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Abstract. Emerson-Lei conditions have recently attracted attention due
to both their succinctness and their favorable closure properties. In the
current work, we show how infinite-duration games with Emerson-Lei
objectives can be analyzed in two different ways. First, we show that the
Zielonka tree of the Emerson-Lei condition naturally gives rise to a new
reduction to parity games. This reduction, however, does not result in
optimal analysis. Second, we show based on the first reduction (and the
Zielonka tree) how to provide a direct fixpoint-based characterization of
the winning region. The fixpoint-based characterization allows for sym-
bolic analysis. It generalizes the solutions of games with known winning
conditions such as Büchi, GR[1], parity, Streett, Rabin and Muller ob-
jectives, and in the case of these conditions reproduces previously known
symbolic algorithms and complexity results.

We also show how the capabilities of the proposed algorithm can be
exploited in reactive synthesis, suggesting a new expressive fragment of
LTL that can be handled symbolically. Our fragment combines a safety
specification and a liveness part. The safety part is unrestricted and
the liveness part allows to define Emerson-Lei conditions on occurrences
of letters. The symbolic treatment is enabled due to the simplicity of
determinization in the case of safety languages and by using our new
algorithm for game solving. This approach maximizes the number of
steps solved symbolically in order to maximize the potential for efficient
symbolic implementations.

1 Introduction

Infinite-duration two-player games are a strong tool that has been used, notably,
for reactive synthesis from temporal specifications [38]. Many different winning
conditions are considered in the literature.

Emerson-Lei (EL) conditions [21] were initially suggested in the context of au-
tomata but are among the most general (regular) winning conditions considered
for such games. They succinctly express general liveness properties by encod-
ing Boolean combinations of events that should occur infinitely or finitely often.
Automata and games in which acceptance or winning is defined by Emerson-Lei
conditions have garnered attention in recent years [35,40,27,25], in particular
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because of their succinctness and good compositionality properties (Emerson-
Lei objectives are closed under conjunction, disjunction, and negation). In this
work, we show how infinite-duration two-player games with Emerson-Lei winning
conditions can be solved symbolically.

It has been established that solving Emerson-Lei games is PSpace-complete
and that an exponential amount of memory may be required by winning strate-
gies [25]. Zielonka trees are succinct tree-representations of Muller objectives [47].
They have been used to obtain tight bounds on the amount of memory needed
for winning in Muller games [18], and can also be applied to analyze Emerson-
Lei objectives and games. One indirect way to solve Emerson-Lei games is by
transformation to equivalent parity games using later-appearance-records [25],
and then solving the resulting parity games. Another, more recent, indirect ap-
proach goes through Rabin games by first extracting history-deterministic Rabin
automata from Zielonka trees and then solving the resulting Rabin games [12].
Both these indirect solution methods are enumerative by nature. Here, we give
a direct symbolic algorithmic solution for Emerson-Lei games. We show how the
Zielonka tree allows to directly encode the game as a parity game. Furthermore,
building on this reduction, we show how to construct a fixpoint equation sys-
tem that captures winning in the game. As usual, fixpoint equation systems are
recipes for game solving algorithms that manipulate sets of states symbolically.
To the best of our knowledge, we thereby give the first description of a fully
symbolic algorithm for the solution of Emerson-Lei games.

The algorithm that we obtain in this way is adaptive in the sense that the
nesting structure of recursive calls is obtained directly from the Zielonka tree
of the given winning objective. As the Zielonka tree is specific to the objective,
this means that the algorithm performs just the fixpoint computations that are
required for that specific objective. In particular, our algorithm instantiates to
previously known fixpoint iteration algorithms in the case that the objective is
a (generalized) Büchi, GR[1], parity, Streett, Rabin or Muller condition, repro-
ducing previously known algorithms and complexity results. As we use fixpoint
iteration, the instantiation of our algorithm to parity game solving is not di-
rectly a quasipolynomial algorithm. In the general setting, the algorithm solves
unrestricted Emerson-Lei games with k colors, m edges and n nodes in time
O(k! ·m · nk) and yields winning strategies with memory O(k!).

We apply our symbolic solution of Emerson-Lei games to the automated
construction of safe systems. The ideas of synthesis of reactive systems from
temporal specifications go back to the early days of computer science [14]. These
concepts were modernized and connected to linear temporal logic (LTL) and
finite-state automata by Pnueli and Rosner [38]. In recent years, practical ap-
plications in robotics are using this form of synthesis as part of a framework
producing correct-by-design controllers [28,6,44,32,34].

A prominent way to extend the capacity of reasoning about state spaces is by
reasoning symbolically about sets of states/paths. In order to apply this approach
to reactive synthesis, different fragments of LTL that allow symbolic game anal-
ysis have been considered. Notably, the GR[1] fragment has been widely used for
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the applications in robotics mentioned above [37,7]. But also larger fragments
are being considered and experimented with [20,19,41]. Recently, De Giacomo
and Vardi suggested that similar advantages can be had by changing the usual
semantics of LTL from considering infinite models to finite models (LTLf ) [22].
The complexity of the problem remains doubly-exponential, however, symbolic
techniques can be applied. As models are finite, it is possible to use the classical
subset construction (in contrast to Büchi determinization), which can be rea-
soned about symbolically. Furthermore, the resulting games have simple reach-
ability objectives. This approach with finite models is used for applications in
planning [11,10] and robotics [6].

Here, we harness our symbolic solution to Emerson-Lei games to suggest a
large fragment of LTL that can be reasoned about symbolically. We introduce the
Safety and Emerson-Lei fragment whose formulas are conjunctions φsafety∧φEL

between an (unrestricted) safety condition and an (unrestricted) Emerson-Lei
condition defined in terms of game states. This fragment generalizes GR[1] and
the previously mentioned works in [20,19,41]. We approach safety and Emerson-
Lei LTL synthesis in two steps: first, consider only the safety part and convert it
to a symbolic safety automaton; second, reason symbolically on this automaton
by solving Emerson-Lei games using our novel symbolic algorithm.

φsafety ∧ φEL Dφsafety

(Symbolic Safety)

synthesis game Gφsafety∧φEL

φEL

(Emerson-Lei objective)

We show that realizability of a safety and Emerson-Lei formula φsafety∧φEL can
be checked in time 2O(m·logm·2n), where n = |φsafety| and m = |φEL|. The overall
procedure therefore is doubly-exponential in the size of the safety part but only
single-exponential in the size of the liveness part; notably, both the automaton
determinization and game solving parts can be implemented symbolically.

