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ABSTRACT 
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system, 
capable of eliminating malignant cells. Their activity is intricately regulated 
through a balanced interplay between activating and inhibitory receptors that 
interact with molecules on their prospective target cells. This thesis employed 
genome editing to delve deeper into genes and molecules that influence these 
dynamic interactions. A loss-of-function genome-wide CRISPR screen using the 
leukemic cell line K562 with NK cell cytotoxicity as the selective pressure, 
unveiled genes impacting target cell susceptibility. TMEM30A depletion (paper 
I) rendered target cells partially resistant to NK-cell-induced lysis. Subsequent 
investigations elucidated its role in phospholipid transport within the plasma 
membrane. Loss-of-function mutations in TMEM30A, observed in certain 
cancers, upregulated phosphatidylserine on the cell surface enabling interaction 
with inhibitory NK cell receptor TIM-3, providing protection from NK cells. 
BAP1, another gene identified in the CRISPR screen (paper II) was found to 
support MHC class I expression through involvement in interferon-γ signalling. 
Depletion of BAP1 increased target cell sensitivity to NK cells by eliminating the 
inhibitory signal. The CRISPR/Cas9 technique was further employed to suppress 
the expression of crucial ligands for activating NK cell receptors. This 
manipulation allowed the investigation of alternative receptor-ligand interactions 
and provided a model to decipher the impact of a single nucleotide polymorphism 
(SNP) in the receptor NKG2D gene on NK cell function (paper III). Notably, 
the identified SNP in the linked gene for NKG2A emerged as the key driver of 
NK cell function and additionally influenced the clinical outcome of 
immunotherapy in acute myeloid leukemia. Leveraging this established model cell 
line, dominantly killed via NKp46, a subsequent genome-wide CRISPR/Cas9 
screen was conducted to identify potential ligand candidates for the NKp46 
receptor (paper IV). In conclusion, CRISPR/Cas9 technology proved to be 
instrumental in uncovering molecular mechanisms that regulate the interaction 
between NK cells and their target cells, which may pave the way for therapeutic 
interventions in cancer. 

Keywords: Natural killer cells, CRISPR/Cas9 screen, TMEM30A, TIM-3, 
Phosphatidylserine, BAP1, acute myeloid leukemia, immunotherapy, HDC/IL-2, 
NKG2A, NKp46 ligand 
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SAMMANFATTNING PÅ SVENSKA 

Kroppens immunförsvar består av en uppsjö av molekyler och celler vars uppgift 
är att skydda oss både från yttre hot så som virus och bakterier men även inre hot 
i form av cancer. Den här avhandlingen fokuserar på en specifik celltyp som kallas 
naturlig mördarcell på svenska och mer känd som NK-cell på engelska, vilken har 
väckt intresse för nya former av immunterapi för cancerbehandling. NK-celler 
övervakar och dödar kontinuerligt celler som visat sig vara virusinfekterade eller 
canceromvandlade. För att särskilja sjuka celler från friska har NK-celler en 
uppsättning aktiverande och inhiberande receptorer på sin yta, vilka interagerar 
med proteiner och strukturer på målcellen. Dessa så kallade ligander kan regleras 
upp och ned på målcellen beroende på olika omständigheter. Friska celler 
uttrycker proteiner på sin yta som skyddar dem mot attacker från NK-celler. Å 
andra sidan tenderar cancerceller att uttrycka stressrelaterade proteiner, vilka kan 
binda till aktiverande receptorer på NK-celler och resultera i en dödande attack. 
Mycket av det som påverkar interaktionen mellan NK-celler och målceller är 
fortfarande okänt och det finns ligander som ännu inte upptäckts.  

För att identifiera nya ligander och strukturer som är involverade i interaktionen 
mellan cellerna så utförde vi en omfattande kartläggning med hjälp av gensaxen 
CRISPR. Genom undersökningen fick vi kunskap om gener som på olika sätt 
påverkar interaktionen, så som TMEM30A som är involverad i förflyttning av 
olika lipider i cellmembranet. Mutationer i denna gen har upptäckts i vissa 
cancersorter, och i delarbete I kunde vi visa att dessa mutationer kan utgöra en 
mekanism för cancercellerna att undkomma avdödning av NK-celler genom att 
inhiberande strukturer ökar på cellernas yta. BAP1 identifierades också i 
undersökningen, och i delarbete II visades att mutationer i denna gen påverkar 
förmågan att öka uttrycket av vissa inhiberande strukturer på cellens yta, vilket 
kan påverka deras interaktion med både NK-celler och andra celler i 
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immunförsvaret. CRISPR användes även för att skapa en genmodifierad 
cancercell som kunde dödas med hjälp av två specifika aktiverande receptorer. 
Med hjälp av de cellerna kunde vi i delarbete III belysa vikten av vissa genvarianter 
för överlevnad efter behandling av akut myeloisk leukemi (AML) med 
immunterapi. Genom att manipulera interaktionerna mellan NK-cellen och 
denna cancercell med antikroppar kunde vi skapa en experimentell modell där 
avdödningen av cancercellerna nästan uteslutande sker med hjälp av den 
aktiverande receptorn NKp46. Genom en ny CRISPR-undersökning med denna 
modell kunde vi identifiera nya ligandkandidater till denna viktiga NK-
cellsreceptor.  
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PREFACE 
 
Cancer is a group of diseases that constitutes a leading global cause of mortality. 
It is characterized by uncontrolled growth of the body’s own cells that are capable 
of spreading to other parts of the body. Over the past several decades, 
conventional cancer treatments have involved irradiation, chemotherapy and 
surgical interventions. In more recent years, strategies to harness the endogenous 
immune system have been developed to combat cancer. This approach has shown 
success in treatment of several malignancies, with the groundbreaking discovery 
of checkpoint inhibitors being honoured with the Nobel Prize in 2018. Many of 
these immunotherapeutic treatments benefit from natural killer (NK) cell 
involvement. Much remains unknown regarding the interplay between NK cells 
and cancer cells. To enable development of novel therapies, more knowledge is 
imperative. This thesis endeavours to contribute to the ongoing quest to decipher 
the cancer puzzle. By the investigation of genes and molecular mechanisms that 
influence the dynamic interactions between cancer cells and NK cells, it can 
hopefully broaden our understanding and potentially pave the way for the 
development of future therapies.  
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THE IMMUNE SYSTEM 

In a world full of pathogens of various kinds, a protective system is needed. The 
human immune system comprises a complex network of cells and molecules that 
have evolved to protect us from external threats like viruses and bacteria. All 
variants of immune cells originate from hematopoietic stem cells located in the 
bone marrow, and are generated in a process known as haematopoiesis, as 
illustrated in figure 1 (1). 

Figure 1. Haematopoiesis. Immune cells from the innate and adaptive immune system develop 
from myeloid or lymphoid progenitor cells, originating from a hematopoietic stem cell. Created 
with Biorender.com

The classification of immune cells into the innate or adaptive immune system, 
although traditionally distinct, has become nuanced in recent times, as it has been 
discovered that certain innate cells possess traits typically associated with adaptive 
immunity (2). The adaptive immune system is composed of two key lymphocytes: 
B and T cells. These cells recognize an extensive array of antigens through their 
highly variable antigen receptors. The generation of this diverse specificity results 
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from stochastic rearrangements of gene segments, allowing for virtually limitless 
variations to recognize a wide range of pathogens. Cells that recognize self-
antigens are typically inactivated or eliminated during their maturation in the bone 
marrow and thymus. The T cell receptor recognize antigens bound to a major 
histocompatibility complex (MHC) (1). The peptides presented on the MHC 
molecules are derived from the continuous degradation of intracellular proteins. 
Subsequently, these peptides are transported into the endoplasmic reticulum 
lumen by transporter proteins TAP1 and TAP2, where they undergo trimming by 
the ERAAP protein. Proper folding of the MHC molecule is dependent on 
peptide binding before it is transported to the cell surface (1). The activation of 
adaptive T cells relies on cells from the innate immune system. Antigen-
presenting cells (APCs) such as dendritic cells (DCs), internalize pathogen 
structures and degrade them to enable presentation of peptides on their MHC 
class I or II molecules. Following pathogen engulfment, dendritic cells migrate to 
secondary lymphoid organs where they can activate T cells (1).  

In addition to dendritic cells, the innate immune system encompasses various 
additional myeloid cells such as macrophages, neutrophils, eosinophils and 
basophils. These cells recognize pathogens or pathogen-induced damage through 
the germline-encoded pattern recognition receptors (PRRs) of the innate immune 
system. The evolutionary conserved structures associated with microorganisms 
and recognized by these receptors are termed pathogen-associated molecular 
patterns (PAMPs), which can include mannose-rich oligosaccharides and 
peptidoglycans found in the bacterial cell wall. The PRRs include both 
transmembrane receptors such as Toll-like receptors recognizing extracellular 
structures, and cytoplasmic receptors such as NOD-like receptors recognizing 
intracellular structures (1). A fundamental function of the innate immune system 
is performed by the phagocytic cells, including macrophages, granulocytes and 
dendritic cells, which have the capability to engulf and degrade pathogens. 
Another component of the innate immune system are the innate lymphoid cells 
(ILC), including natural killer (NK) cells (1). 

3

NATURAL KILLER CELLS 

NK cells were discovered in the 1970s and have since then proven to be a pivotal 
component of the immune system, playing a crucial role in defending the body 
against infections and malignancies (3-5). These cells exhibit both a unique ability 
to eliminate virus-infected or transformed cells without the need for prior 
sensitization, as well as an important role in immune regulation, positioning them 
as essential members of the innate immune response. In contrast to T cells, NK 
cells express a diverse array of inhibitory and activating receptors that enable them 
to distinguish between healthy and malignant cells. Stress or transformation can 
lead to upregulation of ligands for activating NK cell receptors. Upon 
engagement, these interactions prompt NK cells to release their lytic granule 
content, which induces apoptosis in the designated target cell. In contrast, healthy 
cells typically express ligands for inhibitory NK cell receptors, allowing them to 
evade NK cell cytotoxicity (6, 7).  

NK cells are defined as CD3-CD56+ cells and can be further classified based on 
their expression level of CD56 and CD16. The immature CD56brightCD16lo/- are 
generally considered superior cytokine producers, while the more mature 

Section in brief: 

NK cells are important immune cells, capable of eliminating cancer cells which they recognize 
through their repertoire of inhibitory and activating receptors. Their inhibitory receptors 
recognize MHC class I molecules which are expressed on all healthy nucleated cells, protecting 
them from harm. This constant inhibitory signalling helps the NK cells gain full functionality 
in a process called education. Malignant cells often downregulate MHC class I molecules and 
upregulate ligands for activating NK cell receptors, exposing them to potential eradication by 
NK cells.  
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lead to upregulation of ligands for activating NK cell receptors. Upon 
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Section in brief: 

NK cells are important immune cells, capable of eliminating cancer cells which they recognize 
through their repertoire of inhibitory and activating receptors. Their inhibitory receptors 
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CD56dimCD16+ cells exhibit enhanced cytotoxic capacity. Interestingly, upon 
stimulation with target cells, CD56dim cells have been observed to display notable 
cytokine-producing capabilities, challenging the traditional perception of their 
functional attributes (8). The phenotypic diversity of NK cells extends to their 
expression of inhibitory and activating receptors, contributing to their 
heterogenous nature (9-11).  

NK cells play a crucial role in modulating the immune system by producing 
cytokines and chemokines, including the chemokines CCL3, CCL4 and CCL5 and 
the cytokines GM-CSF, IL-5, IL-13 and IL-10 as well as the proinflammatory 
tumour necrosis factor-α (TNFα) and interferon-γ (IFNγ) (11, 12). Upon an 
activating interaction with target cells or by cytokine stimulation, NK cells start 
production of IFNγ via the transcription factors STAT4, T-bet, AP-1, Eomes and 
Jun (13). IFNγ can induce apoptosis in tumour cells and stimulate the 
upregulation of MHC class-I expression, thus facilitating T cell recognition (13, 
14). By IFNγ secretion, NK cells promote both maturation of DCs and priming 
of CD4+ T helper type 1 cells (6, 15). The functional IFNγ receptor comprises 
two IFNGR1 ligand-binding α-units and two signal-transducing IFNGR2 β-units. 
Upon binding of IFNγ to the receptor, the associated adaptor molecules JAK1 
and JAK2 are activated leading to the phosphorylation of the transcription factor 
STAT1. Binding of STAT1 to interferon-γ activation sites facilitates transcription 
of genes related to antigen presentation, transcription and proliferation (13).  

THE “MISSING SELF” HYPOTHESIS 
Initially, it was thought that recognition by NK cells was independent on the 
MHC class expression of the target cell. However, Kärre et al. demonstrated that 
MHC class I molecules (“self”) actively inhibit NK cells (16). The “missing self” 
hypothesis was thus proposed, suggesting that NK cells eliminate cells with 
downregulated MHC class I – a phenomenon frequently observed in virus-
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infected or malignantly transformed cells (17). However, this hypothesis did not 
explain why certain cells lacking MHC class I, for example human erythrocytes, 
remained unharmed by circulating NK cells (7). The understanding of the details 
of NK cell recognition expanded with the identification of activating and 
inhibitory receptors expressed by NK cells, proving an explanation for how NK 
cells recognize target cells. Consequently, the engagement of these receptors with 
specific ligands expressed by the target cells creates a complex integration of 
signals, determining the cytolytic activity of NK cells (18).  

NK CELL GENES 
The inhibitory and activating receptors expressed by NK cell belong to two major 
receptor families: the immunoglobulin superfamily and the C-type lectin 
superfamily. These receptor genes are typically clustered together with the other 
family members on two main genomic locations. The genes of the 
immunoglobulin superfamily are situated in the leukocyte receptor complex 
(LRC) on chromosome 19 and encompass genes for NKp46 and Killer cell 
immunoglobulin-like (KIR) receptors. Conversely, a ~2Mb region on 
chromosome 12, known as the natural killer complex (NKC), harbours the c-type 
lectin genes such as CD94 and the NKG2 family (19). Numerous allelic variations, 
marked by single base substitutions, have been identified in genes within the NKC 
region, with a frequency exceeding 10%. Certain of these single nucleotide 
polymorphisms (SNPs) in the NKG2D and NKG2A genes have been associated 
with natural cytotoxicity activity and with cancer incidence. These SNPs are in 
linkage disequilibrium, suggesting a high likelihood of being inherited together 
(20).  
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INHIBITORY RECEPTORS 
To ensure tolerance to autologous healthy cells, NK cells are equipped with 
inhibitory receptors (depicted in figure 2). Two major families recognize classical 
and non-classical MHC class I molecules. KIRs recognize HLA-A, HLA-B HLA-
C, while the heterodimer NKG2A/CD94 (referred to as NKG2A) engage with 
non-classical HLA-E (7, 21).  

Peripheral blood NK cells constitute a heterogenous population with varying 
expression of several markers, including NKG2A and KIRs. The receptor 
expression varies over the course of NK cell development. NKG2A defines more 
immature cells and as CD56dim NK cells mature, NKG2A is downregulated. 
However, cytokine stimulation can still induce NKG2A expression. Conversely, 
KIRs and CD57 are lowly expressed by immature NK cells and are acquired 
during maturation of CD56dim cells (22, 23). 

Killer-cell immunoglobulin-like receptors 
The human KIR gene family comprises 15 genes, yet the number of KIR genes 
present in any individual varies on group level, with only a limited set commonly 
shared. These highly polymorphic genes encode type I transmembrane 
glycoproteins characterized by two or three extracellular Ig-like domains, denoted 
as KIR2D or KIR3D respectively. The cytoplasmic tails of these receptors occur 
in varying lengths, designated long (L) or short (S). Long tails harbour one or two 
immunoreceptor tyrosine-based inhibitory motifs (ITIMs), facilitating inhibitory 
signalling. Conversely, receptors with short tails associate with the adaptor protein 
DAP12 that enables activating signalling (7).  

