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MATTIAS RYDSTRÖM, DIANA SALIM
Department of Computer Science and Engineering
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Abstract
Understanding people’s travel patterns and knowing the frequency of their travel
activities provide important insights for effective transport management and infras-
tructure planning. While traditional travel surveys have historically contributed to
this valuable information, they come with shortcomings such as being expensive to
collect, easily outdated, and having short time coverage. With technology advanc-
ing, new data sources on human mobility, such as Mobile Application Data (MAD),
passively log people’s geolocations and provide larger and more diverse datasets than
traditional travel surveys. However, the resulting information on an individual level
is often too sparse to be used in more advanced mobility models. Acknowledging
these limitations of MAD, this thesis aims to leverage the strengths of both datasets.
By combining the traditional travel survey data with the richer and more extensive
dataset from mobile phones, we intend to synthesize comprehensive activity plans
for those living in Sweden.

This thesis makes two key contributions. Firstly, it enhances the accuracy of identi-
fied home locations by analyzing their temporal visitation patterns and comparing
them with survey data. The candidate agents whose patterns align closely with
the survey data are selected based on the similarity of their temporal distributions.
Secondly, it proposes a simple and transferable generative model for synthesising ac-
tivity plans, which integrates big geodata and survey data. In this model, for each
agent, we identify a corresponding “twin traveler” from the travel diary data. We
then enrich the activity sequences of these twins with the extensive location data
collected from big geodata sources over several months.

The proposed model identifies home and work as anchor locations and compares the
home location with survey data to exclude unreliable ones. It then transforms user
data into activity plans and applies a modified Jaccard similarity to find matching
twins between datasets. Finally, it creates synthesized activity plans by combining
the activity sequences of survey twins with the extensive location data from mobile
app users. The resulting 113 488 synthesized activity plans are then validated against
the 18 106 survey responses regarding the essential attributes of individual mobility
patterns. We employ the Kullback-Leibler divergence to compare the similarities
between the two datasets. The validation shows that our model generally agrees
with the survey data. These results indicate that, with some future improvements,
generative models combining survey and big geodata sources, as MAD in this thesis,
are valuable and promising for future mobility studies.

Keywords: Human mobility, mobile application data, synthesize activity plans.
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1
Introduction

People participate in a wide range of activities every day, leading them to visit dif-
ferent locations. These sequential visits form trajectories, and by aggregating the
trajectories of an entire population, valuable insights can be gained on people’s mo-
bility patterns, which is crucial in decision-making for different domains, including
traffic forecasting, city planning (e.g., placing hospitals and schools), infrastructure,
and tourism [1], [2]. This requires data that tracks individuals’ locations daily over
an extended time. Traditionally, this has been done through surveys. However,
collecting this information can be expensive and time-consuming, and the resulting
data can quickly become outdated [3].

In recent years, a new type of geographical data (geodata) has been introduced
through anonymized Mobile Application Data (MAD). This data source is diverse,
cost-effective, and readily available. It logs phone users’ geographical locations (ge-
olocations) with their consent as they interact with various mobile applications. This
enables large-scale observations over longer time periods for millions of individuals
at the second-to-minute level and is not restricted by geographical or administra-
tive boundaries, as traditional surveys often are. Consequently, they are attracting
more focus for the analysis of mobility patterns. However, MAD is not without its
limitations. The data from MAD suffers from sparsity issues in recorded locations
and population biases. For instance, capturing the geolocation from a MAD user is
only possible when the user is actively using the applications. There is no guarantee
that users will utilize mobile applications at every new location they visit. There-
fore, data collection from MAD is inconsistent over time and across different visits,
making it challenging to trace individuals’ complete mobility patterns. Furthermore,
there is a possibility of an overrepresentation of smartphone users among younger
individuals compared to older age groups or non-smartphone users. Additionally, it
is essential to consider that biases towards specific locations can also exist in MAD.
For example, individuals may be more likely to use their phones while waiting for
the bus at the bus stop than when visiting a restaurant.

MAD has been commonly used in traditional population models, such as in the
generation of origin-destination (OD) matrices, to describe the mobility flow of
individuals within a specific area of interest. However, there are less explored ways
of using such data to simulate human mobility, one of which is Agent-based modeling
(ABM) [4], [5]. This approach, unlike traditional models, allows for exploration of
different scenarios based on policy decisions, and is capable of modeling situations
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1. Introduction

that go beyond observed data or real-world experiments. Agents are created based
on information about how people typically move; with these, it is possible to simulate
the flow of people in an area at different scales. To create these models, detailed and
realistic activity plans are required. This conflicts with the sparsity of the MAD,
where each individual’s stays at locations are not entirely recorded.

In this thesis, to extend the use of valuable MAD in travel demand modeling, we
design a generative model that applies traditional survey data to complement the
MAD. The benefit of utilizing survey data is that it provides complete one-day
activity-travel records for each participant, hence, no missing trips in the travel
routes or gaps in the data. This completeness is essential for synthesizing activity
plans. By combining these two datasets, the proposed generative model leverages
both “small” and “big” datasets regarding their completeness and large-scale popu-
lation and geographical coverage, respectively. The proposed model generates 113
488 activity plans based on agents living in Sweden, covering a typical weekday with
316 881 trips. The model captures genuine travel patterns compared to the travel
survey data yet underestimates the number of activity patterns with work locations.

1.1 Background

Human mobility refers to how people travel in terms of place and time. The contin-
ued urbanization and expanded human movement have increased the complexity of
predicting human mobility and led to challenges in comprehending and addressing
these dynamics [6], [7]. Traditional population models, such as the OD-matrix and
gravity model [8], have played a significant role, where how a population travels be-
tween geographical zones is the primary focus. Research within this field often relies
on survey data, a source that comes with both advantages and disadvantages. While
survey data provides a comprehensive source of information, including both travel
and individuals’ socioeconomic attributes, it can be costly to produce and quickly
outdated. An alternative data source that has flourished in recent years, due to the
increased use of smart devices, is large-scale geolocation data from mobile applica-
tions. This data is beneficial due to its flexibility, lower cost, and diversity, offering
possibilities to enhance the exploration of human movement.

Another approach to studying human mobility emerged in the latter part of the
1970s when activity-based models gained attention for their ability to provide valu-
able insights into individuals’ travel behavior and capture complex travel interac-
tions [9]. An activity plan for a typical day includes information about when, where,
and for how long an individual is engaged in various activities, as well as how the
person travels between these activities. Thus, detailed data is essential for develop-
ing realistic activity plans, limiting the number of available data sources. Despite
the potential of big geolocation data contributing valuable insights into individuals’
travel behavior, its sparsity makes it challenging to apply in these models.

2



1. Introduction

1.2 Thesis objectives
MAD consists of a large quantity of records and a variety of locations, yet it lacks
the completeness required to extract activity plans due to its inability to record all
locations a user has visited. To address this gap, we propose a generative model
that combines MAD with the Swedish National Travel Survey [10] dataset. By lever-
aging the strengths of both data sources, the diversity of MAD will merge with the
complete travel records of the survey data, generating a large quantity of varied and
complex activity plans. The objectives of this thesis are as follows:

• Infer home and work locations and other points of interest for each MAD user.

• Match MAD users with survey participants to synthesize complete one-day
activity plans from incomplete observations of the MAD.

• Evaluate the synthesized activity plans created by the generative model from
various individual mobility aspects.

The inferred home locations will be validated to ensure the reliability of the esti-
mated homes. Existing literature lacks a comprehensive validation framework for
such inferred home locations, indicating an area for improvement in geolocation data
analysis. Moreover, we introduce a generative model that extends the use of MAD
into more advanced transport models, such as ABM. This model is transferable and
easily applicable to different data sources, not limited to a specific geographical area.

1.3 Ethical considerations
The GDPR-complied data used in this thesis are generated from mobile applica-
tions where the device carriers have consented to share their locations. The data
is anonymized; each device is assigned a user ID and is not connected to personal
information such as a name or phone number. Nevertheless, the travel behavior
and visited locations of each device can be identified, posing a risk of revealing the
user’s identity. Studies have shown that one to three of the most frequent visits are
often enough to identify a person [11]. Hence, the violation of privacy becomes a
significant concern. Taking this into account, no individual trajectories or locations
will be published or used to tie back to any particular individual.

1.4 Disposition of this thesis
The remaining thesis comprises five chapters: Related work, Methodology, Results,
Discussion, and Conclusion. The Related work describes the current literature on
human mobility, and different models applied in this research area are outlined. The
Methodology describes the data used in this thesis, the pre-processing steps, and
the proposed generative model for synthesizing activity plans. The Results chapter

3



1. Introduction

presents the outcomes of the model and the evaluation performance. The discussion
assesses the limitations, analyzes the main findings, and outlines areas for future
work. Lastly, the Conclusion provides a summary of this thesis and its findings.
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2
Related Work

This chapter explores innovative approaches to utilizing geodata for comprehending
mobility and addressing biases in large-scale geospatial data. Following this, we
examine the distinctions between activity-based and population-based approaches
in travel demand modeling, noting their unique capabilities. The focus then shifts to
a more detailed exploration of activity-based models, highlighting their advantages
and justifying their selection for this thesis. Subsequently, we outline methods for
generating synthetic activity plans using extensive geodata. To conclude, we identify
research gaps in the current literature, laying the groundwork for the generative
model proposed in this thesis.

