complicated
covariate densities.

Figure 4.11: An original point configuration (top left) from an inhomogeneous
Poisson point process λ(u) = exp(θ0 + θ1S1(u)), with S1(u) = exp(−(u− v)2/2σ2),
v = (0.625, 0.625) and σ = 0.075. The rest of the point configurations are recon-
structions at resolutions indicated at the top.

In figure 4.12 we show sample point configurations, as well as EMD, Stoyan-Grabarnik
residuals and parameter estimates, of samples from an inhomogeneous point process
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with λ(u) = exp(θ0 +θ1S1(u)), with S1(u) a weighted sum of three Gaussians. While
θ0 = 80 is kept the same, the three columns represent the choices θ1 = 0, 2.5, 5 in
increasing order. As can be seen, the dissimilarity measures are again small for side
lengths a < 1/

√
n (small quadrat limit), but approach the large quadrat limits in

a more linear fashion than what we previously observed in the interaction cases,
where the fraction of contained area determined the shape. In the inhomogeneous
Poisson process interactions are absent, and thus the area of contained interactions
is not relevant. The more linear shape is formed by the presence of multiple different
scales of the three (overlapping) Gaussians, each with different widths in the x- and
y-directions. This behaviour is observed for most randomly chosen configurations of
weighted sums of Gaussians, and we expect it to be a more or less general feature
when reconstructing inhomogeneous point processes.

4.4.1.1 Reconstructing using inhomogeneous binomial point process

It is interesting to investigate whether knowledge of the covariate density S1(u)
can be used to improve the reconstruction process. Of course, if we had access to
the full intensity λ(u) of the inhomogeneous Poisson point process we wish to re-
construct, doing so by using a binomial point process with ni points and density
ji(u) = λ(u)/

∫
Ai

λ(u) du on corresponding quadrats Ai, would result again in a Pois-
son point process with density λ(u) (see section 4.1). Thus, the statistical dissimi-
larity measures would be small, regardless of quadrat size, while the non-statistical
dissimilarity measure, EMD, would behave similarly to the reconstruction of a homo-
geneous Poisson point process. Here however, the only knowledge of the covariate
density S1(u) is known, while the parameters θ0 and θ1 are considered unknown.
Thus the most non-informed reconstruction, apart from the homogeneous Binomial
reconstruction, is one where we use an inhomogeneous binomial reconstruction, with
density ji(u) ∝ S1(u), u ∈ Ai. Of course, this runs the risk of instead overestimating
the spatial dependence of the intensity on the covariate density.
Indeed, as can be seen in figure 4.13, using the inhomogeneous binomial reconstruc-
tion causes a consistent overestimation of the covariate parameter θ1, while under-
estimating θ0. However, in contrast to the homogeneous reconstruction method, the
inhomogeneous one becomes better the larger θ1, i.e. the stronger the dependence
of the original point process on the covariate density S1(u), the better the recon-
struction. Thus, if you feel certain that the covariate density S1(u) should have a
large influence, then using the inhomogeneous binomial reconstruction is probably
the better choice.

4.4.1.2 Reconstructing inhomogeneous interacting point process

To conclude this section, we investigate the quality of reconstruction for an inhomo-
geneous interacting point process. For this we choose the inhomogeneous Geyer pro-
cess, with Papangelou conditional intensity λθ(u; x) = exp(θ0+θ1S1(u)+θ2S2(u, x)),
where S2(u; x) is the usual interaction function for the Geyer process, with nuisance
parameters R = 0.05 and s∗ = 4, while S1(u) is the covariate density as in the
previous subsection. In figure 4.14 we show the dissimilarity measures for homo-
geneous binomial reconstructions, whereas in figure 4.15 we show them when using
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Figure 4.12: Samples and reconstruction dissimilarity measures for inhomogeneous
Poisson point process, with λ(u) = exp(θ0 + θ1S1(u), where S1(u) is of the form 4.7.
The parameters are chosen as θ0 = 80, and θ1 = 0.0, 2.5, 5.0 for left, center and
right columns respectively. The top row shows the covariate density S1(u) and a
sample from the inhomogeneous Poisson point process. Second to fourth rows show
the dissimilariy measures EMD, Stoyan-Grabarnik, θ0-estimate and θ1-estimates as
a function of the side length a of quadrats used in the reconstruction.

