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ABSTRACT 
 

 

 

 

This Ph.D. dissertation analyzes collaborative research between universities and 

firms in the field of electrical engineering in Sweden. It conceptualizes such 

collaborations as one form of academic engagement that fosters knowledge networks 

among individuals and organizations. It is essential to expand our understanding of 

this phenomenon as it holds significant implications for technological advances and 

economic progress. 

 

The purpose is to analyze the impacts of collaborative research between universities 

and firms, as compared with the impacts of similar research conducted without firms. 

In doing so, this dissertation examines and selects among measures of impact, 

including both scientific and technological impacts, as well as variables that capture 

relevant dimensions of collaborative research.  

 

By developing and utilizing a dataset based on employment records of faculty 

members from five leading Swedish (engineering) universities, this dissertation 

analyzes scholarly publications in the domains of biomedical, communication, 

control, and signal processing engineering. The analysis encompasses 8455 scholarly 

publications authored by 184 professors affiliated with Chalmers University of 

Technology, the Faculty of Engineering at Lund University, KTH Royal Institute of 

Technology, Linköping University, and Uppsala University. 

 

The research reveals that 17.3% of the examined publications are defined as 

outcomes of prior academic engagement, showcasing an upward trend over the 

period from 2000 to 2018. These collaborative publications are associated with 
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greater article and technological impacts than those of purely academic research, 

evidenced by higher citation counts in both scholarly literature and patents. However, 

they are also associated with a lower journal reputation, suggesting that these articles 

are less frequently published in high-impact journals. 

 

Notably, dual-affiliated professors, constituting one type of boundary spanner 

between academia and industry, as well as a greater number of authors are associated 

with higher article impact. Moreover, publications with firms led by academics  —

i.e., those with a university-affiliated first author—are associated with high article 

and technological impacts, whereas those led by industry partners show a 

pronounced technological impact compared with purely academic projects. The 

influence these variables have on the journal reputation was found to be less 

pronounced.  

 

This dissertation contributes to the literature on academic engagement, particularly 

in the engineering sciences, underscoring the benefits of integrating diverse 

knowledge from academia and industry for more impactful scientific and 

technological outputs. Additionally, the findings add to the discussion on academic 

success metrics, emphasizing the need for a balanced approach in which the real-

world application of research is recognized alongside academic prestige, while being 

cautious of the pitfalls associated with overreliance on journal reputation alone. 

 
These findings offer valuable insights for academic institutions, firms, and 

policymakers, specifically emphasizing the importance of fostering effective 

collaborations between individuals to combine academic and industrial expertise in 

engineering research. Future research directions include a deeper examination of the 

roles of industrial co-authors, dual-affiliated researchers, and lead authors in these 

collaborations, as well as broadening the scope beyond electrical engineering in 

Sweden to enhance the generalizability of the results. 
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IX 

SAMMANFATTNING PÅ SVENSKA 
 

 

 

 

Den här doktorsavhandlingen har analyserat resultat av forskningssamverkan mellan 

universitet och företag, jämfört med liknande forskning på universitet som 

genomförs utan företags deltagande. Konceptuellt främjar dessa samarbeten 

kunskapsnätverk mellan individer och organisationer. Det är viktigt att utöka vår 

förståelse för detta fenomen då det har betydande påverkan för tekniska framsteg och 

därmed ekonomisk tillväxt. 

 

I detta avseende undersöker och väljer avhandlingen bland mätningar av 

vetenskapliga och teknologiska resultat, samt variabler som fångar relevanta 

dimensioner av forskningssamverkan. Genom att utveckla ett dataset som analyserar 

den här avhandling 8455 vetenskapliga publikationer författade av 184 professorer 

vid Chalmers Tekniska Högskola, Kungliga Tekniska Högskolan, Lunds Tekniska 

Högskola, Linköpings Universitet och Uppsala Universitet inom elektroteknik, 

specifikt inom områdena biomedicin, kommunikation, reglerteknik och 

signalbehandling. 

 

Forskningsresultatet visar att 17,3 % av de undersökta publikationerna definieras 

som resultat av tidigare forskningssamverkan mellan universitet och företag. 

Förekomsten av dessa samarbetspublikationer visade en uppåtgående trend under 

perioden 2000 till 2018. De är också förknippade med högre citeringssiffror från 

både vetenskaplig litteratur och patent. Dock antyder resultaten att dessa artiklar 

publiceras mindre frekvent i högt rankade tidskrifter. 
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Det är anmärkningsvärt att adjungerade professorer, som utgör en typ av 

gränsöverskridare mellan akademin och industrin, samt ett större antal författare, är 

förknippade med högre citeringssiffror från vetenskaplig litteratur. Dessutom är 

samarbetspublikationer där första författaren är akademiker förknippade med höga 

citeringssiffror från både vetenskaplig litteratur och teknologiska patent, medan de 

som har första författare från industrin är förknippade med ännu högre 

citeringssiffror från patent. Dessa variabler har liten påverkan på att publicera i högt 

rankade tidskrifter. 

 

Den här avhandlingen bidrar till litteraturen om forskningssamverkan mellan 

universitet och företag, särskilt inom ingenjörsvetenskaperna, och understryker 

fördelarna med att integrera olika kunskaper från akademin och industrin för mer 

betydelsefulla utfall inom vetenskap och teknologi. Dessutom tillför resultaten till 

diskussionen om akademiska framgångsmått, och betonar behovet av ett balanserat 

tillvägagångsätt där forskningens verkliga tillämpning erkänns vid sidan av den 

akademiska, samtidigt som man är försiktig med fallgroparna som är förknippade 

med enbart fokus på publiceringar i högt rankade tidskrifter. 

 

Dessa resultat erbjuder värdefulla insikter för akademiska institutioner, företag och 

politiker. Specifikt betonas vikten av att främja effektiva samarbeten mellan 

individer som kan kombinera akademisk och industriell expertis inom 

ingenjörsforskning. Framtida forskningsinriktningar inkluderar en djupare 

granskning av industriella medförfattares bakgrund och roller, adjungerade forskare, 

och ledande författare i dessa samarbeten, samt att bredda analysen utöver 

elektroteknik i Sverige för att öka resultatens generaliserbarhet. 
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1 INTRODUCTION 

Engineering Impact is the title of my Ph.D. dissertation, which analyzes how 

collaborative research between universities and firms may impact society. This 

opening chapter provides an overview of this dissertation’s purpose, research 

questions, and key themes. It establishes the groundwork for the subsequent chapters, 

which explore these aspects in greater detail.  

 

The chapter begins with a concise introduction outlining the overall purpose of the 

dissertation. Thereafter, it introduces the overarching purpose of the dissertation and 

state its main contributions. Subsequently, an introduction to the empirical context 

in which the studies are situated is given. This is followed by a presentation of the 

empirical studies incorporated in this dissertation. Next, notable activities and papers 

related to research, but extending beyond the scope of the Ph.D. dissertation, are 

outlined. Finally, the remaining chapters of the dissertation are described. 

 

1.1 Introduction  
In the realm of technological advances and economic progress, the role of university 

research is pivotal, yet questions linger about the mechanisms by which new 

technologies emerge from university–industry interactions. Extensive literature 

acknowledges that technological inventions often draw on university research 

(Ahmadpoor & Jones, 2017; Jaffe et al., 1993; Mansfield, 1991; Narin et al., 1997) 

and underscores the broader societal and economic impacts of both universities and 

new technologies (Mansfield, 1991; Lundvall, 1992; Nelson & Rosenberg, 1993; 

Rosenberg, 1974). This dissertation delves into these dynamics within the electrical 

engineering field, placing a particular emphasis on comparing two distinct types of 

research collaborations: collaborative projects between universities and firms, and 

collaborative academic–academic projects (i.e., academic projects). 
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Universities contribute to society in many ways, but specifically in relation to 

technological development in firms. The importance of universities appears to lie in 

their roles as repositories of existing scientific knowledge, through teaching, as well 

as generators of new knowledge, through research. Universities, by being 

organizations that host diverse scientific knowledge, in turn, can attract certain firms 

to collaborate, with the aim of using such knowledge for technological inventions. 

Firms may use these new technologies and inventions to develop innovations that are 

introduced on the market.  

 

However, many questions remain about how and why new technologies result from 

the interactions between firms and universities. One aspect is that these interaction 

processes may have changed over time, one view being that, traditionally, 

universities did not engage directly in commercial design and development, but 

rather stimulated and enhanced research and development (R&D) activities in 

industry (Rosenberg & Nelson, 1994). Today, however, debates about universities 

and their impact on technology and economic growth suggest that there are many 

ways in which universities and firms interact.  

 
The significance of university–industry collaborations and their associated 

challenges have attracted considerable attention in recent years, as evidenced by 

numerous systematic literature reviews conducted by scholars such as Figueiredo 

and Ferreira (2022), Perkmann et al. (2013, 2021), and Rybnicek and Königsgruber 

(2019). Despite the growing interest, this research domain remains nascent, with 

many avenues yet uncharted. Consequently, many interesting questions remains. 

This Ph.D. dissertation endeavors to enrich the discourse by delving into a selection 

of these unexplored topics. 

 
The perceived positive effects of universities on industry have been stressed as a way 

to develop society, especially by policymakers. The underlying argument in recent 

decades is that universities could enhance their contribution to the economy by 
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increasing their level of collaboration with industry and by engaging more in 

entrepreneurship and business-related activities, such as academic patenting, 

licensing, and the creation of academic start-ups. This has led several OECD member 

nations to extend the mission of universities beyond education and research to 

include a third mission that directly emphasizes such activities (Gulbrandsen & 

Slipersæter, 2007); for example, Sweden implemented this third mission in 1998 

(SOU, 1998:128).  

 

Partly as a result of these changes to policy, per se, in addition to other trends such 

as the changing funding landscape (Vincent-Lancrin, 2006), the role of universities 

has undergone a transformation to one of more directly impacting firms and the 

economy. Some researchers argue that universities have shifted from being social 

institutions primarily focused on developing new areas of knowledge through long-

term research and widening the societal knowledge base through teaching and 

student diffusion. Instead, they have become competing knowledge businesses with 

a primary objective of producing immediately useful knowledge for students, 

businesses, and society (Deicaco et al., 2009a, 2009b; McKelvey & Holmén, 2009).  

 

Other scholars have emphasized that the evolution of universities’ role initially 

involved activities directly intended to compete with firms, such as providing 

solutions to specific problems and capitalizing on those solutions through patenting 

and licensing. Over time, this role expanded to encompass activities aimed at 

ensuring that individuals thrive in the (knowledge) economy by providing thinking, 

leadership, and activity intended to enhance entrepreneurship capital (Audretsch et 

al., 2014; Audretsch, 2014).  

 
Each of these different views of the transformation of the university as a societal 

institution captures only part of the picture, so these theories of the evolution of 

universities’ roles are not necessarily mutually exclusive. Yet what matters here is 
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that all these views suggest that an important contemporary phenomenon is the more 

direct involvement of universities with firms and in influencing society. 

 

Many concepts have been used to differentiate between types of this fairly diverse 

phenomenon. To delve deeper into collaborative research projects and for the 

purpose of this Ph.D. dissertation, the taxonomy and conceptualization proposed by 

Perkmann et al. (2013) is used. These authors differentiate between two main types 

of university–industry collaboration: academic engagement and academic 

commercialization.  

 

Academic commercialization is defined as “intellectual property creation and 

academic entrepreneurship” (Perkmann et al., 2013, p. 423), and can be further 

subdivided into components such as patenting, licensing, and establishing spin-offs. 

Here, the impact of the university is specifically related to the market, and to 

individual university scientists who do these activities and directly contribute to the 

transfer of university knowledge and technologies to the commercial sphere, 

fostering innovation and economic growth.  

 

In contrast, their definition of academic engagement captures many other types of 

impacts on society, as it is defined as “knowledge-related collaboration by university 

scientists with non-academic organizations” (Perkmann et al., 2013, p. 424). This 

type of collaboration can take different forms, such as co-publishing articles, serving 

on advisory boards, delivering public lectures, providing informal advice, and 

participating in conferences. Although these forms of collaboration do not directly 

involve commercialization by university scientists, knowledge-based collaborations 

can still benefit the collaborating firm by developing capabilities that are valuable 

for future technological innovations, as argued by McKelvey and Ljungberg (2017).  

  

5 

 

For instance, empirical research in Sweden suggests that firms can develop specific 

capabilities through different forms of academic engagement, including by hiring 

Ph.D. students who simultaneously work at the firm while completing their studies 

as well as by participating in dedicated university–industry centers (Berg & 

McKelvey, 2020; Hemberg, 2023). This Ph.D. dissertation contributes to the 

literature on academic engagement by further analyzing collaborative research 

projects between universities and firms over a long period. 

 

Yet even though we know that such interactions may be beneficial for society, the 

literature indicates that collaborations between firms and universities can encounter 

difficulties, or challenges, due to the disparate nature of these organizations. These 

challenges are especially pronounced in academic engagement, in which individuals 

from different organizations collaborate. This is in contrast to collaborations within 

academia or within industry. The root of these difficulties lies in the divergence 

between the incentives and goals of universities and firms, a phenomenon often 

described as “competing institutional logics” (Sauermann & Stephan, 2013). 

Specifically, these two types of organizations differ primarily in their perspectives 

on knowledge creation and solving business problems (i.e., technological problems) 

as means to achieve their respective goals.  

 

Universities prioritize knowledge creation as their primary objective, viewing 

solving business problems as a means to reach that goal. In contrast, firms prioritize 

capitalizing on solving business problems (i.e., advancing technology) as their 

primary objective, considering knowledge as a means to accomplish that goal (cf. 

Friedman, 1962; Merton, 1973; Nightingale, 1998). These competing institutional 

logics also influence the activities of collaborators from the two types of organi-

zations. A case in point is that university researchers tend to patent fewer inventions 

than do researchers employed by firms, while firm-employed researchers publish 

fewer journal articles than do university scientists (Sauermann & Stephan, 2013).  



4 

 

that all these views suggest that an important contemporary phenomenon is the more 

direct involvement of universities with firms and in influencing society. 

 

Many concepts have been used to differentiate between types of this fairly diverse 

phenomenon. To delve deeper into collaborative research projects and for the 

purpose of this Ph.D. dissertation, the taxonomy and conceptualization proposed by 

Perkmann et al. (2013) is used. These authors differentiate between two main types 

of university–industry collaboration: academic engagement and academic 

commercialization.  

 

Academic commercialization is defined as “intellectual property creation and 

academic entrepreneurship” (Perkmann et al., 2013, p. 423), and can be further 

subdivided into components such as patenting, licensing, and establishing spin-offs. 

Here, the impact of the university is specifically related to the market, and to 

individual university scientists who do these activities and directly contribute to the 

transfer of university knowledge and technologies to the commercial sphere, 

fostering innovation and economic growth.  

 

In contrast, their definition of academic engagement captures many other types of 

impacts on society, as it is defined as “knowledge-related collaboration by university 

scientists with non-academic organizations” (Perkmann et al., 2013, p. 424). This 

type of collaboration can take different forms, such as co-publishing articles, serving 

on advisory boards, delivering public lectures, providing informal advice, and 

participating in conferences. Although these forms of collaboration do not directly 

involve commercialization by university scientists, knowledge-based collaborations 

can still benefit the collaborating firm by developing capabilities that are valuable 

for future technological innovations, as argued by McKelvey and Ljungberg (2017).  

  

5 

 

For instance, empirical research in Sweden suggests that firms can develop specific 

capabilities through different forms of academic engagement, including by hiring 

Ph.D. students who simultaneously work at the firm while completing their studies 

as well as by participating in dedicated university–industry centers (Berg & 

McKelvey, 2020; Hemberg, 2023). This Ph.D. dissertation contributes to the 

literature on academic engagement by further analyzing collaborative research 

projects between universities and firms over a long period. 

 

Yet even though we know that such interactions may be beneficial for society, the 

literature indicates that collaborations between firms and universities can encounter 

difficulties, or challenges, due to the disparate nature of these organizations. These 

challenges are especially pronounced in academic engagement, in which individuals 

from different organizations collaborate. This is in contrast to collaborations within 

academia or within industry. The root of these difficulties lies in the divergence 

between the incentives and goals of universities and firms, a phenomenon often 

described as “competing institutional logics” (Sauermann & Stephan, 2013). 

Specifically, these two types of organizations differ primarily in their perspectives 

on knowledge creation and solving business problems (i.e., technological problems) 

as means to achieve their respective goals.  

 

Universities prioritize knowledge creation as their primary objective, viewing 

solving business problems as a means to reach that goal. In contrast, firms prioritize 

capitalizing on solving business problems (i.e., advancing technology) as their 

primary objective, considering knowledge as a means to accomplish that goal (cf. 

Friedman, 1962; Merton, 1973; Nightingale, 1998). These competing institutional 

logics also influence the activities of collaborators from the two types of organi-

zations. A case in point is that university researchers tend to patent fewer inventions 

than do researchers employed by firms, while firm-employed researchers publish 

fewer journal articles than do university scientists (Sauermann & Stephan, 2013).  



6 

 

Therefore, at least initially based on this literature, this Ph.D. dissertation posits two 

fundamental assumptions. First, universities and firms, when collaborating, prioritize 

divergent outcomes: universities emphasize scientific impacts, while firms focus on 

technological advances. Second, collaborations between universities and firms 

typically exhibit a richer diversity of knowledge bases than do purely academic 

projects. In such collaborations, firms contribute profound application knowledge 

crucial for practical problem-solving, whereas academic participants offer more 

theoretical and extensive exploration within the realm of engineering science. 

Consequently, this dissertation seeks to investigate how these different collaborative 

models affect the research conducted and its subsequent impact, whether scientific 

or technological. 

 

1.2 Purpose and main contributions 
The purpose of this Ph.D. dissertation is to analyze the impacts of collaborative 

research between universities and firms. By comparing such collaborative research 

to similar research conducted without firms, this dissertation examines and selects 

among measurements of scientific and technological impacts, as well as variables 

that capture relevant dimensions of collaborative research.  

 

This dissertation conceptualizes these collaborative projects as one form of academic 

engagement because such collaborative research likely builds knowledge networks 

between individuals and organizations. The empirical studies (see Section 1.3) use 

data on electrical engineering in Sweden and deliberately center on a single outcome 

of collaborative research projects: co-authored research publications, primarily 

comprising journal articles and conference proceedings. The underlying conceptual 

assumption is that co-authored research publications with at least one author from a 

university and one author from a firm reflect one form of knowledge-based 

collaboration, namely, active involvement in previous collaborative research projects 

between the partners.   
7 

 

The principal aim of this undertaking is to contribute to the academic engagement 

literature. This stream of literature examines the antecedents, processes, and 

consequences of knowledge-related collaborations between universities and firms, 

with a particular focus on academics as individuals (Perkmann et al., 2013, 2021). 

Notwithstanding the extensive body of literature on academic engagement, there are 

still several research avenues that remain relatively unexplored or characterized by 

inconclusive findings.  

 

One such area, as previously highlighted, concerns understanding the specific 

outcomes, or impacts, of academic engagement (Perkmann et al., 2013, 2021). Two 

additional pivotal areas pertain to the function of boundary spanners, as well as the 

role of the lead author, in the context of academic engagement. While boundary 

spanners are individuals who serve as intermediaries and translators of diverse 

information and knowledge (Leifer & Delbecq, 1978; Tushman, 1977; Tushman & 

Scanlan, 19811), the lead author is simply the researcher contributing the most to the 

project within the team.  

 

Concerning boundary spanners, prior studies indicate that they play a distinct role in 

facilitating the interaction and transfer of knowledge between academic institutions 

and corporate entities (Fagrell et al., 2016; Gertner et al., 2011). Regarding lead 

authors, generally analyzed via examining the effect the first author has on the 

outcome, they play an important role in influencing the outcome, not least when it 

comes to publishing in journals with higher reputations (Thelwall et al., 2023). 

However, there is a need for a more comprehensive understanding of the functions 

and impacts of these positions in the context of academic engagement. 

  

 
1 See also Haas (2015) for a review. 
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By pinpointing the particular factors that facilitate or impede the desired outcomes—

while also examining the role and influence of boundary spanners and lead authors—

we can gain a more profound understanding of the optimization of processes and 

practices related to collaborative research projects between universities and firms, 

ultimately fostering the establishment of impactful collaborations. 

 
This dissertation enriches our understanding and analysis of collaborative research 

projects between universities and firms by incorporating insights from two 

interrelated fields: knowledge networks (Phelps et al., 2012) and research 

collaboration (Bozeman et al., 2013). By integrating these literature streams with the 

academic engagement literature, the approach to the research topic becomes 

multifaceted. This integration exploits the strengths of each literature stream, 

facilitating a comprehensive understanding of the phenomena under investigation, 

robust analyses, and a thorough explanation of the results. 

 

First, knowledge networks play a pivotal role in facilitating knowledge creation, 

transfer, and learning through collaborative interactions. As the process of 

knowledge creation increasingly takes place through collaborations (Ductor, 2015; 

Gazni & Didegah, 2011; Guimerá et al., 2005; Hudson, 1996; Laband & Tollison, 

2000; Wuchty et al., 2007a), it has become crucial to comprehend the dynamics of 

knowledge networks. A knowledge network can be defined as “a set of nodes—

individuals or higher-level collectives that serve as heterogeneously distributed 

repositories of knowledge and agents that search for, transmit, and create 

knowledge—interconnected by social relationships that enable and constrain nodes’ 

efforts to acquire, transfer, and create knowledge” (Phelps et al., 2012, p. 1117).  

  

9 

 

In a knowledge network, nodes2 (e.g., individuals) engage in collaborations to 

acquire, share, and create knowledge. These collaborations, represented by edges3 in 

the network, contribute to the accumulation of human capital at individual nodes. In 

essence, a knowledge network can be seen as a concept that captures the pattern of 

knowledge-related interactions between different components of a system. These 

patterns of interactions can significantly affect the behavior of the individual 

components and of the overall system (Newman, 2018). Understanding the behavior 

of knowledge networks is thus crucial for comprehending knowledge creation, 

transfer, learning, and adoption, which are fundamental to economic growth (Lucas, 

1988; Menger, 1871; Romer, 1990).  

 

Within the context of this Ph.D. dissertation, incorporating the concept of knowledge 

networks provides a framework for explaining the phenomenon of interest. 

Specifically, the knowledge network literature offers a relevant perspective by 

considering co-authored publications to be manifestations of knowledge networks, 

which likely arise from previous collaborative research projects between firms and 

academic researchers within engineering sciences. In this conceptualization, authors 

from both the academic and industrial sectors act as nodes, and co-publications serve 

as connections (i.e., edges) between them. This approach aligns with the well-

established tradition in social network research in which co-authorship has been 

extensively utilized to analyze patterns of scientific collaboration (e.g., Barabási et 

al., 2002; Newman, 2004). 

 

Adopting this perspective enables the utilization of knowledge-network–related 

concepts and tools, such as egocentric (network) measures, to examine the 

 
2 Other commonly used terms are, for example, “actor” and “vertex” (Knoke & Yang, 2008; 

Newman, 2018). 
3 Other commonly used terms are, for example, “link” and “tie” (Knoke & Yang, 2008; Newman, 

2018). 
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phenomenon of academic engagement. By examining the structural properties of 

these networks, such as the overall network structure and position as well as the role 

of actors within the network, valuable insights can be gained into the flow of 

information and knowledge, facilitating a deeper understanding of the outcomes 

(Phelps et al., 2012).  

 

To clarify, these insights mainly relate to advancing our understanding of the 

phenomena under investigation, rather than having a key role in the regression 

models. They nevertheless play an important role in this dissertation by fostering an 

understanding that linkages among individuals in different organizations appear to 

be key mechanisms for academic engagement to occur.  

 

Second, the research collaboration literature provides a comprehensive examination 

of collaborative research processes, particularly valuable in relation to areas where 

literature on the academic engagement field is scarce, ambiguous, or absent, thus 

offering empirical insights into these processes (Bozeman et al., 2013). Within this 

research stream, the focus lies on team dynamics concerning knowledge creation. 

While emphasizing team size, as well as the aforementioned role of boundary 

spanners and lead authors, this undertaking extends to other pertinent factors (e.g., 

geographical proximity). Enhancing comprehension of the impact of team size on 

outcomes proves crucial due to the growing prevalence of larger teams and their 

potential for improving outcomes.  

 

One reason why teams are superior to working solo in terms of knowledge creation 

is that all collaborators, in this case, researchers, bring unique human capital derived 

from their prior experiences, including their education and work backgrounds. By 

pooling individuals’ human capital and facilitating the exchange of information and 

ideas, knowledge outcomes are enhanced (Becker & Murphy, 1992; Bozeman et al., 

2013; Katz & Martin, 1997; Phelps et al., 2012; Powell & Grodal, 2006). However, 

11 

 

these benefits must outweigh the potential drawbacks associated with larger teams, 

such as increased difficulty in management and coordination (Becker & Murphy, 

1992; West & Anderson, 1996) and a higher risk of “groupthink” (Janis, 1982; 

Whyte, 1998).  

 

While several studies have explored how team size influences impact (e.g., Anderson 

& Richards-Shubik, 2019; Gazni & Didegah, 2011; Kuld & O’Hagan, 2018; 

Larivière et al., 2015; Wu et al., 2019; Wuchty et al., 2007a), this Ph.D. dissertation 

is intended to provide a more in-depth understanding by examining this phenomenon 

within the context of collaborative research projects between firms and academic 

researchers in the field of electrical engineering. 

 

To conclude, deepening our understanding of the phenomenon under investigation 

can provide valuable insights that benefit not only researchers but also practitioners 

and policymakers. These findings can serve as a foundation for future research, 

allowing scholars to build upon them. Additionally, practitioners can apply the 

research findings to create more impactful and reputable collaborative research 

projects. Policymakers, too, can leverage this knowledge to formulate policies that 

support and promote such endeavors. It is important to recognize that the 

implications of this improved understanding extend beyond the academic realm. It 

has the potential to stimulate economic growth and enhance industrial 

competitiveness, making it a valuable resource for various stakeholders in academia, 

industry, and government. 

 
1.3 Empirical studies and research questions 
The dissertation comprises three empirical studies, all situated in the context of 

university research in the field of electrical engineering in Sweden. Collectively, 

these aim to achieve this Ph.D. dissertation’s purpose. Each of the three studies 

pertains to a distinct aspect of the overall purpose, leading to the following three 
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To conclude, deepening our understanding of the phenomenon under investigation 

can provide valuable insights that benefit not only researchers but also practitioners 

and policymakers. These findings can serve as a foundation for future research, 

allowing scholars to build upon them. Additionally, practitioners can apply the 

research findings to create more impactful and reputable collaborative research 

projects. Policymakers, too, can leverage this knowledge to formulate policies that 

support and promote such endeavors. It is important to recognize that the 

implications of this improved understanding extend beyond the academic realm. It 

has the potential to stimulate economic growth and enhance industrial 

competitiveness, making it a valuable resource for various stakeholders in academia, 
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1.3 Empirical studies and research questions 
The dissertation comprises three empirical studies, all situated in the context of 

university research in the field of electrical engineering in Sweden. Collectively, 

these aim to achieve this Ph.D. dissertation’s purpose. Each of the three studies 

pertains to a distinct aspect of the overall purpose, leading to the following three 
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research questions: 

 

RQ1 

How does the scientific impact of publications resulting from academic 

engagement projects differ from that of publications resulting from academic 

projects? 

 

In Chapter 5, the first research question is addressed through a comprehensive 

analysis and comparison analyzing the scientific impact of publications resulting 

from academic engagement as opposed to those resulting solely from academic 

projects. This chapter pays particular attention to the influence of the number of co-

authors and the presence of dual-affiliated professors, i.e., professors simultaneously 

employed by both a firm and a university, representing one type of boundary spanner.  

 

In this context, “scientific impact” refers specifically to two quantifiable measures: 

article impact and journal reputation. Article impact concerns the number of forward 

citations received by the publication from other scientific papers. It serves as an 

indicator of the extent to which the scientific community perceives the publication 

as valuable (Merton, 1973; Moed, 2005). On the other hand, journal reputation 

emphasizes scientific rigor and quality, and is determined by the impact factor of the 

journal in which the work was published (Garfield, 2006; McKiernan et al., 2019). 

While there is some overlap between these constructs, they can be distinguished by 

considering the emphasis placed on perceived value in the case of article impact and 

on scientific rigor and quality in the case of journal reputation. These two constructs 

are commonly utilized for quantitatively approximating the scientific impact of 

research and have been extensively employed in various papers, including those by 

Abramo et al. (2009), Bekkers and Freitas (2008), Frenken et al. (2010), McKelvey 

and Rake (2020), and Salimi et al. (2015).  
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This chapter adopts a quantitative approach, focusing on the scientific outcomes 

resulting from collaborative research, specifically the resulting publications. These 

publications serve as a reliable, albeit partial, measure of successful and substantial 

scientific knowledge creation (Perkmann et al., 2011; Tijssen, 2009). 

 

RQ2 

How does the technological impact of publications resulting from academic 

engagement projects differ from the impact of those resulting from academic 

projects? 

 

In Chapter 6, the second research question is addressed, with the focus shifting from 

analyzing scientific impact to analyzing the technological impact of the 

aforementioned publications. Similar to the assessment of article impact, 

technological impact primarily concerns the quantification of citations received. 

However, in this context, the focus changes from citations within the scientific 

domain to citations coming from the technological domain, that is, from other 

patents. The approach of using patent citations as a proxy for technological impact 

is widely employed (e.g., Fleming & Sorenson, 2001, 2004; Petruzzelli & Murgia, 

2020; Verhoeven et al., 2016).  

 

This chapter also aims to analyze the prevalence of the two possible pathways 

through which science can contribute to technological impacts for the involved 

parties. These two pathways represent distinct mechanisms for the development, 

application, and utilization of scientific knowledge in technologies: an individual 

approach and an organizational approach. The first pathway, individual 

technological impact, focuses on author–inventor pairs and emphasizes the personal 

aspect of knowledge (Nonaka, 1994; Polanyi, 1958). It recognizes that knowledge 

developed in one setting (e.g., collaborative research) or project can be applied to 

another (e.g., technological development). The second pathway, organizational 
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technological impact, centers on affiliation–assignee pairs. It highlights the transfer 

of knowledge within organizational boundaries, demonstrating that knowledge 

transfer within specific organizations differs from knowledge transfer, or more 

accurately, knowledge spillover, across organizational boundaries (Kogut & Zander, 

1992; Nahapiet & Ghoshal, 1998).4  

 

In addition to these two pathways, it is worth noting that a third pathway exists, 

although it is not the primary focus of the study. This pathway is known as 

knowledge spillover, which emphasizes the knowledge that “spills over” to external 

actors. It refers to the phenomenon “by which one or a few agents investing in 

research or technology development will end up facilitating other agents’ innovation 

efforts (either unintentionally, as it happens when innovation is imitated, or 

intentionally, as it may happen when scientists divulge the result of their research” 

(Breschi & Lissoni, 2001, p. 975). Knowledge spillover thus considers the 

technological impact of the publications on individuals and/or organizations beyond 

the immediate scope of the research.  

 

RQ3 

How does the scientific and technological impact of the papers resulting from 

academic engagement depend on the affiliation of the lead author? 

 

The significance of the lead author’s role in shaping the outcomes of these studies is 

the chief focus in Chapter 7, where the third research question is addressed. While 

there are variations across fields, countries, and even years regarding the sequence 

of authors in the byline of multi-authored research papers (Yu & Yin, 2021), the first 

 
4 To clarify, the first pathway emphasizes the impact when the same individual is involved in both 

the science and the technology (referred to as an author–inventor pair), while the second pathway 

emphasizes the impact when the same organization is involved in both activities (referred to as an 

affiliation–assignee pair). 
15 

 

author is generally regarded as the one contributing the most (Bhandari et al., 2014; 

Corrêa Jr. et al., 2017; Nylenna et al., 2014; Thelwall, 2023; Wren et al., 2007).  

 

However, it should be noted that perceptions of authors’ contributions can be 

influenced by the identity of the corresponding author (Bhandari et al., 2014; Wren 

et al., 2007). Nonetheless, an extensive bibliometric analysis encompassing over 10 

million research papers published between 2000 and 2008 suggests that the first 

author is frequently also the corresponding author. Specifically, this holds true for 

approximately 80–90% of the papers published in engineering, mathematics, and 

computer and information technology (Yu & Yin, 2021; see also Mattsson et al., 

2011).  

 

Accordingly, this chapter quantitatively analyzes the influence exerted by the lead 

(i.e., first) author on both the scientific and technological impacts of the publications, 

specifically examining how their type of affiliation, distinguishing between 

academia, industry, and dual affiliation, shapes the overall outcomes.  

 
1.4 Empirical context and sample 
The empirical context of this study is electrical engineering in Sweden, a field 

involving collaboration among diverse actors, including universities, multinational 

enterprises (MNEs), and knowledge-intensive entrepreneurial (KIE) firms (Berg, 

2019; Ljungberg et al., manuscript to be submitted for publication). This selection is 

supported by several reasons, which are summarized below.  

 

The field of engineering sciences was chosen due to its unique combination of 

scientific and applied knowledge—in the words of Stokes (1997, p. 73), it can be 

characterized as “use-inspired basic research.” According to this understanding, the 

engineering sciences encompass a combination of basic knowledge and applied 

knowledge. These sciences aim to enhance the understanding of fundamental 
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phenomena within a scientific domain (basic), while simultaneously being motivated 

by societal needs and practical applications (applied). This suggests relatively close 

linkages between academic and industrial (i.e., firm-employed) researchers, which 

aligns well with the purpose of this dissertation. Empirical research supports this 

notion, as research has consistently found that applied fields participate more in 

academic engagement (e.g., Abreu & Grinevich, 2017; Aschhoff & Grimpe, 2014; 

Lawson et al., 2019; Schuelke-Leech, 2013; Tartari & Breshi, 2012).  

 

Moreover, electrical engineering, in particular, is interesting due to its vital yet often 

overlooked role in technological development. The seemingly invisible nature of 

technology and its compositions has led to the misconception that engineering, 

including electrical engineering, is less creative than other fields, which is not 

entirely accurate. Arthur (2009) argued that the perceived lack of creativity in 

engineering stems from two primary notions: first, the general public is not trained 

to grasp a well-executed piece of technology and, second, the largely hidden nature 

of the components constituting technology. The final noteworthy reason is that 

electrical engineering, both broadly and in a variety of subfields related to signals, 

systems, and algorithms, is and has been a key enabling technology for the success 

of some of Sweden’s best-known companies, such as AstraZeneca, Ericsson, Volvo 

Cars, and Volvo AB.  