2.1 Understanding mobility using big geolocation
data

Using big data to explore the movement of a population is a growing field partly
due to the increasing usage of smart devices that generate large amounts of geolo-
cation data. In urban studies, the data are used to explore how people interact
with each other and move around in space and time. Studies [1], [2] use mobile
phone call data to create a dynamic OD-matrix representing the population travel
demand, i.e., the number of trips generated between regions in a study area. Peo-
ples’ homes, workplaces, and visited locations, and how they travel between areas of
interest are classified. These studies mainly show two benefits compared to the tra-
ditional quantification of population travel demand. Firstly, using big geolocation
data improves the cost efficiency and speed of data gathering compared to tradi-
tional surveys. Moreover, these emerging data sources on human mobility add a
temporal aspect missing from the classic population demand derived from mobility
models, e.g., gravity models. Secondly, these data enable the exploration of how
the population uses amenities in a city with high spatiotemporal resolution. For
instance, one study focuses on the correlation between catchment area and the size
of parks in Tokyo [12], providing city planners with suggestions on where new parks
or transportation infrastructure should be constructed.

Another field that has recently seen a considerable upturn in studies is the change
in mobility and illness transmission in connection with the COVID-19 pandemic.
One study uses big mobility data to explore the relationship between the spread
of the virus and mobility in an area [13]. Other studies focus on the impact of
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2. Related Work

restrictions related to the spread of the virus [14], as well as their effects on mobility
and economics in regions, taking into account factors such as income levels and
population inequality [15]. What they all have in common is the utilization of large-
scale mobility data to track changes in the movement of populations, considering
both temporal and geographical aspects.

2.1.1 Data biases in big geodata
One must deal with selection bias and sparsity issues when working with big data
on human mobility. Selection bias refers to the fact that the data used is distributed
unevenly among the population [16]–[18]. Since the data is collected from people
interacting with the internet throughout their day, access to smart devices is required
for a person to be registered in the data. In Sweden (Table 2.1), mobile phone
usage is over 90% in most age groups. However, among the elderly population,
this percentage significantly decreases, and within the oldest recorded age group
(75-85), it drops to 46% [19]. This disparity introduces a bias in the data towards
younger individuals, and it inadequately represents the mobility patterns of elder
people. Another factor contributing to bias in the data is the variance in the amount
of information generated by each device. A recent study analyzing mobility data
from Iraq, Congo, and Sierra Leone [16] discovered that the wealthiest 20% of the
population accounted for 50% of the collected data points. This disparity in phone
usage primarily stems from differences in phone usage and internet access costs.

Age group 16-24 25-34 35-44 45-54 55-64 65-74 75-85
Total mobile phone 91% 98% 95% 94% 87% 75% 46%

users

Table 2.1: The distribution of mobile phone users in Sweden 2020 [19].

The impact of these biases depends on how the data is utilized. A study by Garber et
al. [17] investigates whether these biases significantly affect the results and identifies
scenarios where the bias may be less problematic. For instance, the study examines
changes in mobility among individuals with varying economic standards during the
COVID-19 pandemic. It acknowledges that a potential bias exists, with the lower-
income group being less represented in the dataset due to reduced smart device
usage. However, since this bias remains consistent over time, the study suggests
that it does not significantly affect the observed changes in movement from before
the pandemic to a few months afterward within these groups.

Inherent sparsity within big geolocation data pertains to sources such as MAD,
Call Detail Records (CDRs), and location-based social networks. While these data
sources are collectively abundant, the information they provide tends to be sparse
individually. These sources offer geolocations from device carriers but provide a
limited view of actual trajectories. For example, tracking mobility locations from
CDRs is feasible only if a call has been made. Therefore, it is not guaranteed that
a call has occurred in all areas the user has visited [20]–[22]. In other words, big
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geolocation data is irregularly distributed in time and captures a partial view of
users’ mobility [21].

2.2 Activity-based vs. traditional
population models

Activity-based approaches, introduced in the late 1970s, have received extensive
interest [9]. The approach forecasts travel behavior and obtains new insights into
how individuals allocate their time. In addition to this, activity-based models are
also adopted to capture complex interactions in activity [23]. The modeling requires
careful and extensive data preparation to frame the entire flow of activities and
travel patterns. Such scrutiny will help identify possible inconsistencies in the data
that could have been missed in a traditional population model, e.g., a trip-based
approach. Commonly, surveys are carried out to collect the activities pursued by
different individuals during a day or multiple days, i.e., activity plans. This provides
detailed information about how, when, and where people tend to travel. Although
survey data is widely used, it is time-consuming and costly to update [24]. Due
to this, the number of survey participants is often small compared to the entire
population, and the survey typically fetches one-day travel dairies or rarely a few
days [25].

In contrast to activity-based models, traditional population models are interested
in the mobility of the population in a study area. An example of this approach is
an OD-matrix, which measures and aggregates the number of trips between zones
to comprehend the travel demand and intensity in a study area [2], [6], [20]. Other
varieties of populational models are the four-step model, the gravity model, and
the radiation model [8]. However, traditional models are considered less advanced
and valuable than activity-based models. This is because activity-based models
have unique abilities such as (1) capturing the entire activity pattern of individuals,
including the duration and intention of each activity, which gives a detailed insight
into the travel behavior, and (2) simulating travel behaviors of each individual based
on their characteristics [23], [26].

2.3 Activity plans from big geolocation data
In activity-based models, activity plans refer to patterns and activities performed by
individuals or a population during a given time frame. The intention is to analyze
mobility through geolocation data to identify typical routines and patterns across
different locations. By studying and simulating activity plans, a deeper understand-
ing of human mobility can be gained and used in, for example, traffic forecasting,
transport planning, and understanding urban land use dynamics [27].

The choice of dataset is crucial when aiming to develop activity plans. Tradition-
ally, research in this field has relied on travel surveys as the primary resource for
understanding human mobility behavior. However, as outlined in Section 2.2, data
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from travel surveys come with certain limitations. In comparison to traditional
surveys, big geolocation data appears as a promising alternative as it offers large
population and geographical coverage with high spatial and temporal resolution and
is continuously updated, all while remaining cost-effective.

Synthesizing activity plans from big geolocation data is not a single straightfor-
ward task. Most previous studies have used different generative models to conduct
this. However, creating reliable and useful activity plans using big geolocation data
remains challenging due to data biases such as sparsity [20]. The challenges are two-
fold: generating reasonable routing activities, i.e., home and work (Section 2.3.1),
and overcoming the sparsity of big geolocation data at an individual level (Sec-
tion 2.3.2).

2.3.1 Routine activities at home and work

One crucial step in generating activity plans with big data is inferring each device’s
home and workplace locations. Due to human beings’ circadian rhythm, temporal
rules have been widely used to infer individuals’ home areas. For example, Pap-
palardo et al. [28] studied several algorithms to detect home locations by testing
different time slots. The data covered 65 individuals working at a company in Chile,
and their actual home location was provided for validation purposes. The highest
accuracy on home detection was found to be between 7 p.m. and 7 a.m. It is im-
portant to mention that as all participants worked during ordinary labor hours, this
analysis is biased toward individuals with similar mobility routines. In contrast to
this, another study [29] infers the home location by identifying the period of inac-
tivity when one is most likely sleeping; hence, the first call after waking up, or the
last call before bed, was used to detect the home location.

Similar temporal rules can be applied to estimate work location. One paper by
Tongsinoot et al. [29] identifies the hours with the highest daily phone activity. The
location where this occurs during the most distinct days is classified as the work
location. However, the risk of using this method is that it excludes the employees
who work from home and, hence, cannot be detected by this identification method.
Further challenges with this approach are the workers who do not have a fixed
work location [30] and people who may not use their phones at work. Additionally,
workers with two phones, one personal and one for work purposes, might affect the
data as the check-ins will be biased towards these locations only.

To summarize, most of the previous studies in the field of mobility data rely on
temporal rules to infer home and work locations without proper validation [28].
This lack of validation is due to the challenges in obtaining ground truth data. Big
geolocation data is anonymized to protect the users privacy, making it difficult to
confirm a users home location. However, home and work are anchor locations and
remain fundamental in understanding daily mobility [29]. Thus, along with the
prevalence of big geolocation data, one should improve the validity to make these
data more reliable for real-world applications.
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2.3.2 Synthesizing activity plans from incomplete data
The incompleteness of big geolocation data, such as MAD, stems from the partial
information obtained from each user’s phone activities. The use of mobile applica-
tions can vary across spatial zones and times, leading to gaps in users’ overall visited
locations. This sparsity limits the usability of the data to accurately estimate travel
demand [31].