These receptors engage with both the α1 and α2-helices of the HLA molecule as 
well as the bound peptide, providing a possibility of peptide-dependent 
modulations of the interaction (24). The KIRs recognize three main epitopes, 
distinguished by polymorphisms in the α1 helix. Epitopes C1 and C2 of HLA-C 
are defined by two different amino acids at position 80, while residues 77-83 
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define the Bw4 motif in HLA-A and -B molecules. Each person can possess one, 
two or three of these epitopes and variations in the KIR genes and the associated 
peptide enables further diversifications of the interactions (25).    

NKG2A/CD94 
The type II transmembrane heterodimeric NKG2A engages the non-classical 
HLA-E molecule (26, 27). It is encoded by the KLRC1 gene on the NK gene 
complex (NKC) region of chromosome 12 (21). The cytoplasmic tail of NKG2A 
harbours two ITIMs, facilitating inhibitory signalling (7). HLA-E binds peptides 
derived from the leader sequences of HLA-ABC, establishing an additional layer 
of protection of normal cells as it monitors the levels of other HLA molecules 
(26, 27). A dimorphism in the HLA-B leader peptide has been identified which 
impacts the HLA-E expression. This is caused by the presence of either a 
methionine (M) or a threonine (T) at residue -21 where methionine alone provides 
a strong anchorage to the HLA-E molecule that enables proper folding and 
subsequent surface expression (25, 28). Despite all HLA-ABC leader peptides 
being presented on HLA-E, individuals carrying at least one -21M allele exhibit 
increased surface expression. In contrast, T/T individuals demonstrate stronger 
KIR-dependent inhibitory signalling (25).  

Non-HLA-specific inhibitory receptors 
There are additional receptors expressed by NK cells that limit their function. 
These are not restricted to binding HLA molecules.  

A family of nectin and nectin-like-binding receptors has emerged as novel NK 
cell immune checkpoints. This group includes the inhibitory receptors TIGIT, 
CD112R/PVRIG, CD96/TACTILE and the activating receptor DNAM-1 
(described under the Activating receptors section). These receptors interact with 
PVR/CD155 and Nectin-2/CD112 with varying affinity. The ligands are typically 
found in adhesion junctions, particularly among epithelial and neuronal cells and 
have been observed to be upregulated on cancer cells. TIGIT is expressed on 40-
60% of human peripheral blood NK cells, with higher levels observed on CD56dim 
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cells (29). The level of expression is suggested to correlate with maturation and 
serves as a marker for activation but has not been correlated with exhaustion (29-
31). TIGIT exhibits the strongest affinity for PVR among the NK cell inhibitory 
receptors with a weaker affinity for nectin-2 (32). It initiates inhibitory signalling 
through its ITIM-containing cytoplasmic domain, like the other inhibitory 
receptors of this family. In contrast, CD112R demonstrates the strongest affinity 
Nectin-2, while CD96 interacts with PVR more strongly than DNAM-1 but less 
so than TIGIT (32). Ongoing research aims to elucidate their function and 
intricate relationship. 

The T cell immunoglobulin and mucin domain 3 (TIM-3) is an additional co-
inhibitory receptor. TIM-3 is encoded by the gene HAVCR2 and is a type I 
transmembrane protein, belonging to the TIM family of which TIM-1 and TIM-
4 also are expressed in humans (33, 34). TIM-3 was first described to be expressed 
by IFNγ-secreting T helper 1 cells and has later also been identified to be present 
on CD8+ T cells, dendritic cells, monocytes as well as NK cells, with the latter 
demonstrating the highest transcription levels in PBMC (35-41). It is 
constitutively expressed by virtually all CD56dim NK cells and heterogeneously by 
CD56bright NK cells. Cytokine stimulation can upregulate the expression on both 
subsets (42). Several ligands are reported for TIM-3, including galactin-9, 
phosphatidylserine, high motility group protein B1 (HMGB1) and 
carcinoembryonic antigen cell adhesion molecule 1 (CEACAM-1) (43-47). TIM-
3 is often considered a marker for T cell exhaustion (39, 48). For NK cells 
however, the role of TIM-3 is less defined and needs further exploration. 
Ndhlovu et al. suggested that TIM-3 is an activation and/or maturation marker 
for NK cells as its expression was induced on CD56bright cells upon cytokine 
stimulation (42). However, Da Silva et al. studied TIM-3 in metastatic melanoma 
where TIM-3 defined a population of NK cells with a dysfunctional phenotype 
(49). Additionally, the functional consequence of TIM-3 stimulation also remains 
incompletely understood as TIM-3 has not only demonstrated induction of 
inhibitory signalling but also enhancement of IFNγ production (50). This 
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ambiguity is further augmented by its lack of canonical inhibitory signalling motifs 
in the cytoplasmic domain (51). Thus, the function of TIM-3 appears context-
dependent, both regarding the disease setting and the nature of the presented 
ligand.  

IRp60/CD300A is an inhibitory receptor that, like TIM-3, recognizes 
phosphatidylserine as well as phosphatidylethanolamine and has been 
demonstrated to strongly inhibit NK cell cytotoxicity (52-54). Its expression 
extends across various cell types, including NK cells. Though higher level of 
expression can be seen in CD56bright NK cells, it is prevalent in most blood NK 
cells (53). In humans, it belongs to an eight-member family with both activating 
and inhibitory characteristics (55).  

Inhibitory signalling 
Inhibitory signalling in NK cells rapidly occurs upon engagement of the inhibitory 
receptors and is necessary to block potential activating signals at an early stage. 
As reviewed in detail later, the receptors aggregate at an inhibitory synapse after 
which the tyrosine residue within their intracellular ITIM motif undergoes 
phosphorylation by Src family kinases. The tyrosine phosphatases SHP-1 and 
SHP-2 are subsequently recruited to the ITIM through their SH2 domains, 
resulting in the blockade of activating pathways by dephosphorylation of critical 
proteins such as Vav1 (18, 56, 57).    

Education 
Results chieved in β2-microglobulin-deficient mice initially challenged the 
“missing self” theory as the autologous MHC class I-deficient cells remained 
unharmed by circulating NK cells (58, 59). Since also healthy nucleated cells may 
express ligands for activating receptors, a secondary control system is required to 
prevent autoreactivity. In the normal setting, all healthy cells express MHC class 
I, preventing elimination through interaction with its cognitive inhibitory receptor 
on the NK cell. However, not all NK cells express inhibitory receptors that 
recognize self-MHC class I. Since KIR genes and MHC class I genes are located 
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on different chromosomes and thus inherited independently, there is no 
safeguarding mechanism to ensure that all NK cells express a KIR that engages 
with a self-MHC class I. Indeed, approximately one tenth of all NK cells do not 
express inhibitory receptors for self-MHC class I (60, 61). To protect the host 
from NK cell-mediated harm, NK cells continuously undergo a process known 
as education or licensing. It is a process that fine-tunes NK cell activity with 
regards to its current environmental inhibitory input. Throughout their 
developmental journey, inhibitory receptors play a pivotal role in educating NK 
cells and those NK cells that do not express at least one receptor that recognize 
self-MHC class I molecules become hyporesponsive (62). NK cells adapt to their 
current MHC environments, as illustrated by the restoration of functionality in 
hyporesponsive NK cells transferred from MHC class I-deficient mice to a wild-
type (WT) setting (63). The education process could be visualized as a bow that 
needs to be tightened with negative strain to generate full force upon release. The 
interaction between KIRs and NKG2A and their respective ligands complements 
each other, as individuals with a weak HLA-allele for KIR often harbour an allele 
supporting strong NKG2A-HLA-E interactions and vice versa (25). Moreover, 
TIGIT+ mouse NK cells exhibit heightened responsiveness towards PVRneg 
target cells compared with TIGIT- cells, suggesting the potential involvement of 
TIGIT in the education of mouse NK cell (30). Inhibitory receptors serve as 
indispensable components for maintaining the functionality of NK cells, enabling 
them to respond effectively to target cells with reduced MHC class I levels.  

Several models have been proposed to describe NK cell education. According to 
the arming model, functional maturation of NK cells requires inhibitory input 
obtained from the interaction with self-MHC class I. Cells that lack this signal 
hence remain immature and hyporesponsive (60, 64). Conversely, the disarming 
model portrays NK cells in a constantly reactive state, leading to loss of 
responsiveness due to continuous stimulation in the absence of inhibitory signals 
from self-MHC class I (60, 65). The rheostat model provides an analogous 
perspective on the education process, contrasting with the more binary “on-off” 
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views. It suggests that all the inhibitory signals of varying strength are summed 
up and collectively modulate the responsiveness of the cell (66). These models do 
not represent completely separated views and could, when combined, provide a 
comprehensive understanding of NK cell education.  

The education process results in highly functional NK cells, but there are a few 
phenotypic characteristics that discriminate educated and uneducated NK cells. 
One study has demonstrated that self-KIR-expressing educated NK cells hold 
larger Granzyme B granule levels. This phenomenon may be attributed to the 
constant inhibitory input that allows granule stores to accumulate, while 
uneducated cells constantly loose granules due to the continuous stimulation (67). 
It has also been reported that unlicensed cells, despite forming fewer conjugates 
with target cells, exhibit normal lytic granule polarization upon conjugation. The 
hyporesponsiveness was instead partially attributed to diminished signalling from 
activating receptors to adhesion receptor LFA-1 (68, 69), which aligns with the 
study that demonstrated that educated cells exhibited more active LFA-1 after 
target cell stimulation. A stronger control of LFA-1 conformation was also 
demonstrated in educated cells upon cytokine stimulation. Additionally, the 
expression of the coactivating receptor DNAM-1 has been associated with NK 
cell education, believed to confer heightened effector functions to educated NK 
cells. This illustrates that the activity of NK cells is regulated at multiple levels to 
ensure minimal harm to self, given that the potentially reactive, educated cells, 
possess a stronger control system (70-72). 
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Figure 2. NK cell receptors and their corresponding ligands. Activating and inhibitory 
receptors expressed by NK cells and the ligands they interact with on a target cell. 

13

ACTIVATING RECEPTORS 
In addition to inhibitory receptors, NK cells also express a large repertoire of 
activating receptors that initiate activating signals upon engagement, leading to 
degranulation of cytotoxic granules, culminating in NK cell-mediated target cell 
killing. These receptors engage with ligands expressed by potential target cells, 
which are typically upregulated on virus-infected and transformed cells but may 
also be expressed in healthy tissues. Receptors and corresponding ligands are 
illustrated in figure 2.  

The natural cytotoxicity receptors (NCRs) are regarded as pivotal activating 
receptors on NK cells and include NKp46 (NCR1/CD335), NKp44 
(NCR2/CD336) and NKp30 (NCR3/CD337) (73-75). Using blocking 
antibodies, the NCRs have been demonstrated to be important mediators of NK 
cell cytotoxicity against many cancer cell lines. Their surface density has been 
correlated to the NK cell ability to kill target cells and the critical function of 
NCRs in cancer immunosurveillance has been demonstrated in several studies 
(paper II; (73-83)). The NCRs have also been implicated in defence against 
microbial pathogens including viruses (84-86).  

NKp46 is highly conserved across species and is the only known NCR expressed 
in mice. NKp46 and NKp30 are found on both resting and activated NK cells, 
are upregulated on stimulated cells but downregulated on adaptive NKG2C+ NK 
cells. NKp44 expression is absent on resting NK cells but become expressed in 
response to cytokine stimulation (87, 88). NKp46 is expressed on all mature NK 
cells, ILC1, a subset of ILC3 and γ/δ T cells (76, 89). 

Several ligands have been identified for the NCRs. Viral molecules, such as 
influenza-derived haemagglutinin, have been shown to interact with NKp46 and 
NKp44 (90, 91). All three NCRs bind different epitopes of the glycosaminoglycan 
heparan sulphate and it has been speculated that, although found on normal cells 
surfaces, these interactions function as a sensor for environmental changes due 



12

Figure 2. NK cell receptors and their corresponding ligands. Activating and inhibitory 
receptors expressed by NK cells and the ligands they interact with on a target cell. 

13

ACTIVATING RECEPTORS 
In addition to inhibitory receptors, NK cells also express a large repertoire of 
activating receptors that initiate activating signals upon engagement, leading to 
degranulation of cytotoxic granules, culminating in NK cell-mediated target cell 
killing. These receptors engage with ligands expressed by potential target cells, 
which are typically upregulated on virus-infected and transformed cells but may 
also be expressed in healthy tissues. Receptors and corresponding ligands are 
illustrated in figure 2.  

The natural cytotoxicity receptors (NCRs) are regarded as pivotal activating 
receptors on NK cells and include NKp46 (NCR1/CD335), NKp44 
(NCR2/CD336) and NKp30 (NCR3/CD337) (73-75). Using blocking 
antibodies, the NCRs have been demonstrated to be important mediators of NK 
cell cytotoxicity against many cancer cell lines. Their surface density has been 
correlated to the NK cell ability to kill target cells and the critical function of 
NCRs in cancer immunosurveillance has been demonstrated in several studies 
(paper II; (73-83)). The NCRs have also been implicated in defence against 
microbial pathogens including viruses (84-86).  

NKp46 is highly conserved across species and is the only known NCR expressed 
in mice. NKp46 and NKp30 are found on both resting and activated NK cells, 
are upregulated on stimulated cells but downregulated on adaptive NKG2C+ NK 
cells. NKp44 expression is absent on resting NK cells but become expressed in 
response to cytokine stimulation (87, 88). NKp46 is expressed on all mature NK 
cells, ILC1, a subset of ILC3 and γ/δ T cells (76, 89). 

Several ligands have been identified for the NCRs. Viral molecules, such as 
influenza-derived haemagglutinin, have been shown to interact with NKp46 and 
NKp44 (90, 91). All three NCRs bind different epitopes of the glycosaminoglycan 
heparan sulphate and it has been speculated that, although found on normal cells 
surfaces, these interactions function as a sensor for environmental changes due 



14

to malignant transformation (92, 93). Intracellular proteins have also been found 
to interact with NCRs through surface expression caused by stress or tumour 
transformation. Nuclear BAT3/BAG6 has been reported to stimulate NK cell 
cytokine secretion through NKp30 by translocating to the membrane upon heat 
shock (94, 95). Similarly, both MLL5 and PCNA are nuclear proteins that were 
shown to translocate to the cell surface to function as a ligand for NKp44 (96, 
97). The type I transmembrane protein B7-H6 is another ligand for NKp30 (98). 
It is not expressed on healthy cells but has been found upregulated on a large 
variety of cancer cells, a process aided by the proto-oncogene Myc (paper I; (98, 
99)). Soluble forms of the ligand have been found in several cancer types and has 
been shown to force downregulation of NKp30 (100-103). Nidogen-1 is another 
soluble ligand reported to bind NKp44 (104). The identity of cellular ligands for 
NKp46 have remained largely elusive, despite extensive efforts. The participation 
of the intracellular cytoskeletal protein vimentin in NKp46-dependent killing of 
Mycobacterium tuberculosis-infected monocytes has been proposed, although it could 
not be established if it acted as a primary ligand to NKp46 (105). Additionally, 
the complement factor P/properdin has been shown to bind NKp46 although it 
was shown to induce a different NK cell response than the canonical pathway of 
activation (106). Likewise, CD4 and Siglec-6-8 were proposed to be binding 
partners to NKp46 in a large screening effort but their capacity to induce NK cell 
activation remains uncertain (107). Recently, ER-stress-induced externalized 
calreticulin was suggested as an NKp46 ligand (108). It remains to be determined 
whether these identified ligands account for the numerous unidentified NKp46Ls 
(109-114).  

