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Abstract. We consider two-player games over finite graphs in which
both players are restricted by fairness constraints on their moves. Given
a two player game graph G = (V,E) and a set of fair moves Ef ⊆ E a
player is said to play fair in G if they choose an edge e ∈ Ef infinitely
often whenever the source node of e is visited infinitely often. Otherwise,
they play unfair. We equip such games with two ω-regular winning con-
ditions α and β deciding the winner of mutually fair and mutually unfair
plays, respectively. Whenever one player plays fair and the other plays
unfair, the fairly playing player wins the game. The resulting games are
called fair α/β games.

We formalize fair α/β games and show that they are determined. For
fair parity/parity games, i.e., fair α/β games where α and β are given
each by a parity condition over G, we provide a polynomial reduction
to (normal) parity games via a gadget construction inspired by the re-
duction of stochastic parity games to parity games. We further give a
direct symbolic fixpoint algorithm to solve fair parity/parity games. On a
conceptual level, we illustrate the translation between the gadget-based
reduction and the direct symbolic algorithm which uncovers the underly-
ing similarities of solution algorithms for fair and stochastic parity games,
as well as for the recently considered class of fair games in which only
one player is restricted by fair moves.

Keywords: games on graphs, fairness, two-player games, parity games

1 Introduction

Omega-regular games are a popular abstract modelling formalism for many core
computational problems in the context of correct-by-construction synthesis of
reactive software or hardware. This abstract view was initiated by the seminal
work of Church [8] and its independent solutions by Büchi and Landweber and
Rabin [18,5]. Since then these ideas have been refined and extended for solving
the reactive synthesis problems [17,20,14].
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However, before using any such synthesis technique, the reactive software de-
sign problem at hand needs to be abstractly modelled as a two-player game. In
order for the subsequently synthesized software to be ‘correct-by-construction’
this game graph needs to reflect all possible interactions between involved com-
ponents in an abstract manner. Building such a game graph with the ‘right’
level of abstraction is a known severe challenge, in particular, if the synthesized
software is interacting with existing components that already possess certain be-
havior. Here, part of the modelling challenge amounts to finding the ‘right’ power
of both players in the resulting abstract game to ensure that winning strategies
do not fail to exist due to an unnecessarily conservative overapproximation of
modeling uncertainty (or the dual problem due to underapproximation).

In this context, fairness has been adopted as a notion to abstractly model
known characteristics of the involved components in a very concise manner. Fair-
ness assumptions have been used in model checking [1] and scheduler synthesis
for the classical AMBA arbiter [16] or shared resource management [6]. Notably,
fairness assumptions have also gained attention in cyber-physical system design
[21,15,11] and robot motion planning [9,2]. In all these applications, fairness is
used as an assumption that the synthesized (or verified) component can rely
on. In particular, if these assumptions are modelled by transition fairness over
a two-player game arena3 (V∀, V∃, E) – i.e., by a set of fair environment moves
Ef ⊆ E (i.e., with V∀ as their domain) that need to be taken infinitely often
if the source node is seen infinetely often along a play – the resulting synthesis
games can be solved efficiently [4,19].

While most existing work has only looked at fairness as an assumption to
weaken the opponent in the synthesis game, all mentioned applications also
naturally allow for scenarios where multiple components with intrinsically fair
behavior are interacting with each other in a non-trivial manner. For example,
the ability of a concurrent process to eventually free a shared resource might
depend on how fair re-allocation is implemented in other threads. On an abstract
level, the formal reasoning about such scenarios requires to understand how the
interactive decision making of two dependent processes is influenced by intrinsic
fairness constraints imposed on their decisions. Algorithmically, these synthesis
questions require fairness restrictions on both players in a game, i.e., do not
restrict the domain of fair moves Ef to one player only. We refer to such games
simply as fair games.

Motivating Example. In order to better illustrate the challenges arising from
solving such fair games, consider two robots in a shared workspace with narrow
passages between adjacent regions that only one robot can pass at a time. One
robot (say the green one) has an ω-regular objective α that specifies desired
sequences of visited regions in the workspace. The other (red) robot tries to
prevent the green robot from achieving this sequence. In order to rule out trivial
spoiling strategies of the red robot, both robots need to implement a tie-breaking

3 Whenever we interpret players in a one-sided manner as environment and system,
we choose the environment player as the ∀-player, as we need to take all possible
environment moves into account. Similarly, the system is the ∃-player in this scenario.
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mechanism for obstacle avoidance, i.e., they must eventually move left or right
if an obstacle blocks their way.

Now consider the scenario where both robots are facing each other at a gate,
as depicted in Fig. 1. While both robots block the gate from one side, neither
of them can move forward, but if the green robots moves left or the red robot
moves right, the other robot can take the gate to reach region A. With the
mentioned requirement for tie-breaking, none of the robots is allowed to block
the gate forever and both eventually have to move to the side.

Fig. 1: Deadlock caused by fairness constraints of two robots facing a door.

Now let us assume that region A is important for both robots, hence, both
robots have an incentive to enter region A first, to then move the game to an
area preferable to them. However, the robot who breaks the tie first, (i.e., fulfills
its fairness condition first) allows the other robot to enter region A first, which
gives both robots the incentive to behave unfair. While it is very intuitive to
make a player lose when she plays unfair and the other player plays fair, it is
unclear who wins the game if both players play unfair.

To resolve this issue, we can make the objectives of the robots completely
adversarial by assigning one of the players (say, green) the winner in a play where
both players play unfair. In the above example, this would give the red robot the
incentive to break the tie first. While this makes it harder for the red robot to
spoil the objective of the green one, we might be interested in a more symmetric
game which does not favor the green robot in all non-determined states of the
graph. We therefore consider a second ω-regular objective β that determines the
winner of (mutually) unfair plays. This results in fair games G = (A,α, β) which
are determined (as shown in Sec. 3).

Contribution. Motivated by the above mentioned examples where interactive
decision making of two dependent processes is influenced by intrinsic fairness con-
straints imposed on their decisions, this paper studies fair games G = (A,α, β)
as their abstraction. In particular, we give solution algorithms for these games
when both α and β are parity conditions induced by two different priority func-
tions over the node set. We call such games fair parity/parity games.

Obviously, the previously discussed one-sided version of fair games, which
we call ∀-fair games (as only the ∀-player (i.e., the environment) is restricted
by strong transition fairness), is a special case of fair games. Both enumerative
[19] and symbolic solution algorithms [4] have recently been proposed for ∀-
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fair games, showing that strong transition fairness can be handled efficiently
in both types of algorithms. This observation is closely related to a result for
stochastic games, i.e., two-player games with an additional ‘half’ player that
takes all its moves uniformly at random. For the purpose of qualitative analysis,
such stochastic parity games have been shown in [7] to be reducible to (standard)
parity games by the use of “gadgets” that turn stochastic nodes into a small
sequence of ∀- and ∃-player nodes. While it is known that stochastic games can
be reduced to ∀-fair games (and hence, fair games), it was not investigated how
the different solution approaches compare. The main conceptual contribution of
this paper is a unified understanding of all these solution approaches for the
general class of fair games.