To address the sparsity issue of big geolocation data for representing activity plans,
it is necessary to create synthetic activity plans in combination with other data
sources. Various methods exist for synthesizing activity plans; one technique is
through a probabilistic approach where the probability of a device being at a specific
geolocation, based on historical data, is calculated. A study conducted in 2022 [30]
utilizes GPS-based survey data and uses a person’s home, work, and school location
as a fixed entity. These locations are then used as an anchor for where the estimated
locations can be located. The result showed that people with an equally socio-
demographic background have similar everyday schedules. However, the authors
claim that their probabilistic model cannot capture complex human travel behavior
and fails to account for non-typical mobility patterns. For instance, some people live
in a rented flat during weekdays and travel back to their place or parents home on
weekends. On such occasions, the second home identification is often ignored and
might lead to biases in travel demand as well as generating incorrect estimations of
mobility behavior.

Another way to generate synthetic data involves the application of deep learning
methods such as Convolutional Neural Networks (CNNs) or Conditional Generative
Adversarial Networks (CGANs) [32]. These networks produce new data based on
each device’s spatial and temporal patterns, creating synthesized mobility chains.
However, they require rather complete datasets in individuals’ mobility [24]. A
study conducted in 2022 [33] developed a composite GAN with two models where the
first learned to generate socioeconomic patterns of the individuals and the second
generated sequential mobility data. While deep learning models appear helpful
when dealing with large amounts of data in various applications, it is important
to consider the limitations. For example, transferring synthesized mobility data to
different regions can be complex regarding data usage and methodological framework.
Training mobility data from one country and using the trained model in another may
not work seamlessly since the data distribution and user behaviors may vary across
regions. This mismatch can lead to reduced model performance and the need for
extensive adaptation to make it applicable in different settings.

A third approach is to use a heuristic technique in generative models, which proves
beneficial when dealing with complex or open-ended tasks. In contrast to the other
mentioned approaches, heuristic methods do not solely rely on traditional mathe-
matical or algorithmic models [34], [35]. The idea behind a heuristic approach is
to apply and test a combination of different procedures to reach a feasible solution
for the specific task of interest, as in this case, creating a generative model that is
both simple and transferable. The various challenges in using MAD for generative
models in transportation studies, including the generation of activity plans, have
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led to the development of different heuristic approaches that prove to be effective
in addressing real-world practices. For example, a study [36] focused on modeling
activity-travel rescheduling and introduced a heuristic search model to cope with
unexpected events. In this model, individuals responded to unforeseen situations by
adjusting their activities and travel plans until no further improvements could be
made in their schedules. This approach offers a practical way to adapt to changing
circumstances and optimize daily activity plans using a heuristic technique.

2.4 Research gaps
Based on the literature review, we identify the below research gaps in travel demand
modeling.

1. Innovative data sources:

• Mobile application data is an emerging data source of big geolocation
data on human mobility. It is ubiquitous, less explored, and not widely
employed in the literature related to ABMs. However, it is cost-effective
and has long-term observations of individuals. Despite the potential of
this data source, it tends to be sparse as it lacks the ability to record all
locations a user has visited. Still, with its large population and spatial
coverage compared to traditional survey data, making it promising for
creating easy-to-update and realistic activity plans.

2. Generative models of activity plans:

• The existing literature lacks a simple yet transferable model that is more
widely applicable for different data sources not limited to a single data
source, such as Call Detailed Records or data collected from a specific
region.

• Temporal rules are widely used for estimating home and work locations.
However, there is a limited effort to improve their validity due to the lack
of ground truth data.
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This section outlines the thesis methodology. Section 3.1 presents the datasets
used in this study. In Section 3.2, we estimate home and work locations, connect
home locations with statistical geographical regions, and study bias in people’s home
locations. In Section 3.3, we transform the data and use the Jaccard similarity
comparison to compare MAD users with survey participants in terms of their travel
patterns. Subsequently, we use the activity sequence of the survey participant in
conjunction with the estimated locations of the MAD user to generate activity plans.
Lastly, Section 3.4 presents the statistical metrics used to evaluate our model.

Figure 3.1: Flowchart of the analytical framework.

3.1 Data sources
In this thesis, three data sources are utilized. The first and primary is MAD, re-
trieved from a large group of Swedish mobile phone devices. The second dataset
is the Swedish National Travel Survey from 2011 to 2016, which is used as a com-
plement to the MAD dataset and for pattern matching and validation purposes.
The third dataset is census data from the statistics agency in Sweden, providing
information on demographic statistic areas.

3.1.1 Mobile Application Data
MAD consists of GPS records collected from users interacting with various mobile
applications. We focus on stays, defined as specific geolocations where an individual
spends a period of time, e.g., above 15 min in this study. The mobility traces used
to identify stays were gathered from smartphone users in Sweden aged 18 and above.
The data collection occurred from the first of June 2019 to the end of December 2019,
resulting in 25 million GPS time records per day from 1 million devices. Assuming
each device corresponds to one individual, this dataset represents approximately
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10% of the Swedish population. Nevertheless, it is essential to note that a single
individual may possess multiple devices.

The MAD, as provided, underwent two pre-processing steps [37]. Firstly, stays
were identified using the Infostop algorithm, chosen for its robustness against large
datasets and measurement noise and its ability to conduct a multi-user analysis si-
multaneously [7], [37]. Detecting stays is essential when measuring movement and
studying mobility data. To validate and distinguish a stay from transient locations
when the user moves, we set a minimum duration of 15 minutes and require addi-
tional geolocation to be recorded within three hours. Furthermore, the maximum
allowed distance between two consecutive records had to be within 30 meters to be
treated as the same stay.

Lastly, a three-step data filtering process was implemented to enhance data quality:
1) dropping stays above 12 hours, 2) requiring identified individuals to have more
than seven active days, where an active is defined as a day with at least one recorded
stay, and 3) ensuring the number of unique locations exceeded two.

Attribute Description
User ID Unique ID of the device
Local time Timestamp for when the user ID was first shown at a unique location
Location User-specific ID of the location
Hours start Time of the day, in hours and minutes
Duration Time between arrival and departure
Latitude Latitude of the location
Longitude Longitude of the location

Table 3.1: Attributes in the MAD.

Additionally, stays during weekends and holidays1 were excluded from the final
MAD as this thesis focuses solely on synthesizing mobility data for regular weekdays.
Table 3.2 shows the records in the applied used dataset:

Total Total Median rows Median active days Median unique locations
rows users per user per user visited per user

13 493 110 322 477 22 14 5

Table 3.2: Overview of the statistics in the MAD, after pre-processing.

3.1.2 Swedish National Travel Survey
The second dataset, the Swedish National Travel Survey (2011-2016), is provided
by Transport Analysis [10], the official statistics authority of transport and commu-
nication in Sweden. In the survey, the complete activity pattern of participating
individuals is extracted for weekdays, with holidays and weekends excluded for this

1Summer holiday 23/6-10/8, Christmas vacation 22/12 until the end of December.
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thesis. It is important to note that the survey relies on one-day travel diaries, captur-
ing a snapshot of individuals’ activities on specific weekdays, thus offering a detailed
and focused perspective on daily routines and travel behavior.

The original survey data are all the trips reported by the survey participants on
their record days. After removing incomplete records regarding trip purposes, ori-
gin, destination information, etc., we continue transforming the trip-level data into
activities. We keep the individuals where their recorded day starts and ends at the
same place, as required by common transport agent-based simulation, e.g., MAT-
Sim [38].

For this thesis, the transformed survey dataset serves two purposes: 1) the input to
the generative model for synthesizing activity plans of MAD users and 2) the ground
truth data for comparing the results of the synthesized activity plans regarding
essential activity patterns. The dataset includes a large amount of information
about each individual’s activities and mobility. All the relevant information from
the Travel Survey used in this thesis is summarized in Table 3.3.

Attribute Description
Participant ID Unique ID of the survey participant
Activity Home, work2, or other location
Start time activity Timestamp for when the activity started
End time activity Timestamp for when the activity ended
Duration Time between arrival and departure
Hour start Start time of the activity (in minutes from 00:00)
Hour end End time of the activity (in minutes from 00:00)
Zone The DeSO area (3.1.3) of where the activity occurred
Distance Self-reported travel distance, previous to current location
Commute Self-reported distance between home and work

Table 3.3: Attributes in the dataset for the Swedish National Travel Survey.

Two cleaning steps are implemented in the survey dataset. In cases where partic-
ipants have not reported one or more distances traveled, and the trip is between
home and work with a commuting distance reported, this distance is added. Even
after the commuting distance is added, participants who still have one or more miss-
ing distances are then dropped. Additionally, users outside the ten most common
activity sequences are excluded, as indicated in Table 3.4. This step removes the
risk of the model overfitting unusual activity sequences while also ensuring that the
sizes of each activity sequence group are large enough to be reliable in the evaluation.
Following this cleaning step, there are 18 106 survey participants for analysis.

2This also includes school activities.
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Sequence Percentage Cumulative percentage
of survey participants of survey participants

H-O-H 23.64 % 23.64 %
H-W-H 18.99 % 42.63 %

H-O-O-O-H 8.44 % 51.07 %
H-O-O-H 7.36 % 58.43 %

H-H 7.28 % 65.71 %
H-W-W-O-H 5.23 % 70.94 %
H-W-W-H 5.19 % 76.13 %

H-O-O-O-O-H 3.64 % 79.77 %
H-O-O-O-O-O-H 2.39 % 82.16 %

H-W-W-W-H 2.36 % 84.52 %

Table 3.4: The top ten activity sequences, representing 84.52% of the total survey
data.