the inhomogeneous binomial reconstruction method.
Starting with the homogeneous reconstruction, figure 4.14, we can identify three
regimes, roughly separated by the scales R or 1/

√
nW of interactions, and the scale

of spatial variation of S1(u; x), which here is represented by 2σ̄ = 1
3
∑3

i=1(σx,i +σy,i).
For large quadrats, a > 2σ̄, the quality of reproduction is rather poor since the re-
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Figure 4.13: Same as in figure 4.12 but using an inhomogeneous binomial recon-
struction process in the reconstruction, with ji(u) ∝ S1(u) as 1-point prob. density.

production method does not capture neither the inhomogeneity nor the interaction
(clustering). In the intermediate regime, R, 1/

√
nW < a < 2σ̄, the resolution is suffi-

ciently fine so as to capture the spatial variation of the covariate density, but not fine
enough to capture the interaction structure. This can be seen by the rapid improve-
ment (as a becomes smaller) of the estimate for θ1, while the estimate of θ2 almost
slows down. Indeed, we interpret the overestimation of θ1 around a ≳ R, 1/

√
nW as

the parameter estimation method missattributing some of the clustering to larger
values of the covariate density, rather than to the interacting nature of the the point
process. This is then (rapidly) corrected in the small quadrat regime, a < R, 1/

√
nW ,

where the resolution is small enough to capture the clustering due to interactions
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(as opposed to the covariate intensity).

Figure 4.14: Reconstruction of an inhomogeneous Geyer process using a homoge-
neous binomial point process. On the top left we provide a sample of the original
point process along with a density map of the covariate density. The graphs repre-
sent the different dissimilarity measures: EMD, Stoyan-Grabarnik residuals, as well
as parameter estimates, as a function of quadrat side length a.

When using the inhomogeneous reconstruction method, we again observe the same
three distinct regimes, but with somewhat different behaviour within them. In the
large quadrat regime, a > σ̄, the parameters estimated from the reconstructed point
configurations show an overestimation of θ1, accompanied with an underestimation
of θ0. This is due to the reconstruction process using a 1-point prob. density pro-
portional to the covariate density to redistribute the points within the quadrats. In
the intermediate regime, R, 1/

√
nW < a < 2σ̄, the resolution is fine enough to cap-

ture the spatial variation of the covariate density, making it easier to distinguish the
correlation between covarariate density and the intensity of the point process, thus
producing better estimates of the parameters θ0 and θ1. Meanwhile, the estimation
of the interaction parameter θ2, in this regime, worsens as a becomes smaller. We
again attribute this effect as an inability to distinguish between clustering due to
covariant density, and clustering due to point interaction. This is again corrected
rapidly with the small quadrat regime a < R, 1/

√
nW .

While most of the difference between the two methods of reconstruction can be
attributed to the different emphasis placed on θ0, θ1 and θ2, one might not necessarily
be interested in the particular values of these parameters, but rather in whether it is
possible to use the reconstructed point process to estimate the conditional intensity,
λθ(u; x). Thus it is interesting to explore whether λθ̃(u; x̃), constructed from the
parameter estimates θ̃ of θ, and the reconstructed point configuration x̃. This is
explored in figure 4.16. Interestingly, the wild variations in parameter estimates θ̃ as
a function of quadrat side a is more or less absent in the RMISE, which has a much
smoother and consistent behaviour. One can still somewhat distinguish the three
different regimes, and at least in this case, the inhomogeneous reconstruction process
produces smaller values of the RMISE, suggesting it provides a better estimate of
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Figure 4.15: Same as in figure 4.14, but using an inhomogeneous binomial point
process for reconstruction.

the Papangelou conditional intensity.