We begin by recalling Emerson-Lei games and Zielonka trees in Section 2,
and also prove an upper bound on the size of Zielonka trees. Next we show how
to solve Emerson-Lei games by fixpoint computation in Section 3. In Section 4
we formally introduce the safety and Emerson-Lei fragment of LTL and show
how to construct symbolic games with Emerson-Lei objectives that characterize
realizability and that can be solved using the algorithm proposed in Section 3.
Omitted proofs and further details can be found in the full version of this pa-
per [23].

2 Emerson-Lei Games and Zielonka Trees

We recall the basics of Emerson-Lei games [25] and Zielonka trees [47], and also
show an apparently novel bound on the size of Zielonka trees; previously, the
main interest was on the size of winning strategies induced by Zielonka trees,
which is smaller [18].
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Emerson-Lei games. We consider two-player games played between the exis-
tential player ∃ and its opponent, the universal player ∀. A game arena A =
(V, V∃, V∀, E) consists of a set V = V∃ ⊎ V∀ of nodes, partitioned into sets of
existential nodes V∃ and universal nodes V∀, and a set E ⊆ V × V of moves;
we put E(v) = {v′ ∈ V | (v, v′) ∈ E} for v ∈ V . A play π = v0v1 . . . then is a
sequence of nodes such that for all i ≥ 0, (vi, vi+1) ∈ E; we denote the set of
plays in A by plays(A). A game G = (A,α) consists of a game arena A together
with an objective α ⊆ plays(A).

A strategy for the existential player is a function σ : V ∗ · V∃ → V such
that for all π ∈ V ∗ and v ∈ V∃ we have (v, σ(πv)) ∈ E. A play v0v1 . . . is said
to be compliant with strategy f if for all i ≥ 0 such that vi ∈ V∃ we have
vi+1 = σ(v0 . . . vi). Strategy σ is winning for the existential player from node
v ∈ V if all plays starting in v that are compliant with σ are contained in α;
then we say that the existential player wins v. We denote by W∃ the winning
region for the existential player (that is, the set of nodes that the existential
player wins).

In Emerson-Lei games, each node is colored by a set of colors, and the ob-
jective α is induced by a formula that specifies combinations of colors that have
to be visited infinitely often, or are allowed to be visited only finitely often.
Formally, we fix a set C of colors and use Emerson-Lei formulas, that is, finite
positive Boolean formulas φ ∈ B+({Inf c,Fin c}c∈C) over atoms of the shape Inf c
or Fin c, to define sets of plays. The satisfaction relation |= for a set D ⊆ C of
colors and an Emerson-Lei formula φ (written D |= φ) is defined in the usual
inductive way; D will represent the set of colors that are visited infinitely often
by plays. E.g. the clauses for atoms Inf c and Fin c are

D |= Inf c⇔ c ∈ D D |= Fin c⇔ c /∈ D

Consider a game arena A = (V, V∃, V∀, E). An Emerson-Lei condition is given
by an Emerson-Lei formula φ together with a coloring function γ : V → 2C that
assigns a (possibly empty) set γ(v) of colors to each node v ∈ V . The formula φ
and the coloring function γ together specify the objective

αγ,φ =
{
v0v1 . . . ∈ plays(A)

∣∣∣{c ∈ C | ∀i. ∃j ≥ i. c ∈ γ(vj)} |= φ
}

Thus a play π = v0v1 . . . is winning for the existential player (formally: π ∈ αγ,φ)
if and only if the set of colors that are visited infinitely often by π satisfies φ.
Below, we will also make use of parity games, denoted by (V, V∃, V∀, E,Ω) where
Ω : V → {1, . . . , 2k} (for k ∈ N) is a priority function, assigning priorities to
game nodes. The objective of the existential player then is that the maximal
priority that is visited infinitely often is an even number. Parity games are an
instance of Emerson-Lei games, obtained with set C = {p1, . . . , p2k} of colors, a
coloring function that assigns exactly one color to each node and with objective

Parity(p1, . . . , p2k) =
∨
i even

(
Inf pi ∧

∧
i<j≤2k Fin pj

)
.

Similarly, Emerson-Lei objectives directly encode (combinations of) other stan-
dard objectives, such as Büchi, Rabin, Streett or Muller conditions:
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— Inf f Büchi(f)
—

∨
1≤i≤k(Inf ei ∧ Fin fi) Rabin(e1, f1, . . . , ek, fk)

—
∧

1≤i≤k(Fin ri ∨ Inf gi) Streett(r1, g1, . . . , rk, gk)

—
∨
D∈U (

∧
c∈D Inf c ∧

∧
d∈C\D Fin d) Muller(U ⊆ 2C)

Zielonka Trees. We introduce a succinct encoding of the algorithmic essence of
Emerson-Lei objectives in the form of so-called Zielonka trees [47,18].

Definition 1. The Zielonka tree for an Emerson-Lei formula φ over set C of
colors is a tuple Zφ = (T,R, l) where (T,R ⊆ T × T ) is a tree and l : T → 2C is
a labeling function that assigns sets l(t) of colors to vertices t ∈ T . We denote
the root of (T,R) by r. Then Zφ is defined to be the unique tree (up to reordering
of child vertices) that satisfies the following constraints.

– The root vertex is labeled with C, that is, l(r) = C.
– Each vertex t has exactly one child vertex tD (labeled with l(tD) = D) for

each set D of colors that is maximal in {D′ ⊊ l(t) | D′ |= φ⇔ l(t) ̸|= φ}.

For s, t ∈ T such that s is an ancestor of t, we write s ≤ t. Given a vertex s ∈ T ,
we denote its set of direct successors by R(s) = {t ∈ T | (s, t) ∈ R} and the set
of leafs below it by L(s) = {t ∈ T | s ≤ t and R(t) = ∅}; we write L for the set
of all leafs. We assume some fixed total order ⪯ on T that respects ≤; this order
induces a numbering of T . A vertex t in the Zielonka tree is said to be winning
if l(t) |= φ, and losing otherwise. We let T□ and T⃝ denote the sets of winning
and losing vertices in Zφ, respectively. Finally, we assign a level lev(t) to each
vertex t ∈ T so that lev(r) = |C|, and lev(s′) = lev(s)− 1 for all (s, s′) ∈ R.

Example 2. As mentioned above, Emerson-Lei games and Zielonka trees instanti-
ate naturally to games with, e.g., Büchi, generalized Büchi, GR[1], parity, Rabin,
Streett and Muller objectives; for brevity, we illustrate this for selected examples
here (more instances can be found in [23]).