3.1.3 Demographic Statistical Regions of Sweden
Demographic Statistical Regions of Sweden (DeSO) is a dataset provided by the
Swedish Statistics Agency [39], and it categorizes Sweden into 5 984 DeSO zones,
with populations ranging from 700 to 2 700 inhabitants. The dataset includes so-
cioeconomic data about the population in each zone. However, for the purposes of
this thesis, only two key aspects are considered; the total number of inhabitants in
each zone and whether the zone is located in a rural (A), suburban (B), or urban
area (C) with the original code digit in the brackets.

Area type Share
Rural 15.40 %

Suburban 8.71 %
Urban 75.89 %

Table 3.5: The distribution share of the three area types.

3.2 Inferring home and work locations
To estimate home and work locations3 of our MAD users, we apply the temporal
rule proposed in [28]. This rule recognizes the most visited location during weekday
nighttime (7 p.m. to 6:59 a.m.) as the estimated home location for each individ-
ual. For estimating work4 location, the first step is removing the estimated home
locations for each user, as having the same location for both home and work would
complicate the final results. Subsequently, the opposite hours, minus the user’s com-
mute time, are examined, leaving a time span of 9 a.m. to 4:59 p.m. as the period of

3To ensure privacy, the location data used is at the zone level with a spatial resolution of
approximately 100 meters, and it is not employed to identify any specific individual.

4School locations are also included, as it is a fixed location visited during the day. The same
definition is applied for the survey data.
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interest for being at work. The location with the highest frequency of stays during
weekdays in this period is considered the work location. Additionally, two kinds of
filtering are applied to enhance the validity of the estimated home and work location.
The location must be stayed at for at least five times, with a total duration of 300
minutes. Locations that meet these criteria are included, and MAD users without
an estimated home location are discarded.

To further improve the quality of estimated home locations, the temporal visitation
pattern of each user’s home location is compared with the visitation pattern of home
locations in the survey. A day is divided into 30-minute intervals. Following this,
the home location is analyzed by counting how many times the user remains at this
location during these intervals. Each interval is then normalized by dividing it by
the interval with the highest number of stays, resulting in a score between zero and
one. A score of one indicates that the time slot is among the most common times
for the person to stay at the home location. The same calculation is applied to the
survey data with a modification. Instead of analyzing each individual separately,
the visitation frequency aggregates all participants, treating them as repeated ob-
servations of one virtual individual. The combined visitation pattern is then used
as the ground truth.

Figure 3.2: The temporal visitation pattern of the home location for MAD users
compared to survey participants.

After that, the visitation frequency patterns for MAD users are compared with the
travel survey. This is done by calculating the Euclidean distance between them,
indicated by Equation 3.1, where for being at home, p represents the frequency
value for the MAD user, while q signifies the combined frequency value for the survey
data, both within each of the n 30-minute intervals (n = 48). A short Euclidean
distance indicates a similar visitation pattern, providing a stronger conviction that
it is an actual home location found. Conversely, a longer distance suggests that the
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identified home might not be correct.

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + . . . + (pn − qn)2 (3.1)

Following the calculation of distances for the identified home locations of the MAD
users, each user’s distance is sorted in ascending order. Subsequently, 20 groups
are created based on the sorted distances, with 5% of the users in each group. For
instance, group 1 consists of the 5% with the shortest distance, group 2 the 5%
with the second-shortest distance, and so on. The average Euclidean distance for
each group is then plotted on a graph to identify any distinct elbow point where
the distance increases significantly compared to the previous group [40]. Users in
groups where the average distance is higher than this identified point are excluded
from further analysis. The exclusion is based on the rationale that the increased
distance for these users signifies that the found homes have a less similar visitation
pattern compared to the survey data. Consequently, the identified home locations
are considered less reliable and are excluded from further analysis, ensuring a higher
quality in the estimated home locations still present in the data.

Lastly, after the home location is inferred, information is added noting which census
zone (DeSO area) the home belongs to, based on the location GPS coordinates.
This is done for two reasons: 1) As the focus of this thesis is on individuals in
Sweden, if the estimated home location falls outside a DeSO area, it implies the
location is outside Sweden, prompting the removal of the user. 2) Add information
on which type of area the estimated home location is; rural, suburban, or urban.
This information will be used for creating synthetic activity plans.

3.3 Generative model of individual activity plans
The model consists of three steps to synthesize activity plans from MAD users.
Firstly, the model divides the day into 48 groups at 30-minute intervals each for both
MAD and the survey data. These intervals record the locations visited - categorized
as home, work, or other. Secondly, a match is made between the individuals in the
MAD and survey data to find the activity sequence twin from the survey participants
with the most similar activity pattern. Lastly, the location coordinates of the MAD
users’ home, work, or other locations are simulated based on the activity sequence of
their identified survey twin, resulting in synthetic activity plans for the MAD users.

3.3.1 Transform data into activity plans
The information from both datasets is standardized into the same structure to facil-
itate the comparison between MAD users and survey participants, shown in Equa-
tion 3.2. This involves evenly dividing the day into 48 groups at 30-minute intervals
(i) in each and recording the type of location each user visits during each inter-
val. The available location types include home, work, or other (h, w, o), as these
categories are commonly used for transport agent-based simulation.
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S = {li | i = 1, 2, ...48} , l ∈ [h, w, o]
M = {(h, w, o)i | i = 1, 2, ...48}

(3.2)

where h + w + o = 1, indicating that at each time slot, the frequency of observing a
MAD user being at home, work, and other locations are normalized into 1.

Figure 3.3: Example activity record for a survey participant.

Figure 3.4: Example of a probabilistic activity record for a MAD user.

For survey participants, only one location (l) is typically visited during each interval,
given the survey is a one-day travel diary. However, since the day is split into 30-
minute intervals, a participant could travel from one location and arrive at the next
within one interval. In these cases, the location where the participant spent the
most time is selected. If a participant travels throughout the 30-minute interval, the
location is unknown with a NaN value assigned. An example of a survey participant
activity plan can be seen in Figure 3.3.

For the MAD users, given that data is collected over several months, there is in-
creased variability for each interval. Rather than having one primary location type
at each time slot, the probability of each location type for each slot is recorded
(h, w, o)i. For example, if a person with ten stops during a 30-minute interval vis-
ited their estimated home location five times, work three times, and other locations
twice, the probabilities of activity participation would be Home: 0.5, Work: 0.3,
Other: 0.2, exemplified in Figure 3.4. Due to the uncertainty in duration for MAD,
consideration is not given to the number of minutes spent, as each visit is treated
equally. NaN is assigned as the value if no location is visited during an interval.

3.3.2 Search for activity plan twins
To establish a similarity between the survey participant and the MAD user that
could be paired up, we organized them into groups based on three variables: home
location, commuting distance between home and work, and average travel distance
between home and other locations. Each of these variables features multiple levels.
A unique combination of levels across these variables identifies a group.

In the distance categories, each variable is divided into quantiles based on the av-
erage travel distance to the activity in question. For example, a survey participant
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in the “Short” group in the work variable belongs to the 0-25% with the shortest
commuting distance. “No Information” is recorded if the individual has not traveled
to a particular activity type. For the survey participants, only one activity sequence,
H-W-W-O-H, containing just 5.23% of the participants, has distance information for
both distances to the other and work locations. In contrast, for MAD users, the
number of individuals having both distances is 37.04%. To address this discrepancy,
MAD users with distance information to both work and other locations can match
with survey participants missing either of them. In other words, these MAD users
can be matched with three groups of survey participants; those with distance infor-
mation for both work and other locations, those with distance information only for
work location, and those with distance information only for other location.

• If the home location is in an urban or non-urban (suburban/rural) area
(extracted from the census zone information)5.

• The distance between home and work location. Short, Short-Medium,
Medium-Long, Long, No Information6.

• The distance between home and other locations. Short, Short-Medium,
Medium-Long, Long, No Information7.

After grouping, we pair survey participants with MAD users with similar activity
patterns within each group. These “twins” are identified using a Jaccard similarity
comparison, which assesses the similarity between two objects based on categorical
variables [41]. For a given time interval, if the two objects have the same categorical
variable, a count of one is included; otherwise, nothing is added. The combined
count is then divided by the number of variables examined. The resulting score
ranges from 0 to 1, where 1 indicates an exact match between the two objects, and
0 signifies no shared similarities.

In our case, the comparison is modified by replacing categorical variables with a
probabilistic variable for the MAD users, as mentioned in 3.3.1. In each of the
48 time slots, the user has the probabilistic location information (unless a NaN is
recorded for the MAD user, then the time slot is disregarded). The score added is
the probability of the MAD user being in the location the survey participant visited
during that slot. For example, if the survey participant is at home and the MAD
user’s probability of being there is 0.2, this value is added to the final calculation.