Figure 4.16: RMISE (root mean integrated square error) between λθ(u; x) and
λθ̃(u; x̃), where λθ̃(u; x̃), is constructed from the parameter estimates θ̃ of θ, and
the reconstructed point configuration x̃. Using both a homogeneous (left) and in-
homogeneous (right) point process in the reconstruction.

4.5 Reconstructing point processes on
linear networks

To conclude the chapter we finish by exploring reconstruction of point processes
on linear networks. To produce a somewhat random linear network, we choose
randomly a set of pairs of points on the borders of the observation window W ,
and construct lines between them. This results in a set of random lines across the
observation window. Then, for each line we identify its intersections with the other
lines and split the line into linear segments such that no two segments intersect
each other. The result is a linear network, i.e. a set of linear segments. The linear
network can then be further processed by thinning, i.e. randomly removing a fraction
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of the segments to deviate more from the random lines we started with. Figure 4.17
illustrates the process, as well as an example of a density map of a covariate density
S1(u), formally defined over the entire observation window, but for a points process
only the values on the segments of the linear network would be of importance.

Figure 4.17: The formation of a linear network: The leftmost image shows a
set of lines constructed randomly by drawing pairs of points from the borders of
the observation window and drawing lines between them. Then one identifies the
intersection points and splits the lines into linear segments, ℓ. The corresponding
linear network, L, then consists of the set of these segments, ℓ ⊂ L ⊂ W . The
linear network can then be thinned, as in the center figure. On the right figure we
illustrate a covariate density defined on the observation window W , and thus also
on ℓ ⊂ W .

Before presenting the results of the reconstructions, we shall address some necessary
adjustments and restrictions necessary when dealing with linear networks, as op-
posed to the entire observation window. One issue relates to which distance metric
to use, both in the context of interactions as well as in the dissimilarity measures
(mainly EMD). As for interactions, it may, in many situations, be reasonable to
use a shortest path distance along the network for example when it is reasonable to
expect that the interactions can only be mediated through the network. However,
since one of the motivations for this work is epidemic modelling, it seems unrea-
sonable to assume that a point (infection) on one line segment would not affect the
probability of infections in another close (in the 2D Euclidean sense) line segment,
simply because the line segments are not directly connected. For this reason, we
choose to use a 2D Euclidean distance metric defined on the observation window W
in which L is embedded. On the other hand, when considering dissimilarity mea-
sures, one needs to consider the fact that the points can only be placed on the linear
network, reducing the space of configurations significantly. Not only does this mean
that our analysis in section 4.2 on the expected behaviour of EMD under reconstruc-
tion is invalid, but one would also need to rewrite the code used to compute the
EMD. While not difficult, it is a task that would be a little too time consuming to
be worthwhile given the time restrictions of this thesis. In a similar way, while the
Stoyan-Grabarnik residuals can certainly be computed on linear networks, it intro-
duces extra complexities and requires the code for the computation to be rewritten
in a significant and time consuming way. While we have written such an algorithm,
we found some issues with odd behaviour for point configurations reconstructed at
very high resolutions. For this reason, and due to time constraints, we decided not
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to include it in this thesis.
On the bright side, parameter estimation could be easily extended to be applied to
point processes on linear networks. Furthermore, the theoretical analysis in section
4.1 can readily be extended to linear networks with minor modifications, and in
particular the Poisson approximation at large quadrats should still apply to some
extent.
To investigate the reproduction of point processes on linear networks, we decided to
use both an inhomogeneous Poisson point process, as well as an interacting inhomo-
geneous Geyer process. In both cases, the covariate density is defined in the same
way as in the previous 2D analysis. The results are presented in figure 4.18. As
can be seen, the dissimilarity measures (here the parameter estimates) show a very
similar behaviour as in the 2D case, compare 4.12 and 4.14. In particular, we can
identify the three different regimes, separated by the interaction scale R, 1/

√
nW as

well as the scale of spatial variation 2σ̄. We also observe the overestimation of θ1
and related underestimation of θ2 close to a ≳ 1/