1. Generalized Büchi condition: Given k colors f1, . . . , fk, the winning objective
φ =

∧
1≤i≤k Inf fi expresses that all colors are visited infinitely often (not

necessarily simultaneously); the induced Zielonka tree is depicted below with
boxes and circles representing winning and losing vertices, respectively.

s0 f1, . . . , fk

. . .s1f2, . . . , fk sk f1, . . . , fk−1

2. Streett condition: The vertices in the Zielonka tree for Streett condition given
by φ =

∧
1≤i≤k (Fin ri ∨ Inf gi) are identified by duplicate-free lists L of

colors (each entry being ri or gi for some 1 ≤ i ≤ k) that encode the vertex
position in the tree. Vertex L has label l(L) = C \ L and is winning if and
only if |L| is even. Winning vertices L have one child vertex L : gj for each
gj ∈ C \ L resulting in |C \ L|/2 many child vertices. Losing vertices L have
the single child vertex L : rj where the last entry last(L) in L is gj . All leafs
are winning and are labeled with ∅. The tree has height 2k and 2(k!) vertices.
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3. To obtain a Zielonka tree that has branching at both winning and losing
vertices, we consider the objective φEL = (Fin a ∨ Inf b) ∧ ((Fin a ∨ Fin d) ∧
Inf c). This property can be seen as the conjunction of a Streett pair (a, b)
with two disjunctive Rabin pairs (c, a) and (c, d), altogether stating that c
occurs infinitely often and a occurs finitely often or b occurs infinitely often
and d occurs finitely often. Below we depict the induced Zielonka tree.

1 a, b, c, d

2a, b, c 3b, c, d

5 a, c4 a, b 6

b, d

7 c

8 ∅

Lemma 3. The height and the branching width of Zφ are bounded by |C| and
2|C| respectively; the number of vertices in Zφ is bounded by e|C|! (where e is
Euler’s number).

3 Solving Emerson-Lei Games

We now show how to extract from the Zielonka tree of an Emerson-Lei objective
a fixpoint characterization of the winning regions of an Emerson-Lei game. Solv-
ing the game then reduces to computing the fixpoint, yielding a game solving
algorithm that works by fixpoint iteration and hence is directly open to sym-
bolic implementation. The algorithm is adaptive in the sense that the structure
of its recursive calls is extracted from the Zielonka tree and hence tailored to the
objective. As a stepping stone towards obtaining our fixpoint characterization,
we first show how Zielonka trees can be used to reduce Emerson-Lei games to
parity games that are structured into tree-like subgames.

Recall that G = (V, V∃, V∀, E, αγ,φ) is an Emerson-Lei game and that the
associated Zielonka tree is Zφ = (T,R, l) with set L of leaves, sets T⃝ and T□
of winning and losing vertices, respectively, and with root r. Following [18], we
define the anchor vertex of v ∈ V and t ∈ T by

anchor(v, t) = max≤{s ∈ T | s ≤ t ∧ γ(v) ⊆ l(s)};

it is the lower-most ancestor of t that contains γ(v) in its label.

A novel reduction to parity games. Intuitively, our reduction annotates nodes in
G with leaves of Zφ that act as a memory, holding information about the order
in which colors have been visited. In the reduced game, the memory value t ∈ L
is updated according to a move from v to w in G by playing a subgame along
the Zielonka tree. This subgame starts at the anchor vertex of v and t and the
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players in turn pick child vertices, with the existential player choosing the branch
that is taken at vertices from T⃝ and the universal player choosing at vertices
from T□.

1 Once this subgame reaches a leaf t′ ∈ L, the memory value is updated
to t′ and another step of G is played. Due to the tree structure of Zφ every play
in the reduced game (walking through the Zielonka tree in the described way,
repeatedly jumping from a leaf to an anchor vertex and then descending to a
leaf again) has a unique topmost vertex from T that it visits infinitely often;
by the definition of anchor vertices, the label of this vertex corresponds to the
set of colors that is visited infinitely often by the according play of G. A parity
condition can be used to decide whether this vertex is winning or losing.

Formally, we define the parity game PG = (V ′, V ′
∃, V

′
∀, E

′, Ω), played over
V ′ = V × T , as follows. Nodes (v, t) ∈ V ′ are owned by the existential player if
either t is not a leaf, and it is not a winning vertex (t /∈ L and t ∈ T⃝), or if t
is a leaf and, in G, v is owned by the existential player (t ∈ L and v ∈ V∃); all
other nodes are owned by the universal player. Moves and priorities are defined
by

E′(v, t) =

{
{v} ×R(t) t /∈ L

E(v)× {anchor(v, t)} t ∈ L
Ω(v, t) =

{
2 · lev(t) t ∈ T□

2 · lev(t) + 1 t ∈ T⃝

for (v, t) ∈ V ′. Thus from (v, t) such that t is a leaf (t ∈ L), the owner of v
picks a move (v, w) ∈ E and the game continues with (w, anchor(v, t)). From
(v, t) such that t is not a leaf (t /∈ L), the owner of t picks a child t′ ∈ R(t) of t
in the Zielonka tree and the game continues with (v, t′), leaving the game node
component v unchanged. Therefore, plays in PG correspond to plays from G
that are annotated with memory values t ∈ T that are updated according to the
colors that are visited (by moving to the anchor vertex); in addition to that, the
owners of vertices in the Zielonka Tree are allowed to decide (by selecting one of
the child vertices) with which colors they intend to satisfy the sub-objectives that
are encoded by vertex labels. The priority function Ω then is used to identify the
top-most anchor vertex s that is visited infinitely often in a play of PG, deciding
a play to be winning if and only if s is a winning vertex (t ∈ T□). We note that
|V ′| = |V | · |T | ≤ |V | · e|C|! by Lemma 3.

Theorem 4. For all v ∈ V , the existential player wins v in the Emerson-Lei
game G if and only if the existential player wins (v, r) in the parity game PG.

This reduction yields a novel indirect method to solve Emerson-Lei games
with n nodes and k colors by solving parity games with n · ek! nodes and 2k
priorities; by itself, this reduction does not improve upon using later appearance
records [25]. However, the game PG consists of subgames of particular tree-like
shapes. The remainder of this section is dedicated to showing how the special
structure of PG allows for direct symbolic solution by solving equivalent systems
of fixpoint equations over V (rather than over the exponential-sized set V ′).