Concretely, our contribution is three-fold:
(1) We formalize fair games as a generalization of ∀-fair games and stochastic
games such that they are determined.
(2) We show a reduction of fair parity/parity games to (standard) parity games,
inspired by the gadget-based reduction of stochastic parity games to parity games
in [7]. This reduction enables the use of parity game solvers over the reduced
game (in particular enumerative ones such as Zielonka’s algorithm [24]) and gives
a gadget-based reduction of ∀-fair parity games to parity games as a corollary.
(3) We then show how our gadget construction can be used to define a symbolic
fixpoint algorithm to solve fair parity/parity games directly (without the need
for a reduction). We show the direct symbolic algorithm for ∀-fair parity games
in [4] coinciding with our algorithm for this particular subclass of fair games.

With this, we believe that this paper uncovers the underlying similarities
of solution algorithms for fair, ∀-fair and stochastic parity games. Further, we
show how these conceptual similarities can be used to build both enumerative
and direct symbolic algorithms. This is of interest as both are known to have
complementary strengths, depending on how the synthesis instance is provided,
and this connection was, to the best of our knowledge, not known before.

All omitted proofs are available in the extended version of this paper [10].

2 Preliminaries

We introduce infinite-duration ω-regular two-player games over finite graphs
with additional strong transition fairness conditions on both players. For read-
ability, we call the considered games (and their respective notions) simply fair.

Infinite Sequences. We denote the set of infinite sequences over a set U by
Uω. We often view sequences τ = u1u2 . . . ∈ Uω as functions τ : N→ U , writing
τ(i) = ui. Furthermore, we let Inf(τ) := {u ∈ U | ∀i.∃j > i. τ(j) = u} denote the
set of elements of U that occur infinitely often in τ . Given a function f : U →W ,
we denote by f(τ) ∈ Wω the pointwise application of f to τ . Given a natural
number n, we write [n] := {1, . . . , n}.

Fair Game Arenas. A fair game arena A = (V∃, V∀, E,Ef ) consists of a set
of nodes V = V∃∪V∀ that is partitioned into the sets of existential nodes V∃ and
universal nodes V∀, together with a set E ⊆ V × V of moves that is partitioned
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into the set Ef ⊆ E of fair moves and the set E \Ef of normal moves. If Ef = ∅,
then we sometimes omit this component for brevity. Given a node v ∈ V and a
binary relation R ⊆ V ×V , we write R(v) to denote the set {w ∈ V | (v, w) ∈ R}.
We assume that E is right-total, that is, E(v) 6= ∅ for all v ∈ V . We call a node
v fair, if it is the source node of a fair edge, i.e., Ef (v) 6= ∅ and collect all fair
nodes in the set V fair = {v ∈ V | Ef (v) 6= ∅} and define V n = V \ V fair to be the
set of nodes that are not fair (‘normal nodes’). We denote V fair

∃ = V fair ∩ V∃ and
V fair
∀ = V fair ∩ V∀.

Plays. A play τ = v0v1 . . . on A is an infinite sequence of nodes s.t. vi+1 ∈ E(vi)
for all i ≥ 0. Given a play τ = v0v1 . . ., we define the associated sequence of
moves τm = (v0, v1)(v1, v2) . . .. Additionally, if i is a player in {∃,∀}, we denote
the other player by 1− i. We let plays(A) denote the set of all plays on A.

For a player i ∈ {∃,∀}, a play τ is i-fair if for all nodes v ∈ Vi ∩ Inf(τ) holds
that Ef |v ⊆ Inf(τm), where Ef |v = {(v, v′) ∈ Ef | v′ ∈ V } denotes the set of
fair edges that start at v ∈ V . Given a play τ , we write fairi(τ) to indicate that
τ is i-fair. We call a play mutually fair if it is both ∃- and ∀-fair and mutually
unfair if it is neither ∃- nor ∀-fair.

Strategies. A strategy for player i ∈ {∃,∀} (or, an i-strategy) is a function
p : V ∗ · Vi → V where for each u · v ∈ V ∗ · Vi it holds that p(u · v) ∈ E(v). A
strategy p is called positional if p(u · v) = p(w · v) for all u,w ∈ V ∗ and v ∈ Vi.

A strategy p for player i is said to admit a play τ = v0v1 . . . if for all k ∈ N,
vk ∈ Vi implies p(v0 . . . vk) = vk+1. Alternatively, τ is said to be compliant with
p. We write Σ for the set of ∃-strategies and Π for the set of ∀-strategies. Starting
from a node v ∈ V , any two strategies s ∈ Σ and t ∈ Π induce a unique play
playv(s, t) in the game arena. If we do not care about the initial node of the play,
we simply write play(s, t).

A strategy for player i ∈ {∃,∀} is an i-fair strategy if every play it admits is
i-fair. We write Σfair (resp. Π fair) for the set of ∃-fair (resp. ∀-fair) strategies.

Omega-regular Winning Conditions. We consider winning conditions given
by an ω-regular [22,13] language ϕ ⊆ V ω over the node set V . In particular, we
write ϕ = ⊥ and ϕ = > to denote the trivial winning conditions ∅ and V ω,
respectively. In particular, we focus our attention to parity winning conditions.
For a priority function λ : V → [k] that maps nodes of a game arena to the
natural numbers bounded by k for some k ∈ N, the Parity(λ) condition is given
via ϕ = {τ ∈ V ω | max(Inf(λ(τ))) is even}.

Omega-regular Games. An ω-regular game is traditionally defined via a
tuple G = (A,α) where A is a game arena without fair edges, i.e. Ef = ∅ and
α ⊆ V ω an ω-regular winning condition. An ∃-strategy s ∈ Σ is said to be
winning (for ∃) from a node v ∈ V , if for all t ∈ Π, playv(s, t) ∈ α. Dually,
a ∀-strategy t ∈ Π is said to be winning (for ∀) from a node v ∈ V , if for all
s ∈ Σ, playv(s, t) 6∈ α. In ω-regular games, every node v ∈ V is won by one and
only one of the players [12,13]. This property of a game is called determinacy,
and ω-regular games are determined. We denote the nodes from which ∃ (resp.
∀) has a winning strategy in G by Win∃(G) (resp. Win∀(G)). When G is clear
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from the context, we drop the paranthesis and write Win∃ and Win∀ instead.
Determinacy then amounts to Win∃ ∪Win∀ = V and Win∃ ∩Win∀ = ∅.
Node Conventions for Figures. Throughout this paper, in all figures, the
rectangular nodes represent ∀-player nodes and the nodes with round corners
represent ∃-player nodes.