√
nW , when the resolution is fine

enough to capture the spatial variation of the covariate density, but not fine enough
to capture the interaction.
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Figure 4.18: Reconstruction of point processes on a linear network. The left
column of figures contains the results of an inhomogeneous Poisson point process,
while the right column contains the results of an interacting inhomogeneous Geyer
process. The top row shows the linear network, density maps of the covariate density,
as well as samples of the point processes on the network. In rows 2-4 we show the
parameter estimates for θ0, the covariate parameter θ1 and interaction parameter θ2
(only for the Geyer process) of the corresponding point processes.
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5
Conclusion

In this thesis we have briefly introduced the theory of finite point processes and
the tools and methods used in our analysis, presented a theoretical analysis of the
reconstruction process as well as results from both interacting and non-interacting as
well as homogeneous and inhomogeneous point processes on a 2D planar geometry
and on linear networks. The results were presented mainly in terms of a set of
dissimilarity measures between the original- and reconstructed point configurations,
as a function of the size (or resolution) of the partitions used in the reconstruction
process.
The dissimilarity measures were separated into two types; direct (or non-statistical)
and statistical dissimilarity. For the direct dissimilarity, we used the earth mover’s
distance (EMD), which showed a fairly universal behaviour. Even when recon-
structing a homogeneous Poisson point process, using homogeneous binomial point
process on each quadrat (in which case the reconstructed point configuration is again
Poisson with the same intensity), the EMD showed a similar behaviour as when re-
constructing other point processes. As such, it is deemed a rather useless measure
if one wishes to measure how well the reconstructed point configurations preserve
the statistical properties of the original process.
The statistical dissimilarity measures used were; Stoyan-Grabarnik residuals, pa-
rameter estimates, and root mean integrated square error (RMISE) of the original,
and estimated/reconstructed Papangelou conditional intensities. In the case of ho-
mogeneous interacting point processes, exemplified by the Geyer process and area
interaction processes, we identified two distinct regimes. The first, typically referred
to as the "small quadrat regime", where the quadrats used in the reconstruction
process had side lengths a < R, 1/

√
nW , where R is the interaction range, and nW

is the number of points in the observation window W . In this regime the statistical
properties (mainly interaction properties) were well preserved in the reconstruction
process. In the second regime, a2 ≈ W , sometimes referred to as "large quadrat
regime", or "Poisson approximation" the statistical properties of the reconstructed
point configuration are more consistent with a Poisson point process than the in-
teracting point process. We argued that the validity of the Poisson approximation
is determined by the dependence-structure of the quadrat counts Ni, as well as the
properties of the marginal distributions of these, i.e. whether they can be approxi-
mated by a Poisson distribution. Furthermore, we argued that this in turn depends
on the available area for points capable/incapable of interacting with points in other
quadrats. Thus we introduced the concept of "fraction of contained area", i.e. the
fraction of quadrat area within which points are incapable of interacting with points
from other quadrats. We argued that the validity of the Poisson approximation
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should be proportional to this quantity, and plots of the statistical dissimilarity
measures against this quantity showed a remarkably linear behaviour in the regime
between small and large quadrats, thus providing an interpolation, and simple inter-
pretation of the transition between the two. This provides a simple tool to estimate
whether a reconstruction is expected to preserve the statistical properties of the
original point process, only requiring the interaction range R and the size/geometry
of the quadrats.
In the context of epidemic modelling: if only count data of subregions is available,
a reconstruction method like the one presented in this thesis could produce a point
configuration which preserves the statistical properties of the (unknown) original, if
the interaction range and subregion size and geometry are such that the fraction of
contained area can be considered large.
We also explored the ability to reconstruct inhomogeneous point processes in the
case when the inhomogeneity can be attributed to some known covariate density
(e.g. population density). Here we identified three regimes, small quadrat regime,
a < R, 1/