1 Players choose from vertices where they lose, which explains the notation T□ and
T⃝.
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Fixpoint equation systems. Recall (from e.g. [4]) that a hierarchical system of
fixpoint equations is given by equations

Xi =ηi fi(X1, . . . , Xk)

for 1 ≤ i ≤ k, where ηi ∈ {GFP, LFP} and the fi : P(V )k → P(V ) are monotone
functions, that is, fi(A1, . . . , Ak) ⊆ fi(B1, . . . , Bk) whenever Aj ⊆ Bj for all
1 ≤ j ≤ k. As we aim to use fixpoint equation systems to characterize winning
regions of games, it is convenient to define the semantics of equation systems also
in terms of games, as proposed in [4]. For a system S of k fixpoint equations,
the fixpoint game GS = (V, V∃, V∀, E,Ω) is a parity game with sets of nodes
V∃ = V×{1, . . . , k} and V∀ = P(V )k. The set of edges E and the priority function
Ω : V → {0, . . . , 2k − 1} are defined, for (v, i) ∈ V∃ and Ā = (A1, . . . , Ak) ∈ V∀,
by

E(v, i) = {Ā ∈ V∀ | v ∈ fi(Ā)} E(Ā) = {(v, i) ∈ V∃ | v ∈ Ai}

and by Ω(v, i) = 2(k− i)+ ιi and Ω(Ā) = 0, where ιi = 1 if ηi = LFP and ιi = 0
if ηi = GFP. We say that v is contained in the solution of variable Xi (denoted
by v ∈ JXiK) if and only if the existential player wins the node (v, i) in GS .
In order to show containment of a node v in the solution of Xi, the existential
player thus has to provide a solution (A1, . . . , Ak) ∈ V∀ for all variables such that
v ∈ fi(A1, . . . , Ak); the universal player in turn can challenge a claimed solution
(A1, . . . , Ak) by picking some 1 ≤ i ≤ k and v ∈ Ai and moving to (v, i). The
game objective checks whether the dominating equation in a play (that is, the
equation with minimal index among the equations that are evaluated infinitely
often in the play) is a least or a greatest fixpoint equation.

Baldan et al. have shown in [4] that this game characterization is equivalent to
the more traditional Knaster-Tarski-style definition of the semantics of fixpoint
equation systems in terms of nested fixpoints of the involved functions fi.

To give a flavor of the close connection between fixpoint equation systems
and winning regions in games, we recall that for a given set V of nodes, the
controllable predecessor function CPre : 2V → 2V is defined, for X ⊆ V , by

CPre(X) = {v ∈ V∃ | E(v) ∩X ̸= ∅} ∪ {v ∈ V∀ | E(v) ⊆ X}.

Example 5. Given a Büchi game (V, V∃, V∀, E, Inf f) with coloring function γ :
V → 2{f}, the winning region of the existential player is the solution of the
equation system

X1 =GFP X2 X2 =LFP (f ∩ CPre(X1)) ∪ (f ∩ CPre(X2))

where f = {v ∈ V | γ(v) = {f}} and f = V \ f .

Our upcoming fixpoint characterization of winning regions in Emerson-Lei
games uses the following notation that relates game nodes with anchor vertices
in the Zielonka tree.
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Definition 6. For a set D ⊆ C of colors, and ▷◁ ∈ {⊆, ̸⊆} we put γ−1
▷◁D = {v ∈

V | γ(v) ▷◁ D}. For s, t ∈ T such that s < t (that is, s is an ancestor of t in
Zφ), we define

ancst = γ−1
⊆l(s) ∩ γ

−1
̸⊆l(st)

where st is the child vertex of s that leads to t; we also put anctt = γ−1
⊆l(t).

Note that for fixed t ∈ T and v ∈ V , there is a unique s ∈ T such that s ≤ t
and v ∈ ancst (possibly, s = t); this s is the anchor vertex of t at v.

Next, we present our fixpoint characterization of winning in Emerson-Lei
games, noting that it closely follows the definition of PG.

Definition 7 (Emerson-Lei equation system). We define the system Sφ of
fixpoint equations for the objective φ by putting

Xs =ηs


⋃
t∈R(s)Xt R(s) ̸= ∅, s ∈ T⃝⋂
t∈R(s)Xt R(s) ̸= ∅, s ∈ T□⋃
s′≤s

(
ancs

′

s ∩ CPre(Xs′)
)

R(s) = ∅

for s ∈ T . For every t ∈ T , we use Xt to refer to the variable Xi where i is the
index of t according to ⪯ and similarly for ηt. Furthermore, ηs = GFP if s ∈ T□
and ηs = LFP if s ∈ T⃝.

Example 8. Instantiating Definition 7 to the Büchi objective φ = Inf f yields
exactly the equation system given in Example 5. Revisiting the objectives from
Example 2, we obtain the following fixpoint characterizations (further examples
can be found in [23]).

1. Generalized Büchi condition:

Xs0 =GFP

⋂
1≤i≤kXsi Xsi =LFP (ancs0si ∩ CPre(Xs0)) ∪ (ancsisi ∩ CPre(Xsi))

where ancs0si = γ−1
⊆C ∩ γ−1

̸⊆C\{fi} = {v ∈ V | fi ∈ γ(v)} and ancsisi = γ−1
⊆C\{fi}.

2. Streett condition:

XL =ηL


⋂
gj /∈LXL:gj |L| even, |L| < 2k

XL:rj |L| odd, last(L) = gj

(anc
[]
L ∩ CPre(X[])) ∪ . . . ∪ (ancLL ∩ CPre(XL)) |L| = 2k

where ηL = GFP if |L| is even and ηL = LFP if |L| is odd. Here, ancKL =
γ−1
⊆C\K ∩ γ−1

̸⊆C\I for K ̸= L and I = KL, and ancLL = γ−1
⊆∅ , both for L such that

|L| = 2k.
3. The equation system associated to the Zielonka tree for the complex objective
φEL from Example 2.3 is as follows, where we use a formula over the colors
to denote the set of vertices whose label satisfies the formula. For example,
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b ∧ ¬d corresponds to vertices whose set of colors contains b but does not
contain d.