 

More concretely, the sample utilized in this dissertation was derived from 

employment data encompassing professors employed at the five main engineering 

universities in Sweden, specifically in the fields of biomedical, communication, 

control, and signal processing engineering. Professors were chosen as the ideal 

sample due to their role in advancing scientific knowledge and shaping the research 

direction of their respective departments or units. Moreover, professors in Swedish 

universities tend to exhibit relatively low job mobility compared with other 

professions (Askling, 2001), allowing for a longer analysis period per professor, 

17 

 

which is beneficial as it increases the sample size.  

 

After identifying the sample using employment data, bibliometric data was collected 

spanning the period from 1995 to 2018, primarily focusing on scientific documents 

from Web of Science, the patent-to-article dataset Reliance on Science in Patenting, 

developed and published by Marx and Fuegi (2020, 2022), and patent data from EPO 

via the OECD REGPAT database, July 2020 edition (OECD REGPAT, 2020). For 

clarification purposes, the Web of Science database was used to identify the sampled 

professors’ co-authored publications and the number of citations those papers receive 

from other scientific papers, the Reliance on Science in Patenting database was used 

to identify the number of times those papers have been cited by patents, and the 

OECD REGPAT database was used to control for the number of patents the sampled 

professors have applied for. 

 

The analysis period extended from 2000 to 2018, primarily due to three logical 

considerations. First, this allowed for an adequate sample size, as suggested by 

Glänzel and Moed (2013) and Rogers et al. (2020). Second, data constraints limited 

the availability of Swedish academic employment data prior to 2000. Finally, this 

timeframe allowed for a sufficient gap (i.e., three years) between the last publication 

year and the measurement of article impact (see, e.g., Amin & Mabe, 2000). 

Regarding the unit of analysis, the final sample consists of 8455 scientific 

documents, co-authored by the 184 professors.  

 

1.5 Noteworthy activities in relation to the Ph.D. dissertation 
At my Unit, the Unit of Innovation and Entrepreneurship, the Ph.D. program requires 

a minimum of 90 credits for courses and 150 credits for work on the Ph.D. 

dissertation. As a Ph.D. student, I have taken courses totaling 141 credits. These 

courses have played a crucial role in arming me with the necessary knowledge and 

skills, not only for writing my dissertation but also for broader applications extending 
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beyond the scope of the dissertation itself. 

 

As part of the Ph.D. process, the research presented in this Ph.D. dissertation has 

been thoroughly examined and discussed in planning, midway, and pre-defense 

seminars at the Unit. The research reported here has been conducted independently. 

Ergo, both the aforementioned seminars and the dissertation itself can be considered 

the author’s original manuscript, in accordance with the current standards of open 

access. Furthermore, the process of actively participating in academic conferences 

and developing research papers throughout my Ph.D. education has facilitated the 

writing of this dissertation. These activities are presented below in Table 1.1, which 

also lists all submitted and published journal articles completed during my Ph.D. 

education. 

 

Overall, I have delivered six external conference and workshop presentations, 

published three journal articles, and co-authored one book. It is worth mentioning 

that the published journal articles were completed during my tenure as the Research 

Manager of Esmaeilzadeh Holding. As of the current date, 18 February 2024, I have 

one additional journal article under review and one being finalized for submission, 

both of which were written during my tenure as Ph.D. student at the Unit. 

 
Table 1.1. Noteworthy activities in relation to the Ph.D. dissertation. 

Year Type Author(s) Title  

2019 

Workshop presentation 

(Workshops on Medical 

Innovation and 

Healthcare—WOMI) 

K. Berg,  

D. Ljungberg,  

M. McKelvey,  

V. Ström* 

Academic engagement seen through university–

industry co-authorship: Who are these industry 

collaborators? 

2021 

Workshop presentation 

(Doctoral Education and 

the Private Sector: 

European Perspectives) 

V. Ström,  

M. McKelvey,  

E. Gifford 

Investigating the scientific contributions of 

academic engagement with industry 

2021 
Conference presentation 

(Policies, Processes and 

V. Ström,  

M. McKelvey,  

Which factors matter for the scientific contributions 

of professors’ publications with industry? 

19 

 

Practices for Performance 

of Innovation 

Ecosystems—P4IE) 

E. Gifford 

 

2021 Book 

M. McKelvey,  

K. Berg,  

E. Bourelos,  

L. Brunnström,  

E. Gifford,  

D. Hemberg,  

I. Hermansson,  

S. Lindmark,  

D. Ljungberg,  

R. Saemundsson,  

V. Ström,  

O. Zaring 

Forskningssamverkan och kommersialisering. 

Samhällets långsiktiga försörjning av 

ingenjörsvetenskaplig kunskap [Research 

collaboration and commercialization. Society's 

long-term supply of engineering knowledge] 

2022 

Workshop presentation 

(Dimensions of Knowledge 

and Technology Transfer: 

Actors, Channels and 

Implications) 

V. Ström,  

M. McKelvey,  

E. Gifford 

Doing academic engagement together: 

Investigating co-publishing between universities 

and firms in electrical engineering in Sweden, 

2000 to 2018 

2023** 
Journal article (Economic 

Affairs) 

N. Sanandaji, 

V. Ström, 

M. Esmaeilzadeh, 

S. Esmaeilzadeh 

The evolution of the Swedish market model 

2023 

Seminar presentation 

(International Center for 

Higher Education 

Research—INCHER, 

University of Kassel) 

V. Ström 

Academic engagement with industry as a research 

activity: The scientific and technological impact of 

university–industry co-authored publications, in 

the engineering sciences 

2023** 
Journal article (Journal of 

Business Strategy—JBS) 

V. Ström, 

P. Braunerhjelm, 

S. Esmaeilzadeh 

Making an M&A work: Equal strategic 

partnerships smooth the path 

2023** 

Journal article 

(International Journal of 

Innovation Science) 

V. Ström,  

N. Sanandaji, 

S. Esmaeilzadeh, 

M. Esmaeilzadeh 

Equity capital financing of Swedish SMEs, 

innovation, and decentralized management 

2023 
Journal article (under 

review) 

V. Ström,  

M. McKelvey,  

E. Gifford 

Scientific outcomes of academic engagement in 

electrical engineering: Investigating the scientific 

impact of firms on co-publishing in Sweden, 2000 

to 2018 
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1.6 Outline  
This section outlines the rest of the chapters in this dissertation. 

 

Chapter 2, entitled “Theoretical framework,” presents a comprehensive overview of 

the main research streams cited in this dissertation. The chapter begins by examining 

the concept of academic engagement and highlighting the individual characteristics 

of researchers as antecedents to academic engagement. Thereafter, the chapter 

examines the evolving role of universities in Sweden, situating them as playing a 

particular role in the knowledge economy, encompassing an analysis of the 

knowledge economy, university–industry collaboration, and the universities’ third 

mission, highlighting the evolving role of universities in this context. The chapter 

then redefines academic engagement analysis given knowledge network and 

knowledge creation insights, offering an in-depth analysis of core concepts and 

approaches, and of the influence of knowledge networks in science. Following that, 

the outcomes and impact of academic engagement are thoroughly examined, with a 

primary focus on the impacts of publications resulting from academic engagement. 

Finally, by combining these research streams, the chapter establishes the overall 

theoretical framework that underpins the research, providing a conceptual framework 

and theoretical perspectives that guide the subsequent analysis and findings. 
21 

 

Chapter 3, entitled “Empirical setting,” explores the specific context and setting. 

The chapter begins by defining and discussing three related concepts: engineering, 

science, and technology. The chapter then shifts focus to the universities in Sweden 

that actively engage in the field of electrical engineering, offering descriptive insights 

into their contributions. The empirical context also includes specifics of university–

industry collaboration in Sweden, shedding light on the collaborative initiatives and 

partnerships between universities and industries within the country. Lastly, it 

explores the institutional concept of teachers’ exemption, addressing its relevance 

and implications in the research context. 

 

Chapter 4, entitled “Sample, data, and descriptive statistics,” offers an in-depth 

overview of the sample, data sources, and descriptive statistics employed in this 

research. The chapter begins with a comprehensive description of the sample, 

elucidating the characteristics and composition of the researchers included in the 

study. Furthermore, it delves into the data utilized for the research, with a specific 

focus on the bibliometric data employed in the analysis. Additionally, it addresses 

the process of data preprocessing, outlining the steps and techniques implemented to 

clean and prepare the data for analysis. Furthermore, it evaluates the quality of the 

data used, discussing potential limitations and/or biases associated with the dataset. 

Lastly, the chapter presents some descriptive statistics, offering summarized findings 

and key measurements that characterize the data. 

 

Chapters 5, 6, and 7 present the constituent empirical studies of this dissertation; 

these chapters are entitled “The scientific outcomes and impacts of collaborative 

research as one form of academic engagement,” “The technological impacts of 

collaborative research as one form of academic engagement,” and “The impact of 

the lead author in collaborative research as one form of academic engagement,” 

respectively. The structure of these chapters follows a consistent pattern. They 

commence with a short introduction, followed by a discussion of the more 
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specifically relevant theory, leading to hypotheses. The chapters then explore the 

data and methods employed in the investigation, encompassing a discussion of the 

datasets, the operationalization of variables, and the empirical strategy utilized. The 

chapters go on to present the study’s results, emphasizing both descriptive findings 

and regression analyses. Additionally, robustness checks are executed to evaluate the 

validity and reliability of the findings. The discussion sections provide a 

comprehensive analysis and interpretation of the results, drawing comparisons and 

contrasting their significance within the broader scientific community. Furthermore, 

each chapter explores the implications arising from the research, considering how 

the findings can be practically applied and the potential theoretical contributions they 

offer. Finally, each chapter concludes by summarizing the key insights and 

conclusions derived from the analysis. Additionally, limitations are discussed and 

recommendations for future research are outlined. 

 

Chapter 8, entitled “Conclusion,” is the final chapter of this dissertation and 

provides a summary of and closure to the research. This chapter begins by addressing 

the research questions posed at the outset of the dissertation, offering concise and 

clear answers based on the findings and analysis presented throughout the 

monograph. By directly answering the research questions, the chapter ensures a 

comprehensive understanding of the study’s contributions and outcomes. Following 

this, the chapter moves on to highlight the implications of the research findings, 

including practical applications, policy recommendations, and contributions to 

existing knowledge and theory. In addition to discussing the research implications, 

the chapter also addresses the limitations of the research. It acknowledges the most 

significant shortcomings and/or constraints encountered during the research process, 

such as limitations in the sample size, data quality, and methodological approach. By 

acknowledging these limitations, the chapter ensures transparency and provides a 

balanced assessment of the studies’ validity and reliability. Lastly, the chapter offers 

ideas for future research based on the findings and limitations identified in the current 

23 

 

research. It suggests potential directions and avenues for further investigation, 

highlighting areas that could benefit from additional research or where the present 

results could be expanded upon. This discussion of future research will help inspire 

and guide academic scholars in building on this dissertation’s foundations.  

 

Finally, the “References” section lists all scholarly works and other sources cited in 

this dissertation, while Appendices A–D present supplementary information and 

data, as follows:  

- Appendix A: Additional descriptive statistics 

- Appendix B: Correlation tables 

- Appendix C: Additional regression analyses (robustness tests) 

- Appendix D: Allocating credit in science 
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2 THEORETICAL FRAMEWORK 

In this chapter, elaboration is provided on the theories, concepts, constructs, and 

variables that constitute the core of this dissertation in order to develop a theoretical 

framework. This entails a presentation and discussion of combining the existing body 

of research within three distinct yet interconnected streams of literature, i.e., 

academic engagement, knowledge networks, and research collaboration, that are 

relevant to this dissertation.  

 

This chapter should be considered the foundation of the empirical chapters that 

follow. It should be noted that this chapter does not delve into all the conceptual 

aspects specific to the empirical chapters; instead, it provides a broad overview of 

existing research. A detailed discussion of the theoretical literature pertaining to very 

specific questions in the empirical investigations can be found in their respective 

chapters. This approach has been adopted to reduce redundancy and enhance clarity. 

 

The chapter is structured into five sections. The first section discusses the literature 

on academic engagement, with a primary focus on its definitions, motivations, and 

antecedents. The second section delves into the role of universities in the knowledge 

economy. This includes outlining key background information, such as what 

constitutes the knowledge economy, a brief review of the innovation system 

literature, and the evolving identity of universities. The third section explores the 

literature on knowledge networks and knowledge creation. It concentrates on 

defining and elaborating on core concepts and approaches, as well as delving into 

knowledge networks in science and technology, emphasizing four key aspects: team 

size and human capital, knowledge-related team diversity, team longevity, and team 

members’ geographical proximity. The fourth section centers on academic 

engagement but shifts the focus to its outcomes and impacts. This separation is 

necessary because a comprehensive understanding of these outcomes requires 



24 

 

  

25 

 

2 THEORETICAL FRAMEWORK 

In this chapter, elaboration is provided on the theories, concepts, constructs, and 

variables that constitute the core of this dissertation in order to develop a theoretical 

framework. This entails a presentation and discussion of combining the existing body 

of research within three distinct yet interconnected streams of literature, i.e., 

academic engagement, knowledge networks, and research collaboration, that are 

relevant to this dissertation.  

 

This chapter should be considered the foundation of the empirical chapters that 

follow. It should be noted that this chapter does not delve into all the conceptual 

aspects specific to the empirical chapters; instead, it provides a broad overview of 

existing research. A detailed discussion of the theoretical literature pertaining to very 

specific questions in the empirical investigations can be found in their respective 

chapters. This approach has been adopted to reduce redundancy and enhance clarity. 

 

The chapter is structured into five sections. The first section discusses the literature 

on academic engagement, with a primary focus on its definitions, motivations, and 

antecedents. The second section delves into the role of universities in the knowledge 

economy. This includes outlining key background information, such as what 

constitutes the knowledge economy, a brief review of the innovation system 

literature, and the evolving identity of universities. The third section explores the 

literature on knowledge networks and knowledge creation. It concentrates on 

defining and elaborating on core concepts and approaches, as well as delving into 

knowledge networks in science and technology, emphasizing four key aspects: team 

size and human capital, knowledge-related team diversity, team longevity, and team 

members’ geographical proximity. The fourth section centers on academic 

engagement but shifts the focus to its outcomes and impacts. This separation is 

necessary because a comprehensive understanding of these outcomes requires 



26 

 

comprehension of the broader literature on knowledge networks and knowledge 

creation. Building on the insights from these sections, the fifth and final section 

presents a theoretical framework that integrates the most relevant aspects from these 

bodies of literature.  

 

Additional insights into what can be expected in relation to the first four sections, as 

well as the following two chapters, are presented in Figure 2.1 below. This figure is 

primarily based on Perkmann et al.’s (2021) theoretical framework, depicted in its 

original form in the subsequent section. In essence, it illustrates the connection 

between individual characteristics and knowledge network properties, which in turn 

are linked to various forms of academic engagement and their impacts. In this 

chapter, the primary focus is on examining the black boxes, while the grey boxes 

provide valuable insights into the content of the following two chapters. 

 

 
Figure 2.1. Overview, Chapter 2. 
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2.1 Academic engagement 
This section first reviews the literature concerning the motivations driving 

collaboration between universities and firms. Second, it comprehensively examines 

the factors leading to academic engagement (i.e., its antecedents). Third, it discusses 

publications as an outcome of academic engagement and considers their resulting 

scientific impact. 

 

2.1.1 Defining academic engagement 

University–industry collaboration refers to several forms of collaborations between 

one or more universities and one or more firms. The broad nature of university–

industry collaboration allows for various pathways of engagement, and numerous 

taxonomies have been developed to classify these different types of collaboration 

(e.g., Abreu & Grinevich, 2017; D’Este et al., 2019; D’Este & Patel, 2007; Lawson 

et al., 2016; Perkmann et al., 2013). 

 

For the purpose of this dissertation, the definition of university–industry 

collaboration is based on the taxonomy initially proposed by Perkmann et al. in their 

2013 structured literature review. The authors categorized university–industry 

collaboration into two types: academic engagement and academic 

commercialization. According to their taxonomy, academic engagement refers to 

“knowledge-related collaboration by university scientists with non-academic 

organisations” (Perkmann et al., 2013, p. 424). This type of university–industry 

collaboration can take various forms, including co-publishing articles, advising 

boards, delivering public lectures, providing informal advice, and participating in 

conferences. On the other hand, academic commercialization is defined as 

“intellectual property creation and academic entrepreneurship” (Perkmann et al., 

2013, p. 423). Similar to academic engagement, academic commercialization can be 

further subdivided into components such as patenting, licensing, establishing spin-

offs, and engaging in consultancy work. 
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The primary reason for selecting this review article and its conceptual framework as 

the foundation of this research is its explicit emphasis on synthesizing existing 

literature on academic engagement, which is the empirical context of this entire 

dissertation. In other words, the main reason for choosing this taxonomy as the 

definition of university–industry collaboration is its clear distinction between the 

knowledge-related aspects of collaboration, which center on knowledge creation, 

transfer, and diffusion, and the activities associated with commercialization, which 

in the typical case aim for economic gain by making inventions available to the 

public.  

 

In their original review published in 2013, Perkmann et al. delineated various 

analytical paths where research is needed. Subsequently, in a follow-up review 

published in 2021, they presented a revised framework, once again highlighting areas 

requiring further investigation. This framework is illustrated in Figure 2.2, below. It 

illustrates that academic engagement is shaped by individual characteristics, the 

organizational and relational context, and the institutional context. The dashed boxes 

in the figure indicate areas where research is scarce, ambiguous, or absent, while the 

solid boxes indicate areas where research provides a relatively more coherent 

understanding. As shown, the areas where this research intend to make the biggest 

contributions—investigating the consequences of academic engagement in terms of 

research impact and quality—are areas where the review calls for further research.  
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Figure 2.2. Perkmann et al.’s (2021) analytical framework of academic engagement. 

 

Moving forward, the various motivations that drive academic researchers to engage 

in collaborative research activities with firms, as well as the motivations that drive 

firms to engage in such collaborations with academic researchers, will be explored. 

Following this exploration, an examination of researchers’ individual characteristics 

as antecedents to their academic engagement will be conducted (left box in Figure 

2.2). These sections are primarily designed to enrich the understanding of academic 

engagement. In other words, their primary purpose is to contribute to a 

comprehensive understanding of the phenomenon under investigation, rather than 

serving as vital components of the empirical research. Subsequently, the key insights 

gained from these sections will be presented. 

 

2.1.2 Motivations for both academia and industry to conduct collaborative 

research 

At an individual level, university scientists have several motivations for 

collaborating with their counterparts in industry. Such motivations encompass 

augmenting their own research careers by accessing complementary expertise 

(Ankrah et al., 2013; D’Este & Perkmann, 2010; Hughes et al., 2016; Kongsted et 

al., 2017; Sjöö & Hellström, 2021), contributing to societal progress on a larger scale 
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(Ankrah et al., 2013; Hughes et al., 2016; Iorio et al., 2017), gaining access to cutting-

edge facilities and equipment (Ankrah et al., 2013; Kongsted et al., 2017), evaluating 

the practical applicability of research (Ankrah et al., 2013; Hughes et al., 2016; 

Kongsted et al., 2017), and keeping their teaching up to date (Kongsted et al., 2017; 

Lawson et al., 2016; Sjöö & Hellström, 2021).5  

 

Additionally, it is conceivable that university scientists are compelled to collaborate 

with industrial counterparts due to tougher competition for academic positions. This 

stems from the globalization of the academic job market (Avveduto, 2005; see also 

Carson et al., 2012/2013) and the fact that the production of doctoral graduates has 

surpassed the growth rate of available tenured positions, a situation observed not 

least in Germany (Buenstorf et al., 2019) and France (Jalowiecki & Gorzelak, 2004, 

as cited by Goastellec et al., 2013). This reality implies a greater incentive to 

distinguish oneself within the academic crowd, potentially by conducting a large 

amount of successful university–industry collaborative research. 

 

From the industry perspective, particularly at the organizational level, the motivation 

to enhance collaboration with universities arises from the mounting pressures of an 

increasingly competitive global landscape. This shift is a consequence of various 

factors, including reduced transportation costs (Anderson & de Palma, 2000; Forman 

et al., 2018), diminished communication costs (Forman et al., 2018; Florida & 

Mellander, 2018), streamlined search expenses (Forman et al., 2018), the emergence 

of new innovations with heightened returns to scale (Anderson & de Palma, 2000; 

Forman et al., 2018), and shorter product life cycles (Bonaccorsi & Piccaluga, 1994).  

 

The motivations for industrial researchers to engage with their university 

counterparts encompass developing their human capital through access to 

 
5 See Ankrah and Al-Tabbaa (2015) and Vick and Robertson (2018) for two thorough reviews. 
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complementary knowledge (Ankrah et al., 2013; Broström, 2012; Sjöö & Hellström, 

2021), accessing cutting-edge facilities and equipment (Ankrah et al., 2013), 

developing their social capital through access to new research networks (Ankrah et 

al., 2013; Broström, 2012; Sjöö & Hellström, 2021), and stimulating their 

capabilities to innovate (Siegel et al., 2003).6  

 

The inquiry into why firms seek collaboration with universities is closely linked to 

the question of why firms engage in publishing activities. These two lines of inquiry 

are intertwined, as firms frequently engage in collaborations with universities with 

the intent of publishing jointly. In a comprehensive systematic literature review, 

Rotolo et al. (2022) formulated a conceptual framework elucidating five underlying 

factors motivating such actions. These include accessing external knowledge and 

resources, improving the firm’s reputation, supporting commercialization and IP 

strategies, and attracting and retaining researchers. Given the interconnections 

between collaborating with universities and engaging in publishing activities, it is 

reasonable to posit that the incentives for publishing are also relevant to the original 

query.  

 

Table 2.1, below, summarizes motivations driving academic scholars to collaborate 

with industry and, conversely, the motivations prompting industry to seek 

collaboration with academics, as discussed above. 

 
Table 2.1. Motivations for university–industry collaborations: a comparison. 

Direction Motivation Explanation 

Academia →→ Industry 

 

Leveraging 

complementary 

expertise 

Engaging in collaborative efforts with industry partners facilitates 

access to complementary domain expertise and specialized knowledge 

resources. 

 
6 See Ankrah and Al-Tabbaa (2015) and Vick and Robertson (2018) for two thorough reviews. 
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the intent of publishing jointly. In a comprehensive systematic literature review, 
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factors motivating such actions. These include accessing external knowledge and 

resources, improving the firm’s reputation, supporting commercialization and IP 

strategies, and attracting and retaining researchers. Given the interconnections 
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reasonable to posit that the incentives for publishing are also relevant to the original 

query.  

 

Table 2.1, below, summarizes motivations driving academic scholars to collaborate 

with industry and, conversely, the motivations prompting industry to seek 

collaboration with academics, as discussed above. 

 
Table 2.1. Motivations for university–industry collaborations: a comparison. 

Direction Motivation Explanation 

Academia →→ Industry 

 

Leveraging 

complementary 

expertise 

Engaging in collaborative efforts with industry partners facilitates 

access to complementary domain expertise and specialized knowledge 

resources. 

 
6 See Ankrah and Al-Tabbaa (2015) and Vick and Robertson (2018) for two thorough reviews. 
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Utilizing state-of-the-

art infrastructure 

Collaboration enables researchers to utilize cutting-edge facilities and 

advanced equipment, augmenting their research capabilities. 

 
Securing research 

funding 

Collaboration with industry provides opportunities to secure additional 

research funding and resources for scientific investigations. 

 
Advancing societal 

impact 

Collaborations allow researchers to contribute to societal progress by 

addressing real-world challenges and advancing technological 

solutions. 

 
Assessing practical 

applicability 

Collaborative projects offer the opportunity to evaluate the practical 

applicability of research findings in real-world industrial settings. 

 

Sustaining 

pedagogical 

excellence 

Collaborations help academics stay updated with industry trends, 

enriching their teaching content and ensuring the relevance of 

educational programs. 

 
Navigating academic 

competition 

Collaboration may be driven by the competitive nature of academia, 

especially concerning tenured positions, with researchers seeking to 

distinguish themselves in a crowded academic landscape. 

Industry →→ Academia 

 

Enhancing and 

leveraging human 

capital  

Collaboration with academia enables industrial professionals to develop 

(and leverage) their human capital by gaining access to complementary 

knowledge and expertise. This access helps enrich their skills and 

competencies. 

 
Accessing cutting-

edge resources  

Industry partners collaborate with universities to access state-of-the-art 

facilities and advanced equipment, providing them with technological 

advantages and research capabilities. 

 
Expanding social 

capital  

Engaging in partnerships with academia allows industrial researchers to 

increase their social capital by accessing new research networks and 

fostering connections with experts in various fields. 

 
Capitalizing on 

innovation  

Industrial researchers engage with universities to leverage the 

emergence of groundbreaking inventions/innovations that offer 

significant returns on investment and increased economies of scale. 

 
Navigating global 

competition  

Industry seeks collaboration with academic institutions to address the 

intensifying competition within the global marketplace. This is driven 

by factors such as reduced transportation costs, diminished 

communication expenses, and streamlined search processes. 

 
Improving the firm’s 

reputation 

Partnerships (or publishing) with universities can boost a firm’s 

reputation, showcasing its commitment to cutting-edge research and 

innovation. 

 

Attracting and 

retaining employees 

(or researchers) 

Engaging in partnerships with academia can make firms more attractive 

to talented employees (or researchers), aiding in the recruitment and 

retention of top-tier talent. 
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2.1.3 Individual characteristics of researchers as antecedents to academic 

engagement 

Throughout the 21st century, there has been a notable upsurge in the perceived 

significance of academic engagement within the realm of research scholars. This 

trend is evident in the plethora of studies dedicated to exploring various pivotal 

factors influencing the antecedents of academic engagement. An overview of the 

aspects and the cited studies within this section can be found in Table 2.2, below. 

After the table, a more comprehensive discussion of these aspects is provided.  

 
Table 2.2. Antecedents of academic engagement: factors discussed and cited research papers. 

Focus Authors 

Scientific 

achievements 

Aschhoff & Grimpe, 2014; Bekkers & Freitas, 2008; Ding & Choi, 2001; D’Este et al., 

2019; Tartari et al., 2014; Zi & Blind, 2015 

Academic 

engagement 

experience 

D’Este & Patel, 2007; Lawson et al., 2016; Tartari et al., 2012 

Non-academic 

experience 

Aschhoff & Grimpe, 2014; Barbieri et al., 2018; Bruneel et al., 2010; Gulbrandsen & 

Thune, 2017; Johnson et al., 2017; Lawson et al., 2016; Tartari & Breshi, 2012; Tartari et 

al., 2012, 2014 

Type of research 
Abreu & Grinevich, 2017; Aschhoff & Grimpe, 2014; Lawson et al., 2019; Schuelke-

Leech, 2013; Tartari & Breshi, 2012 

Gender 

Abreu & Grinevich, 2017; Blind et al., 2018; Gaughan & Corley, 2010; Gulbrandsen & 

Thune, 2017; Kongsted et al., 2017; Lawson et al., 2019; Link et al., 2007; Tartari & 

Salter, 2015 

Biological age 
Blind et al., 2018; Giuliani & Arza, 2009; Giunta et al., 2016; Iorio et al., 2017; Lawson 

et al., 2019; Link et al., 2007; Tartari & Breshi, 2012 

Academic age and 

rank 

Aschhoff & Grimpe, 2014; Boardman & Ponomariov, 2009; D’Este et al., 2019; Lawson 

et al., 2019; Link et al., 2007; Tartari & Breschi, 2012; Tartari et al., 2014 

National and ethnic 

origin 
Edler et al., 2011; Lawson et al., 2019; Tartari et al., 2012, 2014; Trippl, 2013 
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Scientific achievements 

The research achievements of scholars serve as indicators of their human capital. 

These achievements encompass the number of publications, the number of citations 

received by these publications, and the reputation of the journals in which they 

appear. University-affiliated scientists who amass considerable citations, denoted 

high article impact, and who contribute to esteemed journals, denoted top journal 

reputation, and/or exhibit high publication activity within a given timeframe, denoted 

high research productivity, can plausibly be deemed more appealing as prospective 

collaborators from an industrial standpoint, all other factors being equal. However, 

an alternate perspective posits that university scientists possessing these attributes, 

particularly those with substantial article impact who frequently publish in esteemed 

journals, might exercise selectivity, opting to collaborate solely with other 

(academic) researchers aligned with their own impact and/or journal reputation, 

potentially limiting interactions with industrial researchers who might be fewer in 

number. 

 

Regarding empirical findings, we turn first to article impact. The evidence suggests 

that it does not have a significant influence on the likelihood of conducting academic 

engagement. This holds true whether we measure article impact by the cumulative 

citations an individual scholar accrues (Ding & Choi, 2001; Tartari et al., 2014) or 

approximate article impact using the number of articles featured among the top 1% 

of most cited articles (D’Este et al., 2019). Shifting focus to journal reputation, 

empirical research in this realm is less abundant. A notable study discovered that 

university scientists who publish in highly reputed journals are less inclined to 

contribute to the establishment of industry standards, in contrast to those publishing 

in journals of a more technical or industry-oriented nature (Zi & Blind, 2015).  

 

Turning to research productivity, the findings indicate a positive correlation between 

the number of articles published by university-affiliated scientists and the probability 
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of their engagement in academic projects. This trend holds across diverse national 

contexts, such as the U.K. (Tartari et al., 2014), Germany (Aschhoff & Grimpe, 

2014), the Netherlands (Bekkers & Freitas, 2008), and Spain (D’Este et al., 2019). 

In summary, it seems that research productivity exerts a favorable effect on the 

likelihood of academic engagement, while article impact appears to exert a neutral 

effect and journal reputation a detrimental effect on the likelihood of academic 

engagement. 

 

Academic engagement experience 

As discussed above, prior experience in academic engagement can signal to 

industrial researchers that the involved academic scholar possesses a firm grasp of 

their function and responsibilities within the context of academic engagement. 

Research indicates that this holds true; specifically, having academic engagement 

experience substantially enhances the likelihood of engaging in future academic 

projects (D’Este & Patel, 2007; Lawson et al., 2016; Tartari et al., 2012). To be more 

precise, Lawson et al. (2016) demonstrated that individuals with academic 

engagement experience are more than one and a half times as likely to participate in 

future academic engagement.  

 

Non-academic experience 

There are at least two compelling reasons why non-academic experience, such as 

industry experience, patenting involvement, and/or entrepreneurial ventures, can 

significantly influence the propensity of university scientists to engage with industry 

in the pursuit of knowledge creation and transfer. Primarily, having non-academic 

experience, particularly in the industrial sector, fosters a heightened comprehension 

of the intrinsic motives behind firms’ inclination to collaborate. Consequently, this 

heightened understanding can either augment the willingness of academics to 

participate in collaborations or, conversely, diminish it, contingent on the specific 

context and origins of the non-academic experience. However, the acquisition of 



34 

 

Scientific achievements 

The research achievements of scholars serve as indicators of their human capital. 

These achievements encompass the number of publications, the number of citations 

received by these publications, and the reputation of the journals in which they 

appear. University-affiliated scientists who amass considerable citations, denoted 

high article impact, and who contribute to esteemed journals, denoted top journal 

reputation, and/or exhibit high publication activity within a given timeframe, denoted 

high research productivity, can plausibly be deemed more appealing as prospective 

collaborators from an industrial standpoint, all other factors being equal. However, 

an alternate perspective posits that university scientists possessing these attributes, 

particularly those with substantial article impact who frequently publish in esteemed 

journals, might exercise selectivity, opting to collaborate solely with other 

(academic) researchers aligned with their own impact and/or journal reputation, 

potentially limiting interactions with industrial researchers who might be fewer in 

number. 

 

Regarding empirical findings, we turn first to article impact. The evidence suggests 

that it does not have a significant influence on the likelihood of conducting academic 

engagement. This holds true whether we measure article impact by the cumulative 

citations an individual scholar accrues (Ding & Choi, 2001; Tartari et al., 2014) or 

approximate article impact using the number of articles featured among the top 1% 

of most cited articles (D’Este et al., 2019). Shifting focus to journal reputation, 

empirical research in this realm is less abundant. A notable study discovered that 

university scientists who publish in highly reputed journals are less inclined to 

contribute to the establishment of industry standards, in contrast to those publishing 

in journals of a more technical or industry-oriented nature (Zi & Blind, 2015).  

 

Turning to research productivity, the findings indicate a positive correlation between 

the number of articles published by university-affiliated scientists and the probability 

35 

 

of their engagement in academic projects. This trend holds across diverse national 

contexts, such as the U.K. (Tartari et al., 2014), Germany (Aschhoff & Grimpe, 

2014), the Netherlands (Bekkers & Freitas, 2008), and Spain (D’Este et al., 2019). 

In summary, it seems that research productivity exerts a favorable effect on the 

likelihood of academic engagement, while article impact appears to exert a neutral 

effect and journal reputation a detrimental effect on the likelihood of academic 

engagement. 

 

Academic engagement experience 

As discussed above, prior experience in academic engagement can signal to 

industrial researchers that the involved academic scholar possesses a firm grasp of 

their function and responsibilities within the context of academic engagement. 

Research indicates that this holds true; specifically, having academic engagement 

experience substantially enhances the likelihood of engaging in future academic 

projects (D’Este & Patel, 2007; Lawson et al., 2016; Tartari et al., 2012). To be more 

precise, Lawson et al. (2016) demonstrated that individuals with academic 

engagement experience are more than one and a half times as likely to participate in 

future academic engagement.  

 

Non-academic experience 

There are at least two compelling reasons why non-academic experience, such as 

industry experience, patenting involvement, and/or entrepreneurial ventures, can 

significantly influence the propensity of university scientists to engage with industry 

in the pursuit of knowledge creation and transfer. Primarily, having non-academic 

experience, particularly in the industrial sector, fosters a heightened comprehension 

of the intrinsic motives behind firms’ inclination to collaborate. Consequently, this 

heightened understanding can either augment the willingness of academics to 

participate in collaborations or, conversely, diminish it, contingent on the specific 

context and origins of the non-academic experience. However, the acquisition of 



36 

 

non-academic experience inherently serves as a demonstrative certification, a 

specific type of human capital that corporations might regard as valuable. Besides 

this, non-academic experience increases the social capital of the university scientist. 