The structure of the NCRs comprises an extracellular portion of two C2-type Ig-
like extracellular domains (NKp46) or a single IgV-like domain (NKp44 and 
NKp30), linked with a stalk region, followed by a transmembrane region and a 
short intracellular domain (75, 76, 87, 115, 116).  
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NKp46 has been shown to bind ligands through its membrane proximal domain 
(D2), which features several glycosylation sites of which one sugar-carrying 
residue, Thr225, plays a crucial role in the interaction of NKp46 with both viral 
and tumour ligands (86, 117, 118). Like NKp46, attachment of sialic acids to 
glycosylation residues on NKp44 has been shown to be important for recognition 
of viral ligands (91). For NKp30, the stalk region has been identified as crucial for 
ligand binding (119). Both NKp30 and NKp46 were shown to form homo-dimers 
or -oligomers which can provide a stronger ligand-binding affinity and contribute 
to target cell lysis (120, 121). 

NKG2D is a major activating NK cell receptor of relevance for elimination of 
malignant cells (122). It is a type II transmembrane protein encoded by the 
KLRK1 gene within the NKC on chromosome 6 and can be found on all human 
circulating NK cells as well on CD8+ and γ/δ T cells. NKG2D differs from other 
NKG2 family members in that it is expressed as a disulfide-linked homodimer 
and does not associate with CD94 molecules (123, 124).  

The ligands for NKG2D are stress-induced molecules of cellular origin that are 
upregulated on infected, stressed or transformed cells. These ligands are 
structurally related to MHC class I-molecules although they do not associate with 
β2-microglobulin or bind peptides. MHC class-related sequence (MIC) A/B and 
UL16-binding protein (ULBP) 4/5 are type I transmembrane proteins, while 
ULBP1-3/6 are membrane-bound through a glycolsylphosphatidylinositol (GPI)-
anchor, though ULBP2 and ULBP5 exist in both transmembrane and GPI-
anchored versions (123, 124). Their genes are highly polymorphic which expands 
the variety of ligands even further (125). There is likely functional redundancy 
among the NKG2D ligands as there are individuals harbouring a null allele for 
MICA and/or MICB without any apparent phenotypic consequences (126). Yet, 
presence of diverse NKG2D ligands and the development of multiple evasion 
mechanisms by viruses and cancers, aimed at circumventing NKG2D-dependent 
recognition, underscores the importance of the NKG2D axis. Virtually all cells 
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can express one or more ligands and solid tumours commonly express two or 
more NKG2D ligands, which bind NKG2D with varying affinities (124, 127-
129). However, it remains incompletely understood which NKG2D ligands are 
upregulated on specific cancers or by certain pathogens.  

Additional receptors contributing to NK cell activation include 2B4/CD244, 
DNAM-1/CD226 and CD2. Although regarded as co-receptors, incapable of 
independently inducing cytolytic functions in NK cells, they have demonstrated 
roles in NK cell cytotoxicity (53, 130-132). Findings from both our genome-wide 
CRISPR screen and functional assays involving blocking antibodies, as outlined 
in papers I and IV, underscore the involvement of CD2 for recognition of 
leukemic cells (papers I, IV). These receptors are believed to play a crucial role 
in target cell adhesion (130, 133, 134). 2B4, DNAM-1 and CD2 are 
transmembrane proteins with two extracellular domains, expressed on various 
immune cells, including NK cells. 2B4 binds the GPI-anchored CD48, which also 
serves as a ligand for the adhesion molecule CD2, albeit with lower affinity than 
its primary ligand CD58/LFA-3 (135, 136). The ligands to DNAM-1 include 
Nectin-2/CD112 and PVR/CD155, expressed by cancer cells but also to some 
extent by healthy epithelial and endothelial cells (137). As mentioned, these 
ligands interact with stronger affinities with other NK cell receptors, including 
the inhibitory receptors TIGIT and CD112R, creating a dynamic relationship 
between activating and inhibitory signalling with varying affinities (138).  

Redirected killing assays suggest a hierarchy among these receptors in co-
activating NK cells, with 2B4 inducing the strongest activation, followed by 
DNAM-1 and CD2 as the weakest inducer (132). This hierarchy could be linked 
to the expression patterns of their corresponding ligands, given that LFA-
3/CD58 exhibit broad expression, while CD48 expression is limited to 
hematopoietic cells and a specific subset of endothelial cells (132). Co-activation 
may thus be essential to limit NK cell alloreactivity.  
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CD16 is a low-affinity Fc receptor that enables NK cells to recognize IgG1 and 
IgG3 molecules for antibody-dependent cellular cytotoxicity (ADCC). This 
transmembrane protein comprises two Ig-like C2-type extracellular domains, a 
transmembrane domain and a short cytoplasmic tail. The density of CD16 is 
correlated with ADCC activity of NK cells (139). The engagement of CD16 
contribute to NK cell cytotoxicity, cytokine and chemokine production as well as 
to IL-2-stimulated NK cell’s function and proliferation (140-142).  

Activating signalling 
Activating receptors transmit signals intracellularly through tyrosine-based 
phosphorylation. The activating NK cell receptors with a short cytoplasmic tail, 
thus lacking signalling capacity, associate with adapter proteins containing 
immunoreceptor tyrosine-based activation motifs (ITAMs).  There are three 
ITAM-containing adapter proteins expressed in NK cells: FcεRIγ, CD3ζ and 
DAP12 (143-145). FcRγ and CD3ζ forms homodimers and heterodimers to 
associate with CD16 and NKp46 and NKp30, where a charged arginine residue 
in the transmembrane domain of the latter two enables the interaction (144, 146, 
147). Instead, a lysine residue in the transmembrane domain of NKp44 allows 
association with the homodimeric DAP12 (18, 148). Upon signalling, the two 
tyrosines within the ITAM motif undergo phosphorylation by members of the 
Src-kinase family, facilitating binding of the SH2 domain of the tyrosine kinases 
Syk and ZAP70. This results in activation of PI3K, PLC-γ and Vav 2/3. This 
process leads to Ca2+ influx, degranulation and transcription of chemokine and 
cytokine genes. NKG2D associates with the adapter molecule DAP10, which 
contains a tyrosine-based-motif that differs from the ITAM. Upon 
phosphorylation, it binds either to the p85 subunit of PI3K or the adaptor Grb2 
and Vav1, both resulting in activation of Vav1 (7, 18, 149).  
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SYNAPSE FORMATION 

Following the encounter of a potential target cell by the NK cell, the formation 
of the immune synapse (IS) unfolds in a highly organized, sequential process with 
specific stages and checkpoints, depicted in figure 3 (131, 150, 151). The rigidity 
of the target cell membrane has been shown to influence the ability of IS 
formation and the lipid composition impacts the cell interactions (paper I; (152)). 
The major purpose of the IS is to establish close proximity to the target cell to 
facilitate efficient cytotoxicity for the NK cell. Additionally, the formation of a 
tight synaptic cleft, typically 10-30 nm deep, serves to protect neighbouring cells 
from potential damage (153).  

As lytic granules are preformed in resting NK cells, unlike resting cytotoxic T cells 
(CTLs), the events leading up to degranulation needs precise regulation. The IS 
formation, culminating in target cell killing, is conceptually divided into three 
stages: recognition, effector and termination stage (69). The first step of the 
recognition stage involves the first contact between the cells by “tethering” 
receptors (154). Firmer adhesion is enabled through interactions between 
integrins, such as MAC-1 and LFA-1 and its ligand ICAM-1, providing an initial 
activation signal via phosphorylation of Vav1, which is essential for downstream 

Section in brief: 

One of the main functions of NK cells includes elimination of malignant cells. As NK cells 
encounter potential target cells, the integration of signals received from inhibitory as well as 
activating determines whether to proceed with lysis of the encountered cell (18). Upon the 
interaction, the NK cell initiates the formation of an immunological synapse (IS), which is an 
intricately coordinated process that involves distinct steps, described in detail below. 
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cytoskeletal reorganization and lipid raft clustering (150, 155-158). As opposed to 
CTLs, resting NK cells have been found to express LFA-1 in its active 
conformation which could bring light to the more dynamic nature of NK cells’ 
interaction with target cells (130, 151, 159). The activation of LFA-1 is further 
increased by a second activation signal through a receptor such as NKG2D, 2B4, 
DNAM-1 or CD2 (69, 130).  

Inhibitory immunological synapse 
The inhibitory IS is distinct from the lytic IS and represents a contact point 
between the two cell types where signalling functions to terminate the cytotoxic 
commitment (155, 160). Its formation occurs upon interaction between inhibitory 
NK cell receptors and their cognitive ligands on the target cell (130, 161, 162). 
The inhibitory receptors have been demonstrated to cluster at the inhibitory IS, 
without the need for actin reorganization (163-165). Vav1, being the substrate of 
SHP-1, undergoes dephosphorylation, thereby blocking further activating 
signalling due to the critical role of Vav1 in actin reorganization (155, 166). The 
recruitment of phosphatases rapidly leads to inhibition of multiple additional 
points of activation, including conjugate formation, LFA-activation, IS clustering 
of activating receptors and lipid rafts and Ca2+ mobilization (130, 155, 157, 163, 
165-169).

Actin reorganization 
Without overruling inhibitory signals, the effector stage is initially characterized 
by actin reorganization, followed by clustering of activation receptors, lipid raft 
aggregation and lytic granule polarization (169, 170). Filamentous actin (F-actin) 
is formed from cellular globular actin, dependent on Wiskott-Aldrich syndrome 
protein (WASp), thus creating a radially symmetric stable cell-cell contact site with 
its typical cleft (151, 154, 161, 171). 
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Figure 3. Synapse formation. 
NK cells form immunological 
synapse with its target cells 
to deliver cytotoxic granules. 
Adapted from (154). 
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Actin rearrangement has been shown to be crucial for both lipid raft polarization, 
cell-cell adhesion as well as activating signalling (155, 165). Indeed, polarization 
and clustering of CD2, LFA-1 and MAC-1 at the IS was shown to be restrained 
by inhibition of actin polymerization (150). Instead, NKp46 knockdown 
experiments revealed the importance of the receptor in actin rearrangement (172). 

Receptor clustering 
Receptor aggregation in the IS is important for generation of robust signalling in 
NK cells (173). Adhesion receptors such as LFA-1, MAC-1, 2B4 and CD2 have 
been found to cluster in the peripheral supramolecular activation cluster (SMAC), 
contributing to the ring shape of the IS together with F-actin (150, 174). Also the 
major activating receptors NKG2D, NKp46 and NKp30 have been found to 
cluster in the IS (163, 172, 174, 175). The nature of ligands that are presented on 
the target cell also influence aggregation as ULBP1 was shown to induce larger 
NKG2D receptor nanoclusters compared to MICA (176). The spatial 
arrangement of receptors may also be influenced by the lipid microenvironment. 
Lipid rafts have been observed in the periphery of the T cell synapse, potentially 
forming signalling platforms for activating receptors (169, 177). Following 

activating receptor signalling, PI3K-ERK2 and PLCγ-JNK pathways facilitate 

mobilization of ions, in particular Ca2+, which is needed for granule exocytosis 

(178-180). PLCγ-generated IP3 is involved in release of Ca2+ from intracellular 

stores in the endoplasmic reticulum and from extracellular environment by 
activating calcium channels (181, 182).  

Granule polarization and exocytosis 
Cytotoxic granules appear highly heterogenous and can contain granzymes, 
perforin, granulysin, death ligands and small anti-microbial peptides (182-184). 
Granzymes are serine proteases and the five variants expressed in humans 
(Granzyme A, B, H, K and M) exhibit different cleaving affinities (182, 184). 
Granzyme A and Granzyme K are thus defined as trypsins; Granzyme B aspase; 
Granzyme H chymase and Granzyme M metase. They are all synthesized as pro-
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activating receptor signalling, PI3K-ERK2 and PLCγ-JNK pathways facilitate 
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enzymes and are cleaved to their active form by cathepsin C or H in the granules 
(182). Perforin is a pore-forming protein, essential for the lytic function of 
cytotoxic lymphocytes, to deliver granzymes to the target cell (185). It is expressed 
at lower levels in CD56bright NK cells compared to CD56dim. An acidic 
environment in combination with the proteoglycan serglycin that form complexes 
with granzymes keep the lytic molecules inactive and prevent damage to the NK 
cell (186-189). 

The preformed lytic granules move along microtubules to the microtubule 
organizing centre (MTOC) (190, 191). The MTOC is simultaneously polarized 
towards the synapse. Actin rearrangement as well as ERK phosphorylation, Vav1 
activation and Pyk2 activity are required for MTOC polarization (192-194). 
Following vesicle priming, the granules fuse with the plasma membrane to be 
released into the cleft between the two interacting cells. Two modes of fusion are 
known to occur: complete and incomplete fusion. The complete fusion involves 
complete granule content discharge into the cleft whereas during incomplete 
fusion, only a portion of the content is released through a transient membrane 
pore (195). This practice, allowing for rapid recycling of granule content is 
suggested to be implicated in serial-killing, which is further explained in Killing 
dynamics (174, 196).  

Lytic granule delivery and detachment 
The termination stage describes the period when the NK cell remains relatively 
inactive and the IS is preserved in order to protect surrounding cells while 
maintaining a high concentration of cytotoxic effector molecules to ensure target 
cell death (154). NK cells have been reported to safeguard themselves from lytic 
molecules through the externalization of LAMP-1/CD107a and the cytosolic 
expression of serine protease inhibitor B9 (197-199). Studies also suggest that the 
tightly packed lipids, found in the membrane of the granules itself and exposed 
on the plasma membrane after exocytosis, reduce the perforin-binding capacity 
(200, 201). After interaction, activating receptors are internalized or shredded to 
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enable detachment from the target cell (202, 203). The interaction of inhibitory 
receptors with apoptosis-induced PtdSer on the target cell may enable termination 
signalling (paper I). Establishment, maintenance as well as dissociation of the IS 
are highly regulated processes (156). Detachment of the NK cell from the target 
cell is regulated by several factors and is a determining factor of the serial-killing 
capacity of NK cells (202, 204). Resistant target cells or incomplete killing 
prolonged the detachment process that was induced by target cell loss of surface 
proteins and reduction in activating signalling in NK cells (69, 204-206).  
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TARGET CELL DEATH 

PERFORIN/GRANZYME PATHWAY 
After lytic granule exocytosis from the NK cell into the synaptic cleft, perforin 
has the ability to insert itself into the target cell membrane. Pores in the membrane 
can be generated by perforin oligomerization, in a calcium- and pH-dependent 
process. Depending on local concentration of perforin and lipid composition, 
both smaller, transient pores and larger, stable, ring-shaped pores form (182, 187). 
Two mechanisms for the entry of granzymes into the target cell cytoplasm have 
been proposed. The first suggests that granzymes enter through plasma 
membrane pores formed by perforin. Alternatively, a perforin-serglycin- 
granzyme complex is endocytosed by the target cell, potentially using the mannose 
6-phosphate receptor, and perforin instead disrupts the endosomal membrane,
allowing granzyme to diffuse into the cytoplasm, where it induces apoptosis via 
caspase-dependent or independent mechanisms. Several studies favour of both 
mechanisms (185, 207-209).   

Granzymes initiates several pathways (depicted in figure 4), all ultimately leading 
to cellular apoptosis, which can be described as ATP-dependent programmed 
caspase-mediated cell death. It occurs normally during development, cell 

Section in brief: 

NK cells employ two primary pathways to induce apoptosis in target cells. The first involves 
the use of granzymes that are stored in lytic granules, while the second relies on ligation of death 
receptors. These pathways exhibit distinct dynamics, determining the circumstances under 
which NK cells favour one method over the other (206). 