X1 =LFP X2 ∪X3 X2 =GFP X4 ∩X5 X3 =GFP X6 X5 =LFP X7 X7 =GFP X8

X4 =LFP (¬c ∧ ¬d ∩ Cpre(X4)) ∪ (c ∧ ¬d ∩ Cpre(X2)) ∪ (d ∩ Cpre(X1))

X6 =LFP (¬a ∧ ¬c ∩ Cpre(X6)) ∪ (¬a ∧ c ∩ Cpre(X3)) ∪ (a ∩ Cpre(X1))

X8 =LFP (¬a ∧ ¬b ∧ ¬c ∧ ¬d ∩ Cpre(X8)) ∪ (¬a ∧ ¬b ∧ c ∧ ¬d ∩ Cpre(X7))∪
(a ∧ ¬b ∧ ¬d ∩ Cpre(X5)) ∪ (b ∧ ¬d ∩ Cpre(X2)) ∪ (d ∩ Cpre(X1)),

Theorem 9. Referring to the equation system from Definition 7 and recalling
that r is the root of the Zielonka tree Zφ, the solution of the variable Xr is the
winning region of the existential player in the Emerson-Lei game G.

By Theorem 4, it suffices to mutually transform winning strategies in PG and
the fixpoint game GSφ

for the equation system Sφ from Definition 7.
Given the fixpoint characterization of winning regions in Emerson-Lei games

with objective φ in Definition 7, we obtain a fixpoint iteration algorithm that
computes the solution of Emerson-Lei games. The algorithm is by nature open
to symbolic implementation. The main function is recursive, taking as input one
vertex s ∈ T of the Zielonka tree Zφ and a list l of subsets of the set V of nodes,
and returns a subset of V as result. For calls Solve(s, ls), we require that the
argument list ls contains exactly one subset Xs′ of V for each ancestor s′ of s
in the Zielonka tree (with s′ < s).

Algorithm 1 Solve(s, ls)

if s ∈ T⃝ then Xs ← ∅ else Xs ← V ▷ Initialize variable Xs for lfp/gfp
W ← V \Xs

while Xs ̸= W do ▷ Compute fixpoint
W ← Xs

if R(s) ̸= ∅ then ▷ Case: s is not a leaf in Zφ

for t ∈ R(s) do
U ← Solve(t, ls : W ) ▷ Recursively solve for t
if s ∈ T⃝ then Xs ← Xs ∪ U

else Xs ← Xs ∩ U
end for

else ▷ Case: s is a leaf in Zφ

Y ← ∅
for t ≤ s do

U ← ancts ∩ CPre((ls : W )(t)) ▷ Compute one-step attraction w.r.t. s
Y ← Y ∪ U

end for
Xs ← Y

end if
end while
return Xs ▷ Return stabilized set Xs as result
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Lemma 10. For all v ∈ V , we have v ∈ JXrK if and only if v ∈ Solve(r, []).

Proof (Sketch). The algorithm computes the solution of the equation system by
standard Kleene-approximation for nested least and greatest fixpoints.

Lemma 11. Given an Emerson-Lei game (V, V∃, V∀, E, αγ,φ) with set of colors
C and induced Zielonka tree Zφ, the solution JXrK of the equation system Sφ
from Definition 7 can be computed in time O(|Zφ| · |E| · |V |k), where k ≤ |C|
denotes the height of Zφ.

Combining Theorem 9 with Lemmas 3, 10 and 11 we obtain

Corollary 12. Solving Emerson-Lei games with n nodes, m edges and k colors
can be implemented symbolically to run in time O(k! · m · nk); the resulting
strategies require memory at most e · k!.

Remark 13. Strategy extraction works as follows. The algorithm computes a set
JXtK for each Zielonka tree vertex t ∈ Zφ. Furthermore it yields, for each non-
leaf vertex s ∈ T⃝ and each v ∈ JXsK, a single child vertex choice(v, s) ∈ R(s)
of s such that v ∈ JXchoice(v,s)K. The algorithm also yields, for each leaf vertex t
and each v ∈ V∃∩JXtK, a single game move move(v, t). All these choices together
constitute a winning strategy for existential player in the parity game PG. We
define a strategy for the Emerson-Lei game that uses leaves of the Zielonka
tree as memory values, following the ideas used in the construction of PG; the
strategy moves, from a node v ∈ V∃ and having memory content m, to the
node move(v,m). As initial memory value we pick some leaf of Zφ that choice
associates with the initial node in G. To update memory value m according to
visiting game node v, we first take the anchor vertex s of m and v. Then we pick
the next memory value m to be some leaf below s that can be reached by talking
the choices choice(v, s′) for every vertex s′ ∈ T⃝ passed along the way from s
to the leaf; if s ∈ T□, then we additionally require the following: let q = |R(s)|,
let o be the number such that m is a leaf below the o-th child of s, and put
j = o+ 1 mod q; then we require that m′ is a leaf below the j-th child of s. By
the correctness of the algorithm, the constructed strategy is a winning strategy.

Dziembowski et al. have shown that winning strategies can be extracted by
using a walk through the Zielonka tree that requires memory only for the branch-
ing at winning vertices [18]. This yields, for instance, memoryless strategies for
games with Rabin objectives, for which branching in the associated Zielonka
trees takes place at losing vertices. Adapting the strategy extraction in our set-
ting to this more economic method is straight-forward but notation-heavy, so we
omit a more precise analysis of strategy size here.

Our algorithm hence can be implemented to run in time 2O(k logn) for games
with n nodes and k ≤ n colors, improving upon the bound 2O(n2) stated in [25],
where the authors only consider the case that every game node has a distinct
color, implying n = k. We note that the later appearance record construction
used in [25] is known to be hard to represent symbolically. Our fixpoint charac-
terization generalizes previously known algorithms for e.g. parity games [8], and
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Streett and Rabin games [36], recovering previously known bounds on worst-case
running time of fixpoint iteration algorithms for these types of games.

While it has recently been shown that parity games can be solved in quasipoly-
nomial time [9], we note that in the case of parity objectives, our algorithm is not
immediately quasipolynomial. However, there are quasipolynomial methods for
solving nested fixpoints [24,2] (with the latter being open to symbolic implemen-
tation); in the case of parity objectives, these more involved algorithms can be
used in place of fixpoint iteration to solve our equation system and recover the
quasipolynomial bound. The precise complexity of using quasipolynomial meth-
ods for solving fixpoint equation systems beyond parity conditions is subject to
ongoing research.

4 Synthesis for Safety and Emerson-Lei LTL

In this section we present an application of the results from Section 3. We in-
troduce the safety and Emerson-Lei fragment of LTL and show that synthesis
for this fragment can be reasoned about symbolically. The idea for safety and
Emerson-Lei LTL synthesis is twofold: first, consider only the safety part and
create a symbolic arena capturing its satisfaction. Second, play a game on this
arena by adding the Emerson-Lei part as a winning condition. Finally we use
the results from the previous sections to solve the game symbolically.