This increase in social capital subsequently reinforces the likelihood of collaborative 

engagement between the university scientist and the specific firm. 

 

The literature regarding industry experience is notably coherent and supports the 

observation that exposure to the industrial sector substantially magnifies the 

probability of future university–industry collaboration (Abreu & Grinevich, 2017; 

Gulbrandsen & Thune, 2017; Tartari et al., 2012, 2014). It is evident that industry 

experience exerts a favorable impact in terms of alleviating barriers associated with 

research orientation, although it does not necessarily reduce transaction-related 

barriers (Bruneel et al., 2010; Tartari et al., 2012). Here, orientation-related barriers 

refer to conflicts about the orientation of research with industry partners, while 

transaction-related barriers pertain to conflicts over intellectual property (IP) and 

dealing with university administration.  

 

In contrast, the body of research on patenting experience presents a slightly more 

inconsistent stance, suggesting either a neutral effect (Aschhoff & Grimpe, 2014; 

Gulbrandsen & Thune, 2017) or even a positive effect (Tartari & Breshi, 2012) on 

the probability of future university–industry collaboration.  

 

The influence of entrepreneurship experience on university–industry collaboration is 

more nuanced. Empirical investigations posit a moderately positive correlation 

between entrepreneurship experience and the likelihood of future academic 

engagement. Notably, Lawson et al. (2016) underscored that UK-based academics 

with prior involvement in commercial activities exhibited substantially higher 

propensities for future academic engagement than did their non-engaged 

counterparts. Similarly, Johnson et al. (2017) found that Scottish university scientists 
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with prior entrepreneurial experience manifested a modestly positive, but statistically 

non-significant, influence on the likelihood of future academic engagement. 

Analogous to industry experience, entrepreneurship experience primarily serves to 

diminish orientation-related barriers, while transaction-related barriers remain 

largely unaffected (Barbieri et al., 2018; Tartari et al., 2012). Building on these 

findings, insights from Barbieri et al. (2018) indicate that founding a startup could 

potentially yield a reduction in the number of corporate entities the university 

scientist collaborates with. This phenomenon is attributed to the observed tendency 

of entrepreneurial university scientists to redirect their collaborative endeavors from 

external entities toward their own ventures.  

 

On the whole, the evidence suggests a positive effect, or at the very least, a neutral 

effect, of non-academic experience on the likelihood of future academic engagement. 

 

Type of research 

Not all research endeavors are the same; rather, they diverge in their primary 

objectives. Some research endeavors aim to expand the understanding of 

fundamental phenomena within a scientific domain, commonly defined as basic 

research, while others are driven by their relevance to societal needs and applications, 

commonly denoted applied research (Niiniluoto, 1993; Stokes, 1997). Consequently, 

it is reasonable to anticipate that applied research would hold greater appeal from a 

firm’s perspective. Corporations engage with university scientists to deepen their 

understanding of certain phenomena that possess direct utility and applicability, 

thereby offering avenues for commercialization.  

 

This notion finds empirical validation in the research landscape, with findings 

consistently indicating that academic engagement is more prominent in the applied 

research domain (Abreu & Grinevich, 2017; Aschhoff & Grimpe, 2014; Lawson et 

al., 2019; Schuelke-Leech, 2013; Tartari & Breshi, 2012). 
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Gender 

There are at least two valid reasons why gender can influence the likelihood of a 

university scientist engaging with industry for the purpose of creating and/or 

transferring knowledge. First, it is now well established in the psychological 

literature that there are personality differences between males and females. Large-

scale meta-analyses have revealed that men, on average, exhibit greater risk-taking 

tendencies (Byrnes et al., 1999) as well as higher levels of assertiveness and self-

esteem (Feingold, 1994) than do women. Holding other factors constant, this 

suggests that men are more inclined to initiate contact and embrace the associated 

risks linked with collaborating with industry, than are females.  

 

Second, males are overrepresented in the engineering field (Hill et al., 2010; Yoder, 

2012), and evidence also indicates that men dominate the highest ranks within 

academia. In other words, there are more male professors than female professors 

(Abreu & Grinevich, 2017; Madison & Fahlman, 2020). Again, under similar 

circumstances, males are more likely to form collaborations with their male 

counterparts, as outlined by homophily theory, which posits that individuals of 

similar characteristics (e.g., gender, race, and ethnicity) tend to interact more 

frequently than those with dissimilar attributes (Lazersfeld & Merton, 1954). 

Notably, this is not exclusive to gender but rather a broader phenomenon, one that 

can affect various aspects beyond gender, as this dissertation will further elucidate. 

In summary, there exist theoretical arguments favoring the notion that males are 

more likely to engage with industry to foster the creation and transfer of knowledge.  

 

Empirical evidence generally corroborates this view (Abreu & Grinevich, 2017; 

Gaughan & Corley, 2010; Kongsted et al., 2017; Link et al., 2007; Tartari & Salter, 

2015), although several studies have reported non-significant effects (Blind et al., 

2018; Gulbrandsen & Thune, 2017). Even in more comprehensive models that 

incorporate personal and professional backgrounds, men still exhibit significantly 
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greater involvement with industry (Abreu & Grinevich, 2017; Gaughan & Corley, 

2010). Moreover, men seem to participate in a wider range of activities, 

encompassing both domestic and international academic engagement projects 

(Lawson et al., 2019). The predominant factors underlying the gender disparity in 

academic engagement are certain traits, including academic rank, research 

specialization, and industry experience. In particular, Abreu and Grinevich (2017) 

argued that the gender gap could be elucidated by the observation that academic 

engagement is most prevalent among professors in applied fields, often with prior 

industry exposure, which is less common among female academics.  

 

Furthermore, differentiating among various forms of academic engagement reveals 

additional insights. For instance, Abreu and Grinevich (2017) found that men display 

greater involvement with industry in four out of five types of academic engagement 

(i.e., advisory board participation, public lectures, contract research, and informal 

advice), the exception being participation in exhibitions. Similarly, Tartari and Salter 

(2015) noted that men are more prone to forming new joint research agreements and 

contract research agreements, yet no gender disparity was evident in attending 

conferences where participants from both academia and industry are present. These 

findings suggest that female academics tend to engage with industry to a similar 

extent as men in less demanding activities, while exhibiting relatively lower 

engagement levels in more resource-intensive endeavors. 

 

Biological age 

The impact of biological age on the involvement of university scientists in academic 

engagement is subject to theoretical arguments on both sides of the coin. On one 

hand, a rationale supporting a positive correlation between age and academic 

engagement asserts that age is inherently linked with increased human and social 

capital. Specifically, older individuals have had more time to accumulate human 

capital and nurture social connections, all else being equal. Consequently, older age 
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Biological age 

The impact of biological age on the involvement of university scientists in academic 

engagement is subject to theoretical arguments on both sides of the coin. On one 

hand, a rationale supporting a positive correlation between age and academic 

engagement asserts that age is inherently linked with increased human and social 

capital. Specifically, older individuals have had more time to accumulate human 

capital and nurture social connections, all else being equal. Consequently, older age 
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could augment the probability of academic engagement, as industrial researchers 

presumably seek collaboration with the most knowledgeable and seasoned university 

scientists. However, the nature of experience must align with this assumption for it 

to hold true. Conversely, a contrasting perspective suggests that young academics 

might be more focused on career development. Consequently, they might be inclined 

to invest additional time and resources in academic engagement to propel their career 

trajectories. In contrast, established academics may have already solidified their 

careers and might exhibit reduced enthusiasm for academic engagement. 

Furthermore, generational differences play a role, as younger individuals have grown 

up in a society that emphasizes the legitimacy of academic engagement. In contrast, 

older individuals were raised in an era when academic engagement was (at least 

more) discouraged, as universities primarily centered on teaching and research.  

 

The interplay of these opposing factors contributes to the complexity of the 

relationship between biological age and academic engagement. As such, research 

findings on this topic are varied: studies indicate that age can yield either a positive 

effect (Giunta et al., 2016), no effect (Blind et al., 2018; Giuliani & Arza, 2009; Iorio 

et al., 2017; Link et al., 2007), or a negative effect on the likelihood of academic 

engagement (Giuliani & Arza, 2009; Tartari & Breshi, 2012). Furthermore, Lawson 

et al. (2019) introduced a non-linear dimension, revealing an inverted U-shaped 

relationship between age and the breadth of interaction with industry. Specifically, 

the middle-aged group exhibited the highest levels of academic engagement, 

underscoring a nuanced relationship between age and the breadth of academic 

engagement. 

 

Academic age and rank 

The same theoretical arguments that were stated to explain how biological age can 

influence the likelihood of a university scientist engaging in academic engagement 

can similarly be applied to academic age, which pertains to the number of years since 
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a researcher obtained their doctoral degree. As discussed in the previous section, 

these arguments can yield both positive and negative effects on the likelihood of 

academic engagement. However, in the case of academically older researchers, not 

only does their background include being raised in a society that was less supportive 

of academic engagement, but they might also potentially hold negative opinions 

about academic engagement due to having pursued their doctoral education during a 

period when such activities were viewed in a negative light (Bercovitz & Feldman, 

2008).  

 

Consequently, similar to the literature on biological age, the literature on academic 

age also presents a mixed perspective, as concluded in the review article by 

Perkmann et al. (2021). For example, Tartari et al. (2014) discovered that academic 

age had a detrimental impact on academic engagement likelihood among academics 

in the UK. In contrast, Aschhoff and Grimpe (2014) found a significant and positive 

association between academic age and academic engagement likelihood for 

researchers based in Germany. 

 

Turning to the dimension of academic rank, the same arguments used to elucidate a 

potential negative correlation between biological/academic age and academic 

engagement likelihood can also be partially extended to academic rank. This is 

because achieving the highest academic rank of professor generally requires several 

years of experience. However, there is a stronger theoretical basis supporting a 

positive correlation between higher academic rank and academic engagement 

likelihood. A higher academic rank serves as a signal of high human capital, which, 

in turn, could increase the propensity for academic engagement. Industrial 

researchers likely seek collaboration with the most knowledgeable and experienced 

university scientists, enhancing their likelihood of engagement. Building on these 

considerations, one might anticipate a more positive correlation between academic 

rank and academic engagement likelihood compared with biological/ academic age.  
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On examination of the empirical evidence, research on academic rank aligns 

coherently with these assumptions, affirming that greater seniority is associated with 

increased engagement with industry to foster knowledge creation and transfer. This 

pattern holds true for academics in various countries, including the USA (Boardman 

& Ponomariov, 2009; Link et al., 2007), the UK (Lawson et al., 2019; Tartari et al., 

2014), Italy (Tartari & Breschi, 2012), and Spain (D’Este et al., 2019). 

 

National and ethnic origin 

As previously mentioned, homophily extends its influence to various characteristics, 

including national and ethnic origins (Lazersfeld & Merton, 1954), driven in part by 

the divergence in languages and cultural values across different regions of the world 

(Schwartz, 1999). This dynamic implies that, all else being equal, academic 

engagement is more likely to transpire between researchers sharing the same national 

and/or ethnic background. While empirical studies concerning the impact of national 

origin on academic engagement are somewhat limited, the available research 

corroborates this notion, indicating that native-born university scientists are involved 

in a wider range of intranational academic engagement. Notably, the magnitude of 

disparity in intranational academic engagement breadth increases when comparing 

native-born academics with newly relocated, non-English-native-speaking foreign-

born academics, while foreign-born university scientists tend to engage in a broader 

range of international academic engagement projects (Lawson et al., 2019).  

 

Similarly, in the context of ethnic origin, completing a doctoral degree in the same 

nation where the academic operates is linked to higher overall academic engagement 

(Tartari et al., 2014). Correspondingly, this aspect appears to enhance the scope of 

intranational academic engagement while concurrently diminishing the breadth of 

international academic engagement (Lawson et al., 2019). There is further evidence 

implying that highly mobile (star) university scientists conduct similar levels of both 

intranational and international academic engagement (Edler et al., 2011; Trippl, 
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2013); however, what seems to be of the highest importance is not the frequency of 

visits but rather their duration (Edler et al., 2011).  

 

Moreover, it appears that completing a doctoral degree in the same nation where the 

academic functions reduces barriers associated with research orientation, including 

research alignment and incentives with industry partners. However, it does not 

significantly alleviate transaction-related barriers, such as potential IP and regulatory 

conflicts between the academic institution and industry (Tartari et al., 2012). Taken 

together, these findings suggest that the duration spent in a particular nation plays a 

pivotal role in intranational academic engagement projects, while international origin 

and/or experience emerge as key drivers of international academic engagement 

projects. 

 

2.1.4 Key takeaways from Section 2.1 

- While the academic engagement literature is extensive, there exist related 

areas requiring further research, for example, analysis of the consequences of 

academic engagement in terms of research impact and quality.  

- The focus of this dissertation centers on the individual level, specifically, that 

of academic researchers, as they are the ones who engage in collaborations, 

not their employers.  

- Given that the previous literature emphasizes the individual characteristics of 

well-established researchers, the chosen study population for this research 

consists of professors. The rationale behind this choice is further elaborated 

on in Section 4.1. 

- Similarly, this study concentrates on one scientific discipline, namely, 

electrical engineering, which is an applied field with a high probability of 

university–industry collaboration. See Section 3.1 for more information.  
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2.2 Universities’ role in the knowledge economy 
Various literature streams discuss the role of knowledge in society. This section aims 

to demonstrate how some previous conceptualizations of the knowledge economy in 

economics and innovation studies enhance our comprehension of academic 

engagement as a phenomenon. 

 

2.2.1 Defining the knowledge economy in this literature 

Even before Menger famously stated that “nothing is more certain than that the 

degree of economic progress of mankind will still, in future epochs, be 

commensurate with the degree of progress of human knowledge” (Menger, 1871, p. 

74), society began to gradually become a “knowledge economy.” Menger was by no 

means the only influential scholar to argue for the importance of human capital (i.e., 

human knowledge). For instance, Schumpeter (1934, 1942) argued that the human 

capital that originates within a specific type of individual—the entrepreneur—plays 

a key role in stimulating the economy via introducing new products and new 

procedures, invading new markets, and creating new organizational forms, and 

Romer (1990) proposed that the accumulation of human capital dictates the pace of 

economic growth. 

 

While it is widely believed that Drucker (1969) coined the term “knowledge 

economy” in his influential book The Age of Discontinuity: Guidelines to Our 

Changing Economy (Drucker, 1969), it is important to note that the term was initially 

articulated by the Austrian-American economist Machlup (1962) in his seminal 

work—The Production and Distribution of Knowledge in the United States—seven 

years prior to Drucker’s publication. Currently, the term enjoys widespread 

recognition and finds frequent usage in both academic and industrial contexts, 

despite facing criticism for its lack of clarity (Smith, 2002). Nevertheless, for the 

purpose of this dissertation, “knowledge economy” refers to the “production and 

services based on knowledge-intensive activities that contribute to an accelerated 
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pace of technical and scientific advance, as well as rapid obsolescence” (Powell & 

Snellman, 2004, p. 199).  

 

As outlined by Powell and Snellman (2004), a fundamental element of a knowledge 

economy involves the transition from static comparative advantage, which hinges on 

a nation’s intrinsic physical inputs and/or natural resources, as initially explained by 

Ricardo (1817) and further examined by other academic scholars such as Bernhofen 

and Brown (2018), to a dynamic comparative advantage rooted in intellectual 

capabilities. This dynamic advantage is cultivated within a nation through 

investments aimed at enhancing the human capital of its citizens, as discussed by 

Lucas (1988) and Romer (1990). In this context, human capital can be viewed to 

encompass “the knowledge, information, ideas, skills, and health of individuals” 

(Becker, 1993, p. 1). 

 

Therefore, generally speaking, a nation’s comparative advantage no longer primarily 

arises from its physical inputs or natural resources. Instead, it predominantly stems 

from strategic investments in the accumulation of human capital, thereby fostering 

the generation and management of knowledge-intensive innovations (Antonelli, 

2012; Audretsch & Aldridge, 2009). Theoretically, this transformation leads to 

intensified global competition, as nations now compete based on their intellectual 

capabilities rather than the extent of their natural resources. Empirical research lends 

support to this shift (e.g., Friedman, 2005; Nelson, 1993). 

 

To clarify, while the national dimension remains pertinent, its underlying 

significance has evolved from proximity to valuable physical inputs or natural 

resources to proximity to knowledge (Audretsch & Aldridge, 2008). Another 

fundamental reason for the importance of the national dimension can be attributed to 

the positive effects of clusters, which involve the agglomeration of firms in cities. 

This agglomeration results in several advantageous conditions, such as a larger base 
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of local skilled labor supply, a reduced price of transaction-based knowledge, and a 

decreased cost of ordinary purchases (Karlsson, 2008; Karlsson & Johansson, 2006).  

 

In essence, according to some streams of literature, geographical proximity to 

knowledge plays a pivotal role in facilitating the transfer of knowledge (Balland et 

al., 2015; Boschma, 2005; Storper & Venables, 2004), thereby enabling knowledge 

spillovers to occur (Anselin et al., 1997; Audretsch & Feldman, 1996; Jaffe et al., 

1993). Here, knowledge spillover is defined as “a prototypical externality, by which 

one or a few agents investing in research or technology development will end up 

facilitating other agents’ innovation efforts (either unintentionally, as it happens 

when inventions are imitated, or intentionally, as it may happen when scientists 

divulge the results of their research)” (Breschi & Lissoni, 2001, p. 975).  

 

Researchers agree that knowledge spillover stimulates dynamic externalities 

(Karlsson & Johansson, 2006); however, there is no consensus on the precise manner 

in which it stimulates these dynamic externalities. One perspective, known as the 

Marshall-Arrow-Romer (MAR) externalities, posits that only intra-industry 

knowledge spillovers foster innovation (Glaeser et al., 1992), while an alternative 

viewpoint, termed Jacobs’ (1969) externalities, argues that inter-industry knowledge 

spillovers foster innovation.  

 

2.2.2 Impact of the innovation system literature in highlighting the importance 

of universities 

The literature pertaining to the knowledge economy attracted significant attention 

toward the end of the 20th century, particularly from policy- and decision-makers 

(Sharif, 2006). They are interested in this literature because of “the comprehensive 

and crucial macroeconomic consequences of innovation” (Edquist, 1996, p. xiv). 

Consequently, numerous nations embraced a national innovation system (NIS) 

approach, manifested in the establishment of, for example, governmental innovation 
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agencies. These entities aimed to strengthen national competitiveness (Lundvall, 

1992; Nelson & Rosenberg, 1993). According to this perspective, a nation’s 

competitive advantage hinges primarily on the ability of its firms, with the 

technological capabilities of these firms being pivotal sources of their competitive 

strength. These capabilities possess a certain national character and can be nurtured 

through collective national efforts.  

 

Nelson and Rosenberg (1993) moreover stated that the term “system” refers to “a set 

of institutions [e.g., university laboratories, government laboratories, and firms] 

whose interactions determine the innovative performance … of national firms” (p. 

4). This implies that universities play a significant role in a nation’s competitive 

landscape. In essence, the NIS perspective contends that a nation competes through 

the technological capabilities of its firms, and that these capabilities result from the 

interplay between institutions, encompassing both public (e.g., universities) and 

private (e.g., firms) sectors. 

 

In today’s increasingly globalized and interconnected world, certain scholars 

contend, based on the regional innovation system (RIS) theory, that regions 

themselves, not just nations, engage in competition (Autio, 1998; Johansson et al., 

2009). However, it is crucial to underscore that the very same scholars acknowledge 

that NIS and RIS theories are not mutually exclusive (Autio, 1998; OECD, 1999). 

More precisely, the argument can be made that there are still enough factors tied to 

the national level—such as governmental innovation agencies and national 

policies—to keep the NIS framework applicable. Simultaneously, the argument can 

be made that innovation-related factors specific to contextual settings lend 

applicability to the RIS framework. 

  



46 

 

of local skilled labor supply, a reduced price of transaction-based knowledge, and a 

decreased cost of ordinary purchases (Karlsson, 2008; Karlsson & Johansson, 2006).  

 

In essence, according to some streams of literature, geographical proximity to 

knowledge plays a pivotal role in facilitating the transfer of knowledge (Balland et 

al., 2015; Boschma, 2005; Storper & Venables, 2004), thereby enabling knowledge 

spillovers to occur (Anselin et al., 1997; Audretsch & Feldman, 1996; Jaffe et al., 

1993). Here, knowledge spillover is defined as “a prototypical externality, by which 

one or a few agents investing in research or technology development will end up 

facilitating other agents’ innovation efforts (either unintentionally, as it happens 

when inventions are imitated, or intentionally, as it may happen when scientists 

divulge the results of their research)” (Breschi & Lissoni, 2001, p. 975).  

 

Researchers agree that knowledge spillover stimulates dynamic externalities 

(Karlsson & Johansson, 2006); however, there is no consensus on the precise manner 

in which it stimulates these dynamic externalities. One perspective, known as the 

Marshall-Arrow-Romer (MAR) externalities, posits that only intra-industry 

knowledge spillovers foster innovation (Glaeser et al., 1992), while an alternative 

viewpoint, termed Jacobs’ (1969) externalities, argues that inter-industry knowledge 

spillovers foster innovation.  

 

2.2.2 Impact of the innovation system literature in highlighting the importance 

of universities 

The literature pertaining to the knowledge economy attracted significant attention 

toward the end of the 20th century, particularly from policy- and decision-makers 

(Sharif, 2006). They are interested in this literature because of “the comprehensive 

and crucial macroeconomic consequences of innovation” (Edquist, 1996, p. xiv). 

Consequently, numerous nations embraced a national innovation system (NIS) 

approach, manifested in the establishment of, for example, governmental innovation 

47 

 

agencies. These entities aimed to strengthen national competitiveness (Lundvall, 

1992; Nelson & Rosenberg, 1993). According to this perspective, a nation’s 

competitive advantage hinges primarily on the ability of its firms, with the 

technological capabilities of these firms being pivotal sources of their competitive 

strength. These capabilities possess a certain national character and can be nurtured 

through collective national efforts.  

 

Nelson and Rosenberg (1993) moreover stated that the term “system” refers to “a set 

of institutions [e.g., university laboratories, government laboratories, and firms] 

whose interactions determine the innovative performance … of national firms” (p. 

4). This implies that universities play a significant role in a nation’s competitive 

landscape. In essence, the NIS perspective contends that a nation competes through 

the technological capabilities of its firms, and that these capabilities result from the 

interplay between institutions, encompassing both public (e.g., universities) and 

private (e.g., firms) sectors. 

 

In today’s increasingly globalized and interconnected world, certain scholars 

contend, based on the regional innovation system (RIS) theory, that regions 

themselves, not just nations, engage in competition (Autio, 1998; Johansson et al., 

2009). However, it is crucial to underscore that the very same scholars acknowledge 

that NIS and RIS theories are not mutually exclusive (Autio, 1998; OECD, 1999). 

More precisely, the argument can be made that there are still enough factors tied to 

the national level—such as governmental innovation agencies and national 

policies—to keep the NIS framework applicable. Simultaneously, the argument can 

be made that innovation-related factors specific to contextual settings lend 

applicability to the RIS framework. 

  



48 

 

2.2.3 Universities’ changing identity  

We have compelling theoretical arguments, supported by empirical evidence, 

indicating the significance of inter-organizational collaborations, such as university–

industry collaborations, in driving economic progress (e.g., Lundvall, 1992; Nelson 

& Rosenberg, 1993). The mechanisms through which university–industry 

collaborations contribute to this progress have been investigated in existing research. 

According to McKelvey and Ljungberg (2017), who term it “collaborative research,” 

university–industry collaborations have a positive impact on the innovation 

capabilities of participating firms through two distinct avenues. These avenues are 

direct enhancement via commercialization, and indirect enhancement through 

academic engagement, subsequently augmenting the competitive advantage of 

innovative firms. This activity is depicted in Figure 2.3, below. 
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Figure 2.3. Conceptual framework of how collaborative research between universities and firms can influence firm 
innovation (McKelvey & Ljungberg, 2017). 

 

In greater detail, McKelvey and Ljungberg (2017) contend that the direct pathway, 

referred to as commercialization, has the potential, if successful, to directly yield 

innovations in products and/or processes. In contrast, the indirect pathway—denoted 

academic engagement—has the potential, if successful, to indirectly yield 

innovations in products and/or processes through facilitating knowledge transfer and 

learning, stimulating positive signaling effects such as collaborating with a 

prominent university, and nurturing social capital. Here, social capital refers to “the 

sum of the actual and potential resources embedded within, available through, and 

derived from the network of relationships possessed by an individual or social unit” 

(Nahapiet & Ghoshal, 1998, p. 243). Other studies provide further empirical 

evidence for McKelvey and Ljungberg’s (2017) theoretical framework. For example, 

university–industry collaborations have been found to both directly amplify firm 
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industry collaborations, in driving economic progress (e.g., Lundvall, 1992; Nelson 

& Rosenberg, 1993). The mechanisms through which university–industry 

collaborations contribute to this progress have been investigated in existing research. 

According to McKelvey and Ljungberg (2017), who term it “collaborative research,” 

university–industry collaborations have a positive impact on the innovation 

capabilities of participating firms through two distinct avenues. These avenues are 

direct enhancement via commercialization, and indirect enhancement through 

academic engagement, subsequently augmenting the competitive advantage of 

innovative firms. This activity is depicted in Figure 2.3, below. 
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Figure 2.3. Conceptual framework of how collaborative research between universities and firms can influence firm 
innovation (McKelvey & Ljungberg, 2017). 
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innovativeness through commercialization (e.g., González-Pernía et al., 2015) and 

indirectly augment firm innovativeness through academic engagement (e.g., Berg & 

McKelvey, 2020).  

 

As stated above, the perceived positive impacts of university–industry collaborations 

have not gone unnoticed. Policy- and decision-makers have asserted that universities 

could enhance their contributions to the economy by intensifying their collaborative 

efforts with industry and strengthening their involvement in entrepreneurial and 

business-oriented activities. These activities include academic patenting, licensing, 

and the establishment of academic start-ups. This led a number of member nations 

within the Organisation for Economic Co-operation and Development (OECD) to 

extend the two traditional missions of universities (first mission: education; second 

mission: research) to encompass a third mission, explicitly focusing on these types 

of undertakings (Gulbrandsen & Slipersæter, 2007). This expansion was partially a 

response to such developments and was also influenced by various other factors 

(elaborated on below). As a result of these dynamics, the engagement of universities 

in third-mission activities witnessed substantial growth in numerous OECD member 

nations toward the end of the 20th century/beginning of the 21st century (Benner & 

Sörlin, 2015; Bercovitz & Feldman, 2008; Jankowski, 1999; Lissoni et al., 2008, 

2011; Vincent-Lancrin, 2006). More recent empirical findings, derived from two 

surveys of university scientists in the UK (conducted in 2008–2009 and 2015), 

suggest that the prevalence of activities associated with the third mission has 

remained stable (Hughes et al., 2016; Lawson et al., 2016). This suggests that the 

prevalence of third-mission activities has reached a state of equilibrium, a phase that 

should not be viewed negatively but rather signifies the enduring presence and 

significance of these activities within the university landscape.  

 

The upsurge in university–industry collaboration in recent decades can also be 

attributed to a combination of factors influencing both universities and firms. From 
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the universities’ perspective, at the organizational level, two noteworthy global 

trends emerged toward the close of the 20th century that “forced” universities to 

engage more extensively with the private sector. The first trend manifested as a 

relative reduction in funding from governmental sources, while the second trend saw 

a greater proportion of government funds being allocated through contract research 

arrangements, rather than relying on fixed funding allocations based on previous 

years’ distributions. In other words, the financial landscape for universities 

underwent an unfavorable transformation. These trends were prevalent across most 

OECD member nations (Heyman & Lundberg, 2002; Jankowski, 1999; Vincent-

Lancrin, 2006). 

 

Managing and evaluating such interaction is no simple task, given the distinct 

contexts in which university scientists and industrial researchers operate—the former 

within academic institutions and the latter within corporate entities (Bruneel et al., 

2010; Perkmann et al., 2011). This distinction has significance, as these two types of 

organizations are driven by divergent primary objectives: universities are oriented 

toward knowledge (generation, transfer, and diffusion), while firms prioritize 

profitability (Friedman, 1962; Merton, 1973; Nightingale, 1998). In essence, one 

could posit that university scientists perceive the creation of knowledge as their 

primary aim, with solving business challenges serving as a means to achieve that 

objective. On the other hand, industrial researchers regard capitalizing on resolving 

business issues as their primary goal, viewing knowledge as a tool to attain that goal. 

This difference has given rise to several barriers, including disputes over the 

distinction between public and private knowledge (Bruneel et al., 2010; Murray & 

O’Mahony, 2007) and conflicts concerning IP rights (Bruneel et al., 2010; Hall et al., 

2001). Overcoming these barriers is essential for the successful realization of 

university–industry collaborations. 
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In the context of the dynamics surrounding university–industry collaboration, a 

profound shift has become apparent in the roles assumed by higher education 

institutions. This transformation has partly been prompted by the emergence of the 

third mission and the changing financial landscape. These developments have 

significantly reshaped the essence and function of universities. 

 

According to some scholarly perspectives, universities, traditionally seen as 

institutions dedicated to “developing new areas of knowledge through research for 

use in future decades—and of widening the societal base of knowledge through 

teaching and diffusion of students” (Deicaco et al., 2009, p. 301), have undergone a 

notable transformation. This shift has led them to adopt a more competitive stance, 

positioning themselves as active players in the realm of knowledge dissemination. 

Their primary objective has evolved to that of producing knowledge that 

immediately addresses the needs of students, businesses, and society at large 

(Deicaco et al., 2009; McKelvey & Holmén, 2009). 

 

Another group of scholars emphasizes a different dimension of change in the 

evolution of universities’ roles. Initially, universities engaged in activities 

specifically tailored to compete with corporate entities. These activities ranged from 

offering targeted solutions to specific problems to capitalizing on these solutions 

through strategies such as patenting and licensing. Over time, this role expanded to 

encompass a broader range of endeavors aimed at enhancing individual 

competencies within the knowledge-driven economy. Specifically, these include 

fostering thinking, developing effective leadership skills, and promoting initiatives 

designed to bolster entrepreneurial capital (Audretsch, 2014; Audretsch et al., 2014).  

 

It is worth restating that each of these viewpoints concerning the evolution of 

universities’ roles offers only a partial view of the broader perspective. As a result, 

these theories do not inherently contradict one another. What can be noted is that a 
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prominent theme arises from these dialogues, and that is the overarching notion of 

increased collaboration between universities and corporate entities. This 

collaborative effort leads to a collective impact on the broader societal context. 

 

2.2.4 Key takeaways from Section 2.2 

- The current literature on academic engagement is rooted in the fields of the 

economics of innovation and innovation studies. These fields have a primary 

focus on the development and diffusion of knowledge and its impact on the 

economy. 

- Scholars in these and related streams of research have actively engaged with 

policymakers, advocating for increased university involvement with society 

and industry to promote economic growth. 

- In the present day, universities and their researchers are involved in three core 

activities: teaching, research, and the “third mission,” which encompasses 

academic commercialization and various forms of academic engagement. 

These activities result in a range of outcomes and in impacts on both the 

academic and economic landscapes. 
 

2.3 Redefining academic engagement analysis: knowledge network 

and knowledge creation insights 
This section provides an account of the literature relating to knowledge networks and 

knowledge creation. This section consists of two parts: part one relates to core 

concepts and approaches, while part two concentrates on knowledge networks 

mainly in science but also in technology.   

 

2.3.1 Core concepts and approaches 

This section begins by taking a step backwards and defining knowledge and 

knowledge networks. Subsequently, it outlines research pertaining to the sociocentric 

and egocentric perspectives. The former encapsulates and directs its attention toward 



52 

 

In the context of the dynamics surrounding university–industry collaboration, a 

profound shift has become apparent in the roles assumed by higher education 

institutions. This transformation has partly been prompted by the emergence of the 

third mission and the changing financial landscape. These developments have 

significantly reshaped the essence and function of universities. 

 

According to some scholarly perspectives, universities, traditionally seen as 

institutions dedicated to “developing new areas of knowledge through research for 

use in future decades—and of widening the societal base of knowledge through 

teaching and diffusion of students” (Deicaco et al., 2009, p. 301), have undergone a 

notable transformation. This shift has led them to adopt a more competitive stance, 

positioning themselves as active players in the realm of knowledge dissemination. 

Their primary objective has evolved to that of producing knowledge that 

immediately addresses the needs of students, businesses, and society at large 

(Deicaco et al., 2009; McKelvey & Holmén, 2009). 

 

Another group of scholars emphasizes a different dimension of change in the 

evolution of universities’ roles. Initially, universities engaged in activities 

specifically tailored to compete with corporate entities. These activities ranged from 

offering targeted solutions to specific problems to capitalizing on these solutions 

through strategies such as patenting and licensing. Over time, this role expanded to 

encompass a broader range of endeavors aimed at enhancing individual 

competencies within the knowledge-driven economy. Specifically, these include 

fostering thinking, developing effective leadership skills, and promoting initiatives 

designed to bolster entrepreneurial capital (Audretsch, 2014; Audretsch et al., 2014).  

 

It is worth restating that each of these viewpoints concerning the evolution of 

universities’ roles offers only a partial view of the broader perspective. As a result, 

these theories do not inherently contradict one another. What can be noted is that a 

53 

 

prominent theme arises from these dialogues, and that is the overarching notion of 

increased collaboration between universities and corporate entities. This 

collaborative effort leads to a collective impact on the broader societal context. 

 

2.2.4 Key takeaways from Section 2.2 

- The current literature on academic engagement is rooted in the fields of the 

economics of innovation and innovation studies. These fields have a primary 

focus on the development and diffusion of knowledge and its impact on the 

economy. 

- Scholars in these and related streams of research have actively engaged with 

policymakers, advocating for increased university involvement with society 

and industry to promote economic growth. 

- In the present day, universities and their researchers are involved in three core 

activities: teaching, research, and the “third mission,” which encompasses 

academic commercialization and various forms of academic engagement. 

These activities result in a range of outcomes and in impacts on both the 

academic and economic landscapes. 
 