25

population maintenance and in response to cell damage, induced by cytotoxic 
immune cells. It induces minimal inflammation and damage to surrounding tissue 
(210). The caspase-dependent initiation of apoptosis involves direct granzyme 
cleavage and activation of caspases, such as granzyme B activation of caspase-3 
and -8 (182, 211). Granzymes can further induce apoptosis through other 
mechanisms such as granzyme B- or granzyme K-mediated cleavage of the pro-
apoptotic protein Bid, a member of the Bcl-2 family that control and regulate the 
apoptotic mitochondrial processes (182, 212). Cleavage of Bid lead to membrane 
permeabilization, causing release of mitochondrial proteins, like cytochrome c 
and smac into the cytosol (213, 214). Upon binding to cytochrome c, the 
procaspase-activating adaptor protein Apaf1 polymerizes, forming a wheel-
shaped heptamer called apoptosome together with the initiator procaspase-9 (215, 
216). This clustering activates caspase-9, which, in turn activates downstream 
executioner procaspases, including caspases-3/6 and -7 (217). Additionally, 
granzymes exert other functions through which they enhance apoptosis. Cleavage 
of DNA-associated proteins by granzyme A/B/K/M causes DNA damage and 
reduces DNA repair capacity, further amplifying the pro-apoptotic impact (218-
220). Activated execution caspases degrade nuclear and cytoskeletal proteins and 
material by activating cytoplasmic endonucleases and proteases (221). 
Cytoskeletal reorganisation, dependent on caspase-3, leads to membrane 
blebbing, eventually resulting in formation of apoptotic bodies. The membrane 
also undergoes additional transformations during apoptosis (215). High Ca2+ 
concentration inhibits the activity of the P4-ATPase flippase and caspase-3 
cleavage of the α-unit further inhibits its function (222, 223). Along with 
irreversible activation of the Xkr8 scramblase, this leads to exposure of PtdSer on 
the outside of the apoptotic cells (224). Phagocytes recognize PtdSer as an “eat-
me” signal to ensure clearing of dead cells before their membranes are 
compromised (225). This process is termed efferocytosis and although non-
professional phagocytes, like epithelial cells, can clear dead cells, most apoptotic 
cells are cleared by macrophages (226-228). 
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Figure 4. Perforin/granzyme killing pathway. NK cells can kill their target cells by secretion of 
their cytolytic granule content containing perforin and granzymes.  

DEATH-RECEPTOR MEDIATED PATHWAY 
In addition to utilizing their activating receptors to trigger degranulation, NK cells 
possess an alternative mechanism for targeting and eliminating cells – employing 
their repertoire of death ligands. These ligands engage death receptors expressed 
on the surface of target cells. This arsenal includes the TNF family of ligands Fas 
ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL). The binding 
of these ligands to their respective receptor on a target cell initiates the extrinsic 
apoptotic pathway, culminating in cellular apoptosis (184, 206). Expressed as 
homotrimeric type II transmembrane proteins, FasL and TRAIL contain a 
conserved C-terminal domain known as TNF homology domain that facilitates 
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self-association and interaction with their cognative receptors (229). FasL has 
been shown to associate with lipid rafts, which is reportedly crucial for its activity 
(230, 231). While one study suggested TRAIL association with lipid rafts in K562 
cells, additional confirmation is required (232). FasL and TRAIL can also be 
cleaved from the cell surface by endopeptidases to form soluble versions (206, 
233-235). Unlike FasL, soluble TRAIL has been shown to retain its activity albeit
less potent than its membrane-bound form (206, 233, 236). 

Both FasL and TRAIL are expressed on NK cells, with very low levels of TRAIL 
on resting NK cells, and both are induced upon cytokine stimulation (paper IV; 
(237, 238)). Additionally, TRAIL and FasL are present in intracellular lytic 
granules that are secreted upon activation with distinct kinetics (182, 183, 239, 
240). These ligands are proposed to play a crucial role in NK cell-mediated control 
of cancer and virus infections as well as immunological self-tolerance (236-238, 
241-243).

The Fas/CD95 receptor binds FasL while five receptors capable of binding 
TRAIL have been identified in humans: TRAIL-R1/DR4, TRAIL-R2/DR5, 
TRAIL-R3/Decoy receptor 1, TRAIL-R4/Decoy receptor 2 and the soluble 
receptor osteoprotegerin (OPG) (184). TRAIL-R2 and two decoy receptors have 
been identified in mice (184). The human membrane-bound receptors are 
expressed by the genes TNFRSF10A-D (238). The structural details of the 
TRAIL-receptors are depicted in figure 5. TRAIL-R1, R2 and R4 are all 
transmembrane proteins whereas TRAIL-R3 is anchored to the membrane by 
glycosylphosphatidylinositol. Notably, TRAIL-R1 and TRAIL-R2 are the only 
receptors equipped with intracellular signalling moieties, known as death domains 
(DD), which are capable of inducing apoptosis. Conversely, the lack of signalling 
capabilities in TRAIL-R3, TRAIL-R4 classifies them as anti-apoptotic decoy 
receptors. The trimeric TRAIL and FasL binds three corresponding receptors. 
TRAIL-R1 and -R2 form homotrimeric or heterotrimeric clusters, creating a 
receptor-ligand complex with the Zn2+ ion-stabilized TRAIL trimer at the centre 



26

Figure 4. Perforin/granzyme killing pathway. NK cells can kill their target cells by secretion of 
their cytolytic granule content containing perforin and granzymes.  

DEATH-RECEPTOR MEDIATED PATHWAY 
In addition to utilizing their activating receptors to trigger degranulation, NK cells 
possess an alternative mechanism for targeting and eliminating cells – employing 
their repertoire of death ligands. These ligands engage death receptors expressed 
on the surface of target cells. This arsenal includes the TNF family of ligands Fas 
ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL). The binding 
of these ligands to their respective receptor on a target cell initiates the extrinsic 
apoptotic pathway, culminating in cellular apoptosis (184, 206). Expressed as 
homotrimeric type II transmembrane proteins, FasL and TRAIL contain a 
conserved C-terminal domain known as TNF homology domain that facilitates 

27

self-association and interaction with their cognative receptors (229). FasL has 
been shown to associate with lipid rafts, which is reportedly crucial for its activity 
(230, 231). While one study suggested TRAIL association with lipid rafts in K562 
cells, additional confirmation is required (232). FasL and TRAIL can also be 
cleaved from the cell surface by endopeptidases to form soluble versions (206, 
233-235). Unlike FasL, soluble TRAIL has been shown to retain its activity albeit
less potent than its membrane-bound form (206, 233, 236). 

Both FasL and TRAIL are expressed on NK cells, with very low levels of TRAIL 
on resting NK cells, and both are induced upon cytokine stimulation (paper IV; 
(237, 238)). Additionally, TRAIL and FasL are present in intracellular lytic 
granules that are secreted upon activation with distinct kinetics (182, 183, 239, 
240). These ligands are proposed to play a crucial role in NK cell-mediated control 
of cancer and virus infections as well as immunological self-tolerance (236-238, 
241-243).

The Fas/CD95 receptor binds FasL while five receptors capable of binding 
TRAIL have been identified in humans: TRAIL-R1/DR4, TRAIL-R2/DR5, 
TRAIL-R3/Decoy receptor 1, TRAIL-R4/Decoy receptor 2 and the soluble 
receptor osteoprotegerin (OPG) (184). TRAIL-R2 and two decoy receptors have 
been identified in mice (184). The human membrane-bound receptors are 
expressed by the genes TNFRSF10A-D (238). The structural details of the 
TRAIL-receptors are depicted in figure 5. TRAIL-R1, R2 and R4 are all 
transmembrane proteins whereas TRAIL-R3 is anchored to the membrane by 
glycosylphosphatidylinositol. Notably, TRAIL-R1 and TRAIL-R2 are the only 
receptors equipped with intracellular signalling moieties, known as death domains 
(DD), which are capable of inducing apoptosis. Conversely, the lack of signalling 
capabilities in TRAIL-R3, TRAIL-R4 classifies them as anti-apoptotic decoy 
receptors. The trimeric TRAIL and FasL binds three corresponding receptors. 
TRAIL-R1 and -R2 form homotrimeric or heterotrimeric clusters, creating a 
receptor-ligand complex with the Zn2+ ion-stabilized TRAIL trimer at the centre 



28

(240, 244-246). Inclusion of TRAIL-R4 in the heterotrimer complex disrupts 
signalling due to its intracellular truncated death domain (247, 248). Studies 
suggest further clustering into larger organized networks through dimerization of 
receptor trimers, facilitating full activation of intracellular signalling (246, 249). 
Supramolecular cluster formation is proposed to rely on the stability provided by 
the stalk domain of membrane-bound TRAIL, potentially explaining the lower 
potency of soluble TRAIL (250). Despite TRAIL-R2 having a stronger affinity 
for TRAIL at physiological temperatures compared with the other membrane-
bound receptors, TRAIL-R1 is preferentially used for apoptosis-induction (245, 
251-253). The distinct requirements for membrane-bound TRAIL between
TRAIL-R1 and -R2, where the former does not seem to require it, may be 
attributed to the need for TRAIL-R1 localization to lipid rafts for functionality, 
unlike TRAIL-R2 (240). In addition to inducing apoptosis by binding Fas-
associated death domain protein (FADD), TRAIL-R1, -R2 and -R4 has been 
demonstrated to induce gene transcription by activating NF-kB signalling through 
binding to TRADD (244, 254, 255).  

Figure 5. Receptor structure. The TRAIL-
receptors TRAIL-R1-4 and Osteoprotegerin 
(OPG) differ in their structure. TRAIL-R1 
and TRAIL-R2 both have a functional 
intracellular death domain, while TRAIL-R4 
has a truncated version. TRAIL-R3 in 
associated to the membrane via a GPI-
anchorage and OPG is a soluble receptor.

29

Once the active TRAIL or Fas receptor trimer complex is assembled, the death-
inducing signalling complex (DISC) is recruited, as illustrated in figure 6. The 
DISC comprises Fas-associated death domain (FADD), which binds to the 
receptors through interactions between their DDs, and procaspases-8 binding to 
FADD through death effector domains (DEDs). The role of caspase-10 is not 
fully established but only caspase-8 appears to be essential for apoptosis (184, 
206, 211, 247, 256-258). The stoichiometric ratio of the DISC components 
remains incompletely understood but a study suggests multifold more caspase-8, 
compared to FADD, which allows DED-chain formation, a crucial step for 
caspase-8 activation through autoproteolytic cleavage (259). Once activated, 
caspase-8 can in turn cleave and activate the executioner procaspases, culminating 
in target cell apoptosis (260).  

Figure 6. Death-receptor induced killing. NK cells can kill their target cells by engaging death 
receptors using their death ligands TRAIL and FasL.  
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c-FLIP, encoded by the gene CFLAR, serves as a negative regulator of death
receptor-induced apoptosis. Three isoforms are predominately expressed, among 
which the two short versions exhibit anti-apoptotic function and the long version 
act both pro- and anti-apoptotic, depending on expression levels. All isoforms 
contain DEDs, enabling them to bind to the DISC and outcompete procaspase-
8, thereby inhibiting apoptosis (261). NK cells express two isoforms of c-FLIP to 
protect themselves from death receptor-induced apoptosis. Additionally, NK 
cells express TRAIL-R4 and upregulate TRAIL-R3 upon activation as a protective 
measure (262). 

KILLING DYNAMICS 
The two killing pathways, death receptor-induced killing and granzyme/perforin-
mediated killing, exhibit substantial differences in kinetics. Death receptor-
induced killing is demonstrated to occur after approximately 90 minutes, while 
cytotoxic granule-mediated killing takes place within a few minutes (263). 
Potential explanations for this disparity include differences in granule localization 
and secretion dynamics. Moreover, variation in threshold levels required for the 
cytotoxic inducers adds another layer of complexity. The granzyme/perforin 
pathway necessitates only two to four granules to be released for target cell 
elimination, contrasting with the death ligand pathway which may require a higher 
number of death ligands for effective apoptosis induction (206, 264). Differences 
in kinetics of intracellular signalling pathways are also noteworthy. Granzyme B, 
upon cytoplasmic entry, efficiently cleaves caspase-3, triggering the apoptosis 
cascade. Conversely, death ligands form larger clusters upon receptor engagement 
before the DISC assembly, leading to apoptosis. This potentially slower process 
has been demonstrated to be even less efficient in specific cells, resulting in 
delayed induction of apoptosis (206).  

31

It has been demonstrated that NK cells use the two different methods with 
distinct dynamic timing. This is evident in studies of so-called serial-killing NK 
cells, which constitutes a small subset of NK cells that appears to account for the 
majority of target cell killing events. These cells exhibit the capability to eliminate 
as many as seven target cells within a 12-hour period (204, 265). For this 
phenomenon to occur, specific dynamics and regulated processes come into play. 
The detachment from one target cell has been identified as crucial to enable the 
formation of a new synapse (202, 204). During this process, activating receptors 
are downregulated or shed which can pose a limiting factor for further serial-
killing (202, 203). Another limiting factor is granule depletion, as it has been 
demonstrated that NK cells use 10% of their total lytic granule content in a single 
killing event, despite that only two to four degranulation events are needed (264). 
Stimulation with IL-2 or IL-15 has been shown to assist in restoring granule 
content (265). A study by Prager et al. revealed that serial-killing NK cells initially 
employ the faster and more efficient granzyme/perforin-mediated killing, which 
is gradually replaced by the slower death ligand-mediated killing as the granule 
content is depleted (266).  
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NK CELLS IN CANCER 

NK cells are considered to play a crucial role in surveillance and defence against 
cancer (4). While their pivotal role in haematological malignancies is established, 
their presence in solid tumours also associates with improved survival in various 
cancer types including colorectal, lung and gastrointestinal stromal cancer (78, 79, 
81, 267-269). However, the prevalence of NK cells within tumours is notably 
lower than that of T cells and their functionality can be dampened by the 
immunosuppressive tumour microenvironment (TME) (270, 271). This often 
results in NK cells adopting an exhausted phenotype, characterized by reduced 
levels of perforin and granzyme B. NK cells have been suggested to be more 
efficient in preventing metastasis than controlling the solid tumour growth (270, 
272). Consequently, interventions aiming to modulate the immune response by 
alleviating suppression and enhancing NK cell infiltration, persistence and cancer 
cell recognition hold promise in improving cancer outcomes. NK cells exhibit 
diverse function across cancer types, emphasizing the need for studies that 
explore the impact of different NK cell phenotypes and genotypes in specific 
settings (273, 274). Such investigations are necessary for a comprehensive 
understanding of NK cell dynamics in cancer and may pave the way for more 
targeted and effective therapeutic approaches tailored to specific cancers. 

Section in brief: 

NK cells are important players in the battle against cancer, with the most established role in 
acute myeloid leukemia. Thus, cancer cells develop various mechanisms to evade NK cell 
recognition. To combat the evasion strategies, immunotherapeutic interventions are under 
development, with the aim of boosting the immune system. These include stimulation by 
cytokines, the transfusion of immune cells, potentially enhanced by genetic engineering and 
antibodies for various purposes.   
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ACUTE MYELOID LEUKEMIA 
Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia, 
affecting three to eight people per 100 000 with a median age of around 70 years 
(275). AML is characterized by uncontrolled proliferation of immature myeloid 
cells which have lost the ability of normal differentiation and controlled growth. 
Consequently, AML entails an accumulation of undifferentiated myeloid cells in 
bone marrow. These cells are incapable of generating mature blood cells, which 
additionally prevents the proper differentiation of normal cells (275, 276). The 
five-year overall survival exhibits large age-dependent variations, exceeding 50% 
for individuals below 50 years but dropping to around 10% for those above 70 
years of age (277). AML is a heterogenous disease, marked by diverse karyotypic 
and mutational aberrations that impact prognosis (275). Leukemic cells devoid of 
chromosomal alterations, exhibiting a so-called normal karyotype, display 
recurrent mutations in NPM1, FLT3, DNMT3A, IDH1/2 and CEBPA (278).  

Standard treatment involves immediate induction therapy post-diagnosis with the 
aim to eliminate leukemic cells from the bone marrow and to restore normal 
haematopoiesis, through high doses of chemotherapeutic drugs. The specific 
regimen varies globally but typically include induction cycles with three days of 
anthracycline and seven days of cytarabine, whereas in Sweden cytarabine is 
administered for only five days (275, 276, 279). Older patients may instead receive 
venetoclax and azacytidine in the initial phase of therapy. The primary goal of this 
first phase is to induce complete remission (CR), defined as less than 5% blasts 
among nucleated bone marrow cells along with the return of normal 
haematopoiesis (280). Patients in CR subsequently undergo consolidation 
therapy, typically involving additional cycles of chemotherapy but can also include 
allogeneic stem cell transplantation for selected patients (276, 277). Targeted 
therapies for certain subtypes of AML have recently been incorporated into 
treatment recommendations (281). Despite achieving CR and undergoing 
consolidation therapy, many patients relapse with poor prospects of long-term 
survival. Maintenance therapy, administrated after the completion of 
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conventional induction and consolidation therapy, serves as a promising strategy 
to sustain prolonged remission, in particular for patients ineligible for allogeneic 
transplantation (276). Approved therapies include 5-azacitidine for older patients 
and histamine dihydrochloride/IL-2 for younger patients (282, 283). The 
rationale behind the latter is discussed in detail later.  