4.1 Safety LTL and Symbolic Safety Automata

We start by defining safety LTL, symbolic safety automata, and recalling known
results about those.

Definition 14 (LTL and Safety LTL [45]). Given a non-empty set AP of
atomic propositions, the general syntax for LTL formulas is as follows:

φ := ⊤ | ⊥ | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1Uφ2 p ∈ AP.

Standard abbreviations are defined as follows: φ1Rφ2 := ¬(¬φ1U¬φ2), Fφ :=
⊤Uφ, and Gφ := ¬F¬φ. We define the satisfaction relation |= for a formula φ
and its language L(φ) as usual.

An LTL formula is said to be a safety formula if it is in negative normal form
(i.e. all negations are pushed to atomic propositions) and only uses X,R,G as
temporal operators (i.e. no U or F are allowed).

It is a safety formula in the sense that every word that does not satisfy the
formula has a finite prefix that already falsifies the formula. In other words, such
a formula is satisfied as long as “bad states” are avoided forever.

Definition 15 (Symbolic Safety Automata). A symbolic safety automaton
is a tuple A = (2AP, V, T, θ0) where V is a set of variables, T (V, V ′,AP) is the
transition assertion, and θ0(V ) is the initialization assertion. A run of A on
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the word w ∈ (2AP)ω is a sequence ρ = s0s1 . . . where the si ∈ 2V are variable
assignments such that 1. s0 |= θ0, and 2. for all i ≥ 0, (si, si+1, w(i)) |= T .
A word w is in L(A) if and only if there is an infinite run of A on w. A is
deterministic if for all words w ∈ (2AP)ω there is at most one run of A on w.

Kupferman and Vardi show how to convert a safety LTL formula into an
equivalent deterministic symbolic safety automaton [30].

Lemma 16. A safety LTL formula φ can be translated to a deterministic sym-
bolic safety automaton Dsymb accepting the same language, with |Dsymb| = 2|φ|.

The idea is to first convert φ to a (non-symbolic) non-deterministic safety
automaton Nφ, which is of size exponential of the size of the formula, and then
symbolically determinize Nφ by a standard subset construction to obtain Dsymb.
Note that while the size of Dsymb is only exponential in the size of the formula,
its state space would be double exponential when fully expanded.

Example 17. Let φ = G(b ∨ c) ∧G(a→ b ∨XXb) be a safety LTL formula over
AP = {a, b, c}. An execution satisfying φ must have at least one of b or c at every
step, moreover every a sees a b present at the same step or two steps afterwards.

As an intermediate step towards building the equivalent Dsymb, we first
present below a corresponding non-deterministic safety automaton Nφ.

1start 2 3 4

¬a ∨ b

a

¬a ∨ b

a

a ∧ b
b

b

a ∧ b

For the sake of presentation, we use Boolean combinations of AP in transitions
instead of labeling them with elements of 2AP, with the intended meaning that

s
ψ−→ s′ = {s C−→ s′ | C ∈ 2AP, C |= ψ}. We also omit the G(b ∨ c) part of

the formula in the construction. One can simply append · · · ∧ (b ∨ c) to every
transition of Nφ to get back the original formula. Intuitively state 1 correspond
to not seeing an a, state 2 means that a b must be seen at the next step, state
3 means that there must be a b now, and state 4 that b is needed now and next
as well.

Then the symbolic safety automaton is Dsymb = (2AP, V, T, θ0) with:

– V = {v1, v2, v3, v4} are the variables corresponding to the four states of Nφ,
– θ0 = v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 asserts that only the state v1 is initial,
– The transition assertion is T = (v′1 ↔ (v1 ∧ (¬a ∨ b)) ∨ (v3 ∧ b)) ∧

(v′2 ↔ (v1 ∧ a) ∨ (v3 ∧ (a ∧ b))) ∧ (v′3 ↔ (v2 ∧ (¬a ∨ b)) ∨ (v4 ∧ b)) ∧
(v′4 ↔ (v2 ∧ a) ∨ (v4 ∧ (a ∧ b))) ∧ (v1 ∨ v2 ∨ v3 ∨ v4).

Determinizing Nφ enumeratively would give an automaton with 9 states (see
Example 23).
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Remark 18. Restricting attention to safety LTL enables the two advantages men-
tioned above with respect to determinization. First, subset construction suffices
(as observed also in [46]), avoiding the more complex Büchi determinization.
Second, this construction, due to its simplicity, can be implemented symboli-
cally. Interestingly, recent implementations of the synthesis from LTLf [46] or
from safety LTL [45] have used indirect approaches for obtaining deterministic
automata. For example, by translating LTL to first order logic and applying the
tool MONA to the results [45,46], or by concentrating on minimization of de-
terministic automata [42]. The direct construction is similar to approaches used
for checking universality of nondeterministic finite automata [42] or SAT-based
bounded model checking [1]. We are not aware of uses of this direct implementa-
tion of the subset construction in reactive synthesis. The worst case complexity
of this part is doubly-exponential, which, just like for LTL and LTLf , cannot be
avoided [43,3].

4.2 Symbolic Games

We use symbolic game structures to represent a certain class of games. Formally,
a symbolic game structure G = ⟨V,X ,Y, θ∃, ρ∃, φ⟩ consists of:

• V = {v1, . . . , vn} : A finite set of typed variables over finite domains. Without
loss of generality, we assume they are all Boolean. A node s is an valuation
of V, assigning to each variable vi ∈ V a value s[vi] ∈ {0, 1}. Let Σ be the
set of nodes.
We extend the evaluation function s[·] to Boolean expressions over V in the
usual way. An assertion is a Boolean formula over V. A node s satisfies an
assertion φ denoted s |= φ, if s[φ] = true. We say that s is a φ-node if
s |= φ.

• X ⊆ V is a set of input variables. These are variables controlled by the
universal player. Let ΣX denote the possible valuations to variables in X .

• Y = V \ X is a set of output variables. These are variables controlled by the
existential player. Let ΣY denote the possible valuations to variables in Y.

• θ∃(X ,Y) is an assertion characterizing the initial condition.
• ρ∃(V,X ′,Y ′) is the transition relation. This is an assertion relating a node
s ∈ Σ and an input value sX ∈ ΣX to an output value sY ∈ ΣY by referring
to primed and unprimed copies of V. The transition relation ρ∃ identifies
a valuation sY ∈ ΣY as a possible output in node s reading input sX if
(s, (sX , sY)) |= ρ∃, where s is the assignment to variables in V and sX and
sY are the assignment to variables in V ′ induced by (sX , sY) ∈ Σ.