2.3 Redefining academic engagement analysis: knowledge network 

and knowledge creation insights 
This section provides an account of the literature relating to knowledge networks and 

knowledge creation. This section consists of two parts: part one relates to core 

concepts and approaches, while part two concentrates on knowledge networks 

mainly in science but also in technology.   

 

2.3.1 Core concepts and approaches 

This section begins by taking a step backwards and defining knowledge and 

knowledge networks. Subsequently, it outlines research pertaining to the sociocentric 

and egocentric perspectives. The former encapsulates and directs its attention toward 



54 

 

the entire network, whereas the latter revolves around a central actor within the 

network, commonly referred to as the ego (Marsden, 2002). 

 

Defining knowledge and knowledge networks 

Information is an artifact, built on data, that can yield knowledge, and it can be 

identified as a flow of messages (Nonaka, 1994), or as a signal (Dretske, 1981), that 

carries information. Information only becomes knowledge when it is obtained 

through cognitive efforts and integrated into people’s minds (Davenport & Prusak, 

1998; Nonaka, 1994; Stonier, 1990), so knowledge is, in that sense, personal 

(Dretske, 1981; Nonaka, 1994; Polanyi, 1958). One can also say that knowledge is 

therefore a hierarchal concept (Smith, 2002).  

 

What knowledge entails, and especially whether it must be absolutely true or not, has 

been the subject of philosophical debate for millennia—dating back to the famous 

Greek philosophers (cf. Ayer, 1956; Chisholm, 1977; Dutant, 2015; Gettier, 1963). 

Further elaborating, more than 2000 years ago Plato famously argued in his dialogue 

Theaetetus that knowledge can be defined as “true belief” (Chappell, 2019). This was 

recently echoed by Ayer (1956), who concluded that the “necessary and sufficient 

conditions for knowing that something is the case are first that what one is said to 

know be true, second that one be sure of it, and third that one should have the right 

to be sure” (p. 34). However, this is in stark contrast to other philosophers, such as 

Gettier, who have argued that knowledge does not need to be true in the absolute 

sense (Gettier, 1963; see also Chisholm, 1977; Dutant, 2015).  

 

Although this debate is still ongoing, this dissertation adopts the definition of 

knowledge as rational justified belief, following Gettier (1963) and Chisholm (1977). 

Rational justification, which replaces the notion that knowledge must be, in its 

absolute sense, true, suggests that knowledge may, in some circumstances, turn out 

to be false; however, it is still defined as knowledge, as long as it was based on 
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rational justification such as empirical findings suggesting that it was true. This 

working definition is furthermore closely aligned with the views of Karl Popper, who 

argued that all knowledge is provisional/hypothetical in the sense that we can never 

truly prove our scientific theories; rather, we can merely provisionally confirm them, 

or ultimately, conclusively refute them (Popper, 1935, 1965).  

 

Before proceeding to the next section, it is arguably also important to distinguish two 

types of knowledge, namely, explicit knowledge and tacit knowledge. According to 

Polanyi (1958, 1966), explicit knowledge refers to knowledge that is objective and 

structured, making it easier to communicate and document. Tacit, or implicit, 

knowledge, on the other hand, represents knowledge that is subjective and possesses 

a personal quality, rendering it more challenging to formalize and communicate or 

document. Numerous empirical studies have been undertaken to support this theory 

(e.g., Edmondson et al., 2003; Hansen, 2002; Levin & Cross, 2004; Reagans & 

McEvily, 2003; Zander & Kogut, 1995). 

 

In this Ph.D. dissertation, the term “knowledge network” is adopted according to the 

perspective of Phelps et al. (2012). Per their definition, a knowledge network is “a 

set of nodes—individuals or higher level collectives that serve as heterogeneously 

distributed repositories of knowledge and agents that search for, transmit, and create 

knowledge—interconnected by social relationships that enable and constrain nodes’ 

efforts to acquire, transfer, and create knowledge” (Phelps et al., 2012, p. 1117). In 

a knowledge network, nodes (such as individuals) participate in collaborations aimed 

at acquiring, sharing, and generating knowledge. These collaborations, symbolized 

by edges within the network, contribute to the accumulation of human capital at 

individual nodes. In the realm of science and technology, knowledge networks 

represent a concept that encapsulates the intricate web of knowledge-related 

interactions among diverse elements within a system. In this context, the outcomes 

of these endeavors, such as scientific publications and technological patents, are 
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viewed as manifestations of knowledge networks. Within this framework, authors 

and inventors function as nodes, while publications and patents act as the connecting 

edges between them.  

 

In their comprehensive literature review on knowledge networks, Phelps et al. (2012, 

p. 1119) argued that four main types of properties affect knowledge outcomes (with 

knowledge outcomes referring to “knowledge creation, knowledge transfer and 

learning, and knowledge adoption”): structural properties, nodal properties, 

relational properties, and knowledge properties. 

 

Structural properties refer to research examining how the structure of the network 

influences knowledge outcomes (e.g., the overall knowledge network’s density and 

the nodes’ centrality in the knowledge network). 

 

Nodal properties refer to research examining how different node characteristics and 

traits affect knowledge outcomes (e.g., the nodes’ level of education). 

 

Relational properties refer to research examining how the relationships between 

nodes affect knowledge outcomes (e.g., the strength of the relationships between 

nodes). 

 

Knowledge properties refer to research examining how different kinds of knowledge 

influence knowledge outcomes (e.g., the type of knowledge being transferred or 

created). 

 

The various properties of a knowledge network are interconnected (Borgatti & Cross, 

2003; Kossinets & Watts, 2009; Reinholt et al., 2011). This implies that to accurately 

analyze a knowledge network, one must consider not only the structure of the 

network but also the attributes of the nodes, the relationships among them, and the 
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type of knowledge being transmitted and/or created. Comprehending these dynamics 

is of paramount importance in grasping knowledge creation, transfer, learning, and 

adoption—cornerstones of economic growth (Lucas, 1988; Menger, 1871; Romer, 

1990).  

 

Sociocentric approach 

The structure of the entire network has an impact on knowledge outcomes (Phelps et 

al., 2012). Typically, the network structure is assessed by its density, which 

informally quantifies the extent to which individuals within the network are 

connected (Knoke & Yang, 2020; Koschützki et al., 2005). This fundamental 

measure was originally introduced by Proctor and Loomis in 1951, as documented 

by Koschützki et al. (2005).  

 

At one extreme, if no individuals are connected, it implies that all knowledge creation 

occurs in isolation, with no sharing of created knowledge among individuals. As 

previously argued in this dissertation, this scenario is far from ideal. Conversely, at 

the opposite extreme, if all individuals are interconnected, it indicates that at least 

some aspects of knowledge outcomes are shared among every individual within the 

network. For a large network, this seems unattainable and highly ineffective; thus, 

there seems to be a “sweet spot” with regard to overall connectedness that supports 

productive and successful knowledge outcomes.  

 

The underlying conceptual foundation for why higher density can positively affect 

knowledge outcomes is that density increases both the amount of information an 

individual can receive and the levels of obligations, expectations, trustworthiness, 

and coordination among individuals, as argued by Coleman (1988, 1990). However, 

excessive density can theoretically, in the long run, negatively affect knowledge 

outcomes due to the redundancy of old information and the lack of novel information 

(Burt, 1992; Granovetter, 1973). In his famous article, “The strength of weak ties,” 
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published more than 50 years ago, Granovetter (1973) examined the concept of 

“weak ties,” which has since become foundational in the field of social network 

analysis. His groundbreaking work challenged traditional assumptions about the role 

of strong ties (i.e., close relationships) versus weak ties (i.e., more distant 

acquaintances) in the diffusion of information and social influence within networks. 

In short, his findings suggest that weak ties are important for bridging social distance 

and allowing the spread of information beyond one’s immediate circle of contacts.  

 

Empirical research investigating this phenomenon and knowledge outcomes 

indicates that higher overall connectedness is positive for knowledge outcomes, and 

this has been found to be true in several settings, such as U.S. patent data (Singh, 

2005), small- to medium-sized enterprises (SMEs) in China (Cong et al., 2017), and 

the chemicals, automotive, and pharmaceutical industries (Gilsing et al., 2008); 

however, excessive density has been shown to have a detrimental effect on 

knowledge outcomes (Gilsing et al., 2008), as theorized.  

 

Egocentric approach 

The egocentric perspective places a focal actor (i.e., the ego) at its core. This 

perspective has two fundamental dimensions: network positions and roles. Network 

position pertains to an actor’s placement within the broader network, signifying their 

location relative to other actors within the network. Conversely, the concept of roles 

is rooted in the specific interactions and relationships an actor maintains within their 

immediate network. In other words, “having a definition of role is not the same as 

having a definition of position. Positions can be thought of as specific locations in a 

particular social structure; roles, in contrast, should provide a way of classifying 

positions across any number of distinct social networks, or within different parts of 

the same network” (Winship & Mandel, 1983–1984, p. 316).  
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The relationship between network position and network role is thus twofold. To start 

with, different network positions can be categorized into distinct network roles, for 

example, using betweenness centrality scores to define intermediaries among actors 

in the network who have scores above the 75th percentile. By way of contrast, 

specific network roles diverge from network positions in that the former focus on 

identifying unique roles within the network based on connection patterns within an 

actor’s immediate set or sets of contacts, while the latter focus on identifying an 

actor’s position relative to all other actors in the network (Koschützki et al., 2005; 

Lerner, 2005). 

 

What follows is a review on these two aspects, starting with network positions. 

 

Network positions 

The specific position within a network can influence knowledge outcomes (Phelps 

et al., 2012). This effect arises from the fact that distinct positions within the network 

are exposed to different quantities and qualities of information, with more central 

positions generally considered advantageous (Borgatti, 2005; Ebadi & Utterback, 

1984; Freeman, 1978/1979). 

 

It is crucial to acknowledge, however, that the concept of centrality possesses some 

degree of ambiguity, as it pertains to various conceptual foundations (Borgatti, 2005; 

Freeman, 1978/1979). In essence, centrality encompasses multiple meanings. 

Therefore, when discussing centrality, it is imperative not merely to allude to 

“centrality” in general terms but rather to specify the particular type of centrality 

under consideration. Over the years, numerous centrality measures have been 

developed.7  

  

 
7 For example, the CINNA package in R has 49 different centrality measures (Ashtiani et al., 2023). 
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This dissertation will concentrate on three of the most prominent ones, i.e., degree 

centrality, eigenvector centrality, and betweenness centrality, each of which 

emphasizes distinct and critical aspects of centrality. 

 

The concept of degree centrality focuses on connectedness, specifically referring to 

the number of direct collaborators an actor possesses (Freeman, 1978/1979). 

Although this measure is intuitively understandable, it is essential to briefly delve 

into its underlying conceptual foundation to mitigate any potential ambiguities.8 On 

one hand, a higher degree centrality corresponds to greater exposure to information, 

leading other actors in the network to perceive individuals with higher degree 

centrality as major channels of information (Freeman, 1978/1979). On the other 

hand, a point not addressed by Freeman (1978/1979) is that higher degree centrality 

is also more time-consuming (Coleman, 1988, 1990) and may result in redundant 

information (Burt, 1992; Granovetter, 1973). This suggests that an optimal degree 

centrality exists, contingent on various factors such as the time commitment of each 

collaborator and the novelty of the information they possess.  

 

Extensive research has explored this phenomenon, consistently supporting the 

outlined concepts. Specifically, numerous studies have identified a positive 

correlation between degree centrality and knowledge outcomes across various 

settings, including the chemical industry (Ahuja, 2000), the pharmaceutical industry 

(McKelvey & Rake, 2016), a multinational electronics company (Hansen, 2002), and 

a Swedish information and technology company (Björk & Magnusson, 2009). 

Conversely, excessive degree centrality has been found to be detrimental, as it 

demands excessive time and energy (Hansen, 2002; McFadyen & Cannella Jr., 

2004). Consequently, it appears that the number of collaborators an individual 

 
8 In fact, when the specific measure was first introduced by Shaw, he did not even bother discussing 

its conceptual foundation (Shaw, 1954). 
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possesses and the knowledge outcomes from collaboration with them follow a well-

established U-shaped curve. 

 

The concept of the eigenvector centrality model underscores the influence and 

prestige of actors within their immediate network by focusing not on the quantity of 

connections but on their quality. It specifically quantifies the number of direct 

collaborators an actor has, with their contributions being weighted by their 

eigenvector centralities (Bonacich, 1972, 1987). The foundational idea behind this 

measure is the notion that individuals connected to highly influential actors, who in 

turn exert significant influence over other actors (who, in their own right, influence 

additional actors), also possess influence, even if their degree centrality is low 

(Borgatti, 2005). In other words, individuals with high eigenvector centrality gain 

exposure to more information because their collaborators are exposed to high levels 

of information, not merely due to having numerous collaborators, as is the case with 

degree centrality. Furthermore, these individuals exert a greater impact on the 

network, assuming they can influence highly connected individuals, who 

subsequently influence a multitude of others. Put plainly, an individual’s influence 

is not solely determined by their degree centrality (Cook & Emerson, 1978). 

 

On one hand, hypotheses have been formulated, and empirically supported with data 

on the Korean semiconductor industry, suggesting that high eigenvector centrality 

positively affects knowledge outcomes (Kim, 2019). This positive effect is argued to 

result from the individual’s connections to influential and prestigious figures who 

are exposed to extensive knowledge flows. On the other hand, in the U.S. 

pharmaceutical industry, hypotheses have been proposed and supported contending 

that high eigenvector centrality exerts a negative influence on knowledge outcomes 

(Dong & Yang, 2016). This negative effect is attributed to connections with 

influential and prestigious individuals who primarily possess well-established 

knowledge, which has a diminished potential to generate subsequent knowledge 
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outcomes. In contrast, other research in the pharmaceutical industry suggests that 

eigenvector centrality has a non-significant effect on knowledge outcomes 

(McKelvey & Rake, 2016).  

 

As an interim conclusion, it is apparent that being connected to influential individuals 

plays a pivotal role in knowledge outcomes, although it may come at the cost of 

limited exposure to novel information. 

 

The concept of betweenness centrality focuses on the intermediary role, referring to 

the extent to which one individual appears on the shortest path connecting other 

actors in the network (Freeman, 1977, 1978/1979). While Freeman is arguably the 

one who popularized the concept as we know it today, it was first introduced by 

Anthonisse (1971) as flow centrality. According to Burt (e.g., 1992, 1997), 

betweenness centrality is a common measure for detecting whether an individual 

spans structural holes, which are defined as the “relationship of nonredundancy 

between two contacts” (Burt, 1992, p. 18). Nonredundancy refers to contacts that are 

either directly disconnected (i.e., there is no direct contact [edge] between them) or 

indirectly disconnected (i.e., the contacts’ knowledge network consists of different 

actors).9 One can clearly see how individuals with high betweenness centrality span 

many structural holes. 

 

The structural hole theory postulates that individuals spanning multiple otherwise 

poorly connected (knowledge) networks may benefit from transferring diverse 

information between these networks. This gives rise to specific information benefits, 

such as access to new information and/or control benefits, such as controlling the 

flow of new information (Burt, 1992, 1997; Freeman, 1977, 1978/1979). 

 
9 Burt (1992) referred to the former, directly disconnected contacts, as redundancy by cohesion, 

and the latter, indirectly disconnected contacts, as redundancy by structural equivalence.  
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Importantly, one underlying assumption of this theory is that different knowledge 

networks provide different information. Therefore, individuals connected to several 

different knowledge networks know about, have a hand in, and exercise control over 

more opportunities. 

 

Assuming that the theory holds true, there are at least two downsides to having too 

high a betweenness centrality (i.e., spanning too many structural holes). First, the 

information an individual receives via collaborations that span a structural hole is 

more difficult to assimilate because it is different—it is novel. This is true because 

an individual’s capacity to assimilate information is largely a function of prior related 

knowledge (Cohen & Levinthal, 1990). A second drawback is that trust development 

between collaborators is inhibited due to lower levels of obligations (Coleman, 1988, 

1990). 

 

Regarding empirical findings, the results are mixed. High levels of structural holes 

(or betweenness centrality) have been found to positively affect knowledge outcomes 

(Rost, 2011; Ter Wal et al., 2016), have no effect on knowledge outcomes 

(McKelvey & Rake, 2016), or negatively affect knowledge outcomes (Ahuja, 2000; 

Gilsing et al., 2008; Ter Wal et al., 2016). When analyzing these papers more deeply, 

it further seems that whether or not spanning structural holes is positive for an 

individual depends on the structure of cognitive proximity and/or the strength of the 

relationship between collaborators.  

 

Specifically, Ter Wal et al. (2016) found that spanning structural holes is positive 

when the cognitive proximity between collaborators is high, meaning they have a 

more similar knowledge base; conversely, it was negative when they had low 

cognitive proximity. Ahuja (2000) found that spanning a structural hole is positive 

when the relationship between collaborators spanning that structural hole is strong 

and negative when their relationship is weak. 
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In conclusion, these findings imply that whether spanning structural holes is positive 

or negative for knowledge outcomes mainly depends on the collaborators’ cognitive 

proximity and how well they know each other. 

 

Roles 

One can conceptualize different network roles as unique structural signatures, as 

observed in network analysis (Skvoretz & Faust, 2002). This line of research thus 

rests on the foundational premise that various “social roles begin from a structural 

foundation in simple commonalities in behavior” (Gleave et al., 2009, p. 2), meaning 

that different structural positions (or signatures) within the network correspond to 

distinct behaviors.10 

 

To illustrate this concept, consider the example presented in Figure 2.4, below, which 

depicts three ego networks. These networks differ in the pattern of connections 

among neighbors while maintaining a consistent number of neighbors for each ego. 

Specifically, the ego’s degree centrality remains constant while the number of edges 

among the ego’s contacts varies. In this example, the key network metric is the local 

clustering coefficient, defined as the ratio of observed connections among an actor’s 

neighbors and the total possible connections among an actor’s neighbors (Watts & 

Strogatz, 1998).11 

 

In Case A, this coefficient equals 0/10, in Case B, 5/10, and in Case C, 10/10. As 

previously elucidated, the ego in Network A is relatively more likely to receive novel 

 
10 The broader idea of social roles is a well-established and central idea within sociology (e.g., 

Merton, 1968; Parsons, 1951). For a broader and more thorough discussion of roles, I recommend 

the Handbook of Sociological Theory, Ch. 11 by Stryker (2001) and Ch. 12 by Turner (2001). 

11 Mathematically, this equals # of observed connections
(k(k−1)

2 )
 for an undirected network, where k is the 

number of neighbors (Watts & Strogatz, 1998). 

65 

 

information from their diverse neighbors, albeit at the expense of lower levels of 

obligations, expectations, trustworthiness, and coordination. In contrast, the ego in 

Network C is predisposed, over the long term, to encounter redundant information 

and a lack of novel insights (cf. Burt, 1992; Coleman, 1988, 1990; Granovetter, 

1973). To summarize this straightforward yet, hopefully, enlightening example, roles 

can be attributed to the distinct egos, particularly distinguishing A from C. The ego 

in Network A assumes the role of a coordinator, whereas the ego in Network C 

assumes the role of a team player. 

 

 
Figure 2.4. Different neighbors’ behavior suggest different ego network roles. 

 

The role that has attracted the most attention in the scientific literature is that of the 

knowledge network broker. As mentioned in the previous discussion, betweenness 

centrality is often considered a proxy measure of brokerage. Nevertheless, some 

scholars argue for the importance of distinguishing between proxies of brokerage, 

such as betweenness centrality, and the distinct role of serving as a knowledge 

network broker. This differentiation arises because betweenness centrality computes 

the shortest paths connecting other actors within the network, while “long paths do 

not seem, either empirically or intuitively, to play a very important role in purposive 

social interaction” (Gould & Fernandez, 1989, p. 95). 
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Taking these considerations into account, Gould and Fernandez (1989) formulated 

an original theoretical framework delineating various brokerage roles, which they 

referred to as “brokerage behaviors,” for actors within transaction networks. Their 

work introduced a typology consisting of five distinct roles, as depicted on the left-

hand side of Figure 2.5, below. The figure illustrates these roles, with the first type 

being the coordinator, also known as the local broker. This role involves facilitating 

communication among actors belonging to the same group as the coordinator. The 

second type is the itinerant, also known as the cosmopolitan, which entails 

facilitating communication among actors from different groups than that of the 

itinerant. The third type is the gatekeeper, responsible for enabling communication 

from an actor in a different group to an actor in the same group as the gatekeeper. 

The fourth type is the representative, facilitating communication from an actor in the 

same group to an actor in another group, acting as a representative. Lastly, the fifth 

type is the liaison, aiding communication from an actor in one group to an actor in a 

third group, operating as a liaison. In parallel with betweenness centrality serving as 

a proxy for being an intermediary, the distinct network roles elucidated above are not 

absolute measures of an actor’s degree of engagement in that role; instead, they offer 

approximations of an actor’s potential to fulfill such a role (Gould & Fernandez, 

1989). 

 

Expanding on this foundational work, Lissoni (2010) adapted the concept of 

brokering roles to better suit their analysis of academic inventors affiliated with 

Italian universities, with a particular focus on their activities related to patents. 

Lissoni’s refined categorization of four brokerage positions is depicted on the right-

hand side of Figure 2.5. Academic researchers assume the role of brokers when they 

engage in collaborations between two industrial researchers. They take on the role of 

gatekeepers when they participate in collaborations between an academic researcher 

and an industrial researcher. The role of liaison emerges when they collaborate 

between an academic student and an industrial researcher. Finally, they serve as 
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coordinators when facilitating collaborations between two other academic 

researchers. 

 

 
Figure 2.5. Different brokerage behaviors/types according to Gould and Fernandez (1989; left) and Lissoni (2010; 
right). 

 

Employing a negative binomial model, Lissoni (2010) conducted an analysis 

showing that “only a minority of academic inventors play important brokerage roles, 

and that scientific productivity, intensity of patenting activity, and the type of patent 

assignees (companies vs. universities or individuals) are all correlated to such roles” 

(p. 844). Distinctions were also found among these roles. Specifically, Lissoni 

identified noteworthy correlations between the number of university-owned patents 

signed by academic researchers and high brokerage scores for gatekeepers, 
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coordinators, and liaisons. However, no significant effects were observed for the 

broker role. Conversely, negative correlations were noted between the number of 

individually owned patents signed by academic researchers and high brokerage 

scores for brokers and gatekeepers, while no significant effects were found for the 

coordinator and liaison roles.  

 

These findings align well with the nature of the different roles. For instance, the 

broker role inherently involves an academic researcher collaborating between two 

industrial researchers; consequently, the negative correlation with individually 

owned patents is unsurprising, given the expectation that firms often hold patent 

ownership. Lissoni (2010) also effectively highlighted the fact that actors can 

simultaneously occupy multiple roles to varying extents. This insight underscores 

the unsurprising notion that actors possess multiple structural signatures contingent 

on how the network is examined. 

 

Building on the original work of Gould and Fernandez (1989), Llopis and D’Este 

(2022) conducted a large-scale study of biomedical scientists. They applied a cost–

benefit perspective (see Dahlander et al., 2016) to examine the importance of 

facilitating innovation through various broker roles. The cost–benefit perspective 

results from the interplay of two opposing forces: the non-redundant knowledge 

provided by network contacts and the costs associated with integrating that 

knowledge from the network. Llopis and D’Este distinguished between balanced 

triadic structures and unbalanced ones. The former denotes collaborations 

characterized by mutual cooperation and positive relationships among members, 

which tend to be more stable and avoid relational tensions; in contrast, the latter are 

less stable and can lead to stress and discomfort among their members. 

 

In line with Gould and Fernandez’s terminology, Llopis and D’Este (2022) focused 

on four roles: gatekeeper, itinerant, liaison, and coordinator. They classified 
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gatekeeper and itinerant roles as balanced because two out of the three members 

belong to one organization, resulting in a favorable balance between accessing new 

information and ease of integrating said information. On the other hand, liaison and 

coordinator roles were associated with unbalanced triadic structures, where either all 

members come from the same organization or none do. This configuration results in 

limited access to knowledge or difficulties in assimilating that knowledge. 

 

Their findings are aligned with their theoretical framework. Specifically, balanced 

open triads, represented by gatekeepers and itinerants, played a more crucial role in 

facilitating individual innovativeness than did unbalanced open triads, which 

included coordinators and liaisons. 

 

2.3.2 Knowledge networks in science and technology 

The driving force behind the growing importance of knowledge-related 

collaborations lies in the continuous expansion of the total volume of knowledge 

worldwide, which far surpasses an individual’s capacity to comprehend it.12 As a 

result, the process of generating new knowledge becomes progressively more 

challenging, as individuals need to acquire a greater amount of knowledge before 

they can effectively contribute to new knowledge. This highlights the necessity of 

collaborative efforts, in which individuals can pool their knowledge and expertise to 

collectively advance the frontiers of knowledge. 

 

The importance of understanding research collaborations is further supported by 

various studies that examine the age at which researchers achieve significant 

milestones in their careers. For example, studies analyzing the age at which 

researchers publish their first article in prestigious journals (Brendel & Schweitzer, 

 
12 Here, the term “collaboration” broadly refers to “social processes whereby human beings pool 

their human capital for the objective of producing knowledge” (Bozeman et al., 2013, p. 3). 
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2019) and the age of Nobel Prize laureates (Jones, 2010) demonstrate a trend of 

knowledge advances being achieved by individuals at later stages of their careers. In 

the context of publishing research articles, Brendel and Schweitzer (2019) 

exclusively focused on the field of mathematics. Their findings revealed that the 

average age at which authors publish their first article in a top-ranked mathematics 

journal had increased by five years over a span of 64 years. In greater detail, the 

average age rose from 28.3 years in 1950 to 33.3 years in 2013, suggesting that 

researchers are achieving significant research contributions at later stages of their 

careers.13 These empirical findings validate the necessity of collaborative efforts in 

research. 

 

To stay at the forefront of knowledge in a particular domain, specialization is 

essential (Brendel & Schweitzer, 2019; Smith, 1776). One consequence of 

specialization is that knowledge becomes heterogeneously distributed within society, 

increasing the need for collaboration. During the 20th century, researchers began 

addressing this “burden of knowledge” by adopting the division of labor, 

specializing, and transitioning from individual work to teamwork, as mentioned 

above. For instance, Wuchty et al. (2007a, 2007b) analyzed over 13 million scientific 

papers published in science and engineering-related journals. They found that in 

1955, approximately 50% of these papers were published by teams, while in 2000, 

the proportion exceeded 80%.  

 

Furthermore, there is evidence indicating that this shift from individual to team-based 

research has predominantly involved teams with three or more members, while the 

prevalence of working in pairs has remained relatively stable (Kuld & O’Hagan, 

2018; WIPO, 2019; Wuchty et al., 2007a). Additionally, research collaborations are 

 
13 Similar findings have been made in relation to the age at which inventors file their first patent 

(e.g., Jones, 2009). 
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increasingly global in nature (Adams, 2013; Adams et al., 2005; Carayannis & Laget, 

2004; Kuld & O’Hagan, 2018; Larivière et al., 2015; Vincent-Lancrin, 2006; WIPO, 

2019), indicating a significant reduction in the costs associated with collaboration, 

for example, due to technological advances (Agrawal & Goldfarb, 2008; Cairncross, 

2001; Forman et al., 2018) and decreased travel expenses (Catalini et al., 2016; Perry, 

2014). 

 

Regarding the specialization within actual research collaborations, evidence suggests 

that teams as a whole are not becoming more specialized over time. Empirical studies 

focusing on interdisciplinary research, which involves the integration of knowledge, 

techniques, and perspectives from multiple disciplines, indicate that research 

collaborations are moving toward greater integration of diverse knowledge and 

expertise, rather than specialization and isolation within specific disciplines 

(Noorden, 2015; Porter & Rafols, 2009). For instance, Noorden (2015) observed 

significant growth in interdisciplinary research in the natural sciences and 

engineering between 1980 and 2010. Similarly, Porter and Rafols (2009) found a 

comparable trend, although less pronounced, in their study of the engineering, 

electrical, and electronic fields from 1975 to 2005. These findings suggest a shift 

toward interdisciplinary collaboration, emphasizing the importance of integrating 

diverse perspectives and knowledge across disciplines in research collaborations. 

 

Maximizing the potential for knowledge outcomes within collaborations presents a 

multifaceted challenge. To effectively address this challenge, one must consider 

various factors, including (but not limited to) team size, team familiarity, the unique 

human capital each member contributes, the similarity of their knowledge bases, and 

their geographic proximity (Bozeman et al., 2013; Phelps et al., 2012). According to 

the framework proposed by Phelps et al. (2012), these components can be sorted into 

two categories: nodal properties and relational properties; academic rank exemplifies 

a nodal property, while relationship strength exemplifies a relational property. 



70 

 

2019) and the age of Nobel Prize laureates (Jones, 2010) demonstrate a trend of 

knowledge advances being achieved by individuals at later stages of their careers. In 

the context of publishing research articles, Brendel and Schweitzer (2019) 

exclusively focused on the field of mathematics. Their findings revealed that the 

average age at which authors publish their first article in a top-ranked mathematics 

journal had increased by five years over a span of 64 years. In greater detail, the 

average age rose from 28.3 years in 1950 to 33.3 years in 2013, suggesting that 

researchers are achieving significant research contributions at later stages of their 

careers.13 These empirical findings validate the necessity of collaborative efforts in 

research. 

 

To stay at the forefront of knowledge in a particular domain, specialization is 

essential (Brendel & Schweitzer, 2019; Smith, 1776). One consequence of 

specialization is that knowledge becomes heterogeneously distributed within society, 

increasing the need for collaboration. During the 20th century, researchers began 

addressing this “burden of knowledge” by adopting the division of labor, 

specializing, and transitioning from individual work to teamwork, as mentioned 

above. For instance, Wuchty et al. (2007a, 2007b) analyzed over 13 million scientific 

papers published in science and engineering-related journals. They found that in 

1955, approximately 50% of these papers were published by teams, while in 2000, 

the proportion exceeded 80%.  

 

Furthermore, there is evidence indicating that this shift from individual to team-based 

research has predominantly involved teams with three or more members, while the 

prevalence of working in pairs has remained relatively stable (Kuld & O’Hagan, 

2018; WIPO, 2019; Wuchty et al., 2007a). Additionally, research collaborations are 

 
13 Similar findings have been made in relation to the age at which inventors file their first patent 

(e.g., Jones, 2009). 

71 

 

increasingly global in nature (Adams, 2013; Adams et al., 2005; Carayannis & Laget, 

2004; Kuld & O’Hagan, 2018; Larivière et al., 2015; Vincent-Lancrin, 2006; WIPO, 

2019), indicating a significant reduction in the costs associated with collaboration, 

for example, due to technological advances (Agrawal & Goldfarb, 2008; Cairncross, 

2001; Forman et al., 2018) and decreased travel expenses (Catalini et al., 2016; Perry, 

2014). 

 

Regarding the specialization within actual research collaborations, evidence suggests 

that teams as a whole are not becoming more specialized over time. Empirical studies 

focusing on interdisciplinary research, which involves the integration of knowledge, 

techniques, and perspectives from multiple disciplines, indicate that research 

collaborations are moving toward greater integration of diverse knowledge and 

expertise, rather than specialization and isolation within specific disciplines 

(Noorden, 2015; Porter & Rafols, 2009). For instance, Noorden (2015) observed 

significant growth in interdisciplinary research in the natural sciences and 

engineering between 1980 and 2010. Similarly, Porter and Rafols (2009) found a 

comparable trend, although less pronounced, in their study of the engineering, 

electrical, and electronic fields from 1975 to 2005. These findings suggest a shift 

toward interdisciplinary collaboration, emphasizing the importance of integrating 

diverse perspectives and knowledge across disciplines in research collaborations. 

 

Maximizing the potential for knowledge outcomes within collaborations presents a 

multifaceted challenge. To effectively address this challenge, one must consider 

various factors, including (but not limited to) team size, team familiarity, the unique 

human capital each member contributes, the similarity of their knowledge bases, and 

their geographic proximity (Bozeman et al., 2013; Phelps et al., 2012). According to 

the framework proposed by Phelps et al. (2012), these components can be sorted into 

two categories: nodal properties and relational properties; academic rank exemplifies 

a nodal property, while relationship strength exemplifies a relational property. 



72 

 

The remainder of this section will delve into the literature on nodal and relational 

properties, emphasizing the following four dimensions: team size and its 

implications, the impact of knowledge-related diversity in the team, the longevity of 

the team’s collaboration, and the geographical proximity of team members. These 

are identified as four aspects that the research on academic engagement should 

consider more explicitly. 

 

Team size  

Team size—which straightforwardly refers to the number of collaborators in a 

collaboration—is a critical factor in collaborative endeavors. One reason why teams 

are superior in terms of knowledge creation to working solo is that all collaborators, 

in this case, researchers, bring unique human capital derived from their prior 

experiences, including their education and work backgrounds. By pooling 

individuals’ human capital and facilitating the exchange of information and ideas, 

knowledge outcomes are enhanced (Becker & Murphy, 1992; Bozeman et al., 2013; 

Katz & Martin, 1997; Phelps et al., 2012; Powell & Grodal, 2006). However, the 

merits of larger teams must be weighed against potential drawbacks, such as greater 

management and coordination complexities (Becker & Murphy, 1992; West & 

Anderson, 1996) and the elevated risk of “groupthink” (Janis, 1982; Whyte, 1998).  

 

The current era is characterized by a fragmented knowledge domain due to the 

division of labor (McDowell & Melvin, 1983), underscoring the relevance of 

collaborative teamwork. This approach not only promotes the efficient distribution 

of tasks based on individual proficiencies but also minimizes redundant efforts, a 

notion posited by Becker and Murphy as early as 1992: “A more extensive division 

of labor raises productivity because returns to the time spent on tasks are usually 

greater to workers who concentrate on a narrower range of skills” (p. 1157).  
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In line with this perspective, both teams enriched by members possessing substantial 

human capital and larger teams appear superior to their smaller counterparts in terms 

of both knowledge outcomes and productivity, given their potentially greater 

cumulative human capital and task division benefits, all else being equal. 

Nonetheless, the caveats associated with larger teams, including the conjectured 

challenges of effective management and coordination (Becker & Murphy, 1992; 

West & Anderson, 1996) as well as the vulnerability to groupthink (Janis, 1982; 

Whyte, 1998), mandate the determination of optimal team size. This optimal size is 

contingent on the intricacy of the collaborative endeavor. 