3 Fair Games

As already outlined in the motivating example in Sec. 1, the interpretation of
winning conditions over fair games influences the characteristics of resulting
winning strategies. To formalize this intuition, we will first recall a particular
subclass of fair games, namely those where only one player is restricted by an
additional fairness condition, in Subsec. 3.1. We will then use these games to
motivate winning semantics for the general class of fair games.

3.1 Determinacy of ∀-Fair Games

A ∀-fair game is a tuple G = (A,α) where A is a game arena with V fair ⊆ V∀
(called a ∀-fair game arena), and α is an ω-regular winning condition.

In ∀-fair games, fairness constraints typically model known behavior of exist-
ing components that the ∃-player (i.e., the to be synthesized system) can rely on.
This is formalized by defining that the ∃-player wins a ∀-fair game with winning
condition α from node v if

∃s ∈ Σ.∀t ∈ Π fair. playv(s, t) ∈ α. (1a)

That is, ∃-player (or shortly, ∃) wins if they have a strategy that can win against
all ∀-fair ∀-strategies.

Our intuition tells us that this can be converted to reasoning about general
strategies for ∀-player (or shortly, ∀) by allowing ∃ to win whenever ∀ plays
unfairly. In order to see this, we can look at the complement of Eq. (1a), i.e.,
the description of when ∀ wins; namely, ∀s ∈ Σ.∃t ∈ Π fair. playv(s, t) /∈ α.
We can replace the quantification over fair strategies with a quantification over
all strategies but require that, in addition to refuting α, the resulting play be
fair: ∀s ∈ Σ.∃t ∈ Π. fair∀(playv(s, t)) ∧ playv(s, t) /∈ α. Indeed, as we show in
the extended version of this paper [10, App. A - Lem. 2], if strategy t ∈ Π
satisfies fair∀(playv(s, t)) then we can find a fair strategy t′ ∈ Π fair with which
playv(s, t) is compliant. This ∀-fair strategy would also stop s from winning. Due
to determinacy of ω-regular games, we know that the last condition is equivalent
to ∃t ∈ Π.∀s ∈ Σ. fair∀(playv(s, t)) ∧ playv(s, t) /∈ α. In particular, this implies
that t is fair. We conclude that the complement of Eq. (1) is the following
equation:

∃t ∈ Π fair.∀s ∈ Σ. playv(s, t) 6∈ α. (1b)

This statement is equivalent to the determinacy of ∀-fair games: either ∃-player
has a winning strategy or ∀-player has a winning ∀-fair strategy, and the two
cannot be true simultaneously.
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3.2 From ∀-Fair Games to Defining Determined Fair Games

Given a fair game arena A and an ω-regular objective α, a natural attempt to
define winning regions in fair games would be to generalize Eq. (1) to

v ∈Win∃ if ∃s ∈ Σfair.∀t ∈ Π fair. playv(s, t) ∈ α, and (2a)

v ∈Win∀ if ∃t ∈ Π fair.∀s ∈ Σfair. playv(s, t) 6∈ α. (2b)

However, in this case, Win∃ ∪ Win∀ 6= V . Indeed, equations (2a) and (2b)
are not complements of each other, that is,

∃s ∈ Σfair.∀t ∈ Π fair. play(s, t) ∈ α 6⇔ ∀t ∈ Π fair.∃s ∈ Σfair. play(s, t) ∈ α.

This observation makes a fair game in which winning regions are defined via Eq. (2)
undetermined. The undetermined nodes O ⊆ V – nodes from which none of the
players has a fair winning strategy – form a separate partition of nodes, i.e.,
V = Win∃ ∪· Win∀ ∪· O. To see this, consider the following example.

Example 1. Consider the fair game arena depicted in Fig. 2 where fair edges are
shown by dashed lines, α = Parity(λ) and each node is labeled by its priority
assigned by λ. We observe that the existential player cannot enforce reaching
the even node with a ∃-fair strategy from the two middle nodes. Every ∃-fair
∃-strategy s has a counter ∀-fair ∀-strategy: choose the fair edge outgoing from
the square node after s chooses the fair edge outgoing from the node with round
corners. On the other hand, the universal player cannot prevent the play from
reaching the even node with a ∀-fair strategy from these nodes for exactly the
same reason. Hence, the middle two nodes are neither in Win∃ nor in Win∀. That
is, these two nodes are undetermined; therefore they form O.

1 11 2

Win∀ Win∃O

Fig. 2: A simple fair game arena discussed in Ex. 1.

In order to better understand the distinction between Equations 2a and 2b,
we rely again on translation to ω-regular games. Consider the following refor-
mulation of Eq. (2a):

∃s ∈ Σ.∀t ∈ Π.fair∃(playv(s, t)) ∧ (fair∀(playv(s, t))⇒ playv(s, t) ∈ α). (3a)

Similarly, the following is a reformulation of Eq. (2b):

∃t ∈ Π.∀s ∈ Σ.fair∀(playv(s, t)) ∧ (fair∃(playv(s, t))⇒ playv(s, t) 6∈ α). (3b*)

From determinacy of ω-regular games, the negation of the latter is:

∃s ∈ Σ.∀t ∈ Π.fair∀(playv(s, t))⇒ (fair∃(playv(s, t)) ∧ playv(s, t) ∈ α). (3b)
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We formally prove the equivalences of Eqs. (2a) and (3a) and Eqs. (2b) and (3b)
in [10]. It is not hard to see that the difference between Eq. (3a) and Eq. (3b)
is in the way fairness is handled. Namely, in Eq. (3a) ∃ loses whenever she plays
unfairly regardless of how ∀ plays. Dually, in Eq. (3b) ∃ wins immediately when
∀ plays unfairly regardless of how ∃ plays. It follows that determinacy can be
regained by deciding the winner of the four different combinations of fairness
with an ω-regular winning condition each, as summarized in the following table.

fair∃(τ) ¬fair∃(τ)
fair∀(τ) τ ∈ α τ ∈ γ
¬fair∀(τ) τ ∈ δ τ ∈ β

With this generalization, we obtain (3a) if β = γ = ⊥ and δ = >, and (3b) if
γ = ⊥ and β = δ = >.

We note that the discussion of determinacy has crucial importance to the
analysis of games and the decision of how to model particular scenarios. For ex-
ample, if fairness of ∀-player arises from physical constraints (as, e.g., in [4]) then
it might make sense to consider Eq. (2b), which corresponds to β = >. Dually, if
fairness of ∃-player must be adhered to, then it makes sense to consider Eq. (2a),
which corresponds to β = ⊥. Our formulation allows to further fine tune what
happens when both act unfairly by adjusting β.

Given the intuition that fairness constraints are actually additional obliga-
tions for both players, the choice of γ = ⊥ and δ = > assumed in Equations (2)-
(3) is very natural. However, allowing mutually unfair plays to be decided by a
different ω-regular winning condition β, allows games with more symmetric win-
ning semantics e.g., by setting β = α. We therefore restrict our attention in this
paper to fair games with two winning conditions α and β while if i-player plays
fairly but (1 − i)-player plays unfairly, i-player wins, i.e., γ := ⊥ and δ := >.
This is formalized next.