NK CELL INTERACTION WITH CANCER CELLS AND 
TUMOUR ESCAPE 
NK cells play a complementary role to T cells, both possessing the ability to 
recognize MHC class I but in diverging manners. Cancer cells expressing MHC 
class I-bound peptides face the risk of detection and elimination by T cells. To 
evade this recognition, cancer cells often downregulate the expression of the 
MHC complex at various levels involving transcriptional, epigenetic and 
posttranscriptional mechanisms (284). Given that MHC class I is recognized by 
NK cell inhibitory receptors, its absence instead triggers NK cell cytotoxicity, 
resulting in elimination of the cancer cell. During their transformation, cancer 
cells tend to upregulate activating ligands for NK cell receptors. This interaction 
has been proven critical as the expression of activating NCRs associates with 
improved outcome in several diseases (81, 285, 286).  

Due to the higher expression of TRAIL-Rs on malignant cells, TRAIL has been 
proposed as a promising therapeutic target due to its potential selectivity (287). 
Evidence of the protective role for TRAIL in cancer development has been 
generated using TRAIL/TRAIL-R-deficient mice or by antibody blockade of the 
interaction. Depletion of the ligand leads to higher susceptibility to tumour 
formation as well as metastasis formation (238, 288). The role for TRAIL-R is 
less straightforward however, as studies have reported diverging results from 
TRAIL-R-deficient models (238). The anti-tumour effect seen by TRAIL could 
also be attributed to targeting of immunosuppressive cells within the tumour 
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microenvironment (238, 289). The role for NK cells in TRAIL-mediated cancer 
control has been demonstrated in several studies and gained further support from 
studies where the effect of the neutralizing TRAIL antibody was abolished by NK 
cell depletion (238, 243, 288).  

Escape mechanisms 
Cancer cells employ various strategies to avoid recognition and elimination by 
NK cells. Dysregulated expression of activating and inhibitory NK cell receptors 
is often demonstrated in cancer patients, leading to impaired NK cell function 
(78, 290, 291). Inhibitory receptors like PD-1 and TIGIT are frequently 
upregulated in cancer settings, potentially contributing to dysfunctional NK cells 
(292, 293). Conversely, lower levels of activating receptor are often observed in 
various cancer types, as a result of different manipulation mechanisms. The 
release of soluble forms of ligands such as B7-H6, galactin-3, BAT3 and 
NKG2DLs has been associated with the downregulation of NKp30 and NKG2D 
(100-103, 285, 294-296). Cancer cells employ various mechanisms to achieve this, 
including ligand secretion, matrix metalloprotease-assisted shedding or by ligand-
containing exosome release (100, 297-300).  

Tumour-infiltrating NK cells are commonly scarce and the NK cells found within 
the tumour are highly influenced by the immunosuppressive TME (271, 301). 
Factors produced within the tumour promote the accumulation of myeloid-
derived suppressor cells (MDSCs), which exhibit an immunosuppressive 
phenotype, impairing T and NK cell function through mechanisms such as 
consumption of essential metabolites, expression of inhibitory surface molecules 
and the production of radical oxygen species (ROS) and nitrogen species, 
inducing NK cell dysfunction and apoptosis (302, 303). Cancer cells and MDSCs 
secrete TGF-β to promote tumour growth while inhibiting immunosurveillance 
by downregulating activating NK cell receptors and promoting 
immunosuppressive regulatory T cell differentiation (303-305). Additionally, the 
production of lactic acid creates an acidic TME which inhibits NK cytotoxicity 
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(306, 307). PtdSer is also commonly dysregulated in the TME, contributing to 
immunosuppressive environment (308, 309).  

Cancer cells have developed various mechanisms to evade direct cytotoxicity 
from NK cells, including the secretion of cathepsin B to cleave and inactivate 
perforin, the production of SerpinB9 to inhibit the function of granzyme B and 
activation of autophagy to degrade granzyme B (206, 310-314). Additionally, to 
avoid death ligand-induced elimination, cancer cells have developed various 
resistance mechanisms. Mutated forms of TRAIL receptors and altered levels of 
decoy receptors have been identified (315-317). Furthermore, the expression of 
the apoptosis inhibitory protein c-FLIP is also a common mechanism for evasion 
of death ligand-mediated apoptosis (318).  

NK CELL-BASED IMMUNOTHERAPY 
Given their importance in cancer immunosurveillance, numerous NK cell-based 
immunotherapies are under development in order treat these diseases and to 
combat the different mechanisms cancer cells can employ to evade the immune 
system.  

Blockade of inhibition 
As KIRs and NKG2A have been described as “NK cell immune checkpoints”, 
antibodies developed to block these receptors were anticipated to exert anti-
tumour efficacy, similar to the PD-1 and CTLA-4 blockade for T cells. However, 
the results for KIR-targeting antibodies have been somewhat disappointing (319). 
Nevertheless, the anti-NKG2A antibody monalizumab has shown potential 
benefits in combination with other treatment options and is currently undergoing 
evaluation in clinical trials for a spectrum of haematological and solid 
malignancies (29, 320). Given that NKG2A can be expressed not only by NK 
cells but also by CD8+ T cells, the latter represents a potential contributor of the 
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treatment efficacy (320). The divergence in efficacy between immune checkpoints 
associated with T cells and KIR/NKG2A on NK cells could be attributed to 
distinct dynamics. Contrary to immune checkpoints associated with T cells, such 
as PD-1 and CTLA-4, which are upregulated on exhausted T cells to limit the 
immune response, KIRs and NKG2A are expressed on resting NK cells. They 
play a crucial role in NK cell education, contributing to the mediation of self-
tolerance. Disruption of these interactions may have more complex implications, 
as it involves interfering with the finely tuned mechanisms that govern the 
discrimination between self and missing-self by NK cells (29).  

The role of PD-1 and CTLA-4 in NK cells remains largely unexplored but NK 
cells are suggested to contribute to the therapeutic success of anti-PD-1 and anti-
CTLA-4. Although, PD-1 does not appear to be a marker for exhausted NK cells, 
evidence indicates that it inhibits NK cell function and in vivo studies have 
highlighted the role of NK cells for the therapeutic efficacy of PD-1/PD-L1 
blockade (321).  

In PVR-expressing tumours blockade of TIGIT has shown promising results by 
improving NK cell cytotoxicity and cytokine secretion, where the expression of 
DNAM-1 appears vital (29, 322). The combined blockade against TIGIT and 
CD112R further enhanced NK cell responses against breast cancer cells, 
supporting the suggested complementary inhibitory pathways mediated by these 
two receptors (29, 323).  

Despite contradictory results regarding TIM-3’s role as co-inhibitory or activating 
receptor, anti-TIM-3 blockade improved NK cell effector function, as 
demonstrated by studies by da Silva et al. and Xu et al., in experiments performed 
with cells from melanoma and lung cancer patients (49, 324). Studies utilizing 
TIM-3 blockade, alone or in combination with PD-1 have shown promising 
effects (48). Clinical studies are currently conducted but some have shown 
disappointing results (325).  
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Dysregulated PtdSer creates an immunosuppressive environment, presenting an 
opportunity for therapeutic interventions through targeted approaches. The use 
of both PtdSer-binding ligands and antibodies has exhibited anti-tumour potential 
by enhancing the immune response. The PtdSer-binding protein AnnexinV has 
been shown to augment the immunogenicity, both by pre-incubation of mice-
injected apoptotic cells and by in vivo administration (326, 327). PtdSer-specific 
antibodies have demonstrated the ability to generate anti-tumour responses and 
to promote the polarization of immune-suppressive cells towards a more 
immunostimulatory phenotype (328, 329). Clinical trials investigating the 
antibody bavituximab has proven the drug to be safe but a phase III-trial with 
non-small cell lung cancer patients did not verify an effect (308, 330, 331). 
Recently however, a phase II-trial on glioblastoma patients, could demonstrate 
that bavituximab reduced the number of MDSCs, indicating potential benefits of 
the drug (332). 

Cytokine stimulation 
NK cells express receptors for various cytokines, thereby enabling responses to 
signals from the surroundings, such as induction of proliferation induced by IL-
2, IL-12, IL-15, IL-18 and IL-21 (333). These receptors consist of subunits, with 
the common γ-chain shared among several receptors. The α- chain (CD25) binds 
IL-2 with low affinity, while the combined β (CD122)- and γ (CD132)- chains 
forms an intermediate-affinity complex. The heterotrimeric complex, composed 
by all three chains, binds IL-2 with high affinity (334). The IL-15 receptor shares 
the β-subunit with IL-2, and in combination with the common γ-chain and the 
IL-15 α-unit, forms the high affinity IL-15 receptor (333).  

IL-2 has been shown to support survival and enhance NK cell functions by 
upregulation of perforin, granzyme B and activating receptors (333). Regulatory 
T (Treg) cells express higher levels of the trimeric high-affinity IL-2 receptor, 
allowing them to be responsive to low concentrations of IL-2. In therapeutic 
settings, this enhanced response by Tregs to IL-2 risk reducing the stimulating 
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effect on other lymphocytes due to its immunosuppressive functions (335, 336). 
To counteract this, a modified IL-2 version displaying higher affinity for the β- 
and γ-chains is being evaluated (337). 

IL-2 has been approved for use in metastatic renal cell carcinoma and metastatic 
melanoma (333). It has also been evaluated as monotherapy in AML, but it has 
not shown any benefit for treatment of AML, despite the importance of 
lymphocytes in combatting the disease (338-341)).  The inability of IL-2 to induce 
an effective anti-leukemic response has been hypothesised to be caused by the 
immunosuppressive mechanisms found in the disease. ROS produced by 
monocytes can induce NK cell apoptosis. Combining low-dose IL-2 with 
histamine dihydrochloride (HDC) was demonstrated by Brune et al. to not only 
promote NK cell killing of leukemic cells but also protect the NK cells from 
monocyte-derived ROS (342). By binding histamine type 2 receptors on myeloid 
cells, histamine reduces generation of ROS by the myeloid NADPH oxidase 
NOX2 (343). Following phase I/II and III clinical trials, demonstrating safety and 
improved leukemia-free survival, HDC/IL-2 was approved in the EU for relapse 
prevention in AML (344, 345).  

A phase IV trial (the Re:Mission trial; overview presented in figure 7) was 
conducted to evaluate the immunomodulatory effects of the HDC/IL-2 
treatment regimen as a maintenance therapy in AML, administered post-induction 
and consolidation chemotherapy cycles. The treatment induced expansion of NK 
cells and enhanced expression of NKp30 and NKp46 on CD16+ NK cells, which 
was associated with improved survival. It was also concluded that the number of 
CD56bright NK cells at treatment onset was associated with improved outcome 
(80). This treatment uses low-doses of IL-2, avoiding the severe toxicity seen in 
high-dose regimens, and although Treg cell expansion was observed during 
treatment cycles, it was not associated with impaired clinical outcome (346). 



38

Dysregulated PtdSer creates an immunosuppressive environment, presenting an 
opportunity for therapeutic interventions through targeted approaches. The use 
of both PtdSer-binding ligands and antibodies has exhibited anti-tumour potential 
by enhancing the immune response. The PtdSer-binding protein AnnexinV has 
been shown to augment the immunogenicity, both by pre-incubation of mice-
injected apoptotic cells and by in vivo administration (326, 327). PtdSer-specific 
antibodies have demonstrated the ability to generate anti-tumour responses and 
to promote the polarization of immune-suppressive cells towards a more 
immunostimulatory phenotype (328, 329). Clinical trials investigating the 
antibody bavituximab has proven the drug to be safe but a phase III-trial with 
non-small cell lung cancer patients did not verify an effect (308, 330, 331). 
Recently however, a phase II-trial on glioblastoma patients, could demonstrate 
that bavituximab reduced the number of MDSCs, indicating potential benefits of 
the drug (332). 

Cytokine stimulation 
NK cells express receptors for various cytokines, thereby enabling responses to 
signals from the surroundings, such as induction of proliferation induced by IL-
2, IL-12, IL-15, IL-18 and IL-21 (333). These receptors consist of subunits, with 
the common γ-chain shared among several receptors. The α- chain (CD25) binds 
IL-2 with low affinity, while the combined β (CD122)- and γ (CD132)- chains 
forms an intermediate-affinity complex. The heterotrimeric complex, composed 
by all three chains, binds IL-2 with high affinity (334). The IL-15 receptor shares 
the β-subunit with IL-2, and in combination with the common γ-chain and the 
IL-15 α-unit, forms the high affinity IL-15 receptor (333).  

IL-2 has been shown to support survival and enhance NK cell functions by 
upregulation of perforin, granzyme B and activating receptors (333). Regulatory 
T (Treg) cells express higher levels of the trimeric high-affinity IL-2 receptor, 
allowing them to be responsive to low concentrations of IL-2. In therapeutic 
settings, this enhanced response by Tregs to IL-2 risk reducing the stimulating 

39

effect on other lymphocytes due to its immunosuppressive functions (335, 336). 
To counteract this, a modified IL-2 version displaying higher affinity for the β- 
and γ-chains is being evaluated (337). 

IL-2 has been approved for use in metastatic renal cell carcinoma and metastatic 
melanoma (333). It has also been evaluated as monotherapy in AML, but it has 
not shown any benefit for treatment of AML, despite the importance of 
lymphocytes in combatting the disease (338-341)).  The inability of IL-2 to induce 
an effective anti-leukemic response has been hypothesised to be caused by the 
immunosuppressive mechanisms found in the disease. ROS produced by 
monocytes can induce NK cell apoptosis. Combining low-dose IL-2 with 
histamine dihydrochloride (HDC) was demonstrated by Brune et al. to not only 
promote NK cell killing of leukemic cells but also protect the NK cells from 
monocyte-derived ROS (342). By binding histamine type 2 receptors on myeloid 
cells, histamine reduces generation of ROS by the myeloid NADPH oxidase 
NOX2 (343). Following phase I/II and III clinical trials, demonstrating safety and 
improved leukemia-free survival, HDC/IL-2 was approved in the EU for relapse 
prevention in AML (344, 345).  

A phase IV trial (the Re:Mission trial; overview presented in figure 7) was 
conducted to evaluate the immunomodulatory effects of the HDC/IL-2 
treatment regimen as a maintenance therapy in AML, administered post-induction 
and consolidation chemotherapy cycles. The treatment induced expansion of NK 
cells and enhanced expression of NKp30 and NKp46 on CD16+ NK cells, which 
was associated with improved survival. It was also concluded that the number of 
CD56bright NK cells at treatment onset was associated with improved outcome 
(80). This treatment uses low-doses of IL-2, avoiding the severe toxicity seen in 
high-dose regimens, and although Treg cell expansion was observed during 
treatment cycles, it was not associated with impaired clinical outcome (346). 



40

Figure 7. Overview of the Re:Mission trial. Following complete remission and consolidation 
therapy, AML patients were enrolled in the Re:Mission trial where they received ten three-
week cycles of HDC/IL-2 over 18 months. Samples were collected before and after cycles one 
and three.  

IL-15 has demonstrated activating effects on NK cells similar to those of IL-2 
but does not expand Treg cells, making it a suitable alternative to IL-2 treatment. 
(333, 336). Recombinant IL-15 has demonstrated enhanced expansion of NK 
cells and generally well tolerability in a phase I clinical trial with advanced solid 
tumours (347). Moreover, a modified variant of IL-15 has been engineered to 
extend its half-life, demonstrating promising results in a phase I clinical trial (348, 
349).  