 

Empirical investigations have identified the pivotal influence of collaborating with 

individuals having greater human capital in terms of scientific knowledge, 

approximated either through indicators such as having a doctoral degree or 

publishing in esteemed journals, or through the accomplishment of superior scientific 

and knowledge outcomes (Anderson & Richards-Shubik, 2019; Gruber et al., 2013; 

Schilling & Green, 2011). In more detail, research reveals that elevated prior average 

journal impact factor (JIF) scores are positively linked to future higher JIF scores 

(Anderson & Richards-Shubik, 2019), and greater prior article impact increases the 

likelyhood of generating future high article impact papers alongside fostering 

innovation (Schilling & Green, 2011). Notably, losing the possibility of collaborating 

with a star scientist has also been found to negatively affect subsequent scientific 

outcomes (Azoulay et al., 2010). 

 

Furthermore, empirical data underscore the role of teams in ensuring both the novelty 

of research and its overall scientific impact. Regarding novelty, one study revealed 

that co-authored papers were, on average, 38% more likely to introduce novel 

insights than were single-authored papers (Uzzi et al., 2013). Additionally, another 

study found that the inclusion of an extra collaborator increased the likelihood of 

creating a novel article by 10% on average (Carayol et al., 2019).  
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While teams seem to be superior to working alone, overly large teams may hinder 

the development of novelty. To elaborate, Wu et al. (2019) conducted an extensive 

analysis of over 24 million research papers spanning the years 1954 to 2014. Their 

findings suggest that, within this timeframe, smaller teams were more likely to 

introduce innovative ideas and opportunities, whereas larger teams tended to 

concentrate on the advancement of existing ones. Additionally, a similar pattern 

emerged in the realm of technology, encompassing patents and software. Figure 2.6, 

below, provides additional detail of the relationship between team size and two 

critical metrics: median citations and average disruption percentile. 

 

 
Figure 2.6. Smaller teams disrupt, whereas larger teams develop (Wu et al., 2019).  
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The paper by Wu et al. (2019) supports the benefits of teamwork in terms of 

increasing the article impact of publications. In addition to that study, two other 

studies have demonstrated that co-authored papers receive, on average, 

approximately 110% more citations than do their single-authored counterparts 

(Gazni & Didegah, 2011; Wuchty et al., 2007a). An additional study has shown that 

papers authored by teams consisting of two to four members receive, on average, 30–

90% more citations than do single-authored papers (Kuld & O’Hagan, 2018). It is 

worth noting that multi-authored papers consistently exhibit higher article impact, in 

terms of citation rates, even when accounting for self-citation biases (Larivière et al., 

2015). 

 

Research productivity also encounters a positive stimulus from collaborative 

endeavors (Anderson & Richards-Shubik, 2019; Ductor, 2014, 2015; Hollis, 2001; 

Lee & Bozeman, 2005); however, when discounting for the number of collaborators, 

the findings are more ambiguous. Some findings indicate positive effects (Ductor, 

2014, 2015), while others indicate negative effects (Hollis, 2001; Lee & Bozeman, 

2005). There is further evidence suggesting that partnering with productive co-

authors positively affects an individual’s subsequent scientific outcomes (Ductor et 

al., 2014), and that collaborations with highly educated individuals (Gruber et al., 

2013) and successful co-authors (Stuart, 2000) similarly have positive effects on 

knowledge outcomes. 

 

Knowledge-related team diversity 

Team diversity encompasses various dimensions, such as job-relevant diversity and 

background-related diversity (Hülsheger et al., 2009). In this dissertation, however, 

the focus pertains to the similarity of collaborators’ knowledge bases. This concept 

will be referred to as knowledge-related team diversity, or as team members’ 

cognitive proximity, more in line with the terminology used by Boschma (2005) and 

Nooteboom (2007). 
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Considering the arguments established earlier, it is plausible to assume that 

individuals ideally prefer collaborators who are as knowledgeable as humanly 

possible, especially in domains where their own expertise is limited. This suggests a 

desire for highly unique human capital among collaboration partners, vis-à-vis the 

relevant phenomena. Analogous to the premise of larger teams having greater 

collective human capital, greater knowledge-related team diversity should 

theoretically translate to heightened combined human capital, implying that teams 

characterized by increased knowledge-related diversity should yield superior 

knowledge outcomes, all else being equal (Schilling & Green, 2011).  

 

Nevertheless, as previously highlighted, the potential challenges inherent to diversity 

must be acknowledged, such as difficulty in comprehending one another because an 

individual’s capacity to assimilate information is largely a function of prior related 

knowledge (Cohen & Levinthal, 1990). Consequently, collaborators with highly 

dissimilar knowledge bases might face hindrances in effective communication and 

knowledge exchange, whereas completely similar knowledge bases also impede 

meaningful knowledge transfer.  

 

This suggests that there exists an optimal level of knowledge-related team diversity, 

i.e., an ideal cognitive distance somewhere between these two extremes (Boschma, 

2005; Nooteboom et al., 2007). In the realm of knowledge creation, particularly in 

contexts involving substantial tacit knowledge, a team that is more homogeneous 

concerning knowledge bases is advocated, given the challenges in conveying tacit 

knowledge (Nonaka, 1994; Polanyi, 1958, 1966). It is essential to note that not all 

team members are required to possess a substantial common knowledge base. Some 

members may serve as knowledge brokers, acting as facilitators to enable effective 

knowledge transfer among a diverse team of individuals (Leifer & Delbecq, 1978; 

Tushman, 1977; Tushman & Scanlan, 1981). Detailed discussions of the significance 

of various roles have been previously addressed in Section 2.3.1. 
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Empirical investigations pertaining to knowledge-related team diversity underscore 

its significance for knowledge outcomes (Bercovitz & Feldman, 2010; Broekel & 

Boschma, 2012; Lane & Lubatkin, 1998; Nooteboom et al., 2007; Rodan & Galunic, 

2004). Additionally, findings suggest an inverted U-shaped relationship between 

cognitive proximity and knowledge outcomes, implying that excessive cognitive 

proximity can be counterproductive (Broekel & Boschma, 2012; Nooteboom et al., 

2007).  

 

In greater detail, Nooteboom et al. (2007) conducted a quantitative analysis to 

examine the contrasting impacts of small and large cognitive distances on the 

cognition of firms engaged in technology-based alliances. They explored the 

implications of this combined effect on firm performance in terms of explorative and 

exploitative innovation in the chemicals, automotive, and pharmaceutical industries. 

In this context, exploitation pertains to the refinement and extension of existing 

technologies, while exploration involves experimentation with novel alternatives. 

The key finding of the study was that the cognitive distance between firms exhibited 

an inverted U-shaped effect on innovation performance, irrespective of whether the 

innovation was explorative or exploitative. However, the positive impact on firms 

was significantly greater when they engaged in more radical and explorative 

alliances than more exploitative alliances, aligning with the anticipated outcomes. 

Consequently, it appears “there is a trade-off to be made between the opportunity of 

novelty value and the risk of misunderstanding” (Nooteboom et al., 2007, p. 1030).  

 

Furthermore, research exploring job-related diversity, characterized by variances in 

job- or task-related attributes, corroborates the importance of cognitive team 

diversity (Adams, 2013; Hülsheger et al., 2009; Larivière et al., 2015). Besides these 

findings, empirical investigations indicate that boundary spanners play a crucial role 

in facilitating knowledge creation (Conway, 1995; Cross & Prusak, 2002; Curseu & 

Pluut, 2018; Patriotta et al., 2013; Tushman, 1977; Tushman & Scanlan, 1981).  
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Empirical investigations pertaining to knowledge-related team diversity underscore 

its significance for knowledge outcomes (Bercovitz & Feldman, 2010; Broekel & 

Boschma, 2012; Lane & Lubatkin, 1998; Nooteboom et al., 2007; Rodan & Galunic, 

2004). Additionally, findings suggest an inverted U-shaped relationship between 

cognitive proximity and knowledge outcomes, implying that excessive cognitive 

proximity can be counterproductive (Broekel & Boschma, 2012; Nooteboom et al., 

2007).  
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cognition of firms engaged in technology-based alliances. They explored the 

implications of this combined effect on firm performance in terms of explorative and 

exploitative innovation in the chemicals, automotive, and pharmaceutical industries. 

In this context, exploitation pertains to the refinement and extension of existing 

technologies, while exploration involves experimentation with novel alternatives. 

The key finding of the study was that the cognitive distance between firms exhibited 

an inverted U-shaped effect on innovation performance, irrespective of whether the 

innovation was explorative or exploitative. However, the positive impact on firms 

was significantly greater when they engaged in more radical and explorative 

alliances than more exploitative alliances, aligning with the anticipated outcomes. 

Consequently, it appears “there is a trade-off to be made between the opportunity of 

novelty value and the risk of misunderstanding” (Nooteboom et al., 2007, p. 1030).  

 

Furthermore, research exploring job-related diversity, characterized by variances in 

job- or task-related attributes, corroborates the importance of cognitive team 

diversity (Adams, 2013; Hülsheger et al., 2009; Larivière et al., 2015). Besides these 

findings, empirical investigations indicate that boundary spanners play a crucial role 

in facilitating knowledge creation (Conway, 1995; Cross & Prusak, 2002; Curseu & 

Pluut, 2018; Patriotta et al., 2013; Tushman, 1977; Tushman & Scanlan, 1981).  
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For instance, Curseu and Pluut (2018) conducted an experiment involving bachelor 

students, revealing that knowledgeable boundary spanners compensated for the 

group’s limited absorptive capacity. This underscores the indispensable role of 

boundary spanners, particularly when collaborators possess disparate knowledge 

bases. Moreover, Patriotta et al. (2013), drawing on a case study of a global 

organization, found that a critical managerial role is to act as a “higher-level 

intermediary”: this involves providing “coordination across functional and 

geographical boundaries by making knowledge sources available, connecting the 

parties to the transfer, and generating opportunities for knowledge exchange” (p. 

515). Simply put, the absence of these roles in an organization leads to a less 

favorable outcome. 

 

Team longevity 

Team longevity, denoting the duration of a collaboration or multiple collaborations 

over time, hinges on the underlying assumption that it corresponds to the strength of 

relationships among team members—i.e., the older the team, the more robust the 

relationships. Research suggests that prolonged collaborations offer several 

advantages. For instance, over time, team members cultivate enhanced trust and 

deeper mutual understanding of their diverse incentive structures, objectives, 

strengths, and weaknesses (Bruneel et al., 2010; Kunttu & Neuvo, 2019), which in 

turn facilitates efficient task allocation and improved productivity. Additionally, 

extended collaboration durations empower team members to delve deeply into 

business-related inquiries (Rivera-Huerta et al., 2011). 

 

Nevertheless, long-lived collaborations also harbor potential drawbacks. A potential 

risk is that shared experiences within long-standing teams could lead to a 

convergence of human capital and make them less inclined to challenge the status 

quo, reducing the likelihood of having innovative ideas (Guimerá et al., 2005; Katz, 

1982; West & Anderson, 1996).  
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Empirical investigations lend credibility to the notion that extended collaborations 

augment researchers’ productivity (Garcia et al., 2020; Rivera-Huerta et al., 2011) 

and enhance knowledge outcomes (Crescenzi et al., 2017; Kachra & White, 2008; 

Reagans & McEvily, 2003; Rost, 2011). However, some research suggests that the 

effect on knowledge outcomes might not be statistically significant (Hülsheger et al., 

2009; West & Anderson, 1996). Weaker relationships inherent in new collaborations 

could also foster more novel information exchanges, a critical factor for long-term 

knowledge outcomes (Levin & Cross, 2004). 

 

Team members’ geographical proximity 

Team members’ geographical proximity refers to the spatial or physical distance 

between collaborating researchers, i.e., individuals (Boschma, 2005). Given that 

knowledge transfer, particularly of tacit knowledge, thrives through face-to-face 

interactions (Nonaka, 1994; Storper & Venables, 2004), geographical proximity 

holds significance. It minimizes transportation costs and times, rendering face-to-

face interactions more accessible and economical (Boschma, 2005, 2014). However, 

advances in technology and increased competition have increased the ease of 

collaborating through digital means (Agrawal & Goldfarb, 2008; Forman et al., 

2018), alongside falling communication and travel costs (Agrawal & Goldfarb, 2008; 

Catalini et al., 2016; Forman et al., 2018; Perry, 2014). This raises the question of 

whether geographical proximity’s importance has diminished due to the greater ease 

of digital collaboration and cheaper transportation. 

 

Some researchers posit that permanent geographical proximity might not be crucial; 

instead, the ability to attain temporary geographical proximity as needed is vital 

(Torre, 2008; Torre & Rallet, 2006). Extreme proximity might also hinder access to 

the external world, i.e., the amount of external knowledge spillover (Boschma, 2005; 

Boschma & Frenken, 2009), prompting the idea that relationships among parties 

geographically distant from one another could “span geographical holes,” analogous 
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to Burt’s structural hole theory (Bell & Zaheer, 2007). Notably, in relation to 

disseminating knowledge outcomes, various geographical locations provide 

immediate audiences, potentially enhancing outcomes such as article impact (Lancho 

Barrantes et al., 2012). 

 

Empirical findings regarding geographical proximity are, in some respects, 

contradictory. Nonetheless, when distinguishing between scientific and knowledge 

outcomes, the results are more aligned. Article impact research indicates that 

collaborations spanning national borders yield significantly higher impact (Frenken 

et al., 2010; Glänzel & Schubert, 2001; Lancho Barrantes et al., 2012; Larivière et 

al., 2015). Moreover, involving a greater number of institutions is associated with 

higher impact (Bercovitz & Feldman, 2010; Larivière et al., 2015). In the context of 

novelty, international collaborations appear to be positively correlated with greater 

novelty (Carayol et al., 2019; Wang et al., 2017), although one study presented 

opposing findings (Wagner et al., 2019).  

 

Regarding broader knowledge outcomes, the empirical consensus suggests that 

geographical proximity fosters such outcomes, that is, being located spatially close 

facilitates knowledge outcomes (Balachandran & Hernandez, 2018; Bell & Zaheer, 

2007; Broekel & Boschma, 2012; Škerlavaj et al., 2010; Torre, 2008). However, 

spatial distance can also yield positive knowledge outcomes (Balachandran & 

Hernandez, 2018; Bell & Zaheer, 2007; Bercovitz & Feldman, 2010). For instance, 

Balachandran and Hernandez (2018) revealed that intranational collaborations are 

conducive to innovation volume (i.e., productivity), while international 

collaborations are conducive to producing more radical innovations. 

 
  

81 

 

2.3.3 Key takeaways from Section 2.3 

- In the knowledge economy, the continuous expansion of the total volume of 

worldwide knowledge demands greater specialization and collaboration. 

- The extensive literature on knowledge networks encompasses numerous 

studies of science and technology. These studies indicate that individuals with 

diverse competencies and different types of organizations engage in 

collaborative research, which is the form of academic engagement studied 

here. 

- Applied research, such as the engineering sciences, frequently involves teams 

that increasingly comprise members from different organizations and 

spanning larger geographical areas. 

- Publications having at least one author affiliated with a university and one 

author affiliated with a firm are considered indicative of prior academic 

engagement through collaborative research. 

- Drawing insights from the knowledge network literature, two key properties 

have been identified that could enhance the existing academic engagement 

literature, particularly in the context of the present research focus. These 

properties are team size and roles (e.g., brokerage and team leadership). 
 

2.4 Outcomes and impacts of academic engagement  
 

2.4.1 Publications as an outcome of academic engagement 

As stated above, various forms of academic engagement exist, such as collaborative 

R&D, providing informal advice, and delivering (public) lectures. According to 

Cantner et al. (2022), university–industry collaborations yield three major outcomes: 

scientific outcomes, commercializable outcomes, and follow-up cooperation. 

Scientific outcomes refer to newly generated knowledge resulting from collaborative 

activities, “(usually) codified in publicly available publications” (Cantner et al., 

2022, p. 6). Commercializable outcomes encompass the potential economic 
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applications of the acquired knowledge, which can be either tacit, codified in patents, 

or embedded in prototypes. Follow-up cooperation signifies an outcome that 

indicates potential to generate scientific or economic results in subsequent 

interactions, either by further exploiting previously achieved collaborative outcomes 

or by exploring new research directions. Based on survey data from researchers in 

Germany, this study reveals that scientific outcomes are the most prevalent, followed 

by follow-up cooperation, with commercializable outcomes being the least common. 

 

The above finding underscores that engagements resulting in publications are 

common, and it is posited that those publications represent significant achievements 

valued by all participating parties. For this reason, publications resulting from 

academic engagement are regarded as a reliable, albeit partial, measure of successful 

scientific knowledge creation by university scientists collaborating with industrial 

researchers (Perkmann et al., 2011; Tijssen, 2009). This proxy measure has been 

extensively employed to investigate this phenomenon, as is evident when reading the 

subsequent section, which features numerous references underscoring this point. 

 

2.4.2 Impacts of publications resulting from academic engagement  

In the scientific enterprise, authorship provides a basis for peer recognition, allowing 

researchers to be acknowledged for their work (Merton, 1973; Moed, 2005).14 

Several types of impacts result from publications, including scientific impact, 

technological impact, and broader societal impact, as shown in the Springer 

Handbook of Science and Technology Indicators, edited by Moed and Thelwall 

(2019).  

 
14 The International Committee of Medical Journal Editors, commonly referred to as the ICMJE, 

outlines the Vancouver criteria for authorship: making substantial contributions to the work’s 

conception, design, data analysis, or interpretation; drafting or critically reviewing the content; 

granting final approval for publication; and taking responsibility for investigating and resolving 

integrity-related questions (ICMJE, 2023). See Appendix A for further details. 
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This dissertation primarily concentrates on two types of impacts that exhibit a clear 

connection to economic progress, which is particularly relevant within the chosen 

empirical context of electrical engineering: scientific impact and technological 

impact. It is noteworthy that in recent years, there has been increasing interest in the 

quantitative measurement of the broader societal impact of research. This field, often 

referred to as the analysis of altmetrics or alternative metrics of impact, has attracted 

considerable attention. However, it is crucial to emphasize that a significant portion 

of these efforts is dedicated to scrutinizing the quality, limitations, and challenges 

associated with this approach (e.g., Bornmann, 2014; Fleerackers et al., 2022; 

Haustein, 2016). 

 

Scientific impact  

In Chapter 5 of this dissertation, a more comprehensive exploration of the concept 

of scientific impact will be provided. Therefore, at this stage, a concise overview of 

the interpretation of this concept will be provided. The notion of scientific impact in 

the context of publications is twofold. That is, from my perspective, when assessing 

the scientific impact of an individual research paper, the impact primarily 

encompasses two key dimensions: article impact and journal reputation.  

 

Article impact is approximated by analyzing the number of scientific citations a 

publication receives, while journal reputation is assessed by analyzing the impact 

factor of the journal in which the publication was published.15 Furthermore, when 

examining scientific impact over an extended timeframe rather than on a per-

document basis, publication productivity also assumes significance. This is because 

 
15 As a consequence of the aforementioned operationalization, it is possible to measure article 

impact across all scientific publications, encompassing journal articles, conference proceedings, 

book chapters, and more, while measuring journal reputation is restricted to journal articles, since 

conferences generally lack an associated journal impact factor. 
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a researcher who publishes more papers is more likely to garner visibility within the 

scientific community and to obtain a higher total number of citations, all else being 

equal.  

 

While empirical research on academic engagement’s scientific outcomes 

predominantly addresses research productivity (Perkmann et al., 2021), it has paid 

less attention to article impact and journal reputation. That said, studies of these 

topics do exist, and discussion of several such studies will occur in this section. 

 

In terms of article impact, some empirical evidence suggests that academic 

engagement has either a neutral (Frenken et al., 2010; McKelvey & Rake, 2020) or 

negative impact (Bekkers & Freitas, 2008; Frenken et al., 2010). Notably, McKelvey 

and Rake (2020) focused solely on the pharmaceutical industry, whereas Bekkers 

and Freitas (2008) restricted their analysis to the Netherlands. Frenken et al. (2010) 

compared several scientific domains, finding that the publications resulting from 

academic engagement had high article impact in the fields of biotechnology, organic 

fine chemistry, and analysis measurement and control technology (with “high” 

meaning similar to that of articles published by academics only), but lower article 

impact in other fields, such as agriculture and food chemicals and IT (Frenken et al., 

2010).  

 

Concerning journal reputation, empirical findings in the context of the 

pharmaceutical industry indicate a slight positive or neutral effect (McKelvey & 

Rake, 2020). Conversely, an alternative approach, focusing on all academic 

researchers in a single nation (i.e., Italy) spanning various scientific disciplinary 

sectors, revealed similar journal reputation outcomes compared to publications 

involving academics exclusively, with no significant effects observed (Abramo et 

al., 2009). 
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Numerous factors may account for these dissimilar findings, including the nature of 

knowledge recombination, the involvement of boundary spanners in collaborative 

efforts, and the specific research topics under examination. Since the chief focus of 

Chapter 5 is to empirically analyze the outcomes associated with scientific impact, it 

is sensible to postpone the comprehensive examination of how this impact might 

manifest itself within the engineering sciences. Essentially, this section is an 

introduction to the interpretation of the concept of scientific impact and a 

presentation of various empirical studies of the subject, with the conceptual aspect 

to be elaborated on in Chapter 5. 

 

Although none of the empirical investigations in this dissertation prioritizes research 

productivity as its primary focus, it is still valuable to provide a succinct overview of 

the literature in this domain as it offers additional insights into the nature of academic 

engagement. Research productivity relative to academic engagement intensity 

displays ambiguous and curvilinear patterns in three studies (Banal-Estanol et al., 

2015; Rentocchini et al., 2014; Rivera-Huerta et al., 2011). Banal-Estanol et al. 

(2015) found an inverted U-shaped relationship between academic engagement and 

research productivity among UK engineering scientists. Rentocchini et al. (2014) 

revealed decreasing research productivity as academic engagement intensity 

increased for Spanish engineering scientists, while Rivera-Huerta et al. (2011) 

identified a similar trend for agriculturally related sciences in Mexico.  

 

A possible explanation is that high academic engagement levels correlate with high 

research productivity when research is conducted with few actors, allowing for more 

profound analysis and research. This hypothesis finds support in a recent study by 

Garcia et al. (2020), indicating a positive relationship between long-term academic 

engagement and research productivity among Brazilian university scientists. 

Furthermore, Bikard et al. (2019) observed that articles resulting from academic 

engagement tend to stimulate more subsequent research articles than do those 
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initiated by individual university scientists. They proposed an additional explanation, 

noting that “when collaboration bridges institutions, the differences in the skills and 

objectives of individuals across the institutional boundary can open the door to an 

efficient distribution of tasks and responsibilities, potentially leading to net gains in 

productivity” (Bikard et al., 2019, p. 442). In summary, it seems that collaborating 

with firms benefits academics in terms of research productivity up to a certain extent, 

and that this advantage holds true under most conditions. 

 

Technological impact 

At this juncture, a concise overview of my interpretation of the concept of 

technological impact will be provided, while a more comprehensive exploration is 

presented in Chapter 6. Similar to the assessment of article impact, technological 

impact primarily concerns the quantification of citations received. However, in this 

context, the focus shifts from citations within the scientific domain to citations 

coming from the technological domain, specifically from patents. 

 

The overarching assessment of a publication’s technological impact can be 

categorized into three distinct types of impacts: individual technological impact, 

organizational technological impact, and knowledge spillover. The first category 

emphasizes author–inventor pairs, i.e., citations coming from a patent for which at 

least one author of the cited publication is also an author of the patent. This type of 

impact emphasizes the personal dimension of knowledge transfer and dissemination. 

The second category, organizational technological impact, shifts the spotlight to 

affiliation–assignee pairs, meaning that it accounts for citations for which one of the 

affiliations on the publication is an assignee on the patent. This highlights the 

intricate process of knowledge transfer occurring within the confines of 

organizational boundaries. The third and final construct, knowledge spillover, 

emphasizes the dissemination of knowledge outside the immediate sphere of the 

original research, essentially delving into the phenomenon of knowledge “spilling 
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over” to external actors. This construct underscores the broader industrial 

implications of published work, demonstrating its capacity to influence a wider range 

of stakeholders. 

 

There is a notable lack of studies analyzing the technological impact of papers 

resulting from academic engagement, as shown in the systematic literature review 

by Perkmann et al. (2021) but also emphasized in other studies, such that by 

Petruzzelli and Murgia (2020). To the best of my knowledge, no paper investigates 

the technological impact of science while focusing on the similarities and differences 

between academic engagement and academic projects and also distinguishing 

different pathways of technological impact.  

 

Nevertheless, valuable related studies do exist. One particularly noteworthy 

investigation is that by McKelvey and Ljungberg (2017), who analyzed 66 

collaborative research projects between universities and firms in the Swedish food 

industry. They found that these 66 research-based projects resulted in several process 

and product innovation outcomes. Specifically, these projects yielded 23 new 

practical methods, nine new technologies (including equipment), 14 new product 

developments, ten new prototypes, and five new products. Furthermore, their study 

highlighted that these collaborations could indirectly enhance firm capabilities for 

innovation, as previously mentioned in this chapter. 

 

Another related paper examined joint patents, with a specific emphasis on the 

conditions under which university–industry collaborations produce innovations 

whose spillovers are then leveraged by other international firms in their own 

innovation processes (Petruzzelli & Murgia, 2020). There also exist papers that 

investigate the technological impact of research. Two such recent biblio-metric 

examples assessed the technological impact of biomedical research, with a focus on 

novelty and basicness (Ke, 2020) and on interdisciplinary research (Ke, 2023). 
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While the studies by McKelvey and Ljungberg (2017) and Petruzzelli and Murgia 

(2020) lack a control group, meaning they do not compare university collaborations 

with university–industry collaborations, the papers by Ke (2020, 2023) do not 

distinguish among papers published by universities, industry, or both types of actors. 

Consequently, while these papers are intriguing and contribute to our understanding 

of what drives impact, they provide limited insights into how university–industry 

collaborations influence technological impact compared with similar collaborations 

that involve only one type of actor. These, and other related papers, will be subjected 

to more comprehensive scrutiny in Chapter 6, where hypotheses will be formulated 

pertaining to the effect of academic engagement on technological advancement. 

 

2.4.3 Key takeaways from Section 2.4 

- This dissertation focuses on a singular scientific outcome, i.e., publications, 

which are a result of previous collaborative research endeavors between 

academia and industry. 

- The concept of scientific impact centers on two key aspects: the quantity of 

scientific citations acquired by publications (referred to as article impact) and 

the reputation of the journals in which these publications appear (referred to 

as journal reputation). 

- Empirical studies analyzing the impact of academic engagement on research 

productivity have been more prevalent, and reveal a clearer picture, than do 

those examining how the publications resulting from academic engagement 

affect article impact and journal reputation. 

- The concept of technological impact is assessed through quantifying the patent 

citations received by publications. This impact can be further divided into 

three pathways, comprising an individual pathway, an organizational pathway, 

and an external pathway (i.e., knowledge spillover). 

- There is a substantial need for research examining the technological impact of 

publications resulting from academic engagement, as most existing studies 
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primarily concentrate on their scientific impact, which, as previously argued, 

is somewhat ambiguous or limited in scope to begin with. 
 

2.5 Theoretical framework 
In this chapter, we have explored numerous scholarly works, aiming to foster a 

comprehensive understanding of the phenomenon under investigation. Expanding on 

this, Figure 2.7 presents a theoretical framework that visually represents the most 

central concepts and their interconnections while also adding insights into the 

empirical setting of this dissertation and providing a guide to the forthcoming 

chapters.  

 

While heavily influenced by Perkmann et al.’s (2021) framework, this version 

incorporates a notable change. It not only considers individual characteristics but 

also incorporates knowledge network properties, capturing the essence of academic 

engagement as a multifaceted concept intertwined with concepts from the broader 

knowledge network literature. In other words, the figure illustrates the idea that the 

analysis of academic engagement can be enhanced or redefined by incorporating 

concepts and theories from the broader literature on knowledge networks and 

knowledge creation. This proposition is founded on the belief that the knowledge 

network literature offers a relevant perspective by considering co-authored 

publications as manifestations of knowledge networks, in which authors from both 

the academic and industrial sectors act as nodes, and co-publications serve as 

connections (i.e., edges) between them. 

 

Specifically, the framework highlights three such properties: team size, boundary 

spanner, and the team leader. These properties are identified as key elements that 

could enhance the existing academic engagement literature, particularly in the 

context of collaborative research. The framework further demonstrates that the 

organizational and institutional context has an impact on the knowledge network 
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properties as well as on the form of academic engagement, in line with Perkmann et 

al.’s (2021) framework. It also depicts the chosen empirical setting in terms of 

individual characteristics (professors), the organizational context (five universities: 

Chalmers University of Technology, Lund University—Faculty of Engineering, 

KTH Royal Institute of Technology, Linköping University, and Uppsala University), 

the institutional context (electrical engineering in Sweden), and the form of academic 

engagement (collaborative research). Lastly, it also illustrates the impacts of interest, 

i.e., scientific impact and technological impact, providing insights into the 

interpretation of how to measure those. 

 

 
Figure 2.7. Theoretical framework. 

 

Furthermore, the above framework highlights the specific areas in the academic 

engagement literature to which the three empirical studies primarily aim to 

contribute. Chapter 5 is dedicated to investigating the impact of team size and 

boundary spanners on scientific outcomes in the context of academic engagement. 

In contrast, Chapter 6 delves into the same variables but in the context of 

technological outcomes. Chapter 7 builds on the findings of Chapters 5 and 6 while 

introducing a noteworthy factor: the type of affiliations of the lead author and their 
91 

 

influence on both the scientific and technological impacts. 

 

It is important to note that while this framework is comprehensive, it does not 

encompass all areas or variables of interest. As mentioned previously, it focuses on 

the core aspects of the research. For instance, as discussed in Section 2.3.2, the 

geographical proximity of team members often plays a significant role in influencing 

collaboration outcomes. While this aspect is examined to some extent in the 

empirical analyses, it is not the central focus of the study and, consequently, is not 

included in the framework.  
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3 EMPIRICAL SETTING 

The objective of this chapter is, clearly and concisely, to describe the specific 

empirical context where the analyses have taken place.16 The chapter begins by 

defining and discussing three related concepts: engineering, science, and technology. 

A description of Sweden’s academic setting is then provided, focusing on the 

electrical engineering sciences. Following that, the chapter describes the academic 

context with respect to university–industry collaboration. The chapter concludes by 

explaining a certain national institutional regime known as the teachers’ exemption 

and professors’ privilege, and by discussing what implications related legislation 

might have had in Sweden.  

 

3.1 Engineering, science, and technology 
Engineering, science, and technology are related concepts that need to be 

differentiated as they represent somewhat separate but parallel processes.  

 

A useful conceptualization for this Ph.D. dissertation, and one that is widely 

recognized, can help clarify the scope of engineering sciences. Stokes (1997) 

developed a 2-by-2 matrix of different types of scientific research, arguing that the 

engineering sciences can be characterized as “use-inspired basic research” (p. 73). 

According to this classification, the engineering sciences encompass a combination 

of basic and applied knowledge. These fields aim to enhance the understanding of 

fundamental phenomena within a scientific domain (i.e., basic) while simultaneously 

being motivated by societal needs and practical applications (i.e., applied). This 

 
16 Tracing the history of the Swedish higher education system up to the present, encompassing its 

structure and reforms, falls beyond the scope of this chapter. For readers seeking a 

comprehensive understanding of this, I recommend the works of Berit Askling and Sverker 

Sörlin. 
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classification distinguishes the engineering sciences from pure basic research, which 

focuses solely on advancing scientific knowledge, and from pure applied research, 

which solely pursues practical objectives.  

 

A visual representation of Stokes’s 2-by-2 matrix can be found in Figure 3.1, below. 

 

 
Figure 3.1. Stokes’s (1997) quadrant model of scientific research (own representation). 

 

Use-inspired basic research is a useful initial conceptualization, as the term suggests 

that we should consider both science and technology as different aspects of 

engineering. This stands in stark contrast to other scientific disciplines, such as the 

more basic disciplines that originated from philosophy (Niiniluoto, 1993). Applied 

sciences generate new knowledge with the specific objective of enhancing the 

effectiveness of human activities, while basic (or fundamental) research involves the 
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scientific community’s pursuit of new scientific knowledge. According to Rosenberg 

and Nelson (1994), it is crucial to define basic research based on the quest for 

fundamental understanding, rather than focusing solely on the absence of practical 

applications. Consequently, in the applied sciences, such as the engineering sciences, 

some research is, in fact, oriented toward fundamental understanding at a very basic 

level. 

 

Engineering, or more precisely “standard engineering,” according to Arthur (2009), 

encompasses the collective activities undertaken by engineers when embarking on 

new projects. These activities include the development of methods, the design and 

construction of artifacts, and testing, all aimed at advancing our understanding of the 

phenomena under consideration. Accordingly, new projects are initiated when there 

is a need for novel inventions or for the exploration of existing ones. Consequently, 

all new projects primarily revolve around problem-solving. Moreover, as Arthur 

(2009) also pointed out, engineers complete projects by synthesizing various 

elements in a specific manner that aligns with the project’s objectives, resulting in 

innovative solutions. In essence, engineering is fundamentally focused on problem-

solving: every new project presents new challenges, and the ultimate outcome is 

always a solution (Arthur, 2009). According to this way of thinking, standard 

engineering has a long history spanning millennia.  

 

However, the engineering sciences have a more recent history. If one delimits 

engineering sciences to include all scientific fields pertaining to technology, these 

fields emerged at universities in the 19th century, primarily due to the industrial 

revolution (Banse & Grunvald, 2009). For example, the Massachusetts Institute of 

Technology (MIT) introduced its first electrical engineering course in 1882 and 

awarded its first doctorate in the subject in 1885 (Rosenberg & Nelson, 1994).  
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The main distinction between standard engineering and the engineering sciences lies 

in their methodologies. In the past, engineering innovations were often achieved 

through a trial-and-error approach. However, with advances in computational 

capabilities and instrumentation, engineering has evolved, leading to the 

development of more comprehensive frameworks and categories (Arora & 

Gambardella, 1994). As defined here, the engineering sciences are understood to 

have emerged through the process of applying scientific principles to standard 

engineering practices.  