In Equation 3.3 the calculation is presented, with S denoting the survey participant
and M representing the MAD user. The probability value is added from all time
intervals where the participant and the user match. This aggregated score is divided
by the total number of intervals where we have data on the MAD user, n − Mnan,
where n notes the total number of intervals (48) and Mnan indicates the number
of intervals for the MAD user without any stays. The result is recorded, and the

5For MAD, 81.63% of users have homes located in urban areas, compared to 75.25% for the
survey participants.

6Distance categories based on the quantile of travel distance for each dataset. Short 0-24%,
Short-Medium 25-49%, Medium-Long 50-74%, Long 75-100%.

7See above footnote.
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survey participant with the highest score is identified as the twin.

J(S, M) =
|Sh ∩ Mh| + |Sw ∩ Mw| + |So ∩ Mo|

|n − Mnan|
(3.3)

3.3.3 Synthesize activity plans

To generate the synthesized activity plans, we start with the twin traveler’s activity
sequence and the MAD users’ recorded locations. The Home and Work in the
sequence are directly linked with their identified home and work locations. However,
for Other, it is not as simple to directly link a location from the MAD. Each MAD
user could have more or less other locations than the activity sequence. To solve
this, we apply a temporal matching method. The day is divided into seven-time
groups: Night (00.00–05:30), Early Morning (05:31–08:30), Late Morning (08:31–
11:30), Lunch (11:31–13:30), Afternoon (13:31–17:30), Early evening (17:31–20:00),
Late evening (20:01–23:59).

The categorization of a visit into one of these groups is based on its midpoint time.
The probability P of visiting a location within each time group is recorded, shown
in Equation 3.4,

P (ok, j) = Vk,j

Vtotal,j
(3.4)

where ok is the other location, j denotes the time group (j = 1, 2, ..., 7), and V is
the number of visits by the MAD user. Then, for each Other in chronological order
during the day in the activity sequence, a weighted random selection is performed
based on the probability recorded (P (ok, j)). If no other location is available during a
specific time interval in the activity sequence, a location from a different time group
is randomly chosen. After each selection, this chosen other location is excluded from
future selection and cannot be reused. In scenarios where the MAD user has visited
fewer other locations than required by the activity plan, locations cannot be selected
for all stays, and the travel pattern would be impossible to evaluate. In these cases,
the synthesized activity plans are dropped.

Once all the locations are linked to the activities in the twin’s sequence, the dis-
placements between the location coordinates are gathered and then multiplied by
1.5 [42] to approximate the distance traveled. In the case of round trips, where the
activity plan goes from Home to Home or Work to Work, the distance is directly
assigned based on the survey twin’s data. With this final step, the generation of
activity plans is completed.
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3.4 Evaluation of the generative model
To assess the proposed generative model, this thesis considers comprehensive at-
tributes of activity patterns in human mobility and compares them between the
survey data (treated as the ground truth), and the synthesized activity plans. The
following attributes will be evaluated:

(1) The number of trips. The difference in percentage for each trip count, from
one to six daily trips.

(2) The distance between activities’ locations. The travel distance data are clus-
tered into twelve different groups based on the traveling distance in kilometers.

(3) The top ten activity sequences. The share of users for the selected top ten
activity sequences in the survey data with the corresponding user shares in
the synthesized activity plans.

(4) The temporal visitation pattern for each activity type, in half-hour intervals.

(5) The time spent on each activity type.

For the metrics (1)–(4), we use the KL divergence indicator, which is a distance
metric designed to quantify differences between two probability distributions. KL
divergence yields a value equal to or greater than zero and informs how the datasets
differ in terms of their probability distributions across the selected categories [43],
[44]. A smaller KL divergence implies that the datasets are more similar, while a
larger value indicates greater dissimilarity. The mathematical formula for the KL
divergence between two probability distributions, P and Q, is defined as:

KL(P ||Q) =
∑

[P (x) log
(

P (x)
Q(x)

)
] (3.5)

where P (x) represents the probability of an event x according to the first distribution,
P , while Q(x) represents the probability of the same event according to the second
distribution, Q.

In this thesis, the KL divergence serves as a critical tool to examine if the synthesized
activity plans share the same distribution as the survey data for the above metrics
(1)–(4), providing valuable insights into the validity of our modeling approach and
results. Given the KL divergence is suitable for categorical data, for a continuous
variable like (5), we examine the average time spent at home, work, and other
locations and visually compare the synthesized activity plans with the survey data.
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In this chapter, Section 4.1 introduces the inferred home and work locations. Sec-
tion 4.2 presents the results of identified twin travelers and the corresponding synthe-
sized activity plans. Lastly, the evaluation of the model is introduced in Section 4.3.

4.1 Home and work locations

One of the contributions of this thesis is to improve the validity of identified home
locations by investigating their temporal visitation patterns in comparison with the
survey data (as the ground truth). MAD users with patterns similar to the survey
data are retained by measuring the distance between their temporal distributions.

After the initial inferring of home locations based on the temporal visitation rules,
the temporal visitation pattern comparison was applied. To identify a distance
cut-off point for improving the validity of identified home locations, we examine
the elbow point in Figure 4.1, where longer distances correspond to less reliable
identified home locations. While the average distance in each group increases at an
even pace for most, a noticeable jump is observed between the second-to-last, and
the last group. Figure 4.2 illustrates the difference in the visitation patterns for the
selected groups, accentuating the increased distance between the groups with the
highest, (d), and second-highest distance, (c). The visitation pattern between the
middle, (b), and the second-highest distance group, (c), stays relatively consistent,
but in the group with the largest distance (d), a clear change in the visitation pattern
is observed.
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Figure 4.1: The average Euclidean distance of the temporal visitation pattern
for each 5% group of MAD users compared with the survey data. The groups are
ordered from the most similar to the least from 1 to 20.

Figure 4.2: Comparison of aggregated user visitation patterns. (a) Distance group
1. (b) Distance group 10. (c) Distance group 19. (d) Distance group 20. The longer
the distance, the less reliable the identified home locations for these groups.
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After keeping those MAD users who have more reliable home locations identified,
we assign DeSO zones to each of them. Home locations outside Sweden are dropped,
and the resulting correlation between the number of MAD users in a DeSO zone
compared to the actual population is presented in Figure 4.3. After these screening
steps, the number of available MAD users drops from 322 477 to 185 008, resulting
in a 42.63% reduction.

Figure 4.3: The number of inferred home locations compared with the actual
population in the DeSO zones, log scale.

Out of the remaining MAD users, 70 533 users have work locations identified from
their trajectories. The percentage of MAD users associated with a work location
closely mirrors the survey data, as illustrated in Table 4.1. The median commuting
distance is also similar; however, the average distance is much larger for the MAD
users. In Figure 4.4, it is clear that the two groups have a similar distance in the
commute for the first 50%, but for the MAD users, this distance becomes significantly
larger for the third quantile compared to the survey users. Examining the even longer
commuting distances, almost 17% of the MAD users travel over 100 km, while this
number is just 0.68% for the survey participants. The maximum commuting distance
reported in the survey data is 800 km. In the MAD, 1.39% of users had commutes
exceeding this distance, with the longest recorded commute being 12 653 km. The
long tail for the commuting distance of the MAD users suggests variability in the
quality of inferred work locations. Further discussion on this topic will be provided
in Section 5.2.

Dataset % of users with a Median commute Average commute Users with 100 km<
work location distance distance commuting distance

MAD 38.12 % 10.57 km 91.46 km 16.97 %
Survey 38.06 % 8.00 km 15.13 km 0.68 %

Table 4.1: Commuting statistics. For the survey, the % of users with work location
refers to the percentage of participants that have traveled to a work location during
their reported day. For MAD users, it is the percentage of users with an inferred
work location.
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Figure 4.4: The commuting distance for MAD users compared to the commuting
distance for the survey participants.

4.2 Twin travelers and synthesized activity plans

Besides the improved quality of identified home locations using big geodata, the
other contribution of this thesis is the generative model that combines MAD and
survey data. Specifically, for each MAD user, we search for twin travelers in the
travel diary and enrich these twins’ activity sequences with MAD users’ abundant
locations spanning over months.

There are 185 008 MAD users who are linked with a survey twin based on the modi-
fied Jaccard similarity score evaluating their activity patterns’ similarity. As stated
in Section 3.3.3, the activity sequence of the survey twins is filled with locations
from the MAD user. Matches where the MAD user have fewer other locations than
required in the paired up activity sequence are dropped, leaving 181 143 users for
further analysis. For these remaining users, the distribution of their similarity scores
in comparison with their twin travelers from the survey is shown in Figure 4.5. It
is evident that, even among the twin travelers identified as having the most simi-
lar activity patterns to those of the MAD users, some exhibit low similarity scores,
indicating a reduced reliability in the pairing process.

We further investigate the temporal visitation patterns of these MAD users of differ-
ent similarity scores. Figure 4.6 illustrates how users with a low similarity score (c)
compare to those with a higher score (d), all MAD users (a), and survey participants
(b). MAD users with a highly similar twin traveler exhibit more distinct patterns
across the three activity categories. And their activity patterns are more similar to
the survey participants.
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Figure 4.5: The distribution of the similarity scores between the MAD users and
the survey twins.