Definition 1 (Fair Games). A fair game G = (A,α, β) consists of a fair
game arena A together with two (ω-regular) winning conditions α, β ⊆ plays(A)
where α and β determine the winner of mutually fair and mutually unfair plays,
respectively. In fair games, a play that is i-fair and (1−i)-unfair is won by player
i. Formally, in the fair game G = (A,α, β), v ∈Win∃ if and only if,

∃s ∈ Σ.∀t ∈ Π. fair∃(playv(s, t)) ∧ (fair∀(playv(s, t))⇒ playv(s, t) ∈ α)

∨(¬fair∃(playv(s, t)) ∧ ¬fair∀(playv(s, t)) ∧ playv(s, t) ∈ β) (4)

The determinacy of fair games follows trivially from the formulation. It follows
that the complement of Eq. (4) is the ∀ winning region, defined symmetrically
by v ∈Win∀ if and only if

∃t ∈ Π.∀s ∈ Σ. fair∀(playv(s, t)) ∧ (fair∃(playv(s, t))⇒ playv(s, t) 6∈ α)

∨(¬fair∀(playv(s, t)) ∧ ¬fair∃(playv(s, t)) ∧ playv(s, t) 6∈ β)

Notation. We call a fair game G = (A,α, β) a fair α/β game. Further, if α or
β are given by mentioned winning conditions(e.g. α = Parity(λ), β = ⊥), with
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slight abuse of notation, we refer to the game with the name of the objectives
(e.g. fair parity/⊥ game).

Remark 1. Stochastic games allow for an additional set Vs of stochastic game
nodes that belong to neither ∃ nor ∀, and for which the stochasticity is resolved
uniformly at random. It is known that for purposes of qualitive analysis (i.e., the
computation of almost-sure winning strategies), stochastic games can be seen as
the special case of ∀-fair games in which E(v) ⊆ Ef holds for all stochastic nodes
v ∈ Vs, and Ef ∩ E(v) = ∅ for all non-stochastic nodes v ∈ V∃ ∪ V∀, that is, all
stochastic edges are fair edges, but no non-stochastic edges are fair edges. This
encoding treats stochastic branching as adversarial for the system (∃-player).

3.3 Mutually Fair Strategies in Fair Parity Games

In Subsec. 3.2 and in particular in Ex. 1 we have discussed the mutually unfair
plays and strategies that take such plays into account in fair α/β games. In this
section, we start restricting our attention to fair parity/β games (as this will be
our focus for the rest of the paper) and discuss the particularities of mutually
fair strategies in such games. We will do this with the help of the games G1−G4

depicted in Fig. 3. No mutually unfair plays exist in any of these games. This is
because on all given arenas the unfair behaviour of one player makes the play
trivially fair for the other. Therefore, the winning regions are independent of β.

In game G1, both nodes are won by ∃. ∀-player loses node 3 since taking the
self loop on 3 makes the play visit 3 infinitely often, however, it forces ∀ to play
fairly, implying that they must take the edge to 4 infinitely often. Therefore, any
∀-fair play is won by ∃ since the priority 4 is seen infinitely often. Also note that
if ∀-player decides not to play fairly, they immediately lose since all plays are
trivially ∃-fair. The trivial winning ∃-strategy is depicted by red edges.

To get to game G2, we append node 1 to the left of G1. Here, all the nodes
are won by ∀. This is because ∀-player wins node 3 by eventually taking the
outgoing edge to 1 and then staying in 1 forever with the self-loop. By doing so
∀ evades his obligation to take the fair edges by forcing each play to see node 3
a finite number of times. One winning ∀-strategy is depicted by blue edges.

To get to game G3, we append node 5 to the right of game G1. Again, all
the nodes are won by ∀ even though this time he cannot evade taking his fair
edges. In this game ∀ wins due to the obligation of ∃ to play fairly. In a play
starting from 3, ∀ must eventually take the outgoing edge to 4. From there on,
the play will visit node 4 infinitely often, forcing ∃ to take his outgoing edge to 5
infinitely often. As a consequence, in every mutually fair play 5 is seen infinitely
often. Therefore, the game is won by ∀. A winning ∀-strategy is depicted by
blue edges on the figure, with the interpretation that blue edges from node 3 are
taken alternatingly (in every sequence).

Finally, to get to game G4, we append two nodes to game G3. This time, all
the nodes are won by ∃. ∃-player still needs to take their fair outgoing edges to 5
(and this time, also to the new node 1) infinitely often. But this time she can also
take the outgoing edge to 6 infinitely often and thereby win the game. A winning
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∃-strategy is depicted by red edges on the figure, again with the interpretation
that red edges from node 4 are taken alternatingly (in every sequence).

3 4

G1: 31G2: 4

3G3: 4 5

43 5

6

1

G4:

Fig. 3: Four fair parity/β games: dashed lines represent fair edges. Games G1 and G4

are won by ∃-player and G2 and G3 are won by ∀-player. In each case, a respective
winning strategy is shown by colored edges. A set of colored edges represents a strategy
that takes only the colored edges in the game, and whenever a source node is visited
all its colored outgoing edges are taken alternatingly.

4 Reduction to Parity Games

In this section, we show how fair parity games can be reduced to parity games
without fairness constraints. We show that there is a linear reduction to parity
games in the case that α is a parity objective and β = > or β = ⊥; for the case
that β is a non-trivial parity objective, we show that there still is a quadratic
reduction. Our reductions work by replacing each fair node in the fair game with
a 3-step parity gadget. This construction is inspired by the work of Chatterjee
et al. [7] where the qualitative analysis of stochastic parity games is reduced to
solving parity games.

We give the formal reduction for fair parity/⊥ games in Subsec. 4.1 and ex-
tend it to fair parity/parity games in Subsec. 4.2. The extended version contains
a discussion of the reduction for a restricted case of fair parity/⊥ games (fair
Büchi/⊥ games), which can serve as a hand-holding introduction to the section.

4.1 Reduction of Fair Parity/⊥ Games

Let G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair game arena, V =
V∃ ∪· V∀ and λ : V → [2k] is the priority function.

The reduction to parity games replaces fair nodes v ∈ V fair in G with the
gadgets given in Fig. 4. Nodes v ∈ V fair

∃ in G are replaced with one of the
gadgets on the top (i.e. the incoming edges to v are redirected to v in the root,
and the outgoing edges on the third level lead to E(v) and Ef (v), which are the
outgoing edges and outgoing fair edges of v in G, resp.) and nodes v ∈ V fair

∀ in G
are replaced with one of the gadgets at the bottom. The gadgets on the left are
called existential gadgets and the ones on the right are called universal gadgets,
referring to the player picking the first move. Nodes in V n are not altered.