NK cell engagers 
Engagers are synthetic molecules engineered to facilitate binding between 
immune cells and their target cells. These include bi- and tri-specific antibodies 
and they typically target a tumour antigen on one end and one or two activating 
receptors on the other. Despite still being in the early stages of development for 
NK cells, several NK cell engagers (NKCEs) have been developed with 
promising results for various malignancies. Unlike T cell engagers, adverse events 
associated with NKCE are not commonly observed, potentially offering a safer 
therapeutic option. Bispecific NKCEs which target CD16 on NK cells and 
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various antigens, like CD30, EGFR, CD123, CD19, CD20, CD33 and CD133 on 
tumours have demonstrated efficacy in pre-clinical studies. Some of these are 
currently under investigation in clinical trials (350). The addition of an IL-15 
component to create a tri-specific NKCE has shown potential for further 
improvement by enhancing NK cell survival (351). Both bi- and tri-specific 
NKCEs targeting NKG2D to various tumour-antigens are investigated in phase 
I/II clinical trials. As NKG2D and CD16 expression may be downregulated in 
cancer settings, making them potentially unsuitable as targets, NKCEs developed 
to target NKp46 could offer a more stable alternative. NKp46 expression has 
been shown to remain stable and is predominantly expressed by NK cells, 
providing specificity. Numerous versions of bi-, tri- and even tetra-specific 
NKCEs have been engineered to target NKp46 and a range of antigens (350, 
352). The bi-specific CYT-338, targeting NKp46 and CD38 has proven 
efficacious in multiple myeloma mice models (353). Furthermore, a tri-specific 
NKp46-ANKET NKCE, targeting NKp46, CD16 and a tumour antigen, 
demonstrated activation of NK cell and improved recruitment and tumour 
control in haematological and solid cancer models. This approach could 
potentially be enhanced by the addition of a variant of an IL-2 element to create 
a tetra-specific NKCE (350, 354).  

Death receptor engagers 
TRAIL has been regarded as a promising therapeutic alternative as it can 
selectively trigger apoptosis in cancer cells (235, 355). Two main strategies are 
under clinical investigation. These include TRAIL-R agonistic antibodies that 
bind TRAIL-R1 and TRAIL-R2 with high affinity as well as recombinant TRAIL. 
Several TRAIL-R1 antibodies have been developed but only HGS-
ETR1/mapatumumab has entered clinical trials where phase I and II trails have 
shown good safety. The efficacy is dubious despite one promising trial with 
follicular non-Hodgkin’s lymphoma (355, 356). Several trials have been 
conducted with TRAIL-R2 agonists but also these studies remain inconclusive 
due to lack of efficacy or liver toxicity. However, a multivalent antibody that in 
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Figure 7. Overview of the Re:Mission trial. Following complete remission and consolidation 
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theory would have superior capacity to generate trimerization of the TRAIL-
receptor has entered clinical phase I trials (355, 357). Despite the limitation of 
rapid clearance from the blood, recombinant TRAIL is still a promising 
therapeutic. Several versions are under investigation, of which dulanermin is the 
most studied. Despite several disappointing results, it has shown promise in a 
phase III trial for non-small-cell lung cancer (235, 358). Its questionable efficacy 
may be appointed failure to induce TRAIL-R trimerization and interaction with 
decoy receptors.  

Cell therapies 
The use of allogeneic and autologous adoptive NK cell transfer is an advancing 
field of immunotherapy which offers a high efficacy against various cancers. Ex 
vivo stimulation with various cytokines and feeder cells is a normal procedure to 
enhance the activity of the NK cells. The combination of IL-12, IL-15 and IL-18 
generates cytokine-induced memory-like NK cells, which display heightened 
responses to restimulation. Cytokine-stimulated NK cells have been 
demonstrated to be safe and efficacious in clinical trials (350, 359).  

Genetic engineering holds the potential to augment the tumour-targeting 
capabilities of NK cells. Chimeric antigen receptor (CAR) T cells, derived from 
autologous peripheral blood, have demonstrated remarkable success in 
haematological malignancies, with six therapies now FDA-approved for 
treatment of various blood cancers (360-362). As CAR T cell therapies face 
several challenges, such as severe toxicities and potential risk of lymphoma 
development, NK cells have emerged as a promising alternative (363). An anti-
CD19 CAR NK product, generated from cord blood and engineered to express 
both IL-15 and an inducible suicide-switch, have shown promising results in 
phase I/II clinical trial in CD19+ B cell maligancies (364, 365). Multiple additional 
CAR NK cell products are currently under development or evaluation in clinical 
trials. NK cells can be sourced from various origins, including cord blood, 
peripheral blood, NK cell lines and induced pluripotent stem cells, each having 
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distinct advantages and disadvantages. CRISPR/Cas9-mediated gene disruption 
is becoming increasingly used to deplete the CAR NK cells of immune 
checkpoints, further fine-tuning their efficacy (366).  
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distinct advantages and disadvantages. CRISPR/Cas9-mediated gene disruption 
is becoming increasingly used to deplete the CAR NK cells of immune 
checkpoints, further fine-tuning their efficacy (366).  
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GENETIC ENGINEERING 

The ability to modify the genome has long been considered a valuable tool for 
both research and therapy. Historically, this process posed challenges, relying on 
spontaneous mutations or imprecise editing induced by mutagenic substances like 
irradiation or chemicals. The era of targeted editing began with the development 
of zink-finger nucleases in the 1990s and later with transcription activator-like 
effector nucleases (TALEN) in the 2010s. These technologies involve DNA-
binding proteins linked to endonuclease catalytic domains, inducing double-
stranded breaks (DSBs) at a precise DNA target site (367, 368). The discovery of 
clustered regularly interspaced short palindromic repeats (CRISPR) by 
Emmanuelle Charpentier and Jennifer Doudna in 2012 marked a paradigm shift 
and was honoured with the Nobel prize in 2020 (369). CRISPR offers numerous 
advantages, including ease of use, cost efficiency, high specificity and efficiency, 
as well as being useful for high-throughput and multiplexed gene editing and 
screening purposes (370).  

Section in brief: 

Modification of DNA through genetic engineering is useful in both research and clinical 
applications. Clustered regularly interspaced short palindromic repeats (CRISPR) is an 
innovative tool that utilizes a combination of an endonuclease and a guide RNA. This guide 
RNA provides instructions to the Cas9 enzyme, directing it to specific locations for DNA 
cleavage. The continuous evolution of this technique has enabled a spectrum of procedures, 
including gene knockout, knock-in, silencing and base-editing.  
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CRISPR 
Originally developed as a sophisticated bacterial defence mechanism against 
viruses, CRISPR has been harnessed for use in research and therapeutic 
applications (369, 371). Bacteria utilize sequence-specific RNA molecules, along 
with CRISPR-associated endonuclease proteins (Cas) to destroy invading foreign 
nucleic acids. Through engineering, the two-molecule system of 
tracrRNA:crRNA in bacteria can be combined into a single guide-RNA (gRNA) 
molecule, facilitating straightforward genetic editing of almost any genome of 
interest (369, 372). The gRNA consists of a 20 bases long spacer sequence specific 
to the target genomic sequence, and a scaffold sequence, allowing binding to the 
Cas protein. The simplicity of gRNA design is a compelling feature of the 
CRISPR/Cas system, making it widely applicable. Considerations of on- and off-
target activity are essential during gRNA design (373, 374). Crucial is also 
proximity of a protospacer adjacent motif (PAM) sequence, which is essential for 
the Cas enzyme to bind to the target DNA. For the commonly used Cas9 from 
Staphylococcus pyogenes (SpCas9), the PAM sequence is 5’-NGG-3’, and although 
common in the human genome, Cas9 proteins from other species recognize 
alternative PAM sequences, allowing flexibility in target selection (369, 372, 375). 
New Cas proteins with novel features, such as Cas12, are continuously being 
discovered and hold promise for research and clinical applications (376). In 
papers I, II, III and IV, Cas9 endonuclease was used for knockout purposes. 

Upon combined expression, Cas9 enzyme makes several interactions with the 
scaffold sequence of the gRNA, forming a ribonucleoprotein complex (RNP). 
This binding inflicts conformation changes to the Cas9 protein, activating its 
DNA-binding capabilities. The seed sequence, comprising the first 10-12 bases at 
the PAM proximal end of the spacer sequence, initiates binding to the DNA. If 
the sequence matches, the spacer continues annealing (372). Mismatches hinders 
binding, with the tolerance decreasing closer to the PAM sequence (373). The 
nuclease domains of the Cas9 endonuclease, RuvC and HNH, are exposed to the 
DNA upon the conformational change caused by PAM and DNA binding. The 
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HNH domain cleaves the complementary DNA strand, and the RuvC domain 
cleaves the non-complementary DNA strand, resulting in a double-stranded 
break (DSB) 3-4 bp upstream of the PAM sequence (369, 372). The DSB can be 
repaired by the cell through two main repair pathways: homolog-directed repair 
(HDR) or non-homologous end-joining (NHEJ). Depending on the desired 
outcome, both pathways can be useful. HDR is a high-fidelity repair mechanism 
but has low efficiency and is only active during S and G2 phases. Knock-in 
experiments use HDR by supplying a repair template, although additional 
modifications may be needed to increase efficiency. On the other hand, NHEJ is 
much more active but error-prone often resulting in insertions and deletions 
(indels) at the repair site. For knockout experiments, this tendency is utilized to 
induce a frame-shift mutation leading to a premature stop-codon, resulting in a 
non-functional protein (372, 377).  

Beyond the creation of gene knockouts, the exceptional versatility of 
CRISPR/Cas systems has facilitated various additional applications, including 
CRISPR-activation of gene expression, base-editing and epigenetic regulation 
(378, 379).   

CRISPR functions as a powerful gene-editing tool in the exploration and 
identification of diverse carcinogenic pathways and genetic mechanisms, spanning 
from the initiation of cancer to metastasis. The papers within this thesis are 
examples of how the CRISPR technology can be utilized to expand the knowledge 
in various aspects of cancer escape mechanisms, sensitivities and prognostic 
factors.  
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METHODS 

This chapter provides a general overview of the major methods used. More 
detailed descriptions can be found in each paper. 

CRISPR/Cas9 KO 
To generate knockout cell lines with depleted expression of the proteins of 
interest to study, we employed the CRISPR/Cas9 technology. In the original 
K562 cell line, constitutive Cas9 expression was ensured by lentiviral transduction 
and clones were generated via single-cell sorting. For each gene knockout, 
plasmid-based gRNAs were delivered to the K562 cells using electroporation and 
single-cell-sorting was performed for clone generation. In other cell lines, Cas9 
and gRNA were delivered by electroporation or lipofection in the form of 
ribonucleoprotein, comprising a Cas9 protein, complexed with 
crRNA/tracrRNA mRNA. Protein staining was initially used for knockout 
verification, followed by sanger sequencing for clone validation.  

Genome-wide CRISPR/Cas9 screen 
The experimental design for the genome-wide CRISPR/Cas9 screen is depicted 
in figure 8. K562 cells underwent double lentiviral transduction to ensure 
adequate Cas9 expression. For the screen using our generated triple-KO (tKO) 
cell line, the three ligands B7-H6, PVR and Nectin2 were first depleted using 
CRISPR/Cas9 and a verified negative clone was generated. We used the pooled 
genome-wide human Brunello CRISPR knockout gRNA library. This library 
contains an average of four gRNAs per approximately 19 000 genes as well as 1 
000 non-targeting control gRNAs (380). Both WT-K562 cells and tKO-K562 
cells were subsequently transduced with lentivirus containing the Brunello gRNA 
library at multiplicity of infection of 0.4, to increase the chance of maximum of 
one gRNA per cell. Antibiotic selection eliminated untransduced cells and the 
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culture was split into two replicates. To prevent potential growth advantages or 
disadvantages associated with specific knockouts, cells were cultured for a 
maximum of ten days before selection initiation. Prior to NK cell selection, 
titration experiments were conducted to define optimal conditions. To initiate the 
selection procedure, the culture was mixed and split in two batches per replicate. 
The cells used for selection was co-cultured together with polyclonally IL-2-
activated NK cell. One condition tKO-screen condition included a blocking 
antibody against NKG2D. The control batch was cultured in medium alone under 
the same conditions.  

Cultures were maintained until approximately 60% of the target cells were killed. 
Each condition and replicate was pooled separately and cultured for an additional 
two days with the addition of antibiotics to remove NK cells. Subsequently, cells 
were pelleted and frozen. The accumulation or depletion of specific guides within 

Figure 8. Overview of the genome-wide CRISPR screen. K562 cells were transduced with Cas9 
and a gRNA library for stochastic KO of genes. Cells were later exposed to NK cells to select 
based on enhanced or reduced susceptibility to NK cell cytotoxicity. Comparison with 
unexposed control cells using NGS revealed genes important for the interaction.  
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the NK cell-selected population, compared to the unexposed cells in the control 
arm, was analysed using next generation sequencing and the MAGeCK software. 

Functional assays 
The studies presented in this thesis predominantly focus on NK cell function and 
activity in response to specific stimuli. Flow cytometry-based assays were 
primarily used for these investigations, where the endpoint parameter could 
include the quantification of dead target cells or assessment of degranulating or 
cytokine-producing NK cells. The basic procedure involved co-culture of NK 
cells and target cells, with one cell type, usually the target cells, pre-labelled before 
exposure to facilitate the separation of the two cell types during analysis. In 
cytotoxicity assays, different cell ratios were used to ensure an optimal level of 
killing. Finding a balance is crucial, as excessive killing may mask true differences 
between samples, while insufficient killing may make differences difficult to 
discern. A live/dead marker, staining DNA or intracellular amines was employed 
to study killing, enabling the identification of cells with compromised membranes. 
For degranulation, an antibody binding to the granule marker CD107a/LAMP-1 
was used to stain all NK cells that exposed the intragranular protein on their 
surface due to granule release. For cytokine production, cells were fixed and 
permeabilized after co-culture to allow for intracellular staining, with a blocking 
agent used to trap cytokines in the Golgi complex.  
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RESULTS AND DISCUSSION 

The overall objective of this thesis work was to enhance our understanding of the 
factors influencing the interaction between NK cells and their target cells, with a 
focus on exploring novel proteins and structures involved in this process.  

To identify genes associated with the NK cell and target cell interaction, we used 
CRISPR screens, allowing a larger-scale study of phenotypic alterations in cells as 
a result of genetic modulations. By using NK cell cytotoxicity as the selection 
method after the genetic modifications, we could gain insight into what genes that 
influence the interplay by providing resistance or susceptibility to NK cells upon 
depletion. Conducting a genome-wide screen broadened our investigations beyond 
membrane-bound proteins to include intracellular proteins with indirect effect on 
cell interactions. To validate and delve deeper into the mechanisms underlying the 
impact of specific genes on the interaction, we conducted extensive follow-up 
studies on selected hits from the screens, culminating in the studies included in 
this thesis (papers I, II, IV). In order to study the interactions further, we also 
employed the CRISPR technology to disrupt genes of interest. This enabled us to 
create useful models with skewed interactions that proved valuable in studies of 
how polymorphisms in certain genes impacted the interactions in AML (paper 
III).  

In our initial CRISPR screen, we used WT-K562 cells and co-cultured them until 
approximately 60% of the cells had succumbed to NK cell cytotoxicity. Following 
the MAGeCK analysis, genes implicated in either providing protection or 
rendering susceptibility to NK cell cytotoxicity were identified as depleted or 
enriched respectively (paper I; figure 9).  