Figure 4.6: Comparison of the probability of visitations for Home, Work, or Other
for MAD users vs. survey. (a) All MAD users. (b) Survey participants. (c) MAD
users with below 0.5 similarity score with their matched twins. (d) MAD users with
above 0.7 similarity score.
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To improve the quality of synthetic activity plans for MAD users, we explore the
impact of matching similarity on the model performance. The evaluation is carried
out at every interval increase of 0.1 in the similarity score, ranging from 0.5 up to 0.9,
where the KL divergence results of our evaluation metrics are recorded, shown in
Table 4.2, and further illustrated in Figure 4.7. The evaluation result with a cut-off
point of 0.7 proved to be the most successful, and we kept the users with a similarity
score above this threshold. This leaves us with 113 488 individuals with synthesized
activity plans for our final evaluation, as summarized in Table 4.3. One observation
from the impact of similarity on the evaluation process is that the more stringent
cut-off points of 0.8 and 0.9 significantly decrease the KL divergence results. This
may be linked to overfitting, with very high similarity scores being connected to
simplistic activity plans, that do not represent the entire survey dataset.

Groups of similarity cut-off: All > 0.5 > 0.6 > 0.7 > 0.8 > 0.9
Total trips 0.066 0.061 0.050 0.034 0.035 0.145

Total trip distance 0.269 0.265 0.259 0.253 0.279 0.375
Average trip distance 0.283 0.278 0.269 0.261 0.277 0.333

Activity sequences 0.134 0.136 0.143 0.164 0.273 0.673
Average temporal distribution 0.110 0.108 0.102 0.090 0.083 0.090

Average KL divergence 0.172 0.170 0.165 0.161 0.189 0.323
Number of activity plans 181 143 173 150 151 288 113 488 68 170 28 522

Table 4.2: KL divergence values for different cut-off points of similarity score. For
the average temporal distribution value, we averaged the results from the three
calculations made; home, work, and other. The bottom two rows show the average
KL divergence for the column and the total number of synthesized activity plans
used.

Figure 4.7: A visualization of Table 4.2. The red line shows the average KL
divergence and the blue line presents the number of activity plans still available
after each cut-off point.
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Number of synthesized Of which have Of which have one
activity plans a work location or more other locations

113 488 19 933 (17.56%) 90 970 (80.16%)

Table 4.3: Total number of synthesized activity plans, the number of plans that
have a work location, and the number of plans that have at least one other location.

The number of connected MAD users varies significantly among survey participants.
There are 18 106 survey participants in our applied dataset. Of these, only 4 309
participants are identified as twin travelers for at least one MAD user, resulting in
the exclusion of 76.20% unused survey participants. The distribution of MAD users
per survey participant is heavily skewed to the right, as seen in Figure 4.8. Most
participants match with a handful of MAD users, but the tail extends far, with 123
participants associated with over 100 MAD users. Of these, ten participants are
linked with over 1 000 MAD users each, and the participant assigned to most MAD
users reaches 7 157.

Figure 4.8: The number of MAD users associated with each survey participant.
The graph only includes survey participants with at least one connected MAD user.

4.3 Evaluation of the synthesized activity plans

This part presents the evaluation results for each attribute described in Section 3.4.
The KL divergence for these are shown in Table 4.4. The closer the score is to zero,
the more similar the distributions are between the survey data and synthesized
activity plans for the specific evaluated aspect.
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KL divergence
Total trips 0.034

Total trip distance 0.253
Average trip distance 0.261

Activity sequences 0.164
Temporal visitation home 0.036
Temporal visitation work 0.166
Temporal visitation other 0.069

Table 4.4: Model performance indicated by KL divergence. A smaller KL diver-
gence indicates a high similarity, hence better model performance in certain aspects.

The KL divergence for total trips is the lowest among the various aspects, indicating
a close similarity between the distribution of the number of trips in the survey data
and the synthesized activity plans. Conversely, average trip distance accounts for
the highest KL divergence in Table 4.4. While the value of 0.261 is not far from
zero, it still reflects notable differences in the distribution of trip distances, which
will be discussed further in the upcoming sections.

4.3.1 Total trips

Figure 4.9: Total trip distributions for both the survey data and synthesized
activity plans.

The distribution of total trips in the two datasets appears to be fairly even. As
illustrated in Figure 4.9, there are no large differences between the distributions for
the survey and synthesized data. This observation is further supported by the com-
puted KL divergence of 0.034, indicating high similarity between the distributions.
Illustrated in the histogram, approximately 50% of the total trips in the datasets
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fall into having two trips. The other two most common trip counts, four and three,
are consistent across both datasets. The average total trips is 2.67 for the survey
data and 2.79 for the synthesized, indicating a slight tilt in the synthesized data
towards a higher number of trips.

4.3.2 Trip distance

The histograms in Figure 4.10 display two different distributions. On the left, the
graph represents the total distances traveled. For very short trips (0-5km), the
survey data accounts for 24%, and the synthesized activity plans account for 26%.
Conversely, for very long trips (>55km), the survey data represents 16%, while the
synthesized data represents 45%. In the distances between very short and long trips,
there is an apparent underrepresentation in the synthesized data, with the survey
data dominating these distance groups. On the other hand, in the average distance
trips, the share of very short trips increases to 45% for the survey data and 36% for
the synthesized data. However, the opposite trend is observed for very long trips,
with the shares decreasing to 4% in the survey data and 30% in the synthesized.

Figure 4.10: Distribution of users’ total trip distance (a), and average trip distance
(b), during their recorded day.

In general, synthesized activity plans overly represent long-distance trips compared
to the survey data. According to the KL divergence presented in Table 4.4, the
performance of this metric is 0.253 for total trip distance and 0.261 for average
trip distance. This indicates that the datasets are not a perfect match but that
the synthesized activity plans still capture a significant portion of the survey data’s
characteristics.
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4.3.3 Activity sequences

Figure 4.11: Distribution of the activity sequences.

Sequence Percentage Survey Percentage Synthesized
H-O-H 28.00 % 45.29 %
H-W-H 22.99 % 10.89 %

H-O-O-O-H 9.99 % 14.64 %
H-H 8.59 % 4.49 %

H-O-O-H 8.46 % 6.98 %
H-W-W-O-H 6.18 % 2.21 %
H-W-W-H 6.09 % 3.34 %

H-O-O-O-O-H 4.14 % 6.71 %
H-W-W-W-H 2.81 % 1.12 %

H-O-O-O-O-O-H 2.76 % 4.33 %

Table 4.5: Percentage distribution of the activity sequences.

Figure 4.11 illustrates the distribution of the ten chosen activity sequences. The most
significant disparity between the survey data and the synthesized activity plans is
observed in the “H-O-H” sequence, with survey data at 28% and synthesized activity
plans at 45.29%. Generally, the synthesized activity plans tend to have a higher
percentage share in activity sequences containing Other. Among the six sequences
with at least one Other, only “H-O-O-H” and “H-W-W-O-H” are dominated by the
survey data. The total percentage for these six sequences in Table 4.5 shows that the
survey data accounts for 59.53%, while synthesized activity plans represent 80.16%.
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On the other hand, when calculating the total percentage for activity sequences with
at least one Work, survey data is at 38.07%, and synthesized activity plans drops
to 17.56%.

Furthermore, from Table 4.4, the KL divergence of the distribution of activity se-
quences is measured at 0.164. This value is closer to zero compared to the KL
divergence observed for average trip distance in Section 4.3.2. This indicates that
the distribution of activity sequences is closer to the ground truth data than the
average trip distance.

4.3.4 Temporal visitation
When comparing the temporal visitation patterns of the synthesized agents to the
survey participants, each activity type is examined individually, and only activity
plans that contain the activity type are included.

Figure 4.12 presents three temporal visitation patterns of Home, Work, and Other.
In graph (a), there is a delay in when the synthesized agents leave their homes, with
more staying at home during the day. In the evening, the synthesized activity plans
tend to indicate longer durations of staying out. A similar delay pattern as in the
home visitation pattern is observed in the work (b) graph, where the synthesized
activity plans show later arrivals and longer stays at the work location compared
to the survey participants. For the visitation distribution of other locations, the
synthesized activity plans show a broader temporal spread, with agents traveling to
these locations earlier in the day and staying later.

Figure 4.12: The temporal distribution of the synthesized and survey data for
stays at (a) home, (b) work, and (c) other locations.

Table 4.4 presents the KL divergence, illustrating differences in temporal visitation
patterns for home (a), work (b), and other (c) locations between the synthesized and
the survey data. The KL values were calculated by averaging the scores across all
time intervals for each respective activity type. For home, the divergence is 0.036,
indicating nearly identical patterns in the two datasets. The value slightly increases
to 0.069 for other locations, while work shows a more significant increase at 0.166.
Figure 4.13 visualizes a 24-hour day, highlighting the time intervals where differences
in KL divergence between the synthesized and the survey data are most noticeable.
The graph for work is the most volatile, showing spikes from the morning to the
middle of the day and another spike towards the end of the day. In comparison, the
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curves for home and other locations demonstrate a lower span for KL divergence
throughout the day, with a few clear fluctuations at certain times.