Even though the proof works for all combinations of the gadgets (i.e. one can
replace each v ∈ V fair

∃ (v ∈ V fair
∀ ) with any of the gadgets on the top (bottom)),

due to space constraints we give the intuition only for the existential gadgets.
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Imagine all v ∈ V fair are replaced with their existential gadgets. Within a
subgame that starts at a fair node v ∈ V fair, the two players intuitively interact
as follows. The ∃-player gets to pick a number i, indicating the priorities (2i− 1
or 2i) they intend to visit infinitely often in any play that visits v infinitely often.
In turn, ∀-player gets to either pick an outgoing edge at v (for this, he pays the
price of seeing the even priority 2i), or allow ∃ to pick an outgoing edge (in
which case he is rewarded with a visit to the odd priority 2i − 1). Depending
on the owner of v, the edge picked by ∀ (if v ∈ V fair

∃ ), or the edge picked by ∃
(if v ∈ V fair

∀ ) is required to be contained in Ef . Thus ∀ can insist on exploring
fair edges at V fair

∃ nodes, but has to pay a price for it; dually, ∀ eventually has
to allow ∃ to explore the fair edges at V fair

∀ nodes to win.
In the full reduced game defined formally in the proof of Thm. 1 below, the

owner of a fair node v can fairly win from v by either avoiding v from some
point on forever, or eventually allowing the opponent player to explore all fair
edges leading out of that node. The owner wins by playing unfairly if and only
if the opponent also plays unfairly and the owner is the ∀-player.

v

. . . . . .v1

v∃1

1

v∀1

2

vi

v∃i

2i− 1

v∀i

2i

vk+1

v∃k+1

2k + 1

E(v) Ef (v) E(v) Ef (v) E(v)

v

. . . . . .v1

v∃1

1

vi

v∀i

2i− 2

v∃i

2i− 1

vk+1

v∀k+1

2k

v∃k+1

2k + 1

E(v) Ef (v) E(v) Ef (v) E(v)

v

. . . . . .v1

v∃1

1

v∀1

2

vi

v∃i

2i− 1

v∀i

2i

vk

v∃k

2k − 1

v∀k

2k

Ef (v) E(v) Ef (v) E(v) Ef (v) E(v)

v

. . . . . .v1

v∃1

1

vi

v∀i

2i− 2

v∃i

2i− 1

vk+1

v∀k+1

2k

Ef (v) E(v) Ef (v) E(v)

Fig. 4: Existential (left) and universal (right) gadgets for v ∈ V fair
∃ (top) and v ∈ V fair

∀
(bottom) in fair parity/⊥ games. For i ∈ [1, k + 1], priorities of nodes v∃i and v∀i are
given below them, priorities of nodes vi are ignored, and the priority of v is unaltered.

Theorem 1. Let G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair
game arena, V = V∃ ∪· V∀ and λ : V → [2k] is the priority function. Then there
exists a parity game G′ on the node set V ′ with V ⊆ V ′ and |V ′| ≤ n(3k + 3)
over 2k + 1 priorities such that for i ∈ {∃,∀}, Wini(G) = Wini(G

′) ∩ V .

Proof (Sketch). Let G′ = (V ′∃, V
′
∀, E

′, Ω : V ′ → [2k + 1]) be the parity game
obtained by replacing the fair nodes in G with an arbitrary combination of
their corresponding existential and universal gadgets in Fig. 4. Let V ′ = V ′∃ ∪
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V ′∀ = V ∪ V gad where V represent the nodes coming from G and V gad represent
the nodes coming from the gadgets. Note that the maximum priority in G′ is
maxodd = 2k + 1 which comes only from the gadget nodes V gad. The maximum
even priority in G′ is maxeven = 2k which can come from both V gad and V . It is
easy to see that |V ′| ≤ n(3k + 3) and G′ uses priorities [2k + 1]. To prove the
correctness, we recall that the winning regions for fair parity/⊥ games are given
via Eq. (3a), i.e. v ∈Win∃(G) if and only if

∃s ∈ Σ.∀t ∈ Π.fair∃(playv(s, t)) ∧ (fair∀(playv(s, t))⇒ playv(s, t) ∈ α). (3a)

(⇒) We will first show, v ∈ Win∃(G
′) ∩ V ⇒ v ∈ Win∃(G). To do so, we

will take a (positional) winning ∃-strategy s′ in G′ and construct an ∃-strategy
s in G such that s is ∃-winning in G i.e., s realizes Eq. (3a). That is, for a play
ρ in G that starts from v and compliant with s Eq. (3a-s) holds.

fair∃ (ρ) ∧ (fair∀(ρ)⇒ ρ ∈ α) (3a-s)

For this we will show the two parts of the conjunction separately. We will
show (i) fair∃(ρ), i.e. s ∈ Σfair, (ii) fair∀(ρ) ⇒ ρ ∈ α, i.e. every ∀-fair play
compliant with s is ∃-winning w.r.t. the parity condition.

Construction of the s′-subgame G′s′ : Let s′ be a positional ∃-strategy win-
ning every play from v in G′. We will denote the subgame of G′ where ∃ nodes
have only the outgoing edges u→ s′(u) by G′s′ , and call it the s′-subgame. Recall
that all plays that start from v in G′s′ are ∃-winning.

Notation of nu and succ(u): For the existential gadgets for both V fair
∃ and V fair

∀ ,
we call the index of the unique successor of u in G′s′ , nu. That is, s′(u) = unu

.
For the same gadgets, we will denote s′(u∃nu

) with succ(u). For the universal
gadgets for both V fair

∃ and V fair
∀ , we will let nu denote the index of the rightmost

child of u that is sent to its right child by s′. That is, nu is the largest index i
such that s′(ui) = u∃i . For the same gadgets, we will denote s′(u∃nu

) with succ(u).

Construction of s: We define s : V ∗ · V∃ → V as follows. For u ∈ V fair
∃ : 1. If

nu = k + 1, we set s(u) = succ(u). 2. Otherwise, s(u) cycles through the set
{succ(u), Ef (u)} starting from succ(u). For u ∈ V∃ \ V fair

∃ , we set s(u) = s′(u).

Constraining G′s′ with nu: Here we will constrain G′s′ to its subgame by
limiting the choices of ∀-player from a u replaced by the universal gadget. For
every universal gadget encountered in G′s′ , we limit the choices of u ∈ V fair

∀ to
only u→ unu and u→ unu+1 (if it exists). So, we remove all the other branches
of u out of G′s′ . We call the remaining game LG′s′ , standing for limited G′s′ . Note
that as LG′s′ is a subgame of G′s′ , it is still ∃-winning.