• φ is the winning condition, given by an LTL formula.

For two nodes s and s′ of G, s′ is a successor of s if (s, s′) |= ρ∃.
A symbolic game structure G defines an arena AG , where V∀ = Σ, V∃ =

Σ ×ΣX , and E is defined as follows:

E = {(s, (s, sX )) | s ∈ Σ and sX ∈ ΣX }∪{((s, sX ), (sX , sY)) | (s, (sX , sY)) |= ρ∃}.
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When reasoning about symbolic game structures we ignore the intermediate
visits to V∃. Indeed, they add no information as they can be deduced from the
nodes in V∀ preceding and following them. Thus, a play π = s0s1 . . . is winning
for the existential player if σ is infinite and satisfies φ. Otherwise, σ is winning
for the universal player.

The notion of strategy and winning region is trivially generalized from games
to symbolic game structures. When needed, we treat W∃ (the set of nodes win-
ning for the existential player) as an assertion. We define winning in the entire
game structure by incorporating the initial assertion: a game structure G is said
to be won by the existential player, if for all sX ∈ ΣX there exists sY ∈ ΣY such
that (sX , sY) |= θ∃ ∧W∃.

4.3 Realizability and Synthesis

Let φ be an LTL formula over input and output variables I and O, controlled by
the environment and the system, respectively (the universal and the existential
player, respectively).

The reactive synthesis problem asks whether there is a strategy for the system
of the form σ : (2I)+ → 2O such that for all sequences x0x1 · · · ∈ (2I)ω we have:

(x0 ∪ σ(x0))(x1 ∪ σ(x0x1)) . . . |= φ

If there is such a strategy we say that φ is realizable [38].
Equivalently, φ is realizable if the system is winning in the symbolic game

Gφ = ⟨I ∪O, I,O,⊤,⊤, φ⟩ with I for input variables X and O for output Y.

Theorem 19. [38] Given an LTL formula φ, the realizability of φ can be de-
termined in doubly exponential time. The problem is 2EXPTIME-complete.

The game Gφ above uses neither the initial condition nor the system transi-
tion. Conversely, consider a symbolic game G = ⟨V,X ,Y, θ∃, ρ∃, φ⟩:

Theorem 20. [7] The system wins in G iff φG = θ∃ ∧Gρ∃ ∧ φ is realizable.23

4.4 Safety and Emerson-Lei Synthesis

We now define the class of LTL formulas that are supported by our technique and
show how to construct appropriate games capturing their realizability problem.

For ψ ∈ B(AP), let Inf ψ := GFψ and Finψ := FG¬ψ = ¬Inf ψ. The
Emerson-Lei fragment of LTL consists of all formulas that are positive Boolean
combinations of Inf ψ and Finψ for all Boolean formulas ψ over atomic proposi-
tions. The satisfaction of such formulas depends only on the set of letters (truth
assignments to propositions) appearing infinitely often in a word.

2 Technically, ρ∃ contains primed variables and is not an LTL formula. This can be
easily handled by using the next operator X. We thus ignore this issue.

3 We note that Bloem et al. consider more general games, where the environment also
has an initial assertion and a transition relation. Our games are obtained from theirs
by setting the initial assertion and the transition relation of the environment to true.
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Remark 21. The Emerson-Lei fragment easily accommodates various liveness
properties that cannot be encoded in smaller fragments such as GR[1]. One
prominent example for this is the property of stability (as encoded by LTL
formulas of the shape FG p), which appears frequently as a guarantee in us-
age of synthesis for robotics and control (see, e.g., the work of Ehlers [19] and
Ozay [32]), and commonly is approximated in GR[1] but, as a guarantee or as
part of a specification, cannot be captured exactly in the game context. Another
important example is strong fairness (as encoded by LTL formulas of the shape∧
i(GF ri → GF gi)) which allows to capture the exact relation between cause

and effect. Particularly, in GR[1] only if all “resources” are available infinitely
often there is an obligation on the system to supply all its “guarantees”. In
contrast, strong fairness allows to connect particular resources to particular sup-
plied guarantees. Ongoing studies on fairness assumptions that arise from the
abstraction of continuous state spaces to discrete state spaces [32,33] provide
further examples of fairness assumptions that can be expressed in EL but not in
GR[1]. Emerson-Lei liveness allows free combination of all properties mentioned
above and more.

Definition 22. The Safety and Emerson-Lei fragment is the set of formulas of
the form φ = φsafety ∧ φEL, where φsafety is a safety formula and φEL is in the
Emerson-Lei fragment.

We assume a partition AP = I ⊎ O where I is a set of input propositions
and O a set of output propositions, both non-empty. Let φ = φsafety ∧ φEL be
a safety and Emerson-Lei formula over AP, and let Dsymb = (2AP, V, T, θ0) be
the symbolic deterministic safety automaton associated to φsafety. We construct
Gφ = ⟨V ⊎ AP, I, O ⊎ V, θ0, T, φEL⟩, thus X = I and Y = O ⊎ V .

Example 23. Let φsafety = G(b ∨ c) ∧ G(a → b ∨ XXb), our running safety
example from Example 17 with its associated symbolic deterministic automaton.
Partition AP into I = {a} and O = {b, c}. We depict the arena of the game Gφ
(independent of the formula φEL that is yet to be defined) in Figure 23.

To keep the illustration readable and keep it from getting too large, a few
modifications to the formal arena definition have been made. First, c labels on
edges have been omitted: every transition labeled with b represent two transitions
with sets {b} and {b, c}, while transitions labeled with ¬b stand for a single
transition with set {c} (due to the G(b∨ c) requirement forbidding ∅). Similarly,
existential nodes have been omitted when all choices for the existential player
lead to the same destination. Instead, the universal and existential moves have
been combined in one transition: a; ∗ for an a followed by some existential move,
and a; b for when an a requires the existential player to play b (with or without
c, as above). Finally, states are only labeled with variables from V and not AP,
the latter is used to label edges instead. For a fully state-based labeling arena,
states would have to store the last move, leading to various duplicate states.

Note that this game arena is given only for illustration purposes, as we want
to solve the symbolic game without explicitly enumerating all its states and
transitions like here.
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¬a; b

a; b

¬a; b

Fig. 1. Game arena for Gφ

Lemma 24. The system wins Gφ if and only if φ is realizable.

Next we detail how to solve the symbolic game Gφ by using the results from
Section 3.