√
nW , intermediate regime, R, 1/

√
nW < a < 2σ̄ and large quadrat regime

2σ̄ < a ≲
√
|W |. Here 2σ̄ is a measure of the average spatial scale of variation of the

covariate density. Thus, the intermediate regime concerns cases when the resolution
of the partition is fine enough to capture the spatial variation of the covariate density,
but not fine enough to capture the interaction properties of the original point process.
Similar results were obtained when applying the reconstruction method to linear
networks. This result provides further guidance for what to expect when attempting
to reconstruct a point process from quadrat counts: If the interest is mainly in
estimating the dependence of the point process on some known covariate density,
using a reconstruction method as outlined in this study would require the quadrats
to be larger than the typical scale of variation of the covariate density. If one also
wants to estimate the interactions, the reconstruction methods require the quadrats
to be larger than R, and/or contain on average ≲ 1 point, i.e. nW /a2 ≲ 1.
In light of these sombering results, we attempted to improve the reconstruction
process by making use of the known covariate density. This was achieved by using
instead an inhomogeneous binomial point process for each quadrat, with a 1-point
probability density proportional to the covariate density. This did indeed result in a
better reconstruction, provided the original point process had a strong dependence
on the covariate density. On the other hand, if the dependence on the covariate den-
sity was weak, then this method of reconstruction resulted in a worse reconstruction.
In other words, in order to justify this method of reconstruction, one would have to
be certain that the underlying (original) point process is strongly dependent on the
covariate density.
In the context of epidemic modelling, these results are somewhat disheartening.
Although it is difficult to estimate, or even clearly define, an interaction radius
when dealing with the spread of disease, it is unlikely that this interaction range
would be close to the typical size of a reporting subregion wherein cases are counted.
Thus, if for example, we are interested in the relative importance of interactions (i.e.
clustering propensity) versus some covariate variable such as population density,
we would require sizes of the subregions to be small enough that infections across
subregion borders are not only common, but the norm.
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5.1 Discussion and future work
Limitations on time and resources have certainly led to many stones left unturned.
In this section I would like to present some possible avenues that the work could
have explored further.
The main idea behind the reconstruction scheme was to be able to estimate the
underlying point process model, when the only accessible data is point counts in
subregions. For concreteness, suppose we are interested in the parameters of a given
model. As can be seen in this thesis, in order to accurately estimate the parameter
associated with a covariate density, one needs subregions that are smaller than the
typical scale of variation of such a covariate. In order to accurately estimate the
interaction parameter, one needs subregions on the scale of the interaction distance.
On the other hand, in the case of interactions, we presented here a simple model
to predict how much the interaction parameter would be underestimated (in terms
of the fraction of contained area). This opens up the possibility of adjusting the
estimate of the interaction parameter accordingly. Presumably, a similar model, and
corresponding adjustment, could be obtained for the parameter associated with the
covariate density. In future work, this could be explored and the validity of such
adjustments could be tested in simulation studies.
Furthermore, we concluded in section 4.1 that the main information that provides
the reconstruction method with any properties from the original point process, is
encoded in the joint probability density of the quadrat counts, Ni. This begs the
question if one could not infer the parameters of a given point process model directly
from these counts. One such approach is Bayesian likelihood free inference, or
ABC (approximate Bayesian computation). The idea here is to define a parameter
space Θ, and possibly a prior p(θ), θ ∈ Θ, and a model p(x|θ) from which we may
generate samples x. The samples may be used to compute the counts ni = |x∩Ai|
in each of the quadrats Ai. Then, a rejection scheme can be implemented where
one draws samples θ⋆ ∼ p(θ) and then generates a point configuration x⋆p̃(x|θ⋆).
The parameter value θ⋆ is then accepted, if the corresponding counts n⋆

i = |x⋆ ∩
Ai| are not sufficiently different from the observed counts nobs

i , as measured by
some distance d(n⋆, nobs) < ε with some threshold ε. Repeating this procedure
produces a set of parameter values which is an approximate sample of the posterior
distribution, p(θ|xobs). While we did experiment with this approach, including some
improvements like regression adjustment, synthetic likelihood and ABC-SMC[27],
the approach was ultimately too time consuming and warrants it’s own study.
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