∃-extension: Let ρ be some play in G compliant with s. We define a play ρ′

that is called the ∃-extension of ρ = u1u2 . . . as follows: ρ′ is the play on LG′s′
that follows ρ while ‘prioritising existential nodes on succ(u)’. What is meant
by this is, for a ui ∈ V fair, if ui+1 = succ(ui), then ρ′ takes the unique branch in

LG′s′ that leads to ui+1 while passing through an existential node (ui)
∃
j . That

is, regardless of which gadget ui is replaced by, ρ′ takes the branch

ui → uinui
→ (ui)

∃
nui
→ succ(ui) = ui+1 (branch 1)
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On the other hand if ui+1 6= succ(ui), then ρ′ takes the only other branch in
LG′s′ , that is (branch 2) is taken as

1. If ui ∈ V fair is replaced by an ∃-gadget, then ui → uinui
→ (ui)

∀
nui
→ ui+1,

2. If ui ∈ V fair is replaced by a ∀-gadget, then ui → uinui+1 → (ui)
∀
nui+1 → ui+1,

Note that these branches do not leave out any possible transition in ρ. That’s
because 1. all the successors of a V fair

∀ node are covered by one of the branches

since (branch 2) leads the universal node (ui)
∀
nui

or (ui)
∀
nui+1, which can pick

any successor of ui. 2. all the successors of a V fair
∃ node are covered by one of

the branches, since by construction of s, all the successors of ui in ρ are in the
set {succ(ui)} ∪ Ef (ui), where (branch 1) covers the succ(ui) successors, and
(branch 2) covers the Ef (ui) successors since in this case the universal node

(ui)
∀
nui

or (ui)
∀
nui+1 can pick any fair successor of ui.

For ui 6= V fair, ρ′ just takes ui → ui+1.

So ρ′ is well defined, and is a play in LG′s′ that starts from v. Thus, ρ′ is
∃-winning. Observe that if we remove the gadget nodes from ρ′, we get ρ. That
is, the restriction of ρ′ to V , ρ′ |V = ρ.

(i) fair∃(ρ): Observe that for any ρ in G compliant with s, by construction of s,
the only nodes u ∈ V fair

∃ that ρ may not be fair on, are those for which nu = k+1.
So we only need to show that such nodes are seen only finitely often in ρ. Since
ρ|V = ρ′, that is equivalent to showing such a u cannot be seen infinitely often
in its ∃-extension, ρ′. If it is seen infinitely often in ρ′, then regardless of the
gadget u is replaced with, the branch u → uk+1 → u∃k+1 is evoked infinitely
often, signalling the largest priority 2k + 1. Therefore, ρ′ is won by ∀-player,
giving a contradiction. Therefore, we conclude ρ is ∃-fair.

(ii) fair∀(ρ)⇒ ρ ∈ α: Let ρ be ∀-fair. Look at the ∃-extension ρ′ of ρ. Let m be
the largest (even) priority in Inf(ρ′). Due to ρ′ |V = ρ, all we need to show is the
existence of a u ∈ Inf(ρ′ |V ) that has priority m. Then it automatically implies
that the maximum priority in Inf(ρ) is m, and thus ρ is ∃-winning.

We will proceed with proof by contradiction and assume that the priority m
appears only in V gad∩ Inf(ρ′). Now let F be the subgame of LG′s′ that consists of
nodes and edges taken infinitely often in ρ′. Then, priority m appears in V gad∩F .
These gadget nodes must exist in F due to nodes

– u ∈ V fair replaced by existential gadgets, and with nu = m\2 (which corre-
sponds to (branch 2)-1), or

– u ∈ V fair replaced by universal gadgets, and with nu = m\2 − 1 (which
corresponds to (branch 2)-2)

Note that for all such nodes u, (branch 1) of u is also in F . This is because
u → succ(u) is taken infinitely often in ρ. For u ∈ V fair

∃ , this is due to the
construction of s, for u ∈ V fair

∀ , this is due to ρ being ∀-fair (remember, in this
case succ(u) ∈ Ef (u)).
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Next, we will remove from F all priority m gadget nodes (and everything
reachable only from those nodes). That is, we will prune out (branch 2) of all
the nodes that bring in m priority gadget nodes to F . Due to the remaining
(branch 1)s, this pruning does not cause any dead-ends. Let’s call this pruned
subgame of F , H. Observe once more that all plays in H are ∃-winning. However,
the maximum priority in H is m−1. This is due to the remaining (branch 1)s of
the pruned nodes having this priority. This implies that all infinite plays starting
in H get trapped in a subgame H ′ of H that doesn’t have nodes with priority
m− 1. Since non of the nodes in V fair ∩H ′ cause a gadget node with priority m,
non of their branches get pruned. That is, all nodes in H ′ have the same outgoing
edges in H ′ and in F . Then any play that start in H ′ in F , does not leave H ′,
making H ′ exactly the set of nodes seen infinitely often in ρ′, i.e. H ′ = F . This
contradicts our initial assumption that maximum priority seen infinitely often
in ρ′ being m; therefore proving ρ is ∃-winning.

The proof of direction (⇐) is similar to the proof of (⇒), and can be found
in detail in the extended version [10].

Remark 2 (Reduction of parity/> games). In the gadgets from Fig. 4, in order
to play unfairly from a v ∈ V fair

∃ , ∃-player has to take its rightmost branch
and signal priority maxodd, whereas to play unfairly from v ∈ V fair

∀ , ∀-player
has to take the rightmost branch and signal maxeven. Since maxodd > maxeven,
this dynamic ensures mutually unfair plays are ∀-winning. The gadgets for a fair
parity/> game with λ : V → [2k] can be constructed as follows with the addition
of priority 2k+2: Take the gadgets from Fig. 4. In the existential gadget for V fair

∃
add another branch → v∀k+1 → Ef (v) to vk+1 and in the universal gadget for

V fair
∃ add a rightmost branch→ vk+2 → v∀k+2 → Ef (v). In the existential gadget

for V fair
∀ add a rightmost branch → vk+1 → v∃k+1 → Ef (v) and in the universal

gadget for V fair
∀ add another branch → v∃k+1 → Ef (v) to vk+1.

All the newly added gadget nodes have priority 2k+2 and therefore maxeven =
2k+2 > maxodd = 2k+1, which ensures that mutually unfair plays are ∃-winning.
The correctness of the construction follows as a corollary of the reduction of fair
parity/parity games given in the next section.

4.2 Reduction of Fair Parity/Parity Games

In this section, we present a quadratic reduction from fair parity/parity to parity
games. So let G = (A,Parity(λ),Parity(Γ )) where A = (V∃, V∀, E,Ef ) is a fair
game arena with V = V∃ ∪· V∀ and priority functions λ : V → [2k], Γ : V → [d].

The reduction is based on ideas from the previous section, in particular adapt-
ing the basic structure of the introduced gadgets. However, in order to correctly
treat mutually unfair plays according to the additional parity objective Γ , we
annotate game nodes v ∈ V with two memory values p ∈ [d] and b ∈ {∃,∀}.
The former is used to store the maximal priority according to Γ that the play
has recently seen; this value is signalled (and reset after signalling) from time
to time in the reduced game. The value b is used to decide (at certain nodes)
whether the memory value is signalled, or not.
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v, p, bλ(v)

. . . . . .u1

u∃
11 u∀
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i
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E(v, p, b) Ef (v, p, b) E(v, p, b) Ef (v, p, b) E(v, p/1, ∃)

Fig. 5: Gadget for v ∈ V fair
∃ in fair parity/parity games; u abbreviates (v, p, b).