Among the enriched gRNAs, targeting genes typically involved in NK cell 
elimination, the most crucial gene identified was NCR3LG1, encoding B7-H6, 
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the ligand for the activating NK receptor NKp30. Notably, previous screens 
utilizing K562 cells with NK cell selection consistently identified B7-H6 as the 
dominantly enriched gRNA target (381-383). Considering the high dependence 
of K562 cell killing on NKp30 (paper I; (384)), we deliberately applied lower 
selection pressure compared with previous studies. This approach enabled us to 
uncover additional hits such as CD58, encoding the ligand for activating NK cell 
receptor CD2 (previously identified also in (382, 383) and TMEM30A. 
CRISPR/Cas9 knockout of the genes for B7-H6 and CD58 served to validate the 
significance of the B7-H6-NKp30 interaction in K562 cell elimination, while also 
revealing a minor role for CD58.  

Figure 9. Genome-wide CRISPR screen results. Depleted and enriched gRNAs from one 
replicate obtained from analysis by MAGeCK software. Genes related for IFNγ signalling are 
indicated in blue and those involved in the antigen presentation pathway in red.  
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method after the genetic modifications, we could gain insight into what genes that 
influence the interplay by providing resistance or susceptibility to NK cells upon 
depletion. Conducting a genome-wide screen broadened our investigations beyond 
membrane-bound proteins to include intracellular proteins with indirect effect on 
cell interactions. To validate and delve deeper into the mechanisms underlying the 
impact of specific genes on the interaction, we conducted extensive follow-up 
studies on selected hits from the screens, culminating in the studies included in 
this thesis (papers I, II, IV). In order to study the interactions further, we also 
employed the CRISPR technology to disrupt genes of interest. This enabled us to 
create useful models with skewed interactions that proved valuable in studies of 
how polymorphisms in certain genes impacted the interactions in AML (paper 
III).  

In our initial CRISPR screen, we used WT-K562 cells and co-cultured them until 
approximately 60% of the cells had succumbed to NK cell cytotoxicity. Following 
the MAGeCK analysis, genes implicated in either providing protection or 
rendering susceptibility to NK cell cytotoxicity were identified as depleted or 
enriched respectively (paper I; figure 9).  

Among the enriched gRNAs, targeting genes typically involved in NK cell 
elimination, the most crucial gene identified was NCR3LG1, encoding B7-H6, 
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the ligand for the activating NK receptor NKp30. Notably, previous screens 
utilizing K562 cells with NK cell selection consistently identified B7-H6 as the 
dominantly enriched gRNA target (381-383). Considering the high dependence 
of K562 cell killing on NKp30 (paper I; (384)), we deliberately applied lower 
selection pressure compared with previous studies. This approach enabled us to 
uncover additional hits such as CD58, encoding the ligand for activating NK cell 
receptor CD2 (previously identified also in (382, 383) and TMEM30A. 
CRISPR/Cas9 knockout of the genes for B7-H6 and CD58 served to validate the 
significance of the B7-H6-NKp30 interaction in K562 cell elimination, while also 
revealing a minor role for CD58.  

Figure 9. Genome-wide CRISPR screen results. Depleted and enriched gRNAs from one 
replicate obtained from analysis by MAGeCK software. Genes related for IFNγ signalling are 
indicated in blue and those involved in the antigen presentation pathway in red.  
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TMEM30A emerged as one of the highly enriched gRNA-targeted genes, 
indicating a protective role in cells lacking a functional gene. This gene encodes 
the CDC50A β-subunit, part of an P4-ATPase flippase complex, responsible for 
transporting phospholipids such as PtdSer and PtdEtn from the outer to the inner 
leaflet of the plasma membrane. Consequently, establishment of TMEM30A KO 
K562 cells allowed us to confirm that cells exhibit elevated levels of PtdSer on 
their surface in the absence of a functional TMEM30A gene (figure 10A; (385)). 
Although, CDC50A is one of three β-subunits, studies show that CDC50A 
associate with ten different α-units, whereas CDC50B and CDC50C only 
interact with a smaller number (386-388). Based on the screen results, the 
function of CDC50A appears critical, while there seems to be a redundancy 
among the numerous α-units as none of them emerged as top hits. In 
agreement with the screen findings, these TMEM30A KO cells demonstrated 
reduced sensitivity to NK cell cytotoxicity as well as lower induction of NK cell 
degranulation and cytokine production (figure 10B).  

Figure 10. CDC50A depletion result in enhanced PtdSer exposure and lower sensitivity to NK 
cell cytotoxicity. (A) Staining for PtdSer of WT (blue) and TMEM30A KO (turquoise) K562 cells. 
(B) Cytotoxicity assay with WT and TMEM30A KO cells (n=11). One-way ANOVA analysis with
Šidák’s multiple comparisons test was used as statistical analysis. Error bars represent SEM.
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Interestingly, an examination of the expression of the crucial ligands for NK cell 
receptors revealed that TMEM30A KO had no impact, except for an increase in 
HLA-E expression in the KO cells. Given that HLA-E engages the inhibitory 
NK cell receptor NKG2A, this could potentially explain the reduced sensitivity, 
especially considering the striking importance of HLA-E in the WT CRISPR-
screen. However, an exclusive analysis of NKG2A- NK cells in the degranulation 
assay revealed that even in the absence of this inhibitory interaction, the 
TMEM30A KO cells induced lower degranulation, extending beyond the 
increased expression of HLA-E.  

Given that these experiments were done in the same cell line used for the CRISPR 
screen, it was crucial to validate whether this finding could be extended to other 
cancer types. Consequently, we generated TMEM30A KO cells of four additional 
cell lines representing various haematological cancers: acute T cell leukemia 
(jurkat), acute promyelocytic leukemia (HL-60), diffuse large B cell lymphoma 
(SU-DHL-5) and Burkitt’s lymphoma (Raji). We could confirm that TMEM30A 
KO versions of these cell lines were indeed less sensitive to NK cell cytotoxicity 
and induced lower NK cell degranulation. Examining the additional TMEM30A 
KO cell lines, we observed an increased expression of HLA-E in the myeloid cell 
line, HL-60, but this did again not alone account for the overall reduced 
susceptibility.  

This observed increased expression is intriguing. Membrane lipids are known to 
play a crucial role in membrane protein localization and activity, either through 
association with proteins in lipid rafts or through interaction with transmembrane 
proteins (389-392). Indeed, by supplying a docking site with its negative charge, 
PtdSer plays a crucial role in the correct localization and activation of several 
intracellular proteins (308, 393-395). A study by Enneshi et al. indicated increased 
BCR motility in cells with TMEM30A mutations, suggesting that altered 
membrane composition could be a contributing factor (396). Further 
investigation is warranted to confirm whether changes in membrane composition 
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explains the altered levels of HLA-E and why this phenomenon extends to the 
myeloid cells.  

Notably, these TMEM30A KO cells across various cancer types consistently 
displayed higher levels of exposed PtdSer compared to WT cells. To verify that 
the exposed PtdSer was the cause of the reduced susceptibility, we used PtdSer-
binding AnnexinV to block the interaction. This intervention resulted in an 
increased sensitivity to NK cell cytotoxicity for the TMEM30A KO cells but not 
for WT cells (figure 11A). This confirmation highlighted the role for PtdSer, yet 
the underlying mechanism remained unclear. By employing blocking antibodies 
towards the two inhibitory NK cell receptors TIM-3 and IRp60/CD300a, known 
to bind PtdSer, we aimed to shed light on their involvement. 

Blocking TIM-3 revealed that TMEM30A KO target cells became more sensitive 
to NK cell cytotoxicity (figure 11B). However, for IRp60, the role was less evident 
as the antibody exhibited an agonistic effect on the WT cells, reducing their 
sensitivity. In contrast, TMEM30A KO cells were unaffected, suggesting a 
complementary role for the IRp60 antibody and the overexpressed PtdSer on the 
KO cells. To further validate the role of the receptors, we knocked them out in 
primary NK cells and used them in degranulation assays with TMEM30A KO 
och WT cells. Comparing the TMEM30A KO-induced reduction in 
degranulation between the negative control NK cells and HAVCR2 or CD300A 
KO NK cells illustrated the importance of TIM-3. The lower reduction observed 
with NK cells lacking TIM-3 emphasized the receptor’s role, indicating that 
without the receptor, TMEM30A mutation was less critical. Regarding IRp60, a 
non-significant trend in the same direction was observed.  
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Figure 11. Enhanced exposure of phosphatidylserine protects TMEM30A KO cells from NK 
cells through interactions with inhibitory receptors. (A) and (B) Cytotoxicity assay with WT 
and TMEM30A KO K562 cells, supplemented with Annexin-V (Anx-V) for blockade of PtdSer 
(n=7) (A) or combined with TIM-3 for blockade (n=7). One-way ANOVA analysis with Šidák’s 
multiple comparisons test was used as statistical analyses. ns not significant, error bars 
represent SEM. 

Considering that PtdSer is a known “eat-me” signal to phagocytes to engulf 
apoptotic cells, it can seem counterintuitive that TMEM30A mutations could be 
beneficial for cancer cells in an in vivo setting (37, 397-401). However, studies have 
reported recurrent loss-of-function TMEM30A mutations in diffuse-large-B-cell 
lymphoma and follicular large B cell lymphoma (396, 402, 403). In light of our 
results, it is tempting to speculate that these mutations reflect an NK cell evasion 
strategy used by lymphoma cells. A simplified illustration depicting the potential 
mechanism can be found in figure 12. There are conflicting findings on whether 
increased exposure of PtdSer by living cells alone is sufficient for phagocytosis. 
Segawa et al. demonstrated that overexpression of the scramblase TMEM16F, 
leading to increased extracellular PtdSer did not result in enhanced phagocytosis, 
suggesting that exposed PtdSer alone might be insufficient for engulfment (404). 
However, subsequent research by the same group later indicated that PtdSer-
expressing CDC50A-null cells were engulfed by macrophages while cells 
expressing a caspase-resistant flippase complex, showing no exposure of PtdSer 
during apoptosis, were not engulfed (223). There are indications suggesting that 
alterations in membrane fluidity, and consequently the mobility of PtdSer and the 
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corresponding potential for receptor clustering, may serve as a mechanism for 
phagocytes to differentiate between live and dead PtdSer-exposing cells (308, 
405). Specific PtdSer receptors such as TIM-1, involved in efferocytosis, exhibit 
enhanced binding affinity for oxidized PtdSer. One proposed mechanism for this 
oxidization involves cytochrome C. Given that cytochrome C is released upon 
mitochondrial membrane permeabilization during apoptosis, it is conceivable that 
the apoptosis-induced oxidized PtdSer constitutes a more potent “eat-me” signal 
(308, 406). Further investigations are warranted to determine whether PtdSer 
exposure alone is enough to function as an “eat-me” signal.   

Figure 12. Potential mechanism for reduced NK cell sensitivity of TMEM30A KO cells. The 
exposed PtdSer of TMEM30A KO cells can interact with inhibitory NK cell receptor TIM-3, 
allowing the cell to escape NK cell cytotoxicity.  

The specific characteristics of membrane lipids and the modulation of their 
asymmetry can have additional implications on cell-cell interactions that would be 
interesting to study further. With an increased accumulation of PtdSer in the outer 
leaflet of the membrane, the physical properties of the normally tightly packed 
layer may change, potentially influencing the interactions with NK cells (407). A 
study by Friedman et al. highlighted that changes in the stiffness of target cells 
impact the synapse-forming ability of the NK cells (152). Although not studied 
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specifically in this project, it is conservable that also phosphatidylethanolamine 
(PtdEtn) would be exposed to a higher degree on the outside of cells as it is also 
transported by the P4-ATPase complex (408). With an accumulation in the outer 
leaflet, the phospholipids, especially the smaller PtdEtn, could impact the 
curvature of the membrane, affecting processes like exocytosis and endocytosis. 
This, in turn, might influence synapse formation and perforin/granzyme uptake 
(390, 409, 410). The disruption of the tightly packed, highly ordered and rigid 
outer leaflet may, on the other hand, make the cells more sensitive to NK cell-
generated lytic molecules.  

The β-subunit is critical for the proper membrane translocation of the P4-ATPase 
complex (408). In the absence of the CDC50 protein, the α-unit accumulates in 
the cytoplasm, leading to ER-stress (411). This phenomenon could potentially 
impact the interaction between cells and NK cells. Interestingly, the ER-stress 
marker ecto-calreticulin was recently proposed to be a ligand for activating 
receptor NKp46 (108). While this suggests that TMEM30A KO cells could be 
more susceptible to NK cells, our observations did not support this hypothesis. 
Nevertheless, it would have been interesting to investigate whether our KO cells 
displayed increased ER-stress and if this made them more vulnerable to NKp46-
dependent killing.  

The evolutionary rationale behind the development of this inhibitory mechanism 
is intriguing to consider. It may be reasonable for NK cells to possess a sensory 
mechanism that enables them to discern when their target cell is undergoing 
apoptosis, followed by an inhibitory mechanism that facilitates detachment from 
the cell. A study by Anft et al. have indicated that detachment is swifter when the 
NK cell has executed a lytic hit potentially because inhibitory receptors can then 
recognize upregulated ligands on the target cell in response to apoptosis (205). 
Another possible aspect is that NK cells receive these inhibitory signals to regulate 
their cytotoxicity, thereby mitigating the risk of overwhelming the clearance 
capacity of the immune system and minimizing damage to surrounding tissue.  
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There are broader implications of PtdSer exposure on tumour immunity beyond 
NK cell function. Dysregulation of extracellular PtdSer is commonly observed in 
the cancer microenvironment and its blockade has shown the ability to shift 
tumour-associated macrophage phenotypes from myeloid-derived suppressor 
cells to pro-inflammatory M1 macrophages (308, 309, 385). Both PtdSer and 
TIM-3 antibodies have demonstrated promising potential in pre-clinical studies 
and are currently under evaluation in clinical trials (49, 324, 332).  

In our analysis of the genome-wide CRISPR screen with WT-K562, we identified 
depleted gRNAs targeting specific genes that typically confer protection against 
NK cell cytotoxicity (Figure 9). One of these genes was BAP1 which encodes a 
deubiquitinating enzyme, regarded as a tumour suppressor (paper II, (412)). 
Surprisingly, our generated BAP1 KO cells did not exhibit altered sensitivity in 
standard cytotoxicity assays with NK cells. However, when the 20-hour long 
screen assay was replicated, an enhanced susceptibility of the KO cells became 
evident (figure 13). Discrepancies between the two assays were identified in 
relation to IFNγ, with ELISA experiments revealing IFNγ release only after the 
20-hour long assay, not the shorter one. Considering the context of the other
protective genes identified in the screen, we speculated that BAP1 might be linked 
to IFNγ signalling. Accordingly, the KO phenotype would only manifest in the 

Figure 13. BAP1 depletion sensitizes cells to NK 
cells upon IFNγ exposure. Cytotoxicity assay with 
WT and BAP1 KO K562 cells 20h with polyclonally-
activated NK cells Statistical analysis using paired 
t-tests was performed. Error bars represent SEM.
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presence of IFNγ, affecting both sensitivity and degranulation-stimulating 
capacity. 

To further elucidate the role of BAP1 and its impact on the overall cellular 
proteome upon deletion, we conducted tandem mass tag-mass spectrometry on 
both WT and BAP1 KO K562 cells, with and without exposure to IFNγ. Even 
without IFNγ exposure, the protein content exhibited variation between the 
samples, which underscores the crucial role of BAP1 in numerous cellular 
processes. ULBP1 and ULBP2 were found upregulated in BAP1 KO cells. While 
a cellular stress-response to transfection and KO could explain this, staining could 
not confirm this observation, which is in line with other KO cell lines we have 
created.   

Only upon IFNγ treatment, did it become apparent that numerous proteins 
induced by IFNγ signalling were depleted in the BAP1 KO cells (figure 14). These 
include guanylate-binding proteins and HLA class I-related proteins such as 
TAPBP/1/2, β2-microglobulin and HLA-E. Consistent with this, lower levels of 
extracellular HLA class I was exhibited by the BAP1 KO cells, when exposed to 
IFNγ. 