 

To enrich our understanding of engineering sciences, an alternative description of 

the fields is that they can be characterized as “sciences of action,” as defined by 

Banse and Grunvald (2009, p. 158). According to their definition, these fields are 

concerned with supporting human endeavors (or actions) through technology, 

whether by offering technological solutions or by providing the essential knowledge 

and knowhow required to engage with technology effectively. The scientific part of 

their definition refers to the systematic investigation and analysis of the conditions 

essential for successful outcomes and to expanding the realm of actionable 

possibilities. These authors’ view of the engineering sciences concisely captures its 

fundamental nature, encompassing its multifaceted role in shaping and advancing 

our world and underscoring its profound influence on human progress.  

 

Similar to Stokes, Banse and Grunvald (2009; see also König, 2006) argued that the 

engineering sciences have two equally important fundamental objectives: a cognitive 

(or epistemic) aim and a practical aim. The cognitive aim primarily concerns 

generating new knowledge, encompassing understanding technological systems as 

well as building knowledge pertaining to physical and chemical processes. 

Moreover, the practical aim primarily revolves around the anticipation and creation 

of technology that is saleable, purchasable, acceptable, and feasible. Put differently, 

the cognitive goal of the engineering sciences is to pursue scientific excellence and 
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to legitimize standard engineering, with the primary criterion for success being the 

“truth of knowledge.” Conversely, the practical goal aims for a high degree of 

societal relevance, with the primary criterion for success being “usefulness to 

society.”  

 

Banse and Grunvald (2009) further argued that the coherence of the engineering 

sciences stems from their particular connection between theory and practice. The 

duality of goals is a distinct and noteworthy characteristic of these sciences, setting 

them apart from the natural sciences. Specifically, in contrast to the natural sciences, 

which move from the real world to increasingly abstract models, the engineering 

sciences directly target practical objectives in the real world.  

 

Here, it is important to note that technology is synonymous with the applied sciences; 

there are several instances in which technology appeared before the science that 

explains it (Nightingale, 2014). For example, the innovation of flush riveting in 

American aircraft manufacturing during the 1930–1950s was developed “without 

science” (Vincenti, 1984). Instead, technology concerns the products of human 

action, i.e., the artifacts (Bijker, 2010; Nightingale, 2014; Orlikowski, 1992). The 

ontological questions pertaining to technology, such as the inquiry into the meaning 

of technology within constructivist technology studies, are beyond the scope of this 

dissertation (see Bijker, 2010). However, the straightforward definition of 

technology proposed by Arthur (2009) is advocated, which views technology as a 

means to carry out a human purpose, as this ultimately represents its fundamental 

function in society: 

 

For some technologies—oil refining—the purpose is explicit. For 

others—the computer—the purpose may be hazy, multiple, and 

changing. As a means, a technology may be a method or process or 

device: a particular speech recognition algorithm, or a filtration process 
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in chemical engineering, or a diesel engine. It may be simple: a roller 

bearing. Or it may be complicated: a wavelength division multiplexer. 

It may be material: an electrical generator. Or it may be nonmaterial: a 

digital compression algorithm. Whichever it is, it is always a means to 

carry out a human purpose. (Arthur, 2009, p. 11) 

 

In conclusion, for this Ph.D. dissertation, the definition used is that the engineering 

sciences encompass all scientific fields pertaining to technology. The engineering 

sciences studied here may thus include researchers who work at universities as well 

as those who work at firms. The concept of engineering, as used here, incorporates 

elements of both science and technology as concepts used in the innovation 

management literature. This means that, on one hand, the technological problems 

addressed in engineering may be more general in terms of mathematics or may be 

oriented toward users and applications in industry. On the other hand, identifying 

and solving these technological problems will often involve a scientific approach to 

methods and research. This Ph.D. dissertation will therefore explore both the 

scientific impact and the technological impact of collaborative research projects in 

engineering. 

 

3.2 Universities in Sweden involved in electrical engineering 
In total, Sweden has 17 universities and 13 university colleges. The key 

distinguishing factor between these two types of institutions is that only universities 

have been granted general degree-awarding powers at third-cycle levels (i.e., 

doctoral degrees), whereas university colleges must apply for specific entitlements 

(UKÄ, 2020).  

 

In Sweden, the landscape of electrical engineering research is predominantly shaped 

by five prominent institutions: Chalmers University of Technology (hereafter 

“CTH,” according to the university’s Swedish name: Chalmers Tekniska Högskola); 
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Faculty of Engineering, Lund University (hereafter “LTH,” according to the Swedish 

name of the university’s faculty of engineering: Lunds Tekniska Högskola);17 KTH 

Royal Institute of Technology (hereafter “KTH,” according to the university’s 

Swedish name: Kungliga Tekniska Högskola); Linköping University (hereafter 

“LiU” according to the university’s Swedish name: Linköpings Universitet); and 

Uppsala University (hereafter “UU” according to the university’s Swedish name: 

Uppsala Universitet). 

 

Currently, all these universities are state-owned institutions, with the exception of 

CTH, which has been privately owned by a foundation since 1994 (CTH, 2004). 

According to a report from CTH (2004), the distinctions between publicly owned 

Swedish universities and CTH may not be as substantial as one might presume. 

Specifically, many of the legislative frameworks that affect publicly owned Swedish 

universities also extend their influence over CTH. It is noteworthy that CTH 

continues to primarily rely on funding from the Swedish government. The most 

pronounced disparity between these two categories perhaps stems from CTH’s 

governance through a foundation, endowing it with greater autonomy relative to 

state-controlled universities. Furthermore, KTH and CTH are situated in Sweden’s 

two largest cities, while UU and LiU are positioned in the nation’s third and fourth 

largest cities. LTH, in contrast, is located in Sweden’s 12th largest municipality 

(SCB, 2020a). 

 

Table 3.1 shows an overview of these Swedish universities in 2019, highlighting not 

only their ownership status and urban locations, but also revealing similarities in a 

few key metrics. These metrics include the average number of employees, total 

student enrollment, total article publications in peer-reviewed journals, and average 

 
17 Note that the analysis of LTH exclusively concerns LTH, rather than the whole Lund University, 

as LTH operates to a very large extent as an independent organization. 
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in chemical engineering, or a diesel engine. It may be simple: a roller 

bearing. Or it may be complicated: a wavelength division multiplexer. 
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number of publications per employee. It is worth emphasizing the need for caution 

when interpreting these data, as the table is derived from aggregated averages and 

should not be used to draw definitive conclusions. Specifically, these data do not 

reflect the diversity in staff engagement with research activities, as some may 

dedicate a significant portion of their time to research, while others are primarily 

involved in administrative or teaching roles, which affects the results. Despite this 

caveat, the data suggest the universities’ foci seem to exhibit some variations, 

particularly visible through the average number of publications in peer-reviewed 

journals per average number of employees. This difference implies varying 

emphases, with certain universities emphasizing educational pursuits (e.g., LiU), 

while others place a stronger emphasis on research endeavors (e.g., LTH). 

 
Table 3.1. Key metrics of sampled universities, 2019. 

University Ownership 

City 

(population) 

[rank] 

No. of 

employees 

No. of 

students 

No. of 

Ph.D. 

students 

 

No. of 

journal 

articles 

No. of journal 

articles per 

employee 

CTH Private 

Gothenburg 

(579,281)  

[#2] 

3372 9744 811  3011 0.89 

KTH Public 

Stockholm 

(974,073) 

[#1] 

5044 12,442 964  3153 0.63 

LiU Public 

Linköping 

(163,051) 

[#5] 

4043 17,907 606  2121 0.52 

LTH Public 

Lund 

(124,935) 

[#12] 

1487 6508 459  1979 1.33 

UU Public 

Uppsala 

(230,767) 

[#4] 

7265 26,045 1240  5167 0.71 

Sources: annual reports (CTH, 2020; KTH, 2020; LiU, 2020; UU, 2020); data from SCB for city populations and 

rankings (SCB, 2020a); LTH’s university website, where necessary, as the university’s annual report is for the whole 

university, rather than specifically for LTH (LTH, 2020); and ownership information for CTH (CTH, 2004). 
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3.3 University–Industry collaboration in Sweden 
Swedish universities have a longstanding tradition of collaborating with industry, a 

fact documented by multiple scholars (Benner & Sörlin, 2015; Pettersson, 2012; 

Talerud, 2002). For instance, in the 1970s and 1980s, Sweden introduced a new 

category of professors known as “adjunct professors” (Fagrell et al., 2015). These 

adjunct professors are individuals simultaneously employed by both a firm and a 

university, in accordance with Swedish practice and legislation (Arbetsgivarverket, 

2011; SFS, 1993:100). This introductory development underscores Sweden’s 

perceived emphasis on establishing strong ties with industry. In this dissertation, this 

type of professor is referred to as a dual-affiliated professor. 

 

At the turn of the 21st century, a number of pivotal events and trends further 

catalyzed these activities. Foremost among these was the inception of the third 

mission in 1998, an event of considerable consequence (Benner & Sörlin, 2015; 

Eklund, 2007). This third mission encompasses the commitment of universities to 

actively address societal challenges, promote innovation and entrepreneurship, and 

enhance the economic and social well-being of their surrounding communities. 

Simultaneously, Swedish universities, mirroring their counterparts in other OECD 

member nations (Heyman & Lundberg, 2002; Jankowski, 1999; Vincent-Lancrin, 

2006), underwent profound financial transformations. Specifically, their fiscal 

landscape saw a dual transformation: a relative decrease in funding from the Swedish 

government, and an increased reliance on contract research (Askling, 2000; Heyman 

& Lundberg, 2002; Vincent-Lancrin, 2006). The third landmark event occurred in 

2001 with the establishment of the Swedish Governmental Agency for Innovation 

Systems—Vinnova, a strategic move aimed at bolstering Sweden’s competitive edge 

(Eklund, 2007; Vinnova, 2020). 

 

Empirical findings concerning the demographic profile of university scientists 

involved in university–industry collaborations in Sweden align with empirical 
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investigations based on other countries. In greater detail, a survey sent in 2007 to 

20,000 university scientists affiliated with Swedish higher education institutions 

(52% response rate) suggests that “the group [that engages in university–industry 

collaborations] consists of senior academics with Ph.D.s, with a larger share of 

faculty members from mathematics, natural science, medicine and dentistry … the 

group consists predominantly of male researchers” (Wigren-Kristoferson et al., 

2011, p. 490). 

 

3.4 Teachers’ exemption  
In 1949, the Swedish Patent Act was altered. The changes included the introduction 

of a new principle granting researchers/educators in universities, colleges, and other 

educational institutions within the national framework the rights to their own 

inventions (SFS, 1949:345). The efficacy of this legislative change has been subject 

to intense debate in recent decades (Benner & Sörlin, 2015; SOU, 2005:95; Vinnova, 

2003), and its existence even came into question during the NYFOR investigation in 

1996. However, the outcome of this investigation recommended the retention of the 

legislation, a recommendation that has endured (Riksarkivet, 1996:SE/RA/324648). 

 

The debate surrounding this matter was fueled, in part, by the misconception that 

university scientists in Sweden, as well as other nations, patented only a fraction of 

what their U.S. counterparts did. Contrary to this misconception, it was revealed that 

the patenting activities of university scientists in Sweden were comparable to those 

of U.S. scientists with regard to academic patents as a proportion of the total patents 

of domestic inventors (Lissoni et al., 2008, 2011). Here, an academic patent refers to 

a patent filed by at least one university scientist. This erroneous belief emerged due 

to comparisons between the patent holdings of universities across different countries, 

overlooking critical distinctions in legislation. For instance, nations like the U.S.A. 

possessed a significantly higher patent count than did countries like Sweden. 

However, such a comparison rests on a flawed premise, as countries like Sweden 
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retain the teachers’ exemption legislation, while others, like the U.S.A., have adopted 

alternative regulations, such as the Bayh–Dole Act. This newer legislation, the Bayh-

Dole Act, assigns universities the rights to their scientists’ inventions.  

 

A shift in perspective, focusing on the individual level rather than the university 

level, reveals a more accurate picture: nations upholding the teachers’ exemption 

legislation – like Sweden – exhibit substantially greater patenting activity than 

initially assumed. Figures 3.2 and 3.3, below, illustrate this point, highlighting the 

similarities and differences in academic patent ownership among the U.S.A., France, 

Italy, and Sweden, as well as the contribution of academic patents to the overall 

patent landscape in these nations. Notably, while Sweden and the U.S.A. exhibit 

comparable levels of academic patenting (Figure 3.2), they diverge in terms of 

ownership distribution. In Sweden, firms hold 82.1% of all patents, with universities 

owning merely 3.9%, while, in contrast, the U.S.A. sees universities owning 68.7% 

of all patents, with firms holding 24.2% (Figure 3.3). 

 

 
Figure 3.2. Ownership of granted academic patents by domestic inventors in France, Italy, Sweden, and the U.S.A., 
1994–2001 (Lissoni et al., 2008). 
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Figure 3.3. Granted academic patents as a proportion of total patents by domestic inventors, by nation and type of 
ownership, 1994–2001 (Lissoni et al., 2008). 

 

As evident from the preceding discussion, over 80% of academic patents in Sweden 

find ownership within corporate entities. Empirical research moreover suggests that 

firms predominantly engage in collaboration with university scientists in fields 

closely aligned with the firms’ technological core, rather than in marginal fields 

(Ljungberg & McKelvey, 2012). Core fields denote areas where a firm possesses a 

substantial patent portfolio and wields a notable technological edge, while marginal 

fields denote areas with fewer patents and negligible technological dominance 

(Granstrand et al., 1997; Patel & Pavitt, 1997). 

 

Consequently, one would anticipate academic patents within a firm’s core fields to 

bear heightened significance for the firm, considering their prevalence. This 

conjecture is supported by empirical data, with research indicating that academic 

patents situated in core fields generally yield a more pronounced technological 

impact than do their counterparts in non-core fields (Ljungberg et al., 2013). It is 

imperative to note, however, that a contrasting pattern emerges when scrutinizing 

academic and non-academic patents within the same category. Specifically, 

academic patents in core fields exhibit comparatively less technological impact than 

do non-academic patents in corresponding categories. Conversely, academic patents 

in marginal fields display more technological impact than do non-academic 
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counterparts in similar domains (Ljungberg & McKelvey, 2012). This suggests a 

greater relative significance for firms to collaborate with university scientists in non-

core/marginal fields as opposed to core fields. 

 

The core rationale behind recognizing the implications of the teachers’ exemption 

hinges on the possible differences in attitudes exhibited by collaborating researchers, 

particularly in comparison with scenarios in which universities retain rights to 

potential inventions. It could be that university scientists affiliated with Swedish 

institutions may be more motivated to engage in collaborative endeavors with firms 

due to financial incentives stemming from their ownership of invention rights; 

however, empirical evidence derived from university scientists in Sweden largely 

contradicts this (Wigren-Kristoferson et al., 2011). Conversely, an alternative 

perspective posits that firms may be more predisposed to engage in collaboration 

with university scientists due to the relative ease of negotiating rights for potential 

inventions directly with the researchers, as opposed to navigating negotiations with 

the broader university entity—a process that arguably entails greater complexity.   
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4 SAMPLE, DATA, AND DESCRIPTIVE 

STATISTICS 

This chapter provides an overview of the data utilized in this dissertation, along with 

a detailed explanation of the preprocessing methodologies applied. The first section 

of the chapter focuses on the sample examined in the dissertation. Following that, 

the subsequent section outlines the data employed in the dissertation. This includes 

a comprehensive elucidation of the preprocessing procedures conducted prior to 

analysis, accompanied by a critical assessment of the data quality. The concluding 

section of the chapter presents descriptive statistics, which offer valuable insights 

into the data and the sample. 

 

Historically, the practice of detailing data management has not been commonplace 

among researchers. However, we have started to witness an increased awareness of 

the ethical dimensions of research, coupled with an increased vulnerability to IT/data 

breaches, which arguably have prompted the shift toward the greater prevalence of 

such reporting. In response to these evolving considerations, proactive measures 

were taken, resulting in a data management plan (DMP) in late 2020, drawing 

inspiration from the checklist offered by the Swedish National Data Service (SND, 

2017). Subsequently, this DMP has been periodically revised and is also accessible 

upon request. 

 

4.1 Sample 
Selection criteria for the academic scientists analyzed were based on several 

requirements. The process of sample selection hinges on considerations 

encompassing field, country, university, and the academic positions held by the 

individuals. Progressing from the macro to the micro, the rationale behind these 

prerequisites can be delineated as follows. 
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First, as argued in this dissertation, the engineering sciences was chosen because 

these disciplines can be characterized by two equally important fundamental aims, 

namely, a cognitive (i.e., scientific) and a practical (i.e., technological) aim (Banse 

& Grunvald, 2009; Stokes, 1997). Furthermore, a focused and in-depth analysis of a 

specific research field is warranted, as opposed to broader findings across multiple 

fields. This approach is informed by the understanding that “different policies would 

be required to increase knowledge transfer in different research fields… [as a 

consequence of] certain variables [that] only contributed to an increased transfer in 

specific research fields” (Landry et al., 2007, p. 562, 586). 

 

More specifically, this dissertation focuses on electrical engineering, which plays a 

pivotal yet often overlooked role in technological advancement (Arthur, 2007). This 

field involves collaborations among a diverse array of stakeholders, including 

universities, MNEs, and KIE firms (Berg, 2019; Ljungberg et al., manuscript to be 

submitted for publication). Building on two semi-structured interviews conducted in 

June 2020 with an electrical engineering expert (a professor of electrical engineering 

since 2006), along with supplementary email correspondence, the decision was 

reached to center on four distinct sub-fields of electrical engineering: biomedical, 

communication, control, and signal processing.  

 

These fields were selected to achieve a desirable level of heterogeneity among the 

sampled academic scientists’ research foci and to allow more robust results. 

Specifically, the interviews with the electrical engineering professor illuminated the 

distinct nature of these sub-fields within electrical engineering: biomedical and 

communication engineering inherently addresses specific applications; signal 

processing engineering provides a foundational toolbox of generic techniques 

applicable across various domains (e.g., to biomedical engineering); while control 

engineering engages with more abstract matters tied to the tools and algorithms used 

to solve practical problems. It is moreover noteworthy that these sub-fields of 
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electrical engineering play pivotal roles as enabling technology, underpinning the 

success of some of Sweden’s best-known corporations, including AstraZeneca, 

Ericsson, Volvo Cars, and Volvo AB. 

 

Second, instead of focusing on engineering in a global context, I have chosen a 

country where universities have a rich historical tradition of engagement with 

industrial partners (Benner & Sörlin, 2015; Pettersson, 2012; Talerud, 2000) and 

where engineering companies have a high level of R&D investment and 

technological capabilities—Sweden.  

 

Third, the insights obtained from the semi-structured interviews guided the process 

of selecting universities and specific departments/units to be included in the study. It 

was deemed appropriate to focus on five prominent Swedish universities renowned 

for their contributions to electrical engineering: CTH, KTH, LiU, LTH, and UU. The 

guidance provided by the expert was instrumental in pinpointing the suitable 

department(s) and/or unit(s) from each university to incorporate into the dissertation 

framework. Upon identifying the designated departments/units from each university, 

employment data were obtained from all the selected institutions. These data 

facilitated the identification of academic researchers affiliated with the targeted 

departments/units. It is important to clarify that some of the surveyed universities 

underwent organizational changes during the analyzed timeframe (2000–2018; see 

subsequent section). In instances in which uncertainties arose due to these changes, 

the expert was consulted to mitigate any resulting ambiguities. 

 

Fourth, the decision was made to exclusively sample university scientists who held 

the position of professor during the analyzed period. This strategic emphasis on 

sampling professors was supported by several rationales. Initially, it was evident that 

professors, being entrusted with the pivotal responsibility for advancing scientific 

knowledge and shaping the research trajectory of their respective departments or 
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units, held a crucial role meriting inclusion in the dissertation. Furthermore, in light 

of insights obtained from the expert and corroborated by the research undertaken by 

my former Ph.D. student colleague, Karin Berg (2023), it became apparent that 

professors often engage in collaborative publication endeavors with their doctoral 

students. Consequently, by targeting professors in the sampling process, a substantial 

proportion of publications authored by junior academics, such as doctoral candidates, 

could be effectively captured. Second, the decision to focus solely on professors 

resulted in a high degree of homogeneity within the sample. This uniformity 

stemmed from the intrinsic emphasis that professors place on scientific output, which 

may not be uniformly echoed across all academic ranks. Third, attaining the rank of 

professor should necessitate a significant and impactful contribution to the realm of 

scientific inquiry, resulting in a rich dataset. Fourth, due to the relatively lower 

frequency of employer changes among professors at Swedish universities than 

among other occupations (Askling, 2001), there arises the opportunity to analyze 

their activities over extended periods of time while maintaining a consistent 

employer variable. Lastly, empirical evidence, as elucidated by Boardman and 

Ponomariov (2009), Lawson et al. (2019), and Tartari et al. (2014), among others, 

substantiates that professors are more prone to engaging in academic interactions 

when juxtaposed with their counterparts occupying lower ranks within the academic 

hierarchy. This propensity for academic engagement increases the significance of 

investigating professors’ roles and activities. It is noteworthy that this 

methodological approach—centering explicitly on professors—is quite common 

among scholars investigating academic engagement and/or academic 

commercialization (e.g., Bianchini et al., 2016; Callaert et al., 2015; Slavtchev, 

2013).  

 

To conclude, the thoughtful selection of parameters—encompassing distinct sub-

fields of electrical engineering, specific departments/units across prominent Swedish 

universities, and a deliberate emphasis on professors—has resulted in a final sample 
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comprising 184 unique professors. In 2018, 146 of the sampled professors were 

employed, constituting approximately 85% of Sweden’s professorial force in the 

selected field. Data from Statistics Sweden (SCB) on behalf of the Swedish Higher 

Education Authority (UKÄ) indicate that, at that time, Sweden had 172 professors in 

electrical engineering and electronics (Haglund & Nyström, 2019). It is worth noting 

that this number (85%) is slightly exaggerated, as UKÄ and SCB report their 

numbers as “full-time equivalents,” and this study does not control for that factor. 

Nevertheless, this approximation provides insight into the sample’s size relative to 

the entire population of electrical engineering and electronics professors employed 

in Sweden, offering compelling evidence for the robustness and credibility of the 

results.  

 

4.2 Bibliometric data 
To test the hypotheses and ultimately answer the research questions, various types of 

data is used, excluding the previously mentioned semi-structured interviews and 

employment data. Three types of data have been utilized: scientific documents from 

Web of Science, patents from OECD REGPAT, and patent-to-article citations from 

Reliance on Science in Patenting. Additionally, data on professors’ gender was 

gathered by examining their names along with profile photos from university 

websites, The Institute of Electrical and Electronics Engineers,18 and/or LinkedIn 

profiles when necessary.  

 

Evidently, all data utilized for the analyses, except for the gender information, fall 

within the realm of bibliometric data. Bibliometric data, often referred to as 

bibliometrics, pertain to the quantitative assessment of bibliographic information for 

 
18 The Institute of Electrical and Electronics Engineers is the “world’s largest technical 

professional organization dedicated to advancing technology for the benefit of humanity” (IEEE, 

2020). 
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analytical objectives (Broadus, 1987; Garfield et al., 1978). The primary data in all 

three empirical chapters are derived from scientific documents such as journal 

articles and conference proceedings. In contrast, patent data assume a role more akin 

to that of an influential control variable. In the context of two of the empirical 

chapters (Chapters 6 and 7), the data concerning patent-to-article citations assume a 

central position. 

 

The analyses conducted in this dissertation encompass a time span exceeding two 

decades of published scientific documents (1995–2021) authored by the sampled 

professors. The initial five-year period (1995–1999) was designated a pre-analysis 

window, with the primary analyses being conducted during the period spanning from 

2000 to 2018. Subsequently, the concluding three years (2018–2021) constitute a 

post-analysis window. Notably, the dataset includes only the years when professors 

held their positions and an additional year following the conclusion of their 

professorships (to accommodate potential publication delays). To illustrate, if a 

professor attained the rank of professor in 2003 and retained that status until 2018, 

the compilation encompasses their scientific documents from 1998 to 2018. For 

another example, if a professor became a professor in 2010 and departed from the 

university in 2012, their scientific output would be collated from 2005 to 2013. It is 

important to clarify that the professors’ scientific output during the five-year period 

preceding the actual analysis was employed to control for their preceding scientific 

impact. The treatment of patent data adhered to the same rationale. 

 

The choice of the main analysis period (2000–2018) is underpinned by three 

principal rationales. Perhaps most pivotal, the selection ensures that the sample size 

is sufficiently robust for statistical analyses. Research addressing sample size within 

the context of quantitative bibliometric analysis suggests that a range of 30 to 50 

observations can be considered the minimal sample size for approximating attributes 

such as mean distribution normality (Glänzel & Moed, 2013), while a minimum of 
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200 articles is a reasonable sample size for gauging citation impact (Rogers et al., 

2020). The proposed analysis period of 2000–2018 meets these criteria. A second 

pragmatic rationale is associated with the challenge of identifying, without access to 

comprehensive employment data, all professors within the sampled universities. 

Given that many Swedish universities transitioned to digital records at the end of the 

20th century, the earliest year for which access to the pertinent employment data 

across all institutions was 2000. The third rationale takes into account the imperative 

to accurately account for the scientific impact of each document. To capture the 

scientific impact of each article in a good enough manner—specifically, its number 

of forward citations within a defined period—the analysis must conclude a few years 

prior to the most recent year for which citation data are available, which was 2020. 

Conforming to established practice (e.g., Beaudry & Kananian, 2013; Bellucci & 

Pennacchio, 2015; McKelvey & Rake, 2020), this mandates that the analysis must 

end no later than 2018, allowing for a three-year citation window (2018–2020; 

pertaining to articles published in 2018).  

 

It is worth noting that robustness checks have been carried out with a five-year 

citation window for all scientific documents published before 2017. The adoption of 

a lengthier citation window for control purposes is particularly advantageous, as it 

offers a more precise approximation of the impact exhibited by novel articles 

(Garfield, 1980; Stephan et al., 2017; Veugelers & Wang, 2019; Wang et al., 2017). 

Nevertheless, the extension of the time window results in a reduction in the sample 

size. Consequently, a decision was made to employ a three-year citation window for 

the principal analyses, allowing for more optimal sample size. Subsequently, the 

more expansive five-year citation window was reserved for the purpose of 

conducting robustness tests. 
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4.2.1 Scientific data 

Three of the most widely recognized and frequently utilized tools for collecting 

scientific data are Web of Science, Scopus, and Google Scholar. Web of Science was 

utilized for collecting all the scientific data, for several reasons. 19 

 

First and foremost, combining databases is discouraged due to a few associated 

drawbacks. Merging databases leads to articles within the combined database 

possessing metadata from disparate sources, including variations in citations from 

different databases. Such discrepancies in citations have been empirically 

demonstrated (Harzing & Alakangas, 2016; Martín-Martín et al., 2018a, 2018b), 

ultimately leading to skewed results. Thus, to ensure the integrity of the analyses, a 

singular database needs to be the foundation, necessitating the reliance on one of the 

aforementioned databases. 

 

There exist at least three compelling reasons for excluding Google Scholar as the 

sole data source: (1) Google Scholar exhibits a relatively elevated occurrence of 

duplicates compared with Web of Science (Haddaway et al., 2015; Harzing & 

Alakangas, 2016); (2) Google Scholar somewhat frequently lacks vital metadata such 

as author affiliation and funding details (Martín-Martín et al., 2018a); and (3) many 

of the unique citations in Google Scholar might originate from lower-quality citing 

documents, potentially diminishing the viability of using citations as a reliable proxy 

for scientific impact (Martín-Martín et al., 2018a). 

 

Upon reviewing recent comparative studies of Web of Science and Scopus, and 

considering the prevalence of these databases in the fields of innovation and 

entrepreneurship, I arrived at four reasons for choosing Web of Science while 

 
19 Web of Science was originally produced by the Institute for Scientific Information (ISI), but is 

currently maintained by Clarivate Analytics (Cision, 2016). 
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acknowledging one rationale for not choosing it. The four reasons for favoring Web 

of Science were: (1) Web of Science surpasses Scopus in addressing duplicate 

entries, exhibiting fewer duplicates (Valderrama-Zurián et al., 2015; van Eck & 

Waltman, 2019); (2) Web of Science offers the inclusion of “keyword plus” in 

addition to “author keywords,” a feature not provided by Scopus (which offers only 

“author keywords”), and “keyword plus” is recognized as a superior source for topic 

analysis, according to certain scholars (Zhang et al., 2015); (3) as of 2016, Scopus’ 

expansion to pre-1996 articles was still in progress, posing a risk of limited coverage 

for articles preceding 1996 (Harzing & Alakangas, 2016); and (4) in the fields of 

innovation and entrepreneurship, Web of Science is the predominant choice for 

articles containing empirical analyses, lending a degree of enhanced credibility to its 

usage. Contrarily, the rationale for selecting Scopus stems from its broader coverage 

of proceedings in comparison to Web of Science (Martín-Martín et al., 2018a). 

 

A comprehensive evaluation of the merits and limitations inherent in each database 

led to the choice of Web of Science as the preferred option, a sentiment mirrored by 

bibliometric scholars (e.g., Aria et al., 2020). Scientific document data were collected 

from the Web of Science from February to March 2021. Employing Web of 

Science’s “Author SearchBETA,” each university scientist in the sample was 

identified. Subsequently, for each identified researcher, their “Full Record and Cited 

References” along with the corresponding “Citation Report” were obtained. 

 

4.2.2 Patent data 

Four databases were initially considered for collecting patent data, i.e., the databases 

of the Swedish Intellectual Patent Office (PRV), the European Patent Office (EPO), 

the United States Patent and Trademark Office (USPTO), and the World Intellectual 

Property Organization (WIPO). The EPO, as accessed through the OECD REGPAT 

database, emerged as the optimal resource for obtaining patent-related information, 

for several reasons. 
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Both geographical extremes, PRV and WIPO, were excluded as top choices due to 

geographical limitations. PRV’s downside is that professors’ collaborations extend 

beyond Swedish borders, potentially resulting in patent applications from other 

countries. WIPO covers international patent applications under the Patent 

Corporation Treaty involving 156 contracting states (WIPO, 2023). However, 

seeking worldwide patents for inventions limited to a few countries can be overly 

costly: it makes little to no sense to apply for a worldwide patent when the patented 

invention is limited to just one or a few countries given that broader applications are 

generally more expensive.  

 

EPO and USPTO, the two remaining databases, have two notable differences (cf. 

Akers, 2000; Criscuolo & Verspagen, 2008; Franzoni & Giuseppe, 2010). The first 

difference is that US patent law follows the “duty of candor,” requiring inventors to 

disclose all prior art relevant to patentability; EPO does not follow this system. The 

duty of candor refers to the fact that inventors (and attorneys, if applicable) have the 

obligation to inform of all prior art deemed relevant to the patentability of the 

application in question. The benefit of this is that it minimizes cherry-picking, which 

is counterbalanced by inventors citing even remotely related references: “rather than 

running the risk of filing an incomplete list of references, they tend to quote each and 

every reference even if it is only remotely related to what is to be patented” (Michel 

& Bettels, 2001, p. 192). The second, less known dissimilarity is that USPTO allows 

a “grace period” of around 12 months for filing after public idea disclosure; EPO 

denies such rights. The grace period is the window of time during which an inventor 

may submit a patent application after disclosing his or her idea to the public.  

 

Ultimately, patent applications were collected from the EPO through the OECD 

REGPAT database, specifically from the July 2020 edition (OECD REGPAT, 2020). 

This decision stemmed from several factors. Notably, the selection of professors for 

sampling was based on their affiliation with Swedish institutions, within a European 
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Union Member State. Furthermore, the precedent of prior empirical investigations 

conducted in Sweden, exemplified by studies such as those conducted by Bourelos 

et al. (2017), Ljungberg and McKelvey (2012), and Tur et al. (2022), lends support 

to the usage of this database.20 Moreover, this choice was reinforced by the EPO’s 

distinctive capacity to closely align patents with pre-existing art, resulting in a 

reduction of noise in the dataset (Finardi, 2011).  

 

4.2.3 Patent-to-article data 

The publicly available dataset Reliance on Science in Patenting developed by Marx 

and Fuegi (2020, 2022), which matches full-text USPTO and EPO patents to 

scientific publications in Microsoft Academic Graph, served as the cornerstone of 

this dissertation.21 This dataset encompasses citation linkages across all USPTO 

patents granted from 1836 to 2020 and all EPO patents granted from 1978 to 2020. 

 
20 In addition, other studies not sampling Sweden, as such, have also chosen to collect patent data 

from the EPO database (e.g., Czarnitzki et al., 2007; Finardi, 2011). 
21 The reader might correctly note that Microsoft Academic Graph was not discussed in the above 

“Scientific data” section, and that is because Microsoft Academic Graph is not yet that well 

known. This warrants a condensed review here. Hug and Brändle (2017) found that Microsoft 

Academic Graph surpasses Web of Science and Scopus in covering book-related documents and 

conference proceeding items, although it falls slightly behind Scopus in covering journal articles. 

They furthermore found that the overall and unique coverage of Zurich Open Archive and 

Repository (2008–2015) publications was 52.5% for Microsoft Academic Graph, 52.0% for 

Scopus, and 47.2% for Web of Science. Note, however, that the coverage in Engineering and 

Technology is much, much higher: Microsoft Academic Graph 95.4%, Scopus 96.9%, and Web 

of Science 95.0%. In a follow-up paper published in 2021, Martín-Martín et al. found that 

Microsoft Academic Graph had higher coverage than either Scopus or Web of Science in the 

fields of engineering and computer science, although it did not match the coverage of Google 

Scholar. To conclude, these two findings clearly suggest that Microsoft Academic Graph , even 

though it is relatively new, is a reliable source of citation data. For a more general overview of 

Microsoft Academic Graph, please see Sinha et al. (2015). 
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REGPAT database, specifically from the July 2020 edition (OECD REGPAT, 2020). 

This decision stemmed from several factors. Notably, the selection of professors for 

sampling was based on their affiliation with Swedish institutions, within a European 
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Union Member State. Furthermore, the precedent of prior empirical investigations 

conducted in Sweden, exemplified by studies such as those conducted by Bourelos 

et al. (2017), Ljungberg and McKelvey (2012), and Tur et al. (2022), lends support 

to the usage of this database.20 Moreover, this choice was reinforced by the EPO’s 

distinctive capacity to closely align patents with pre-existing art, resulting in a 

reduction of noise in the dataset (Finardi, 2011).  