It indicates the player that has last taken the rightmost branch in the gadget
for one of its fair nodes. If this bit keeps flipping between ∃ and ∀ forever, then
both players intuitively insist on keeping control in one of their respective fair
nodes, enabling a mutually unfair play; in the reduced game, the memory content
p is signalled (and then reset to 1) whenever the value flips from ∀ to ∃.

v, p, bλ(v)

. . .u1 uk+1

u∃
11

u2

u∀
22 u∃

23 u∀
k+12k u∃

k+1 2k + 1
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k+2 2k + 2

Ef (v, p, b) E(v, p, b) Ef (v, p, b) E(v, p, b) Ef (v, p, b) E(v, p, ∀)

Fig. 6: Gadget for v ∈ V fair
∀ in fair parity/parity games; u abbreviates (v, p, b).

Formally, the reduction is as follows. The game is based on the set V ×[d]×[1]
of base nodes, where we use [1] to denote {∃,∀}; intuitively, a node (v, p, b) from
this set corresponds to v ∈ V , annotated with memory values p and b as described
above. In order to succinctly refer to the combination of taking a move in G and
updating the memory components, we overload notation and put

E(v, p, b) = {(w, p′, b) ∈ V × [d]× [1] | w ∈ E(v) and p′ = max(p, Γ (v))}
Ef (v, p, b) = {(w, p′, b) ∈ V × [d]× [1] | w ∈ Ef (v) and p′ = max(p, Γ (v))}

for (v, p, b) ∈ V × [d]× [1]. Thus a triple (w, p′, b) is contained in E(v, p, b) if there
is a move (v, w) ∈ E and p′ is the maximum of the previous memory value p
and the current priority Γ (v) at v; in Ef (v, p, b), we require (v, w) ∈ Ef instead.
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In both functions, the argument b is used to explicitly set this component of the
memory to either ∃ or ∀. The reduced game consists of subgames that start at
annotated nodes u = (v, p, b) ∈ V × [d] × [1]. In case that v ∈ V n, the game
just proceeds according to E(v, p, b), with ownership of (v, p, b) determined by
whether v ∈ V∃ or v ∈ V∀; this corresponds to taking a move at a normal node
in G, but updating the memory component p, and keeping the component b
without modifying it. For fair nodes v ∈ V fair, the subgame consists of three
levels, and after these three steps leads back to a node from V × [d]× [1]. Fig. 5
and 6 show the subgames that start at (v, b, p) ∈ V × [d]× [1] such that v ∈ V fair

∃
and v ∈ V fair

∀ , respectively, adapting the existential gadget for v ∈ V fair
∃ and the

universal one for v ∈ V fair
∀ .

The rightmost branches in these gadgets overwrite the last component b with
∃ and ∀, respectively. The colored values in the right-most branch in the Fig. 5
gadget depend on the value of b. If b = ∀ (corresponding to ∀-player being the
one that last has taken the right-most branch), then the priority 2k + 2 + p
is signalled and the memory value p is reset to 1; if b = ∃ (corresponding to
∃-player having taken the right-most branch last), then the priority 2k + 1 is
signalled and the memory value p does not change.

Theorem 2. Let G = (A,Parity(λ),Parity(Γ )) where A = (V∃, V∀, E,Ef ) is a
fair game arena, V = V∃ ∪· V∀ and λ : V → [2k] and Γ : V → [d] are priority
functions. Then there exists a parity game G′ with 6nd(k+2) nodes and 2k+2+d
priorities with set V × [d] × [1] of base nodes such that for all v ∈ V , ∃-player
wins v in G if and only if ∃-player wins (v, 1,∃) in G′.

Proof (Sketch). We construct the parity game G′ following the above descrip-
tion, using the gadgets from Fig. 5 and 6 to treat fair nodes. The detailed con-
struction and the correctness proof can be found in the extended version [10].

We obtain the following bound on strategy sizes for fair parity/parity games.

Lemma 1. Let G be a fair parity/parity game on n nodes. Then for both players
the memory requirement of winning strategies in G is at most n2·nn. Furtermore,
for each player a family of fair parity/⊥ games (Gn)n∈N exists such that for all
n, every winning strategy for the respective player requires memory at least 2n.

Proof (Sketch). For the upper bound, we note that in a winning i-strategy for
a fair parity/parity game, as constructed in the proof of Thm. 2, the nodes in
Vi \ V fair have strategies with quadratic memory, but the nodes in V fair

i may
have to traverse all their fair successors, and possibly one more successor. In the
worst case, this requires an additional local memory of |Ef (v)|+ 1 ≤ n for each
v ∈ V fair

i , and causes an exponential blowup in the overall memory required.
For the lower bound, we consider the case for ∃-player; the result for ∀-player

is obtained by switching the player’s roles. Define the family (Gn)n∈N of games
by letting Gn (for n ∈ N) have exactly n+1 nodes, one node x owned by ∀-player
and n nodes yi owned by ∃-player; let there be an edge from x to any node yi and
two fair edges from any node yi back to x. Let all nodes have priority 0. Then



Fair ω-Regular Games 17

any winning ∃-strategy in Gn necessarily is ∃-fair. There is a fair ∃-strategy s
that uses one bit as local memory for each node yi ∈ V fair

∃ , and therefore uses
memory of overall size 2n. The claim follows since there is no ∃-fair strategy that
uses less memory than s, which is shown by induction on n. ut

5 Fixpoint Characterization of Winning Regions

In this section, we will characterize the winning regions in fair games with
parity conditions by means of fixpoint expressions. Thereby we provide an al-
ternative, symbolic route to solve such games, rather than by reducing to parity
games. We start by briefly recalling details on Boolean fixpoint expressions.

Fixpoint expressions and fixpoint games. Let U be a finite set, let o be a
fixed number and let f : P(U)o → P(U) be a monotone function, that is, assume
that whenever we have sets Xj , Yj ⊆ U such that Xj ⊆ Yj for all 1 ≤ j ≤ o, then
f(X1, . . . , Xo) ⊆ f(Y1, . . . , Yo). Then f and o induce the fixpoint expression

e = ηoXo. ηo−1Xo−1. . . . .νX2. µX1. f(X1, . . . , Xo) (5)

where ηi = ν if i is even and ηi = µ if i is odd. We define the semantics
of fixpoint expressions using parity games. Given a fixpoint expression e, the
associated fixpoint game Ge = (W∃,W∀, E,Parity(κ)) for the priority function
κ : W∃ ∪W∀ → [o] is the following parity game. We put W∃ = U × {1, . . . , o},
W∀ = P(U)o. Moves and priorities are defined by

E(v, i) = {Z ∈W∀ | v ∈ f(Z)} κ(v, i) = i

E(Z) = {(v, i) | v ∈ Zi} κ(Z) = 0

for (v, i) ∈W∃ and Z = (Z1, . . . , Zo) ∈W∀. Then we say that v ∈ U is contained
in e (denoted v ∈ e) if and only if ∃-player wins the node (v, 1) in Ge.