Figure 4.13: KL divergence for each two-hour interval. The hours on the x-axis
indicate the end time of each interval.

4.3.5 Time duration of activities

Figure 4.14: Distribution of time duration for (a) Home, (b) Work, and (c) Other
activities.

Figure 4.14 (a) shows that synthesized activity plans have more cases where the
majority of the day is spent at the home location, specifically from 1300 to 1440
minutes. Conversely, the synthesized data is notably underrepresented from 700 to
1000 minutes. This suggests that the synthesized activity plans lack agents who
spend a large proportion of their day outside the home, for example, being at work
or engaging in longer Other activities. In Figure 4.14 (b), the time durations at
work are presented, and a peak is observed at 500 to 599 minutes, representing
approximately 43% of the survey participants. While the synthesized activity data
also peaks around the same duration, at around 27%, the peak is less distinct, and
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there is a clear leftward skew in the data. In this direction, the synthesized activity
plans exhibit a clear outlier, with almost 9% of the data recording a time duration
between 0 and 50 minutes, whereas the survey data shows nearly no occurrences in
this range.

Furthermore, the duration for other locations displays a right-skewed distribution,
as shown in Figure 4.14 (c). This distribution is also evident in the synthesized
activity plans, but with varying percentages for each duration category. In the 0
to 50 minutes range, survey data represents 20%, while synthesized activity plans
are overrepresented, accounting for nearly 33%. For durations between 50 and 450
minutes, the synthesized activity plans are underrepresented. However, beyond 500
minutes, this relationship changes, and there is a higher number of synthesized plans
than expected. From 800 minutes, the survey data has almost no recorded durations,
while the synthesized activity plans continue to estimate such extended durations.

Table 4.6 summarizes the difference in duration spent at activities, confirming the
patterns from Figure 4.14 where the synthesized activity plans have a more pro-
longed duration at home, less time at work, and more on other locations. Note
that the average duration is only calculated for synthetic activity plans and survey
participants’ records who have visited the respective location type.

Average time duration Median time duration
Survey Synthesized Survey Synthesized

Home 1045.75 1099.94 1029.00 1169.00
Work 514.84 430.55 527.50 475.00
Other 215.49 262.67 160.00 165.00

Table 4.6: Average and median time duration for users in each activity (minutes).
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Discussion

This thesis combines Swedish national travel survey data with big geolocation data
from mobile applications to synthesize activity plans. The model identifies home
and work as anchor locations and excludes unreliable homes by comparing them
to corresponding locations in the survey data. The user data is transformed into
activity plans, and we find matching twins between the datasets using a modified
Jaccard similarity. Synthesized activity plans are created by combining survey twins’
activity sequences with extensive geolocation data from the mobile app users. We
validate against the survey data and apply the KL divergence to assess the similari-
ties between the two datasets.

For this chapter, we begin by highlighting the limitations of the MAD and the survey
data in Section 5.1. In the following Section 5.2, we discuss the inferred home and
work locations, while Section 5.3 delves into the choices made in the methodology
and its outcomes. The validity of the results and the performance of the model are
discussed in Section 5.4. Finally, in Section 5.5, we explore and discuss the potential
future work.

5.1 Data limitations
This thesis combines big geodata with travel survey data, aiming to leverage their
complementary strengths. The motivation behind this approach stems from the
inherent shortcomings of each dataset. In the survey data, the recorded activity plan
typically reflect a regular day that starts and ends at the home location, limiting the
exploration of more diverse activity plans. Existing literature highlights that travel
survey data is characterized by low sampling rates, short collection durations, and
under-reporting of trips [3], [45]. Additionally, it tends to overlook the majority of
infrequent long-distance trips [46].

In MAD, there is a more diverse selection of locations visited, spanning a much
larger area compared to survey data [47]. It also covers a longer time frame, with
the data collection stretching over several months. However, inherent issues with
the data, such as sparsity and lack of information beyond the time and coordinates
visited, complicate the tasks of creating reliable activity plans at the individual level.
There is also a bias towards leisure locations, and a risk that work and other more
mundane activities are underrepresented [48]. Another noteworthy bias in the MAD
is a shift in the time of activities towards the later part of the day. This likely stems

35



5. Discussion

from the collection practice, where a stay is only registered when a person uses their
phone at a location. Since this event can happen at any time during the visit, the
commencement of the stay in the data is often delayed, resulting in later activity
records in the dataset.

Beyond these built-in issues, the compared data originates from different time peri-
ods. The survey data spans from 2011 to 2016, whereas the MAD is collected from
June to December 2019. Although there is no indication that the travel patterns in
Sweden have changed between these collection periods, potential differences could
impact the results, particularly given the seasonal variations in the collected data.
However, since there is no tracking of location types beyond home, work, and other,
any potential variations in visited locations throughout the year are not expected
to exert a major influence on the results.

5.2 Validity of identifying anchor locations from
big geodata

Home and workplace locations serve as crucial anchor points [49] and significantly
influence one’s daily mobility [50]. In highly anonymized datasets like MAD, these
locations must be inferred from user stays. While it is widely accepted to use
simple temporal rules to estimate these locations [28], [50], the literature often lacks
validation of the results. In this thesis, we introduce an additional step in the
home inferring process by examining the visitation frequency patterns to enhance
the reliability of the inferred home locations. The results indicate that a proportion
of the inferred home locations diverges significantly from the expected visitation
pattern, and inclusion of these locations in future analyses might lead to issues.
Consequently, we conclude that incorporating additional verification steps can be an
important way to improve the quality of analysis based on anonymized big geodata.

Upon analyzing the outcomes of the inferred home locations, a notably high correla-
tion is observed between these inferred homes and the actual population distribution
within the DeSO zones. However, there are clear outlier zones with a much larger
estimated population than expected. The zones in question are all located in city
centers, and within them are locations where many people pass by, for instance,
central stations or shopping malls. Since these are locations many people visit, they
have a disproportionate amount of visibility in the dataset, leading to issues when es-
timating locations of importance for our users. One potential solution could involve
excluding these zones from the home estimation, or utilizing information from the
graph as a weight distribution mechanism to reduce the importance of the activity
plans extending from these areas. Nevertheless, this thesis does not address these is-
sues, and solutions regarding the disproportionate spread of the inferred population
would need to be explored more in future work.

Regarding the inferred work locations, the percentage of users with a work location
is nearly identical to the survey participants. However, the commuting distance is
significantly higher for a large portion of the inferred work locations compared to the
survey data. When estimating the work location, only temporal aspects were used
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(the most visited location outside the inferred home between 9 a.m. to 5 p.m.) to
select the location. The large number of inferred work locations with an abnormally
long commuting distance indicates that an additional aspect of distance should be
included in the selection process to enhance the quality of the results. Another
solution is to implement a similar temporal visitation profile screening as used in
this thesis when we inferred home locations to increase the validity of the inferred
work locations.

However, it is crucial to consider the trade-off between quantity and quality when
implementing more stringent filtering steps. Applying stricter rules to infer locations
of interest results in fewer data points and users available for future analysis. With
more lenient rules, the amount of data increases, but the decrease in quality might
lead to complications in the final results. A systematic investigation to identify the
optimal balance between these factors should be conducted to further the results
of this thesis. One final consideration is that the inference process in this thesis
targets individuals with 8 a.m. to 5 p.m. jobs at a single location, sleeping at home
during the night. Individuals working night shifts or in multiple locations cannot
be accurately identified using the applied temporal rules.

5.3 Model designs
The thesis proposes a generative model for creating synthetic activity plans, that
aims to strike a balance between the abundant geolocations and broad population
coverage in MAD, and the completeness of activity plans in the survey data. The
proposed model demonstrates strong transferability to similar large-scale geodata
sources and ubiquitous survey data. The synthesized activity plans generated by
the model provide greater variation in trip types compared to available survey data.
It also generates over five times the amount of activity plans, increasing the dataset’s
diversity in terms of locations and regions. Compared to the unaltered MAD, the
synthesized plans shows a more interesting side of the users activities and allows
the data to be applied in more advanced analytical settings, as in ABM. However,
certain elements of the design warrant additional enhancement.

5.3.1 Diversity in twin searching
There is a clear issue in the low diversity of survey participants used. A vast majority
of the participants did not get linked to a single MAD user (13 797 out of the
18 106), while ten matched with over 1 000 users each. The lack of variety of
survey participants used in synthesizing activity plans leads to less variation in travel
patterns. The issue of some users receiving a very high number of matches has, in
some cases, resulted in uncommon activity patterns being clearly overrepresented,
a problem that will be explored more in Section 5.4. Both of these issues could be
addressed by improving the way of using the survey data when searching for twin
travelers. Rather than selecting the survey participant with the highest score, the
twin could be randomly chosen from all participants who exceed the established
similarity score threshold.
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5.3.2 Work activities

Another issue in the twin matching process is that the survey participants with only
home and other locations in their activity plan are matched at an unreasonably
frequent rate. In both the MAD and survey data, around 38% of the participants are
connected to a work location. However, after the twin matching, less than 18% of the
synthesized activity plans have a work location, as seen in Table 4.3. This indicates
an issue with MAD users’ work locations not being present enough in the matching
process. It could be due to a lack of recorded visits in the inferred work location,
or that the work location visitation patterns for MAD users are skewed, making
it less likely to match with survey participants that have a more regular visitation
pattern to work. To address these issues, one approach is to introduce additional
stays throughout the workday, enhancing the visibility of work locations for MAD
users during typical working hours. Another suggestion is assigning weights to the
work location stays for MAD users, giving the work location a higher probability
in the matching process without changing the time of day the MAD user visits the
location.