 

4.2.3 Patent-to-article data 

The publicly available dataset Reliance on Science in Patenting developed by Marx 

and Fuegi (2020, 2022), which matches full-text USPTO and EPO patents to 

scientific publications in Microsoft Academic Graph, served as the cornerstone of 

this dissertation.21 This dataset encompasses citation linkages across all USPTO 

patents granted from 1836 to 2020 and all EPO patents granted from 1978 to 2020. 

 
20 In addition, other studies not sampling Sweden, as such, have also chosen to collect patent data 

from the EPO database (e.g., Czarnitzki et al., 2007; Finardi, 2011). 
21 The reader might correctly note that Microsoft Academic Graph was not discussed in the above 

“Scientific data” section, and that is because Microsoft Academic Graph is not yet that well 

known. This warrants a condensed review here. Hug and Brändle (2017) found that Microsoft 

Academic Graph surpasses Web of Science and Scopus in covering book-related documents and 

conference proceeding items, although it falls slightly behind Scopus in covering journal articles. 

They furthermore found that the overall and unique coverage of Zurich Open Archive and 

Repository (2008–2015) publications was 52.5% for Microsoft Academic Graph, 52.0% for 

Scopus, and 47.2% for Web of Science. Note, however, that the coverage in Engineering and 

Technology is much, much higher: Microsoft Academic Graph 95.4%, Scopus 96.9%, and Web 

of Science 95.0%. In a follow-up paper published in 2021, Martín-Martín et al. found that 

Microsoft Academic Graph had higher coverage than either Scopus or Web of Science in the 

fields of engineering and computer science, although it did not match the coverage of Google 

Scholar. To conclude, these two findings clearly suggest that Microsoft Academic Graph , even 

though it is relatively new, is a reliable source of citation data. For a more general overview of 

Microsoft Academic Graph, please see Sinha et al. (2015). 



118 

 

Notably, the dataset includes over 160 million papers published since 1800, 

meticulously captured by Microsoft Academic Graph. Several compelling reasons 

underpin the selection of this dataset.  

 

First, the dataset aligns with the temporal scope of this research. Second, this dataset 

takes into consideration, and distinguishes, front-page citations and in-body 

citations. The significance of this is underscored by findings of Bryan et al. (2020) 

and Marx and Fuegi (2022) demonstrating that including in-body citations in the 

analysis yields meaningful insights. This stands in contrast to prior investigations 

often based solely on front-page citations. For instance, a compelling illustration of 

this is the study conducted by Marx and Fuegi (2022), which replicated Ahmadpoor 

and Jones’ (2017) study. The outcome revealed that patents exhibit a proximity to 

the academic–industry interface that is approximately 40% greater than that reported 

by Ahmadpoor and Jones (2017) using a front-page-only approach. Third, the 

authors have seemingly done an excellent job building the dataset by combining 

machine-learning techniques developed by de Rassenfosse and Verluise (2020) with 

fine-tuned heuristics developed in house. Fourth, even though it is a relatively new 

dataset, a Web of Science search in September 2022 suggested that no fewer than 

seven published papers had already utilized the Reliance of Science in Patenting 

database. This clearly indicates that the scientific community finds the recently 

disclosed database to be of high value, validity, and reliability.  

 

4.3 Data preprocessing 
The harsh truth is that bibliometric data require extensive preprocessing, including 

cleaning and structuring, before analysis can be conducted. Aside from some manual 

patent-related data cleaning executed in Excel, all preprocessing was accomplished 

using R. This language stands as one of the most prevalent and potent tools for 

statistical computing. This section outlines the approaches taken to preprocess the 

different types of bibliometric data. 
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4.3.1 Scientific data 

The challenge of erroneous results, especially encompassing both false positives and 

false negatives pertaining to author names (Tang & Walsh, 2010), was effectively 

mitigated through the utilization of Web of Science’s “Author SearchBETA” 

feature.22 By leveraging this function, the risk of inaccuracies at both the individual 

and article levels was minimized, owing to its built-in author disambiguation 

algorithm as well as by allowing researchers to claim ownership of articles and 

maintain their own profiles via Publons.  

 

A noteworthy proportion of the professors possessed authenticated profiles, which 

significantly facilitated the process of pinpointing the accurate professor in cases of 

multiple individuals sharing identical names. However, it is important to 

acknowledge that this was not without errors. In instances in which the outcomes of 

the author search yielded ambiguity—for example, presenting several individuals 

named Prof. Smith without clear differentiation—the universities’ websites were 

consulted to identify articles definitively published by the “correct” Prof. Smith and 

then used those articles to correctly identify the right individual.  

 

Following the download of the sampled professors’ “Full Record and Cited 

References” reports along with their corresponding “Citation Reports” from Web of 

Science, two R packages were employed to extract valuable insights from the 

 
22 A false positive refers to an instance when something is wrongly assigned as true, and a false 

negative refers to an instance when something is wrongly assigned as false. In other words, a 

false positive occurs when an attribution is made to an author (or inventor) for publishing an 

article (or applying for a patent), yet in actuality, another individual sharing the same or a similar 

name is the true author (or inventor). Conversely, a false negative arises when an article (or 

patent) is ascribed to a different individual with a matching or similar name, even though the 

actual rightful attribution should pertain to the individual under consideration. 
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amassed articles. The first package was “bibliometrix,” an R tool tailored for 

comprehensive science mapping (Aria & Cuccurullo, 2017). The second package 

was “refsplitr,” an R package used for processing, organizing, and visualizing 

reference records from Web of Science (Fournier et al., 2020). 

 

Subsequently, an exhaustive examination and cleaning of the data was undertaken—

in R—with a specific emphasis on modifying organization names to ensure 

uniformity. This measure was necessitated by the lack of standardized formats in the 

bibliometric data, among other factors, such as (human) reporting errors. The 

following steps detail the actions undertaken to achieve this essential objective.  

 

First, a frequency table was generated, documenting the prevalence of each distinct 

organization. The contents of this comprehensive table were then sorted in 

descending order based on the frequency of occurrence. Second, a systematic 

approach was adopted by directing the attention toward organizations with the most 

frequent occurrences. The primary objective during this phase was to ascertain the 

existence of similar variants of a given organization, such as “Chalmers University 

of Technology,” “Chalmers Technology University,” and “Chalmers University.” 

This analysis yielded a clear pattern in which organizations with higher numbers of 

entries also exhibited higher numbers of variations. Consequently, as the third and 

concluding step, an extensive harmonization process was initiated. More than 200 

organizations were systematically homogenized, with a specific focus on those 

exhibiting the highest frequencies. 

 

A coherent methodology was implemented throughout the process of organization 

name standardization. Each entity was attributed to its highest hierarchical level. For 

instance, all units or departments of a university were aligned with the corresponding 

parent university. In a similar vein, subsidiary firms were linked to their parent 

companies. In cases involving hospitals, university hospitals were aligned with their 
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respective universities. Table 4.1, below, clearly demonstrates the importance of 

prioritizing the cleaning of organization names with the most entries. This is 

exemplified through a comparative analysis of the organization name with the most 

entries, “LUND UNIV,” in its pre-cleaning state, against the 100th most frequent 

organization, namely, “UNIV VALLADOLID.” The table further presents the 

frequency of each distinct variant, its name before standardization, and its 

harmonized name following the standardization process. 

 
Table 4.1. Organizational names before and after adjustment, for the leading and the 100th most common 
organizations’ versions. 

No. of entries Name before adjustment Name after adjustment 

3294 LUND UNIV LUND UNIV TECH 

178 LUND INST TECHNOL LUND UNIV TECH 

173 UNIV LUND HOSP LUND UNIV TECH 

32 UNIV LUND LUND UNIV TECH 

7 LUND UNIV HOSP LUND UNIV TECH 

3 LUND TECH UNIV LUND UNIV TECH 

3 SKANE UNIV HOSP LUND LUND UNIV TECH 

2 LUND UNIV AND HOSP LUND UNIV TECH 

2 LUND UNIV EKONOMIHGSK LUND UNIV TECH 

2 LUND UNIV LTH LUND UNIV TECH 

1 C LUND UNIV LUND UNIV TECH 

1 LUND UNIV MAPCI LUND UNIV TECH 

1 TECH UNIV LUND LUND UNIV TECH 

1 UNIV HOSP LUND LUND UNIV TECH 

1 UNIV LUND TECHNOL LUND UNIV TECH 

32 UNIV VALLADOLID UNIV VALLADOLID 

1 UNIV VALLADOLID IBGM UVA UNIV VALLADOLID 

 

Following data preprocessing, distinguishing publications resulting from academic 

engagement was addressed. In journal articles and conference papers, few research 

scholars delve into the intricacies of their method for accomplishing this task. Hence, 

after engaging in meaningful conversations with multiple researchers, it was 

concluded that two principal approaches could be utilized to this end, each with its 
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trade-offs: one approach risks including false positives, while the other risks omitting 

true positives. 

 

Delving deeper into these strategies, the first approach, characterized by its inclusion 

of false positives, revolved around the identification of authors affiliated with 

universities and/or other public institutions (e.g., schools and institutes). All other 

organizations were categorized as firms. This method hinged on recognizing any 

name and abbreviation of the sought-after institutional types within the author’s 

stated affiliation.  

 

Conversely, the second strategy, prone to omitting true positives, operated in the 

inverse direction. Here, the focus was on identifying firm affiliations, while 

designating the remaining affiliations as universities (public institutions). This was 

primarily executed through the identification of abbreviations and acronyms 

associated with various legal firm forms (e.g., AB, CORP, PLC, and LLC), drawing 

from an exhaustive compilation of such forms provided by the European Central 

Bank (ECB, 2020) and the U.S. Small Business Administration (SBA, 2020), as well 

as a more specific list encompassing Swedish forms (Bolagsverket, 2020).  

 

For the sake of transparency, this comprehensive pursuit encompassed the search for 

approximately 150 distinct firm forms. However, in hindsight, it is noteworthy that 

over 90% of articles resulting from academic engagement could be effectively 

captured by utilizing the 10% most prevalent firm abbreviations and acronyms.  

 

The decision was to proceed with the second strategy due to its stronger 

mathematical appeal, primarily because the academic engagement group holds 

central significance in this context. A hypothetical example is provided to elucidate 

why the second strategy was mathematically more compelling: Let us initially 

assume a sample of 1000 publications, comprising 90% academic publications and 
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10% academic engagement publications (McKelvey & Rake, 2020, in their analysis 

of the pharmaceutical industry, found that 6.4% of all publications resulted from 

academic engagement projects, so utilizing 10% for a more technical field was 

reasonably justified). Additionally, let us posit that each of the two strategies yields 

5% errors.  

 

The first strategy (the one focusing on identifying publications resulting from 

academia only) erroneously categorizes 5% of the publications as stemming from 

academic engagement projects. That is, the first approach entails that the academic 

engagement group incorporates false positives. Interpreted from the academic 

engagement group’s perspective, this accounts for 45 false positives. In contrast, the 

second strategy (the one focusing on identifying publications resulting from 

academic engagement) wrongly labels 5% of the publications as originating from 

academic projects. In other words, the academic collaboration group contains 5 false 

positives. 

 

4.3.2 Patent data 

The patent data underwent thorough cleaning procedures primarily based on the 

aforementioned heuristics at the name level. However, a notable departure from the 

aforementioned approach was adopted. In addition to prioritizing the validation of 

the researchers’ names and assignees (i.e., affiliations), careful attention was directed 

toward the inventor-provided addresses and their corresponding technological 

domains. This approach facilitated the identification and elimination of well-defined 

anomalies, i.e., false positives.  

 
Let me illustrate this refined methodology with an example. One of the sampled 

professors had multiple patents exhibiting a coherent pattern: matching technological 

domains, identical organization affiliations, and consistent regional addresses. 

However, this cohesive pattern was disrupted by a singular patent in an adjacent 
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technological domain, accompanied by an altered address situated in another region. 

Notably, this patent was filed between the other patents, thereby eliminating the 

possibility that the professor had relocated. Consequently, this patent was deduced 

to originate from another individual who happened to share the same name as the 

sampled professor. 

 

4.3.3 Patent-to-article data 

The data preparation process involved the following steps. First, all publications with 

digital object identifiers (DOIs) and/or PubMed identifiers (PMIDs) was identified. 

Subsequently, these identified publications was cross-referenced with the “Reliance 

on Science in Patenting” dataset developed by Marx and Fuegi (2020, 2022). This 

allowed the identification all patents citing my sample of publications, constituting 

the third step. The fourth step encompassed the retrieval of patent-related information 

for these patents from Espacenet, an esteemed and widely adopted patent database.23 

The fifth step involved a cleaning process. Specifically, patents lacking pivotal 

information, including instances of inventors’ details being absent (33 patents), 

instances of incomplete surnames or first names (45 patents), and instances of non-

English patents (13 patents), were excluded. The sixth phase was marked by 

harmonization aimed at ensuring consistency in the representation of inventor names. 

This was achieved by standardizing the structure to match that of the scientific 

publications (surname followed by initials), and similarly, aligning assignee names 

with their corresponding affiliations. This task was accomplished using the above-

mentioned heuristics and manual work. In the seventh and final step, a matching 

 
23 If the focal objective of Chapter 6 was to delve into the analysis of the technological impact of 

the patents themselves, then the utilization of more detailed databases such as PATSTAT would 

indeed be preferable. It is noteworthy, however, to underscore that the specific area of interest in 

this endeavor is examining the inventors and assignees involved, resulting in the aforementioned 

databases, Espacenet and PATSTAT, becoming less distinguishable and the choice between them 

less germane. 

125 

 

process was undertaken, linking authors with inventors and affiliations with 

assignees. 

 

4.4 Data quality 
The quality of the bibliometric data utilized in this dissertation merits thorough 

examination. While a bibliometric approach allows for an objective and reliable 

approach to analyzing quantitative data (Diodato & Gellatly, 1994; Subramanyam, 

1983), it is also widely acknowledged that these data possess inherent limitations. 

 

Previously, two limitations were addressed: first, the absence of a comprehensive 

global bibliometric repository encompassing all articles and patents; second, the 

prerequisite for disambiguating, cleaning, and structuring the bibliometric data, as 

outlined in Sections 4.2.1 and 4.2.2. 

 

A third constraint associated with the employed bibliometric data pertains to their 

representation of outcomes, specifically, the resultant articles and/or patents, rather 

than directly reflecting the underlying activities themselves (Bozeman et al., 2013; 

Katz & Martin, 1997). Furthermore, this analysis solely considers successful article 

submissions and patent applications, instead of all applications. Consequently, this 

means that all conclusions made in this dissertation are grounded on analyses of those 

collaborative research projects resulting in at least one scientific paper, rather than 

the entirety of collaborative research projects.  

 

A fourth limitation is the equal weighting assigned to each citation. However, this 

practice does not accurately reflect the varying significance of citations in academic 

discourse (e.g., Giuffrida et al., 2019). Citations differ in their value and implications; 

for instance, a study might be cited to challenge its conclusions rather than to support 

them.  

 



124 

 

technological domain, accompanied by an altered address situated in another region. 

Notably, this patent was filed between the other patents, thereby eliminating the 

possibility that the professor had relocated. Consequently, this patent was deduced 

to originate from another individual who happened to share the same name as the 

sampled professor. 

 

4.3.3 Patent-to-article data 

The data preparation process involved the following steps. First, all publications with 

digital object identifiers (DOIs) and/or PubMed identifiers (PMIDs) was identified. 

Subsequently, these identified publications was cross-referenced with the “Reliance 

on Science in Patenting” dataset developed by Marx and Fuegi (2020, 2022). This 

allowed the identification all patents citing my sample of publications, constituting 

the third step. The fourth step encompassed the retrieval of patent-related information 

for these patents from Espacenet, an esteemed and widely adopted patent database.23 

The fifth step involved a cleaning process. Specifically, patents lacking pivotal 

information, including instances of inventors’ details being absent (33 patents), 

instances of incomplete surnames or first names (45 patents), and instances of non-

English patents (13 patents), were excluded. The sixth phase was marked by 

harmonization aimed at ensuring consistency in the representation of inventor names. 

This was achieved by standardizing the structure to match that of the scientific 

publications (surname followed by initials), and similarly, aligning assignee names 

with their corresponding affiliations. This task was accomplished using the above-

mentioned heuristics and manual work. In the seventh and final step, a matching 

 
23 If the focal objective of Chapter 6 was to delve into the analysis of the technological impact of 

the patents themselves, then the utilization of more detailed databases such as PATSTAT would 

indeed be preferable. It is noteworthy, however, to underscore that the specific area of interest in 

this endeavor is examining the inventors and assignees involved, resulting in the aforementioned 

databases, Espacenet and PATSTAT, becoming less distinguishable and the choice between them 

less germane. 

125 

 

process was undertaken, linking authors with inventors and affiliations with 

assignees. 

 

4.4 Data quality 
The quality of the bibliometric data utilized in this dissertation merits thorough 

examination. While a bibliometric approach allows for an objective and reliable 

approach to analyzing quantitative data (Diodato & Gellatly, 1994; Subramanyam, 

1983), it is also widely acknowledged that these data possess inherent limitations. 

 

Previously, two limitations were addressed: first, the absence of a comprehensive 

global bibliometric repository encompassing all articles and patents; second, the 

prerequisite for disambiguating, cleaning, and structuring the bibliometric data, as 

outlined in Sections 4.2.1 and 4.2.2. 

 

A third constraint associated with the employed bibliometric data pertains to their 

representation of outcomes, specifically, the resultant articles and/or patents, rather 

than directly reflecting the underlying activities themselves (Bozeman et al., 2013; 

Katz & Martin, 1997). Furthermore, this analysis solely considers successful article 

submissions and patent applications, instead of all applications. Consequently, this 

means that all conclusions made in this dissertation are grounded on analyses of those 

collaborative research projects resulting in at least one scientific paper, rather than 

the entirety of collaborative research projects.  

 

A fourth limitation is the equal weighting assigned to each citation. However, this 

practice does not accurately reflect the varying significance of citations in academic 

discourse (e.g., Giuffrida et al., 2019). Citations differ in their value and implications; 

for instance, a study might be cited to challenge its conclusions rather than to support 
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A fifth limitation pertains to potential bias toward firms that prioritize publication, 

thereby causing overrepresentation in the analytical framework (Tijssen, 2009). This 

bias indicates that the conclusions drawn within this dissertation predominantly align 

with the characteristics of firms featured in the sample. Comparable reasoning is also 

relevant to the analysis of patents (Griliches, 1990). 

 

Despite these overarching limitations, bibliometric data are still considered to 

provide a reliable, although partial, measure of successful scientific and 

technological knowledge creation (Griliches, 1990; Perkmann et al., 2011; 

Ponomariov & Boardman, 2016; Tijssen, 2009). Research scholars have moreover 

argued that patent-to-article data can be viewed as a similar type of measure, that is, 

a reliable, although partial, measure (Callaert et al., 2006; Roach & Cohen, 2013).  

 

Furthermore, bibliometric data remain a cornerstone in quantitatively analyzing 

academic interactions (as seen in references within Perkmann et al., 2013, 2021), 

research collaborations (as seen in references in Bozeman et al., 2013), and 

knowledge networks (as seen in references in Phelps et al., 2012). Their significance 

lies in their ability to provide a substantial and credible resource for addressing the 

complexities inherent in measuring broader conceptions of knowledge creation, 

knowledge transfer, and knowledge diffusion. 

 

4.5 Descriptive statistics 
Figure 4.1 shows the geographical distribution of the sampled universities in 

Sweden. It presents the total number of sampled professors from each university 

during the studied period, categorized into two groups: “academic professors,” 

encompassing full-time professors, guest professors, and emeritus professors, and 

“adjunct professors.”  
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Additionally, the figure shows the number of publications generated by the sampled 

professors per university, along with the proportion of publications attributed to 

academic engagement. Finally, the gender distribution at the universities is 

presented. 

 

 
Figure 4.1. The number, type, and gender of the sampled professors, from each university. 

Note: The figure indicates that the total number of sampled professors is 185. However, one of the professors was 

sampled at two universities, which means that the true number of uniquely sampled professors is 184. 

 

It is evident that the largest number of professors was sampled from LTH (52), 

closely followed by LiU (47), and then CTH (32), KTH (27), and UU (27). In terms 

of the share of adjunct professors, LiU exhibited the highest percentage at 21%, 

followed by CTH at 19%, LTH at 17%, KTH at 11%, and UU at 4%. Furthermore, 

the figure shows that CTH had the largest portion of publications resulting from 

academic engagement (22.1%), closely followed by LTH (21.1%). Subsequently, 

LiU accounted for 18.5%, followed by KTH at 11.0% and UU at 10.7%. 

 

As expected, males are overrepresented among professors; however, the extent to 

which they are overrepresented is striking. Only 8.7% of all professors are females 

(16 out of 184), which contrasts with the fact that more than 20% of all new doctoral 
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degree holders in the engineering sciences, in both Sweden and the U.S.A. at the 

beginning of the 21st century, were females (Hill et al., 2010; SCB, 2020b; Yoder, 

2012). In greater detail, 18.5% of all professors at UU (five professors), 8.5% at LiU 

(four professors), 7.4% at KTH (two professors), 6.3% at CTH (two professors), and 

5.8% at LTH (three professors) were female. 
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5 THE SCIENTIFIC OUTCOMES AND IMPACTS 

OF COLLABORATIVE RESEARCH AS ONE 

FORM OF ACADEMIC ENGAGEMENT 

5.1 Introduction 
In the literature on the knowledge economy, the university, as an organization, and 

science, as an activity, are both considered pivotal in stimulating broader processes 

involving technology, economic growth, job generation, and societal goals 

(Lundvall, 1992; Nelson & Rosenberg, 1993; Owen-Smith & Powell, 2004). 

However, the impact resulting from collaborative research involving universities and 

firms is not yet well understood, and there have been calls for further research to 

disentangle this relationship (e.g., Bozeman et al., 2013; Perkmann et al., 2021).  

 

This chapter focuses chiefly on analyzing the scientific impact of one form of 

academic engagement, i.e., collaborative research, in comparison with similar 

research not involving firms, i.e., academic projects. That is, the primary objective 

of this chapter is to address this gap in the existing literature. Specifically, the focus 

is on addressing the first research question of this Ph.D. dissertation: 

 

How does the scientific impact of publications resulting from academic 

engagement projects differ from that of publications resulting from academic 

projects? 

 

This inquiry has significant merit as it endeavors to enhance our comprehension of 

the factors contributing to scientific impact. By gaining deeper insights into this 

matter, we stand poised to establish a climate in which such collaborations become 

more common, ultimately fostering greater scientific and technological advances. In 

other words, the crucial importance of elucidating this phenomenon is underscored 
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by the obvious connection between certain scientific domains and the progress of 

technology (Ahmadpoor & Jones, 2017; Jaffe et al., 1993; Narin et al., 1997). 

 

Within this framework, the engineering sciences emerge as a fitting empirical 

context, owing to their intrinsic relevance to industrial development. Drawing on 

prior research in this empirical domain, it is anticipated that collaborative efforts are 

more likely to yield indirect benefits for the participating firms, including knowledge 

transfer, learning, network development, and signaling effects in the market 

regarding the use of advanced science and technology (Berg, 2022; Berg & 

McKelvey, 2020; Hemberg, 2023; McKelvey & Ljungberg, 2017).  

 

This interpretation combines two opposing views of how science and technology 

facilitate the search for new combinations. On one hand, Fleming and Sorensen 

(2004) proposed that technology search occurs more locally, through incremental 

steps of independent components, whereas science guides the search, providing 

advantages for distant search (e.g., for more breakthrough inventions). On the other 

hand, Kaplan and Vakili (2015) argued that breakthrough inventions may require 

both a narrow recombination of application areas and a more distant search. In the 

engineering sciences, in which knowledge developments are relevant to industrial 

development, these two views may be combined. 

 

Specifically, while not all science leads to radical breakthrough results stemming 

from distant searches and combining knowledge from multiple fields, not all 

engineering science is solely related to specific applications of technical knowledge 

in firms. Thus, the engineering sciences in Sweden provide a strong empirical context 

in which to study scientific outcomes, particularly scientific impact. It is important 

to note that publications resulting from academic engagement are compared and 

contrasted with those publications involving only academics in universities within 

the same group of professors, i.e., university academics. 
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The remaining sections of this chapter are structured as follows: The subsequent 

section discusses related literature, ultimately resulting in the formulation of four 

hypotheses. Following this, the presentation includes details about the data employed 

and the methods applied in this study. Descriptive findings are then provided, 

followed by econometric results, a comprehensive discussion, and, ultimately, 

conclusions. 

 

A more specialized iteration of this chapter has been submitted to the special issue 

entitled “Micro Processes in Science–Industry Interaction: Actors, Channels, and 

Impacts” of the Journal of Industry and Innovation, as detailed in Table 1.1. It is 

important to clarify that that paper, co-authored by Ström, McKelvey, and Gifford, 

is distinct from this chapter, which is solely the work of the author of this dissertation, 

Ström. 
 

5.2 Theory and hypotheses 
This section aims to expand on the empirical works introduced in Section 2.4 by 

exploring how the inclusion of firms in collaborative research processes can 

influence the scientific impact of the resulting papers in the context of electrical 

engineering. Before delving into the specifics of how this influence may manifest 

itself, it is essential to more thoroughly discuss the actual meaning and components 

of the concept of scientific impact. 
 

5.2.1 The concept of scientific impact 

As briefly discussed earlier in this dissertation, the interpretation of scientific impact 

in the context of publications, based on the literature presented below, encompasses 

two key dimensions: article impact and journal reputation. 

 

Article impact pertains to the number of scientific citations a paper receives, 

reflecting the extent to which the scientific community found the paper valuable. 
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Through forward citations, research scholars acknowledge prior scientific work 

(Merton, 1973; Moed, 2005). A large number of citations suggests that members of 

the scientific community have actively used the publication to inform their own 

research, indicating a high article impact. Citations are not limited to the assessment 

of papers; they can also be employed at the individual level to validate a researcher’s 

work. Among the best-known and most widely used measures (or indexes) for 

assessing researchers’ productivity and citations of their published works is the h-

index, developed by Hirsch in 2005, formally defined as “the number of papers with 

citation number ≥h” (Hirsch, 2005, p. 16569). 

 

Aksnes et al. (2019) have argued that citations reflect two aspects of research quality, 

namely, scientific impact and relevance, although with important limitations. One 

limitation of citations, as raised by Aksnes et al., is that they do not reflect other 

aspects of research quality, such as solidity and plausibility, which are virtues related 

to the research being well-founded, based on sound scientific methods, and yielding 

convincing results. This viewpoint aligns with the arguments raised by Waltman et 

al. (2013), who found support in a simulation model suggesting that citation impact 

should be distinguished from researchers’ overall scientific impact. 

 

The process of publishing an article in an academic journal is a rigorous one, 

especially in higher-impact journals, in which under 10% of all submitted articles are 

accepted (Shaikh, 2016). This implies that journals have varying quality 

requirements and prestige. Hence, publications in top-tier journals have undergone 

rigorous peer scrutiny, indicating that they are well-founded, based on sound 

scientific methods, and produce convincing results. Similar to citations indicating the 

extent to which the scientific community values a paper, publishing in top-tier 

journals serves as an indicator of the reputation gained by the author. 
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The impact of journals is quantified through their journal impact factor (JIF) score, 

which, in a given year, is calculated as the number of citations the journal has 

received in the previous two years divided by the number of articles published in that 

journal in the same two years (Garfield, 1999, 2006; see also Garfield, 1955, when 

he first proposed the idea). However, it is important to note that JIF has been widely 

criticized as a proxy for measuring the article impact of individual papers, primarily 

because it is an aggregate measure intended to assess the prestige and influence of a 

journal (Amin & Mabe, 2000; Lozano et al., 2012; Seglen, 1997).  

 

For instance, Lozano et al. (2012) noted that “since 1990 the overall proportion of 

highly cited papers coming from highly cited journals has been decreasing, and the 

proportion of highly cited papers not coming from highly cited journals has been 

increasing” (p. 2140), implying that the use of JIF is not very accurate for measuring 

the article impact of individual papers. However, while the JIF score is not a precise 

proxy for article impact, it is a suitable proxy for the scientific rigor and quality of 

an article, as academic scholars tend to associate JIF with a journal’s reputation and 

quality (McKiernan et al., 2019). Additionally, Mahmood (2017) conducted a meta-

analysis investigating whether perception-based rankings (e.g., expert surveys) and 

citation-based rankings (e.g., journal impact factor) correlated with regard to their 

evaluation of journal quality, finding an overall clear positive correlation. 

 

Together, these two measures represent two distinct aspects of scientific impact. 

Article impact reflects the value attributed to a publication by the scientific 

community, while journal reputation conveys the reputation associated with the 

publication. This comparison underscores two crucial distinctions between the two 

aspects. First, while journal reputation inheres in an article from the moment of 

publication, article impact is something that accumulates over time. Second, 

researchers have more control over the journal reputation associated with their 

articles, as they decide where to publish (or, at least, where not to publish), but they 
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cannot compel other scholars to cite their work. 

 

The questions concerning the operationalization of these two aspects of scientific 

impact and the extent to which they correlate with each other will be discussed in 

Section 5.3.1. 
 

5.2.2 Understanding the scientific impact of collaborative research  

Previous research has investigated the involvement of firms in scientific 

publications, yielding mixed empirical findings regarding the scientific impact of 

these publications. Some of this research has focused on science-based industries. 

Notably, in the pharmaceutical industry, it has been observed that firm participation 

in scientific publications can enhance either the article impact or journal reputation 

of the resulting scientific work, contingent on specific conditions (McKelvey & 

Rake, 2016; Rake, 2021). 

 

Frenken et al. (2010) conducted a comparative study of various scientific domains 

and found that publications resulting from academic engagement exhibited high 

article impact in fields such as biotechnology, organic fine chemistry, and analysis 

measurement and control technology, with “high” indicating a level of impact similar 

to that of publications involving academics alone. However, in other fields, such as 

agriculture and food chemicals and IT, the article impact of such publications was 

comparatively lower. 

 

Some researchers have applied a national perspective, as demonstrated by Abramo 

et al. (2009), who examined all academic researchers in one nation (i.e., Italy) 

operating in numerous scientific disciplinary sectors. Their findings indicated that 

publications resulting from academic engagement had similar journal reputations as 

did publications involving academics exclusively.  

 

137 

 

It is noteworthy that few such studies have specifically examined engineering in 

depth. Therefore, this discussion will explore all possible outcomes, to reduce the 

risk of partiality toward a single cause/explanation (Chamberlain, 1965), starting 

with the case of why publications resulting from academic engagement may lead to 

higher or lower article impact. 
 

The interplay between academic engagement and article impact within the 

engineering sciences 

As previously mentioned, the field of engineering sciences serves a dual purpose, 

encompassing both cognitive and practical aims (Banse & Grunvald, 2009). This 

duality implies that publications resulting from academic engagement projects in this 

field could possess both commercial relevance and academic significance, 

potentially leading to higher article impact, especially when these publications are 

conceived as collaborative research outputs involving similar but diverse knowledge 

bases (see, e.g., Boschma, 2005; Nooteboom, 2000; Nooteboom et al., 2007). 

 

To frame this differently, high article impact is likely to characterize a publication 

based on engineering science, which comprises two critical constructs. First, it 

incorporates deep application knowledge essential for practical problem-solving, 

often represented by the participating firms. Second, it involves a more abstract and 

distant search in the realm of engineering science, where there is a high alignment 

and synergy between the scientific and technological components of the paper. 

Consequently, such publications are more likely to attract a broader audience 

interested in the findings, as they offer a valuable fusion of different knowledge 

bases. This combination of diverse knowledge sources represents a potential source 

of superior knowledge outcomes (Schilling & Green, 2011), provided that the 

individuals involved possess adequate prior related knowledge to effectively interact. 
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The fact that industrial researchers belong to different knowledge networks implies 

that they have an alternative channel for disseminating their findings, enhancing the 

visibility and potential impact of their publications (Spencer, 2001). Similarly, larger 

teams are likely to expand the readership of their publications. Larger teams should 

theoretically also have the potential to improve the overall outcome because when a 

larger number of individuals pool their knowledge bases, they create an environment 

where information and ideas can be exchanged at a larger scale, facilitating the 

emergence of beneficial combinatory knowledge outcomes (Becker & Murphy, 

1992; Bozeman et al., 2013; Katz & Martin, 1997; Phelps et al., 2012). Such a 

scenario is particularly relevant to academic engagement, as it involves a more 

extensive mix of knowledge bases and logics. However, it is important to 

acknowledge that there are limits to the diversity and size of groups involved in 

collaborative research. 

 

It is also conceivable that some authors may have dual affiliations, simultaneously 

employed in both academia and industry, serving as knowledge brokers. The 

literature suggests that not all team members need to have an optimal cognitive 

distance from one another. Instead, one team member, who is cognitively proximate 

to the others (i.e., the knowledge broker), can serve as a conveyer and translator of 

the diverse knowledge, indirectly facilitating knowledge transfer (Gertner et al., 

2011; Leifer & Delbecq, 1978; Meyer, 2010; Tushman, 1977; Tushman & Scanlan, 

1981). For example, Gertner et al. (2011) noted that “the recruitment of an 

appropriate associate [who has dual membership in the university and industry 

communities] with excellent cross-cultural and boundary-spanning skills may well 

be crucial to the success of international KTPs” (p. 641), with “KTPs” standing for 

knowledge transfer partnerships, i.e., government-sponsored collaborative projects 

between academia and industry. This underscores the vital role that individuals with 

dual affiliations can play in the success of academic engagement projects. 
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In contrast, a higher measure of article impact may also be attainable by exclusively 

academic projects, resulting in reduced article impact for academic engagement 

projects. Despite the proximity of science and technology in the engineering 

sciences, the technical challenges addressed through these collaborations may 

closely align or even overlap with the specific needs of the companies, potentially 

failing to generate any significant interest in the broader academic community. 