Remark 3. The above game semantics for fixpoint expressions has been shown to
be equivalent to the more traditional Knaster-Tarski semantics [3]; the cited work
takes place in a more general setting and therefore uses slightly more verbose
parity games.

Next we present a fixpoint characterization of the winning regions in fair
games of the form G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair
game arena, V = V∃ ∪· V∀ and λ : V → [2k] a priority function. To be able
to write fixpoint expressions over such games we define monotone operators on
subsets of V by putting

♦X = {v ∈ V | E(v) ∩X 6= ∅} �X = {v ∈ V | E(v) ⊆ X}
♦fX = {v ∈ V | Ef (v) ∩X 6= ∅} �fX = {v ∈ V | Ef (v) ⊆ X}

for X ⊆ V and also put Cpre(X) = (V∃∩♦X)∪ (V∀∩�X). Then Cpre(X) is the
set of nodes from which ∃-player can force the game to reach a node from X in
one step. Also, we define Ci = {v ∈ V | λ(v) = i} for 1 ≤ i ≤ 2k.
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Using this notation, we define a function parity : P(V )2k → P(V ) by putting

parity(X1, . . . , X2k) := (C1 ∩ Cpre(X1)) ∪ . . . ∪ (Ck ∩ Cpre(X2k))

for (X1, . . . , X2k) ⊆ P(V )2k. This function is monotone and it is well-known
(see e.g [23]) that the fixpoint induced by parity characterizes the winning region
in parity games with priorities 1 through 2k. This formula will still apply to
‘normal’ nodes V n in the fixpoint characterization of fair parity games.

We follow the gadget constructions from Fig. 4 (using their existential ver-
sions) to define the following additional functions. For 1 ≤ i < k, put

Apre∃(Xi, Xi+1) = ♦Xi ∩�fXi+1 Apre∀(Xi, Xi+1) = ♦fXi ∩�Xi+1,

encoding nodes (v∀, 2i) for v ∈ V fair
∃ and v ∈ V fair

∀ , respectively (here, Apre
stands for alternative predecessor function, as it encodes the additional ∀-choice
of whether a fair edge is to be taken). Then, we let Ip = {i | i odd, p < i < 2k}
denote the set of odd priorities that lie strictly between p and 2k, and put

φfair∃,p =

{⋃
i∈Ip Apre∃(Xi, Xi+1) ∪ ♦X2k+1 p is even⋃
i∈Ip Apre∃(Xi, Xi+1) ∪ ♦X2k+1 ∪�f Yp p is odd,

φfair∀,p =

{⋃
i∈Ip Apre∀(Xi, Xi+1) p is even⋃
i∈Ip Apre∀(Xi, Xi+1) ∪�Yp p is odd

Using this notation, the winning region for the existential player in fair
parity/⊥ games with priorities 1 through 2k can be characterized by the fix-
point expression induced by 2k + 1 and the function χ that is defined to map
(X1, . . . , X2k+1) ∈ P(V )2k+1 → P(V ) to the set

χ(X1, . . . , X2k+1) =(V n ∩ parity)∪

(V fair
∃ ∩

⋃
i∈[2k+1]

Ci ∩ φfair∃,i)∪

(V fair
∀ ∩

⋃
i∈[2k+1]

Ci ∩ φfair∀,i)

The function χ therefore treats normal nodes from V n in the same way as nodes
in standard parity games are treated, but for fair nodes with priority i, the
functions φfair∃,i and φfair∀,i are used to encode the respective gadget construction.
The full fixpoint expression then is

e = µX2k+1. νX2k. µX2k−1 . . . νX2. µX1. χ(X1, . . . , Xk) (6)

The first result of this section is that the fixpoint expression (6) characterizes
the winning region of ∃-player in fair parity/⊥ games.

Theorem 3. Let G = (A,Parity(λ),⊥) where A = (V∃, V∀, E,Ef ) is a fair
game arena, V = V∃ ∪· V∀ and λ : V → [2k] is the priority function. Then the
fixpoint expression given in (6) characterizes Win∃(G).
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Proof (Sketch). The proof is by mutual transformation of winning strategies in
G and in the semantic game Ge for (6). The full proof can be found in [10].

We note that for ∀-fair parity games (V fair
∃ = ∅), Eq. (6) instantiates to the

fixpoint characterization given in [4]; it follows that the parity game reductions
from Sec. 4 apply to the one-sided fair parity games considered in [4] as well.

For fair parity/parity games, we obtain a similar fixpoint characterization,
encoding the reduction to parity games presented in Subsec. 4.2 along the lines
of Figures 5 and 6. Here, all involved functions work over (subsets of) the set V ×
[d]× [1] of base nodes, consisting of game nodes that are annotated with memory
values. The definition of the fixpoint expression for fair parity/parity games
is straight-forward but somewhat technical since the updating and resetting
mechanisms for the memory values have to be accommodated. For brevity, we
refrain from elaborating the required notation and the full fixpoint expression
here, and state just the main result that yields a symbolic fixpoint algorithm for
fair parity/parity games; full details can be found in the extended version [10].

Theorem 4. Let G = (A,Parity(λ),Parity(Γ )) where A = (V∃, V∀, E,Ef ) is
a fair game arena, V = V∃ ∪· V∀ and λ : V → [2k], Γ : V → [d] are priority
functions. Then there is a fixpoint expression over V × [d]× [1] with alternation
depth 2(k + 1) + d that characterizes Win∃(G).

Proof (Sketch). Again the proof is by mutual transformation of winning strate-
gies in G and in the semantic game Ge for the fixpoint expression. The full proof
can be found in the extended version [10].

6 Conclusion

We introduce two-player games with local transition-fairness constraints for both
players, allowing two objectives α and β to decide the winner of plays in which
both players play fair and both players play unfair, respectively. We show the de-
terminacy of this class of games in the case that α and β are ω-regular objectives.
In the special case that both α and β are parity conditions, there is a reduction
to standard parity games with blow-up quadratic in the number of priorities
used by α and β; if β = > or β = ⊥, the reduction becomes even linear. We
present both enumerative and symbolic methods to realize this reduction; in the
process, we also obtain an exponential tight bound on the memory required by
winning strategies in fair parity/parity games. We expect that the central idea
behind the reduction generalizes from parity objectives to more general settings
such as fair games in which α and β are Rabin, Streett, or even Emerson-Lei
conditions, but leave this issue for future work.
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