Lemma 25. Given a symbolic game G = ⟨V,X ,Y, θ∃, ρ∃, φ⟩ such that φ is an
Emerson-Lei formula with set of colors

C = {ψ ∈ B(AP) | ψ is a subformula of φ},

the winning region W∃ of G is characterized by the equation system from Defi-
nition 7, using the assertion

CPre(S) = ∀sX ∈ ΣX .∃sY ∈ ΣY . S
′ ∧ (v, sX , sY) |= ρ∃.

The proof of this lemma is by straightforward adaptation of the proof of
Theorem 9 to the symbolic setting, following the relation between symbolic game
structures and game arenas described above.

Finally, this gives us a procedure to solve the synthesis problem for safety
and Emerson-Lei LTL.

Theorem 26. The realizability of a formula φ = φsafety ∧ φEL of the Safety
and Emerson-Lei fragment of LTL can be checked in time 2O(m·logm·2n), where
n = |φsafety| and m = |φEL|. Realizable formulas can be realized by systems of
size at most 22

n · e ·m!.

Proof. Using the construction described in this section,we obtain the symbolic
game Gφ of size q = 22

n

with winning condition φEL, using at most m colors; by
Theorem 24, this game characterizes realizibility of the formula. Using the results
from the previous section, Gφ can be solved in time O(m! ·q2 ·qm) ∈ O(2m logm ·
2(m+2)2n) ∈ 2O(m·logm·2n), resulting in winning strategies with memory at most
e ·m!.
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Both the automata determinization and the game solving can be implemented
symbolically.

Example 27. To illustrate the overall synthesis method, we consider the game
that is obtained by combining the game arena Gφsafety

from Example 23 with the
winning objective φEL = (Fin a∨ Inf b)∧ (Fin a∨Find)∧ Inf c from Example 2.3,
where we instantiate the label d to nodes satisfying b ∧ c thus creating a game-
specific dependency between the colors. Solving this game amounts to solving
the equation system shown in Example 8.3. However, with the interpretation
of d = b ∧ c, some of the conditions become simpler. For example, ¬a ∧ ¬b ∧
¬c ∧ ¬d becomes ¬a ∧ ¬b ∧ ¬c and b ∧ ¬d becomes b ∧ ¬c. It turns out that the
system player wins the node v1. Intuitively, the system can play {c} whenever
possible and thereby guarantee satisfaction of φEL. We extract this strategy
from the computed solution of the equation system in Example 2.3 as described
in Remark 13. E.g. for partial runs π that end in v1 and for which the last
leaf vertex in the induced walk ρπ through Zφ is the vertex 8, the system can
react by playing {b}, {c}, or even {b, c} whenever the environment plays ∅. The
move {b} continues the induced walk ρπ through vertex 2 to the leaf vertex 5;
similarly, the move {b, c} continues ρπ through the vertex 1 to the leaf vertex 6.
The strategy construction gives precedence to the choice that leads through the
lowest vertex in the Zielonka tree, which in this case means picking the move
{c} that continues ρπ through the vertex 7 to the leaf 8. Proceeding similarly
for all other combinations of game nodes and vertices in the Zielonka tree, one
obtains a strategy σ for the system that always outputs singleton letters, giving
precedence to {c} whenever possible. To see that σ is a winning strategy, let π
be a play that is compatible with σ. If π eventually loops at v1 forever, then sπ is
the existential vertex 7 and the existential player wins the play since it satisfies
both Fin a and Inf c. Any other play π satisfies Inf a, Inf b and Inf c since all
cycles that are compatible with σ (excluding the loop at v1) contain at least one
a-edge, at least one b-edge and also at least one c-edge that is prescribed by the
strategy σ. For these plays, ρπ eventually reaches the vertex 2. Since the system
always plays singleton letters (so that π in particular satisfies Fin(b ∧ c)), the
vertex 1 is not visited again by ρπ, once vertex 2 has been reached. Hence the
dominating vertex for such plays is sπ = 2, an existential vertex.

4.5 Synthesis Extensions and Optimizations

We have chosen to use safety-LTL as the safety part of the Safety-EL fragment
to showcase the options opened by having symbolic algorithms for the analysis
of very expressive liveness conditions. The crucial feature of the safety fragment
is the ability to convert that part of the specification to a symbolic deterministic
automaton. It is important to note that every fragment of LTL (or ω-regular
in general) that can be easily converted to a symbolic deterministic automaton
can be incorporated and handled with the same machinery. For example, it was
suggested to extend the expressiveness of GR[1] by including deterministic au-
tomata in the safety part of the game and referring to their states in the liveness
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part [7]. Past LTL [31] can be handled in the same way in that it is incorporated
for GR[1] [7]. An extreme example is GR-EBR, where safety parts are allowed to
use bounded future and pure past, which still allows the symbolic treatment [15].
All of these alternatives can be incorporated in the safety part with no changes
to our overall methodology. Unlike previous cases, if there is an easy translation
to deterministic symbolic automata with a non-trivial winning condition, these
can be incorporated as well with the EL part extended to handle their winning
condition as well. We could consider also extensions to the liveness parts. For
example, by using past LTL or reference to states of additional symbolic de-
terministic automata. The Boolean state formulas appearing as part of the EL
condition can be replaced by formulas allowing one usage of the next operator, as
in [39,19]. The generalization to handle transition-based EL games, which would
be required in that case, rather than state-based EL games is straight-forward.

As the formulas we consider are conjunctions, optimizations can be applied
to both conjuncts independently. This subsumes, for example, analyzing the win-
ning region in a safety game prior to the full analysis [29,7,5], reductions in the
size of nondeterministic automata [17], or symbolic minimization of deterministic
automata [16].4

5 Conclusions and Future Work

We provide a symbolic algorithm to solve games with Emerson-Lei winning con-
ditions. Our solution is based on an encoding of the Zielonka tree of the winning
condition in a system of fixpoint equations. In case of known winning conditions,
our algorithm recovers known algorithms and complexity results. As an appli-
cation of this algorithm, we suggest an expressive fragment of LTL for which
realizability can be reasoned about symbolically. Formulas in our fragment are
conjunctions between an LTL safety formula and an Emerson-Lei liveness con-
dition. This fragment is more general than, e.g., GR[1].

In the future, we believe that analysis of the Emerson-Lei part can reduce the
size of Zielonka trees (and thus the symbolic algorithm). This can be done either
through analysis and simplification of the LTL formula, e.g., [26], by means of
alternating-cycle decomposition [12,13], or by analyzing the semantic meaning of
colors. We would also like to implement the proposed overall synthesis method.
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