5.3.3 Other activities

The final step of the synthesizing process is to select other locations from the MAD
user to incorporate into the activity sequences of twin travelers. The selection cri-
teria are primarily temporal, where we randomly choose the other locations based
on visitation frequency within the time frame of interest in the activity sequence.
Although we consider distance constraints in searching for the twin travelers as
described in Section 3.3.2, the spatial context can be improved in this thesis. Ac-
knowledging the significance of distance in travel patterns, incorporating a spatial
aspect into the selection process would enhance the model. A maximum travel dis-
tance boundary could be established, where all locations beyond a certain distance
from the anchor locations are excluded. Another solution is to include the distance
from the previous location in the activity sequence as a variable in the location selec-
tion. For example, one study [51] proposes calculating the total energy consumption
for various types of travelers and using it as a supplement to a Markov process [52]
when selecting destinations within a reasonable distance.

5.4 Model performance

As indicated by the KL divergences in Table 4.4, the model performance illustrates
how closely the synthesized activity plans align with the survey data in the different
evaluated aspects. Our model largely agrees with the survey in these key attributes.
For instance, in the case of total trips, the distribution closely mirrors the survey
data, a similarity which is further supported by its KL divergence approaching zero.
However, while the model performs reasonably well in many aspects, there are a few
deviations and caveats that will be discussed in this section.
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5.4.1 Long-distance trips
The proportion of synthesized activity plans that include long distance trips signifi-
cantly exceeds the corresponding data in the survey for both total and average trip
distance. It is crucial to note that the survey data is not the definitive ground truth.
As mentioned in 5.1, this source involves careful sampling to statistically represent
the true population, but it tends to underestimate both the number of trips [3], [45]
and the amount of longer trips [46]. This weakness could be a contributing factor
to the differences in the results.

Another possible reason for this disparity could be the absence of a maximum travel
distance boundary in our model as discussed in Section 5.3.2 and 5.3.3. However,
it is important to remember that the other locations in the synthesized activity
plans are derived from actual locations in the MAD, and that MAD users have
traveled to them at some point. The valuable observations from big geodata sources
such as MAD, where trips occur over several days, justify significantly longer travel
distances than those observed in a one-day travel diary. For instance, traveling
back and forth from Gothenburg to Stockholm within one day is uncommon, while
traveling between these two cities on different days is more reasonable. This allows
one of the strengths of the MAD, the diversity of the data, to be fully utilized.

5.4.2 Sequences and temporal patterns of synthesized plans
The distribution of activity sequences indicates an overestimation of synthesized
activity plans containing only Home and Other, while those with Work are under-
estimated. This disparity arises from the twin matching process, as discussed in
Section 5.3, where the model often fails to match MAD users with survey partic-
ipants who have a work location and includes too many that travel only to other
locations. When focusing exclusively on sequences within each category, those con-
taining only Home and Work or Home and Other, the results are promising, and
the order of the synthesized sequences match the surveys. For example, with the
Home and Other sequences, H-O-H is the most common sequence for both datasets,
H-O-O-O-H is the second most common, etc.

The distribution of time durations for the three activity types tends to overrepresent
extreme values, and the model does not align with the peaks observed in the survey
data. As mentioned in Section 5.3, there are survey users who matched with over 1
000 MAD users each, being overly represented in the synthesized activity plans. One
particularly noticeable occurrence is the 0 to 50 minute interval spent at work. While
less than 0.1% of survey participants fall under this duration, 10% of the synthesized
activity plans are in that range. A similar issue arises with users spending more
than 800 minutes at other locations. In the ground truth data, only a very small
percentage of people do this, but in the synthesized data, there are almost 10%.
These outliers underscore the overfitting problem towards certain survey participants
and suggest the need for creating a higher variation in twin matching to address this
discrepancy.

Finally, upon examining the probability results related to the temporal distribu-

39



5. Discussion

tion for home and work locations, a subtle shift toward the afternoon and evening
becomes evident in the synthesized activity plans. Additionally, there is also a no-
ticeable discrepancy during the middle of the day with how many plans are at home.
This divergence may be attributed to the scarcity of data for certain MAD users,
amplifying the influence of the home location in the matching process, resulting in
a significant proportion of plans being at home the vast majority of the day. For
the former issue, we estimate that this stems from the inferred home and work lo-
cations. If these locations are misidentified, it could result in MAD users staying at
these places during uncommon times of the day, causing deviations from the survey
visitation pattern.

5.5 Future work

There are two main directions to enhance the model in this thesis. The first one is
to improve the quality and diversity of the single-day activity plans. The second one
is to extend the travel patterns to include several days, making it possible to extract
more complex sequences. These enhancements would facilitate greater utilization
and more effective engagement with the complexity of the big geodata such as the
MAD.

5.5.1 Improve one-day generative model

For the first direction, some improvements are mentioned earlier in the discussion.
One improvement could be synthesizing home and work location stays. Another
improvement involves assigning weights to existing stays for MAD users, which
could yield more realistic activity plans by reducing the biases embedded in the
passive data collection mechanism in big geodata like MAD. This, in turn, increases
the probability of MAD users matching with working survey participants and should
improve the overall results.

In addition, one could implement a random selection method for eligible survey twins
when combining survey data with big geodata. This approach has the potential
to enhance the diversity of matched twins while also reducing the risk of specific
participants disproportionately influencing the results.

Finally, we could improve the activity plan creation by better-assigning work and
other locations. For example, those beyond a certain distance threshold from the
inferred home location could be excluded. A distance weight could be applied for
the remaining locations to reduce the probability of selecting a location that is
unreasonably remote considering its preceding one, either as the inferred work loca-
tion or the selected other location. This adjustment would decrease the number of
long-distance trips in the synthesized activity plans, making the total and average
distance traveled better approximate the reality.
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5.5.2 Extend one-day to multi-day activity plans
The second direction, synthesizing activity plans spanning several days, requires
substantially modifying the model proposed in this thesis. Since the survey partici-
pants only provide activity plans for a single travel day, increasing connected days
would complicate using the survey data as a straight template for the synthesized
activity plans. One study suggests combining the survey data with public transport
smart-card data to extend the travel pattern to several days [53]. Alternatively, the
structure of activity plans could be synthetically created starting from the mecha-
nisms of human mobility instead of directly using empirical data, for example, by
using mobility studies as [7]. While this introduces a significant increase in model
complexity, the resulting activity plans would more accurately mirror the actual mo-
bility patterns of the population. Such an enhancement could substantially improve
the current survey data used in transportation planning.
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Studying the mobility patterns of a population yields crucial insights for informed
decision-making in infrastructural construction and city planning. The surveys tra-
ditionally used in these studies provide a clear yet simplified representation of actual
travel behaviors, often missing longer trips and unique travel patterns. The utiliza-
tion of MAD presents an opportunity to address these limitations, while at the
same time being more cost-effective and easier to collect. However, the sparsity and
limited information outside the temporal and spatial aspects in MAD necessitate
pre-processing before it can be applied in more advanced contexts, such as in ABM.
This thesis addresses the issues in two ways. First, we employ standard practice
temporal rules to infer home and work locations for the MAD users. A layer of tem-
poral visitation pattern matching is then introduced for home location to enhance
the validity of the results. Secondly, we address the sparsity issue by merging the
locations of interest from the MAD with activity sequences from survey participants,
creating synthesized activity plans without any gaps throughout the day.

The construction of this generative model explores a new area of MAD usage in
mobility studies, establishing a baseline from which further improvements and ex-
ploration can be conducted. One strength of the proposed generative model for ap-
plying big geodata is in the quantity of produced data. The number of synthesized
activity plans is more than five times the amount present in the survey. Moreover,
the evaluation results indicate that the produced activity plans largely agree with
the survey data regarding the essential aspects of human mobility patterns, e.g.,
trip frequency, distributions of activity sequences, and temporal visitation patterns
for the different types of locations. The trip distance in the synthesized activity
plans is notably long for a significant proportion of users. However, as detailed in
Section 5.4, these types of long-distance trips actually occur, and are something the
traditional surveys struggle to collect.

Considering MAD’s numerous advantages over traditional surveys, including its ease
of collection, the ability to observe a large number of users, and the capacity to ac-
count for seasonal variations, utilizing this data in a broader range of mobility studies
would benefit transport and urban planning. Continuing the research presented in
this thesis and further exploring the introduced methods could provide transport
agent-based modeling with a great data source for generating a multitude of agents
with flexible and realistic activity plans. These agents have the potential to enhance
mobility models, providing decision-makers and city planners with a more robust
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foundation for shaping the transportation networks of the future.
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