Figure 14. IFNγ and antigen 
presentation pathways are 
disrupted by BAP1 depletion. 
Proteome analysis displaying 
differentially regulated proteins 
of BAP1 KO vs WT-K562 cells in 
IFNγ-treated condition.  
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This is in line with the results from the WT-K562 screen where genes associated 
with HLA class I expression were highly depleted (figure 9). Given that HLA class 
I molecules engage inhibitory NK cell receptors (7, 21), the depletion of these 
genes logically renders the cells more susceptible to NK cell-mediated 
cytotoxicity. These findings align with previous screens (381, 383, 413-415), 
providing additional validation for the results of our study. Moreover, in our 
results showed that gRNAs targeting genes involved in the IFNγ signalling 
pathway were also depleted. This includes genes encoding components such as 
IFNGR, JAK and STAT. The IFNγ pathway is known to regulate HLA class I 
expression (13, 14), providing a rationale for the observed depletion, a 
phenomenon previously described (381, 383, 414, 415). Interestingly, a screen 
conducted by Pech et al. presented alternative perspectives on these genes (382). 
Their use of the NK cell line NK92, which have a low expression of the main 
MHC class I-binding inhibitory receptors, resulted in distinct outcomes compared 
to our study using primary peripheral blood NK (416). In their screen, genes 
related to HLA class I and IFNγ signalling did not confer resistance. Conversely, 
IFNγ signalling genes were found to provide sensitivity. This discrepancy may be 
attributed to their identification of ICAM-1 as a top sensitivity gene, as it is 
regulated by IFNγ signalling (131, 417). These varying results underscore the 
impact of the NK cell receptor repertoire on the interactions with target cells, 
influencing how different genes modulate the interplay between NK cells and 
their targets. Consistent with this, the expression of the adhesion molecules 
ICAM-1 and NCAM-1/CD56 further supported the reduction in IFNγ signalling 
response observed in the BAP1 KO cells.  

To explore what specific stage of the IFNγ signalling pathway that is influenced 
by BAP1, we examined the transcription factor STAT1. During resting condition, 
staining revealed no impact of BAP1 KO, neither on total STAT1 or 
phosphorylated STAT1. 
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However, upon IFNγ exposure, it became evident that BAP1 KO cells generated 
lower levels of phosphorylated STAT1, crucial for subsequent signalling (figure 
15), which may be due to the lower expression of the receptor IFNGR1 in BAP1 
KO cells.  

The role of BAP1 is intricate and this study contributes a piece to the larger 
understanding by revealing its involvement in IFNγ signalling. Within the IFNγ 
signalling pathway, BAP1 emerges as a regulator across multiple steps, as 
evidenced by alterations in both the STAT1 and IFNGR1 levels in the BAP1-
deficient model. Consistent with this, BAP1 depletion has been shown to 
diminish the expression of STAT2 and IRF9 in clear cell renal cell carcinoma 
(418). Another facet of HLA regulation by BAP1 has been identified in recent 
research, demonstrating its role in the epigenetic promotion of HLA expression 
(419).  

Beyond its involvement in IFNγ signalling, our proteomic analysis unveils 
additional functions of BAP1 with diverse implications in various contexts. The 
role of BAP1 in malignancies appears complex and highly dependent on the 
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implicated in cancer progression (412). For instance, a study has shown its 
involvement in HOXA gene upregulation and myeloid leukemogenesis (420). In 
uveal melanoma, BAP1 mutations correlate with a higher risk of metastatic 
disease and lower survival rates (421-425). Similarly, BAP1 mutations are 
associated with poorer outcome and predisposition to other cancer types (426, 
427). However, in a cutaneous melanoma mouse model, BAP1 depletion 
significantly reduced tumour growth (428).    

This apparent discrepancy underscores the importance of considering the disease 
setting to elucidate the mechanism behind the observed phenotypic outcomes. 
Our study, demonstrating the inhibition of HLA class I upregulation following 
BAP1 depletion, enabling evasion from T cell recognition, provides a potential 
explanation for the unfavourable outcomes observed in certain cancer types. The 
reduced HLA expression renders the cells vulnerable to NK cell cytotoxicity, 
giving a rationale for NK cell-based immunotherapy in malignancies with BAP1 
mutations.  

Figure 16. tKO-K562 cell generation. WT-K562 cells are killed by NK cells mainly through 
interactions between NKp30 and B7-H6. By depletion of the ligands for NKp30 and DNAM-1, 
the tKO-K562 cells could be killed via the interactions between NKG2D, NKp46 and their 
ligands. 

Not only genes expressed by the potential target cells impact disease outcome but 
the effector cells’ genes also play a crucial role (20, 429). A specific SNP, 
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rs1049174, in the gene encoding NKG2D, KLRK1, has been reported to impact 
on natural cytotoxicity and cancer development risk (20). This study used the 
K562 cell line to study the effect of the NKG2D alleles. However, as we saw in 
paper I, NK cell killing of WT-K562 is not dependent on NKG2D, making it 
challenging to discern allele-related differences. We observed that elimination of 
specific ligands allowed us to manipulate the interactions between NK and target 
cells and our B7-H6negCD58neg dKO was instead killed by NKG2D and DNAM-
1 (paper I). Similarly, albeit fairly resistant, a B7-H6negPVRnegNectin2neg tKO cell 
line was shown to be killed via NKG2D as illustrated in figure 16. Even with this 
highly NKG2D-dependent target cell model, there was a surprisingly small 
difference in degranulation between NK cells from donors with one high 
cytotoxicity NKG2D allele, rs1049174 G/x, and NK cells with two low 
cytotoxicity alleles, C/C. Further investigation revealed that the G/x individuals 
harboured more NKG2A+ NK cells which were responsible for a higher 
degranulation, regardless of NKG2D allele (figure 17).  

This observation led to analysis of the NKG2A gene, KLRC1, located near the 
KLRK1 gene in the NKC locus, with a known polymorphism, rs1983526, in 
linkage disequilibrium with the NKG2D polymorphism. Healthy donors with the 
favourable NKG2A G/G alleles had a higher fraction of NKG2A+ CD56dim NK 
cells than did C/x individuals. Further investigation on the functional implications 

Figure 17. A NKG2D-dependent 
model demonstrate effect of 
NKG2D genotype on NK cell 
functionality.  Frequency of NK 
cell subsets in healthy donors, 
divided on NKG2D SNP G/x 
(n=13) and CC (n=12). Ns non 
significant. Error bars represent 
SEM. 
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of the NKG2A genotype, revealed a correlation with a stepwise increase in IFNγ 
production and higher numbers of the G allele, which was not only restricted to 
NKG2A+ cells but also KIR+NKG2A- cells.   

Similar results were observed in a clinical cohort of AML patients receiving 
maintenance therapy with HDC/IL-2. Thus, G/G patients expressed higher 
frequency of NKG2A+ NK cells, and the G allele was associated with high levels 
granzyme B, suggesting that the NKG2A G variant is associated with a higher 
cytolytic capacity. Surprisingly, as in healthy donors, the granzyme B expression 
appeared not to be confined to a specific NKG2A/KIR subgroup. This finding 
that not only NKG2A+ NK cells from NKG2A G/G individuals displayed higher 
functionality, but also other subsets was intriguing. This contrasts with the 
rheostat educational model, which dictates that NK cell functionality relies on the 
inhibitory input it receives during steady state. It would be expected that 
NKG2A+ cells in G/G donors had enhanced effector function as the increased 
NKG2A expression provides more inhibitory signal. However, it fails to explain 
the elevated IFNγ response and granzyme B expression in NKG2A- subsets. 
Notably, granzyme B expression levels have been a proposed marker of NK cell 
educational status. Thus, additional mechanisms beyond the rheostat model of 
education are necessary to account for the increased IFNγ response and granzyme 
B expression in G/G donors (430).  

Leukemic blasts exhibit lower HLA-E expression (paper III, (431)) potentially 
leading to a more robust response against these cells by the larger fraction of 
NKG2A+ cells observed in the individuals with the NKG2A G/G genotype. In 
contrast, HLA-ABC expression remains normal in leukemic blasts, providing 
consistent inhibitory input for KIR+ cells.  

When comparing the significance of NKG2D and NKG2A gene polymorphisms 
on the outcome of HDC/IL-2 immunotherapy, it was observed that patients 
harbouring a NKG2A rs1983526 G allele exhibited both better leukemia-free 
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survival (LFS) and overall survival (OS) (figure 18). Patients carrying the NKG2D 
rs1049174 G allele showed trends for improved LFS and OS.  

Figure 18. Impact of NKG2A and NKG2D genotypes on outcome of HDC/IL-2 immunotherapy 
in AML. (A) Leukemia-free survival (LFS) of AML patients divided by NKG2A rs1983526 
genotypes (GG n=27, CG n=44 or CC n=9), following HDC/IL-2 treatment. (B) Leukemia-free 
survival of AML patients divided by NKG2D rs1049174 genotype (GG n=11, CG n=37 or CC 
n=32), following HDC/IL-2 treatment.  

These results imply that the observed beneficial effects are likely attributed to the 
NKG2A genotype rather thanNKG2D. While this does not entirely invalidate 
the potential impact of the NKG2D genotype, the linkage disequilibrium between 
the SNPs raises the possibility of misdirected focus towards the wrong SNP. 
Numerous studies have highlighted associations between the NKG2D 
dimorphism and disease outcome (432-435). However, our findings suggest that 
these associations may be driven by the NKG2A SNP. Nevertheless, it is worth 
noting that the higher expression of NKG2D, as reported for the favourable 
NKG2D allele, could certainly influence NK cell function (432, 436). 
Additionally, it is essential to consider that both NKG2A and NKG2D 
expression is not exclusive to NK cells alone and other cell types may contribute 
to the observed effects of the different genotypes.  

A dimorphism in the HLA-B leader peptide is another genetic factor reported to 
impact the function of NKG2A+ cells. The HLA-B-21 M allele produces a high 
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affinity peptide for HLA-E binding while the HLA-B-21 T allele reduces HLA-E 
expression by producing a peptide unable to bind HLA-E (25, 431). To investigate 
whether this dimorphism was somehow impacted by the NKG2A genotype, the 
patients were stratified based on the HLA-B-21 genotypes. The levels of 
granzyme B were markedly reduced for each NKG2A C allele in HLA-B-21 TT 
individuals but remained unaffected in the M/x patients. Similarly, studies of the 
outcome revealed that the M/x patients remained unaffected by the NKG2A 
genotype, while HLA-B-21 T/T patients exhibited significantly improved LFS if 
they also carried the NKG2A G/G genotype.  

One hypothesis to explain these findings is that HLA-B-21 M/x individuals 
receive sufficient inhibitory stimulation due to the enhanced interaction between 
NKG2A and HLA-E thanks to its elevated levels. Hence, the NKG2A G/G 
genotype is redundant. For the HLA-B-21 T/T patients however, lower HLA-E 
levels leaves room for higher inhibitory signalling obtained from the increased 
NKG2A expression of the NKG2A G/G genotype. A recent study proposed 
that the HLA-B-21 M peptide induces high HLA-E expression but provides low 
receptor recognition (437). This suggests that the M/x patients may have a larger 
fraction of antagonistic HLA-E peptides, removing the benefit of the higher 
NKG2A expression of the NKG2A G/G genotype, providing a potential 
alternative explanation. It was intriguing to observe that patients with the 
NKG2Ahigh NKG2A G/G and the HLA-Elow HLA-B-21 T/T exhibited the most 
favourable LFS among all groups. The collective impact of the HLA-B-21 and 
NKG2A rs1983526 genotypes appear to endow these patients with well-educated 
KIR+ cells and more functional, potentially cytolytic NKG2A+ cells, making this 
an advantageous genetic combination. 
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The ability to manipulate the receptor-ligand interaction facilitated a detailed 
study of the NKG2D alleles. During the validation of the model, it became 
evident that the newly established cell line was susceptible not only to NKG2D- 
but also NKp46-mediated killing. Given the existing gaps in understanding the 
ligands recognized by NKp46, we opted to conduct another genome-wide 
CRISPR screen using the tKO cell line. To enhance the screen selection’s 
dependency on the NKp46 interaction with its unknown ligand, we included a 
condition where tKO-K562 cells were exposed to NK cells in the presence of a 
blocking antibody against NKG2D (illustrated in figure 19). As described above, 
the most important genes for NK cell killing of WT-K562 cells were NCR3LG1, 
CD58 and TMEM30A. Naturally, in the screens with tKO K562 cells, where B7-
H6 was depleted, NCR3LG1 was not identified as a top hit, while CD58 and 
TMEM30A remained important. Instead, genes that were redundant in the WT 
screen suddenly appeared to be of key importance in the tKO screen. Among 
these genes there may be genes that encode and/or regulate the expression of 
NKp46 ligands. In paper IV, we present studies evaluating the role of such genes 
for NKp46 recognition of malignant cells.   

Figure 19. Illustration of a tKO-K562 cell 
screen setting. Given that NK cell 
primarily eliminate tKO-K562 cells 
through interactions involving NKp46 
and NKG2D, the addition of a blocking 
antibody targeting NKG2D would shift 
the killing to nearly exclusively depend 
on NKp46.   
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CONCLUDING REMARKS 

This thesis represents a piece of the intricate puzzle illustrating the larger aspects 
of NK cell interactions with its target cells.  

CRISPR screens have proven invaluable tools for uncovering the intricacies of 
gene involvement in cell interactions and the continuous development of the 
technique introduces endless research possibilities. In this thesis, the technology 
has played a central role. Comparisons between screens have revealed how minor 
adjustments can influence cellular interplay, particularly emphasizing the critical 
role of killing levels. The choice of cells in a screening setting is equally vital with 
variations in ligand and receptor expression of both target and NK cell 
influencing the output. Interactions between ligand and receptor that do not 
occur due to lack of expression or low dependence will for obvious reasons not 
appear in the screen results. Similarly, since multiple ligands and receptors often 
have more than one interaction partner, the absence of expression of one partner 
may amplify the significance of another interaction The use of WT-K562 cells in 
a screen, unveiled indirect regulatory mechanisms influencing interactions.  By 
mutating TMEM30A, cancer cells can evade immunity by upregulating surface 
PtdSer. This has been reported to generate an immunosuppressive environment 
and paper I illustrates how this upregulated PtdSer on TMEM30A KO cells 
interacts with inhibitory NK cell receptor TIM-3, hindering NK cell cytotoxicity. 
The potential vulnerability of these cells to phagocytic uptake in a cancer setting 
needs further exploration, as studies suggest phagocytes possess distinct 
mechanisms for distinguishing between live and dead PtdSer+ cells. Paper II 
demonstrates the impact of intracellular regulation on NK cell susceptibility. The 
deubiquitin protein BAP1 emerges as a positive regulator of MHC class I 
expression through modulation of the IFNγ pathway. Depletion of the protein, 
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resulted in lower expression of phosphorylated STAT1 after IFNγ stimulation, as 
a result of reduced levels of IFNGR.  

The CRISPR technology proved useful in revealing the impact of allelic variants 
of the NKG2D gene in paper III. An engineered NKG2D-dependent model 
demonstrated modest differences in NK cell function between the two allelic 
versions. In-depth analyses instead uncovered that an associated SNP in the 
NKG2A gene was the actual driver of the observed effects. Interestingly, when 
considering the NKG2A genotype in conjunction with previously identified 
HLA-B genotypes, distinct variations emerged in the outcomes of 
immunotherapeutic interventions in AML. Notably, the impact of the NKG2A 
genotype was evident only in cases with the less favourable HLA-
B-21 dimorphism, resulting in the most favourable patient outcome.  
Beyond advancing our understanding of NK cell genotypes and phenotypes, the 
findings from this study can serve to guide in treatment decisions by 
providing insights into weather specific patients are likely to benefit from 
interventions.  

Through the targeted KO of ligands for NK cell receptors, we 
successfully manipulated interactions with NK cells. The depletion of three 
specific ligands, enabled the generation of a highly NKp46-dependent model. 
By addition of an antibody against NKG2D, we achieved almost exclusive 
killing via NKp46. Leveraging this model in an additional CRISPR screen in 
paper IV, we could identify genes for potential NKp46 ligands.
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