Furthermore, it is noteworthy that industrial researchers generally possess less 

experience in publishing than do their university counterparts (Arora et al., 2015; 

Godin, 1996; Hicks, 1995; Hicks & Katz, 1996; McKelvey & Rake, 2020). From a 

knowledge network perspective, the involvement of a diverse and extensive cohort 

of authors can lead to heightened tensions and coordination costs (Becker & Murphy, 

1992; West & Anderson, 1996), potentially resulting in reduced novelty within the 

research findings and diminished overall impact. In such circumstances, it is 

reasonable to anticipate that the article impact will be higher for academic projects. 

 

This discussion thus offers arguments favoring both higher and lower scientific 

impact for publications resulting from academic engagement projects, leading to the 

formulation of two contradictory hypotheses: 

 

H5.1a 

Publications originating from academic engagement collaborations are associated 

with higher article impact. 

 

H5.1b 

Publications originating from academic engagement collaborations are associated 

with lower article impact. 
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The interplay between academic engagement and journal reputation within 

the engineering sciences 

Publishing in academic journals entails a series of substantial investments, 

encompassing high desk rejection rates, multiple rounds of revisions, and extended 

lead times. On one hand, publications stemming from academic engagement projects 

have the potential to be featured in esteemed academic journals. The reason is similar 

to that articulated above, that these projects produce unique results of a particularly 

irreplicable nature, results that rely on collaboration with industry and offer relevance 

to the academic community. Furthermore, firms may prioritize publishing in highly 

reputable journals as part of their overall strategy (Rotolo et al., 2022), and task key 

employees with this responsibility. At an individual level, co-authors from within the 

firms, many of whom likely hold Ph.D. degrees, may be motivated by career 

advancement and personal fulfillment (Roach & Sauermann, 2010), prompting them 

to actively pursue publication in prestigious journals. 

 

Conversely, publications arising from purely academic projects might be more likely 

to achieve a higher journal reputation. When a project becomes excessively firm 

centric, it might not sufficiently align with the academic requirements necessary for 

publication in top-tier journals. At the organizational level, firms are primarily 

inclined toward leveraging technology to address business challenges. Consequently, 

one could argue that authors employed by these firms are primarily interested in the 

act of publishing itself rather than in placing articles specifically in high-ranking 

journals. The regular work duties of firm employees may not involve targeting high-

ranked journal publications, and given the difficulties associated with publishing in 

these journals, they may not have the time or resources to invest in such endeavors, 

while those involved in purely academic projects have more incentives to do so, for 

career advancement.  
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As in the preceding section, this discussion presents arguments supporting both 

higher and lower scientific journal reputations for articles stemming from academic 

engagement projects, resulting in the formulation of the final two contradictory 

hypotheses to be tested in this chapter: 

 

H5.2a 

Journal articles originating from academic engagement collaborations are 

associated with higher journal reputation. 

 

H5.2b 

Journal articles originating from academic engagement collaborations are 

associated with lower journal reputation. 

 

5.2.3 Key takeaways from Section 5.2 

- Scientific impact encompasses two key dimensions: article impact and journal 

reputation. Article impact reflects the value attributed to a publication by the 

scientific community, whereas journal reputation pertains to the associational 

reputation the article gains from the journal in which it appears. 

- The conceptual framework, grounded in the literature, does not provide a 

straightforward answer as to whether one should anticipate higher or lower 

article impacts and journal reputations for publications resulting from 

academic engagement projects versus academic projects. 

- This ambiguity primarily arises from the inherent nature of the engineering 

sciences, which encompass both fundamental and applied research, and is 

further complicated by the presence of conflicting institutional logics. 

- Consequently, the literature offers support for arguments favoring both higher 

and lower scientific impacts for publications resulting from academic 

engagement projects, leading to the formulation of contradictory hypotheses 

(Figure 5.1).  
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Figure 5.1. Conceptual model for understanding the hypothesized impact of academic engagement on article impact 
and journal reputation. 

 

5.3 Data and method 
This section outlines the data and methods used in conducting the research and 

analyses: the first part presents the data; the second part relates to the 

operationalization of variables; and the last part addresses the methods used, 

including presenting a detailed account of the reasons underlying the empirical 

strategy. 
 

5.3.1 Data 

In this undertaking, all publications and all EPO patents published by the 184 

sampled engineering professors between the years 1995 and 2018 have been utilized. 

Furthermore, data on the number of citations received by each publication annually 

during the first three years after publication were collected. For example, an article 

published in 2010 would encompass citations from 2010, 2011, and 2012. 
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Operationalization of variables  

For ease of reading, this section has been divided into three parts according to the 

three types of variables, namely, dependent variables, independent variables, and 

control variables.  

 

Dependent variables 

Two dependent variables have been operationalized, namely, Article_impact and 

Journal_reputation. These dependent variables aim to measure the two aspects of 

scientific impact.  

 

Article impact has been approximated by counting the total number of forward 

citations a scientific document received in the first three years after publication 

(Article_impact). The choice of a rolling time window based on the article’s 

publication date, rather than a fixed window irrespective of the publication year, is 

motivated by the desire to more equally capture the article impact of each publication 

(Amin & Mabe, 2000). For instance, in the context of this study, which spans the 

2000–2018 period, a fixed, static measure would employ a window from 2000 to 

2021 to gauge the number of forward citations, regardless of when an article was 

published during the analysis period. In contrast, a dynamic, rolling measure tailors 

the window to each article based on its publication date. For instance, an article 

published in 2000 would have a window of 2000–2002 for measuring forward 

citations, while an article published in 2010 would have a window of 2010–2012. 

This approach results in a more justifiable estimation of the article impact of each 

publication. 

 

The selection of a three-year rolling time window is based on existing research, as it 

has been shown that the number of forward citations tends to peak within this period 

(Amin & Mabe, 2000). Furthermore, it is a commonly employed operationalization 

in the field (e.g., Beaudry & Kananian, 2013; Bellucci & Pennacchio, 2016; 
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McKelvey & Rake, 2020; Poege et al., 2019). Nevertheless, longer time windows, 

such as five years (Callaert et al., 2015), seven years (Wang et al., 2017), and even 

ten years (Fontana et al., 2020), are also utilized due to their ability to offer a more 

precise measure of the article impact of certain novel publications—notably, 

publications with a delayed article impact, which are often referred to as “sleeping 

beauties” (see, e.g., Garfield, 1980; van Raan, 2004, 2021; Wang et al., 2017). 

However, it is imperative to acknowledge that using longer time windows results in 

a shorter analysis period and, consequently, a reduced dataset. Therefore, a three-

year rolling time window is preferred. To ensure the robustness of the analysis, a 

five-year rolling time window is used as a robustness test (see Section 5.4.3). 

 

Inspired by prior research that operationalizes articles published in journals 

belonging to the top 5% of the total JIF distribution as having high journal reputation 

(Lozano et al., 2012; McKelvey & Rake, 2020), this study differentiates the top 15% 

from the remaining articles in my sample. This choice of a 15% threshold is based 

on quantile plotting of the variable, supported by basic quantile regression modeling, 

and because it aligns well with the top 5% threshold of the overall JIF distribution. 

In essence, although the outcome would have been similar regardless of the approach 

chosen, it makes more sense to focus on the journals in my sample, given that many 

of the journals with the highest JIF distributions are from different fields. Therefore, 

this is a binary variable, taking the value of 1 for all articles with the top 15% highest 

JIF scores, and 0 otherwise (Journal_reputation). While this is the main 

specification, it is important to note that various cutoff points are employed in 

robustness testing (see Section 5.4.3). 

 

The 2018 Web of Science Journal Citation Report was chosen as it is the final year 

of the analysis period, consistent with the approach employed by McKelvey and 

Rake (2020). Additionally, with article impact as the dependent variable, this 

variable is included in the regressions as a control variable, as previous research has 
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indicated a correlation between the journal of publication and an article’s impact 

(e.g., Garfield, 1999, 2006; Lozano et al., 2012). 

 

Figure 5.2, below, presents a scatterplot of article impact (x-axis) and the journal 

impact factor scores on which the second independent variable is based (y-axis). The 

line representing the ordinary least square (OLS) model indicates a correlation 

between the two variables, as expected. However, it also provides evidence that they 

represent two distinct aspects of scientific impact, as publications with the highest 

article impact are not necessarily published in journals with the highest journal 

impact factor scores. Similarly, articles published in top-scoring journals do not 

consistently achieve notably high article impact. 

 
Figure 5.2. Scatterplot of article impact vs. journal reputation (journal impact factor scores). 
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Independent variables 

Three independent variables have been operationalized, namely, 

Academic_engagement, Academic_engagement:Number_authors, and 

Academic_engagement:Dual_affiliated_professor. 

 

Publications resulting from academic engagement projects are approximated by 

examining the affiliations reported by the authors of an article. Articles that include 

any reported firms are defined as products of prior collaborative research projects 

between academics and firms (Academic_engagement). These are distinguished 

from academic collaboration publications, which are authored exclusively by one or 

more academic scholars (for further details on the methodology used to identify firm 

publications, please see Chapter 4).  

 

While it is also possible to detect publications resulting from academic engagement 

projects by scrutinizing university-unit funding data, as mentioned by Perkmann et 

al. (2011), this approach primarily identifies the organizations providing funding 

rather than the individuals involved in the project; hence, this method was not 

employed here. 

 

Analyzing the resulting publications offers a reliable, albeit partial, indicator of 

successful collaborative research projects between university researchers and firms 

(Perkmann et al., 2011; Tijssen, 2009). In accordance with the literature, such as the 

papers by Frenken et al. (2010) and McKelvey and Rake (2020), the first independent 

variable is a binary variable, taking a value of 1 when any firm is included in the 

reported affiliations, and 0 otherwise.  

 

The number of authors per paper is a crucial variable to consider, as numerous 

empirical studies have indicated that larger team sizes have a positive impact on the 

scientific output of collaborations (see, e.g., Hollis, 2001; Uzzi et al., 2013; Wu et 
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al., 2019; Wuchty et al., 2007a). These observations find further support in the 

descriptive statistics pertaining to this dissertation’s dataset, as presented in Figure 

5.3, below. 

 

 
Figure 5.3. Mean article impact by the number of authors of the paper. 

 

Overall, the figure suggests an increase in the mean article impact per publication 

with an increase in the number of authors. It is noteworthy that nearly all bars 

representing the article impact of publications with more than 30 authors are based 

on a single publication, contributing to large variance in mean article impact. To 

mitigate the impact of papers with extreme numbers of authors but with limited 

observations, all publications with nine or more authors were grouped into one bin. 

The decision to set the cut-off point at nine authors was based on the notably lower 

frequency of papers with nine or more authors. Table 5.1, below, displays the 
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frequency of the modified variable. Consequently, the first interaction combines 

academic engagement with the number of authors per paper 

(Academic_engagement:Number_authors). It is important to note that this variable 

serves as a control variable when not included in the interaction. 
 

Table 5.1. Frequency distribution of publications based on the Number_author variable. 

Number_authors Frequency 

1 217 

2 1443 

3 2043 

4 1673 

5 895 

6 787 

7 276 

8 437 

9+ 684 

 

The second interaction combines academic engagement with the presence of any of 

the sampled dual-affiliated professors among the authors of the paper 

(Academic_engagement:Dual_affiliated_professor). This interaction is motivated by 

the insights of the literature reviewed above (Section 5.2.2). It is important to 

emphasize that publications resulting from dual-affiliated professors are only 

considered an outcome of prior academic engagement when these papers list at least 

one firm as an affiliation.   

 

Control variables 

In addition to the dependent and independent variables, several control variables 

have also been included in the models, namely, Prior_article_impact, 

Prior_patenting, Prior_coauthors, Top_university, Number_universities, 

Number_nations, Number_fields, Article, Female, University_dummies, 

Field_dummies, and Year_dummies. 
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Put succinctly, it is advisable to control for prior article impact as it is a fairly good 

predictor of future article impact (Acuna et al., 2012; Anderson & Richards-Shubik, 

2019; Penner et al., 2013; Schilling & Green, 2011). Following the work of Schilling 

and Green (2011), the effect of a sampled university scientist’s prior impact on the 

scientific outcomes of the collaboration has been approximated for every published 

scientific article by counting the total number of forward citations the sampled 

university scientist has received in the five years preceding the publication of the 

focal article (Prior_article_impact). Along the lines of Schilling and Green (2011), 

if more than one of the sampled university professors authored an article, the article 

impact score of the most impactful professor is used.  

 

In addition to controlling for prior article impact, controlling for whether the authors 

have recently applied for a patent is also essential. Previous empirical research 

suggests a positive correlation between patenting and article impact (Balconi & 

Laboranti, 2006; Bourelos et al., 2012, 2017; Czarnitzki et al., 2007) as well as a 

positive correlation between patenting and scientific productivity (Czarnitzki et al., 

2007; Haeussler & Colvyas, 2011). Consequently, this variable was estimated by 

analyzing whether any of the sampled university scientists had applied for a patent 

from the EPO in the seven years preceding the publication of the focal article 

(Prior_patenting). 

 

The influence of network effects on the scientific outcomes of a collaboration has 

been approximated for every published article by counting the number of co-authors 

the sampled university scientists have had in the seven years preceding the 

publication of the article in question (Prior_coauthors). This means that the third 

independent variable is a count variable. Furthermore, following Schilling and Green 

(2011), if more than one of the sampled university scientists authored an article, the 

highest value is used (i.e., the value of the most highly cited researcher is used). For 

consistency and equality in my proxies, a rolling time window of seven was chosen 
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The second interaction combines academic engagement with the presence of any of 

the sampled dual-affiliated professors among the authors of the paper 

(Academic_engagement:Dual_affiliated_professor). This interaction is motivated by 

the insights of the literature reviewed above (Section 5.2.2). It is important to 

emphasize that publications resulting from dual-affiliated professors are only 

considered an outcome of prior academic engagement when these papers list at least 

one firm as an affiliation.   

 

Control variables 

In addition to the dependent and independent variables, several control variables 

have also been included in the models, namely, Prior_article_impact, 

Prior_patenting, Prior_coauthors, Top_university, Number_universities, 

Number_nations, Number_fields, Article, Female, University_dummies, 

Field_dummies, and Year_dummies. 
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Put succinctly, it is advisable to control for prior article impact as it is a fairly good 

predictor of future article impact (Acuna et al., 2012; Anderson & Richards-Shubik, 

2019; Penner et al., 2013; Schilling & Green, 2011). Following the work of Schilling 

and Green (2011), the effect of a sampled university scientist’s prior impact on the 

scientific outcomes of the collaboration has been approximated for every published 

scientific article by counting the total number of forward citations the sampled 

university scientist has received in the five years preceding the publication of the 

focal article (Prior_article_impact). Along the lines of Schilling and Green (2011), 

if more than one of the sampled university professors authored an article, the article 

impact score of the most impactful professor is used.  

 

In addition to controlling for prior article impact, controlling for whether the authors 

have recently applied for a patent is also essential. Previous empirical research 

suggests a positive correlation between patenting and article impact (Balconi & 

Laboranti, 2006; Bourelos et al., 2012, 2017; Czarnitzki et al., 2007) as well as a 

positive correlation between patenting and scientific productivity (Czarnitzki et al., 

2007; Haeussler & Colvyas, 2011). Consequently, this variable was estimated by 

analyzing whether any of the sampled university scientists had applied for a patent 

from the EPO in the seven years preceding the publication of the focal article 

(Prior_patenting). 

 

The influence of network effects on the scientific outcomes of a collaboration has 

been approximated for every published article by counting the number of co-authors 

the sampled university scientists have had in the seven years preceding the 

publication of the article in question (Prior_coauthors). This means that the third 

independent variable is a count variable. Furthermore, following Schilling and Green 

(2011), if more than one of the sampled university scientists authored an article, the 

highest value is used (i.e., the value of the most highly cited researcher is used). For 

consistency and equality in my proxies, a rolling time window of seven was chosen 
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rather than a fixed or open-ended window. By doing so, this study closely follows 

Ductor et al.’s (2014) approach to capturing researchers’ prior degree centrality (they 

used a five-year long rolling time window). It is also possible to capture the 

researchers’ network centrality according to other network measures, such as their 

betweenness centrality (see, e.g., Ductor et al., 2014; McKelvey & Rake, 2016; 

MingJi & Ping, 2014; Mirc et al., 2017); however, considering that the professors 

and not all authors are sampled, degree centrality is considered a more fitting 

measure since it is based on the researchers’ direct number of edges rather than on 

the whole network (as betweenness centrality is based on). Although this measure 

likely includes a certain level of redundant information (Burt, 1992; Granovetter, 

1973), it is still a good proxy for overall access to information (Freeman, 1978/1979; 

Granovetter, 1973), and has commonly been used in recent empirical studies (see, 

e.g., Ductor et al., 2014; McKelvey & Rake, 2016; MingJi & Ping, 2014; Mirc et al., 

2017). 

 

The analysis moreover controls for articles in which at least one of the top 50 

universities worldwide is reported among the authors’ affiliations (Top_university), 

according to the Academic Ranking of World Universities 2018, commonly referred 

to as the ShanghaiRanking (ARWU, 2018).24 This factor, too, is important to take 

into account, as different universities arguably have different degrees of prestige, 

both within and outside the scientific community, as the academic university 

rankings are based on metrics such as the number of forward citations and the number 

of Nobel laureates (Rauhvargers, 2011); accordingly, authors from more prestigious 

universities are more likely to have their work acknowledged, all else being equal. 

 

Numerous studies have examined the impact of authors’ geographical diversity on 

the scientific outcomes of collaborations. These investigations reveal that such 

 
24 The 2018 rankings were chosen because the analysis period ended in 2018. 
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diversity can significantly influence the results of a publication (Bercovitz & 

Feldman, 2010; Carayol et al., 2019; Frenken et al., 2010; Glänzel & Schubert, 2001; 

Lancho Barrantes et al., 2012; Larivière et al., 2015; Wagner et al., 2019; Wang et 

al., 2017). To account for this factor, this study includes two controls: one estimating 

the number of universities among the authors’ affiliations (Number_universities) and 

another measuring the variety of nations represented in the authors’ affiliations 

(Number_nations) for each article. 

 

Interdisciplinary research has garnered significant attention in the scientific 

community (Larivière et al., 2015; Wang et al., 2015; Yegros-Yegros et al., 2015). 

In response, this study introduces a control variable to gauge a publication’s level of 

specialization or breadth. This control involves a count variable representing the total 

number of scientific fields categorized by the Web of Science encompassed by the 

document (Number_fields). 

 

Since different types of scientific publications—e.g., journal articles versus 

conference proceedings—have been found to attract different levels of citations 

(Michels & Fu, 2014), this study controls for whether the publication was a journal 

article (Article). 

 

The difference in the inclination to participate in academic engagement between 

males and females, as discussed in Section 2.1.3, and the imbalanced representation 

of male and female professors in the sample necessitate the inclusion of a control 

variable. This variable is assigned a value of 1 if any professor listed on the focal 

scientific document is female, and 0 otherwise (Female). 

 

This study also controls for the sampled universities by which the authors of an 

article were employed when the article was published, by analyzing which 

organizations are reported among the authors’ affiliations (University_dummies: 
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CTH, KTH, LiU, LTH, UU). Controlling for this factor is important as, all else being 

equal, the different universities are located in different sized cities, have different 

geographical proximities to different firms, have different amounts of industrial 

funding, and therefore have different experiences of, and inclinations toward, 

academic engagement projects, all of which can influence the scientific outcome of 

collaboration (cf. Aschhoff & Grimpe, 2014; Bishop et al., 2011; D’Este & Patel, 

2007; Martin & Moodysson, 2013; Ponomariov, 2008; Tartari et al., 2014).  

 

Following similar papers (e.g., Abramo et al., 2009; Bekkers & Freitas, 2008; 

Callaert et al., 2015; McKelvey & Rake, 2020), this study also controls for 

differences between research fields and between years. First, it controls for different 

fields in accordance with the field(s) to which an article was assigned by Web of 

Science (2020). In greater detail, a simple analysis of the frequencies of the different 

subject areas Web of Science had assigned to all articles revealed that three fields 

were substantially more common than the rest, so three control variables were 

established for these fields (Field_dummies: Computer_science, 

Telecommunications, and Automation_and_control_systems). Second, a variable 

controlling for the publication year of each paper was included (Year_dummies). 

 

Variable summary 

Table 5.2, below, provides an overview of all variables, including name, type of 

variable, and operationalization. 

 
Table 5.2. Summary of the regression variables used in Chapter 5. 

Name Type Description 

Article_impact DV 
A count variable representing the total number of scientific citations 

received by a publication in the three years after its release 

Journal_reputation 
DV, 

CV 

A binary variable with a value of 1 if an article was published in a 

journal belonging to the top 15% of the 2018 Journal Impact Factor 

distribution with regard to my sample, and 0 otherwise 
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Academic_engagement IV 
A binary variable with a value of 1 if a firm is reported among the 

authors’ affiliations on the publication, and 0 otherwise 

Dual_affiliated_professor 

 
CV 

A binary variable with a value of 1 when at least one of the sampled 

dual-affiliated professors is listed as an author of the publication, and 0 

otherwise 

Number_authors CV 

A categorical variable indicating the number of authors of each 

publication, categorized into groups of 1–8 authors and 9 or more 

authors 

Prior_article_impact CV 

A count variable representing the total number of scientific citations 

received by a sampled professor in the five years preceding the release of 

the publication; if more than one of the sampled professors authored the 

publication, the highest value is used 

Prior_patenting CV 

A binary variable with a value of 1 if any of the sampled professors 

authoring a publication applied for a patent in the five years preceding 

the release of the publication, and 0 otherwise 

Prior_coauthors CV 

A count variable indicating the total number of co-authors the sampled 

professor had in the five years preceding the release of the publication; if 

more than one of the sampled professors authored the publication, the 

highest value is used 

Top_university CV 

A binary variable with a value of 1 if any of the top 50 universities 

worldwide is reported among the authors’ affiliations on the publication, 

according to the 2018 Academic Ranking of World Universities, and 0 

otherwise 

Number_universities CV 
A count variable indicating the total number of unique university 

addresses reported among the authors’ affiliations on the publication 

Number_nations CV 
A count variable representing the total number of unique nation 

addresses reported among the authors’ affiliations on the publication 

Number_fields CV 
A count variable indicating the total number of fields in which the 

publication has been categorized by Web of Science 

Article CV 
A binary variable with a value of 1 if the publication is classified as an 

article, according to Web of Science, and 0 otherwise 

Female CV 
A binary variable with a value of 1 if any of the sampled professors on 

the publication is female, and 0 otherwise 

University_dummies CV 

Five similar dummy variables, each with a value of 1, if the sampled 

university is reported among the authors’ affiliations on the publication, 

and 0 otherwise; the universities are CTH, KTH, LiU, LTH, and UU 

Field_dummies CV 

Three similar dummy variables, each with a value of 1, if Web of 

Science has assigned the publication to the specific subject areas of 

“Computer Science,” “Telecommunications,” or “Automation and 

Control Systems,” and 0 otherwise 
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Year_dummies CV 
A factor variable representing the year in which the publication was 

released; the possible years are 2000–2018 

 

5.3.2 Empirical strategy 

The overall objective of the empirical strategy is to distinguish academic engagement 

projects from academic projects, and subsequently, to quantitatively analyze the 

outcomes of the two types of collaborations with regard to article impact and journal 

reputation. The objective is also to explicitly analyze the influence exerted by dual-

affiliated professors as well as to analyze the interplay between academic 

engagement and the number of authors of a paper concerning its scientific impact. 

 

Following studies with similar data characteristics (e.g., Blind et al., 2018; Carayol 

et al., 2019; D’Este & Iammarino, 2010; Frenken et al., 2010; McKelvey & Rake, 

2020), the first dependent variable (Article_impact) was estimated using a 

(generalized) negative binomial regression model, since the overdispersion test 

developed by Cameron and Trivedi (1990) suggested overdispersion (Equation 5.1). 

Put differently, the observed conditional variance of the response was statistically 

greater than the variation implied by the distribution used in fitting the model, that 

is, the variance was statistically greater than the mean. According to several authors 

(Cameron & Trivedi, 1998; Fox & Weisberg, 2018; Hilbe, 2011; Lawless, 1987; 

Venables & Ripley, 2002), negative binomial regression is an effective model for 

dealing with this type of frequency data as it accommodates between-individual 

variability via introducing a random subject effect (𝛼𝛼), which can have different 

values for different subjects. The model can furthermore be viewed as a mixture of 

two distributions, as the number of observations (𝑦𝑦𝑖𝑖) is assumed to follow a Poisson 

distribution but the dispersion is assumed to follow a gamma distribution.  
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Mathematically, a negative binomial regression model for observation i is commonly 

expressed as: 

 
Equation 5.1. The negative binomial regression model. 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝜇𝜇𝑖𝑖, 𝛼𝛼) = Γ(𝑦𝑦𝑖𝑖 + 𝛼𝛼−1)
Γ(𝑦𝑦𝑖𝑖 + 1)Γ(𝛼𝛼−1) ( 1

1 + 𝛼𝛼𝜇𝜇𝑖𝑖
)

𝛼𝛼−1

( 𝛼𝛼𝜇𝜇𝑖𝑖
1 + 𝛼𝛼𝜇𝜇𝑖𝑖

)
𝑦𝑦𝑖𝑖

 

 

where 𝑦𝑦𝑖𝑖 is the observed number of counts for some identified event (here, the 

observed number of forward citations); i = 1, 2, … , n is the number of observations; 

𝜇𝜇𝑖𝑖 = exp (𝑥𝑥𝑥𝑥) is the conditional mean (or the rate or intensity parameter) of y given 

the values of 𝑥𝑥𝑥𝑥, where 𝑥𝑥 and 𝑥𝑥 are the model-independent variables and parameters, 

respectively (𝑥𝑥𝑥𝑥 = 𝑥𝑥0 + 𝑥𝑥1𝑥𝑥1+…+𝑥𝑥𝑘𝑘𝑥𝑥𝑘𝑘); 𝛼𝛼 is the individual random subject effect; 

and Γ is the gamma function. Importantly, this means that the dependent variable (y) 

is a random variable, whereas the independent variables (the xs) are nonrandom. The 

model moreover assumes the independent variables to be independent and to have 

low correlation among one another.  

 

This dependent variable was furthermore estimated using generalized linear models 

(GLMs), which extend linear models in that they allow for normal and non-normal 

distributions such as Gaussian, binomial, Poisson, and gamma distributions (Fox & 

Weisberg, 2018; McCullagh & Nelder, 1989; Venables & Ripley, 2002). 

Additionally, it was estimated using Huber–White robust standard errors, in line with 

research (McKelvey & Rake, 2020). 

 

The other commonly used approach for dealing with overdispersed data is to employ 

a quasi-Poisson regression (Fox & Weisberg, 2018; Hilbe, 2011; Ver Hoef & 

Boveng, 2007; Wedderburn, 1974; Wooldridge, 1997, 2012). According to these 

authors, the difference between the models is that the variance in a negative binomial 

model is a quadratic function of the mean, while in the quasi-Poisson model, it is a 
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linear function of the mean. Put differently, the negative binomial model 

accommodates overdispersion by setting the variance to be a multiple of the mean, 

while the quasi-Poisson model accommodates overdispersion by specifying the 

relationship between the variance-mean through a dispersion parameter. This 

difference can have an effect on how well the model fits the data; however, one 

consequence of the fact that the quasi-Poisson model is characterized only by its 

mean and variance (and thus does not necessarily have a distributional form) is that 

one cannot use formal, scientifically proven methods, such as the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC), to assess how well the 

two different models fit the data. While the negative binomial model was the 

preferred choice, since it is the most widely used model in this context, the quasi-

Poisson model serves as a good robustness check. 

 

Because the second dependent variable (Journal_reputation) is a binary indicator 

that distinguishes high-journal-reputation papers from those of lower journal 

reputation, it has been estimated using a generalized probit model, with Huber–White 

robust standard errors (Equation 5.2). This is in line with existing studies such as the 

one by McKelvey & Rake (2020). Put differently, given an outcome (Y) and a vector 

of independent variables (X), the probit model estimates the probability of 

publication in a highly reputed journal.  

 

Mathematically, the model is normally expressed as: 

 
Equation 5.2. The probit model. 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋𝑖𝑖) = ∅(𝛽𝛽0 + 𝑋𝑋𝛽𝛽) 
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5.4 Results 
In this section, the findings of the first empirical study are presented. Prior to 

engaging in the econometric analysis, and thereby addressing the hypotheses, 

interesting descriptive findings are presented and briefly discussed. The chapter 

concludes by examining the robustness of the aforementioned results. 

 

5.4.1 Descriptive findings 

The total number of published documents over the analyzed period (2000–2018) was 

8455, for an average of 4.0 publications per year per professor. Of the 8458 

publications, 4118 (48.7%) were classified as proceedings papers, 4056 (48.0%) as 

articles, and the remaining 281 (3.3%) as other types (e.g., meeting abstracts, 

editorial material, and book chapters).  

 

Figure 5.4, below, shows that there was a clear trend for publications resulting from 

both academic engagement projects and academic projects to increase throughout the 

analyzed period. Notably, it shows that publications arising from academic 

engagement exhibited more rapid growth, signifying a greater prevalence of 

academic engagement throughout this timeframe. Furthermore, the prevalence of 

academic engagement started at 11.0% in 2000 and culminated at 23.8% in 2018. 

This difference is statistically significant at the 1% level according to a two-

proportion z-test. Moreover, when distinguishing among the sampled universities, 

we note that the professors affiliated with the different universities published with 

firms to varying extents. With respect to z-testing, professors employed in CTH and 

LTH published significantly more with firms than did the professors affiliated with 

KTH, LiU, and UU.  
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Figure 5.4. The number of publications resulting from academic engagement (left), academic collaboration (middle), 
and the proportion of publications resulting from academic engagement (right). 

 

To gain deeper insight into the collaborative patterns of the sampled professors, we 

can examine firms that appear in their publications more than ten times over the 

entire period, and assess the degree to which these publications are associated with 

the sampled universities (Table 5.3, below). It becomes evident that the sampled 

professors most frequently engage in collaborations with industrial researchers 

employed by multinational enterprises (MNEs). Additionally, it is apparent that 

certain firms collaborate with several universities (e.g., Ericsson and Nokia), while 

others predominantly or exclusively collaborate with a single university (e.g., Oticon 

and Sony). In cases in which multiple universities are linked to publications with a 
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given firm, more of the sampled professors tend to be co-authors of these 

publications. Conversely, when collaborations are more exclusively linked to one of 

the sampled universities, the number of sampled professors contributing to the co-

authored publications tends to be lower (e.g., one of the sampled professors is a co-

author of all 82 publications linking LiU with Oticon). By summing the values in a 

given row and comparing it with the “total” value for the same row, we can gauge 

the extent to which publications with a particular firm involve more than one of the 

sampled universities. Notably, out of 18 firms, 12 have never published any papers 

involving more than one of the sampled universities, while only three firms have 

done so more than 5% of the time (i.e., Nokia: 20.0%, Volvo Cars: 16.9%, ABB: 

9.8%). 

 
Table 5.3. Number of publications affiliated with the sampled universities and firms with ten or more documents. 

* Total represents the total number of occurrences per firm, and this is not necessarily equal to the sum of the numbers 

in the cells to the left in each row (multiple universities can be affiliated with the same publication). 

    University 

    CTH KTH LiU LTH UU Total* 

Firm 

Ericsson 67 68 45 86 10 267 

Oticon 0 0 82 0 0 82 

Volvo Cars 61 1 9 10 2 71 

AstraZeneca 18 0 0 34 3 55 

Huawei Technologies 21 26 3 3 0 52 

SAAB 12 0 15 25 2 52 

ABB 0 15 24 13 4 51 

Scania Group 0 24 15 0 1 40 

Nokia 15 5 13 7 8 40 

Volvo Group 10 3 2 10 0 25 

Mitsubishi Electric Corporation 5 0 0 17 0 22 

Sony 1 1 0 20 0 22 

Bluetest 19 0 0 0 0 19 

Qamcom 18 1 0 0 0 19 

Perimed 0 0 14 0 0 14 

QualTech 11 0 0 0 0 11 

Infineon 0 1 10 0 0 11 

Intel 2 1 6 2 0 11 
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Given the established significance of conference proceedings papers in the field of 

engineering sciences (e.g., Michels & Fu, 2014), the average article impact, covering 

both journal articles and conference proceedings, is presented in Figure 5.5, below. 

It is evident that it is through journal articles that professors primarily receive 

recognition for their contributions, even though proceedings papers were slightly 

more common. Additional analysis (results not shown) revealed that a mere 11.5% 

of all published articles resulted in zero article impact, meaning that they had 

received zero citations within three years of publication. In stark contrast, a 

substantial 57.8% of all proceedings papers failed to accumulate any article impact. 

 

The somewhat unexpected anomaly in 2018, regarding article impact, can be 

plausibly attributed to two key factors. First, it is possible that some of the 

distinguished senior professors, known for their high-impact contributions, had 

reduced their publication output from the peak of their careers. Consequently, this 

reduction in output may have contributed to lowering the average article impact. 

Second, there may exist a lag in the citation process within Web of Science. To 

elaborate, the number of citations was collected three years after publication; thus, 

all documents released in 2018 were subjected to a citation window extending from 

2018 to 2020. As the data for all citations were compiled in February/March 2021, 

some of the documents published in 2018 could conceivable have been inaccurately 

assessed or underrepresented in the citation count. 
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Figure 5.5. The mean article impact of proceedings papers and articles. 

 

In relation to publications resulting from academic engagement versus academic 

projects, the trend lines depicted in Figure 5.6, below, imply that publications 

resulting from academic engagement had an article impact premium over those 

resulting from academic projects. When investigating the mean article impact for all 

articles, the mean article impact for those resulting from academic engagement was 

7.9, whereas it was only 4.2 for those resulting from academic collaboration. This 

offers tentative support for Hypothesis 5.1a. However, it is noteworthy that academic 

engagement has fewer observations, meaning that outliers have a larger effect on the 

mean (e.g., in 2014, one of the documents resulting from academic engagement had 

839 citations).  
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Figure 5.6. The mean article impact of publications resulting from academic engagement and academic 
collaboration. 

 

Examining the journal reputation of articles published in journals listed in the Web 

of Science Journal Citation Reports, as shown in Figure 5.7, below, reveals that the 

mean journal reputation per published article by the sampled professors has remained 

stable throughout the observed period.25 Furthermore, this figure provides a 

comparative perspective, showcasing the median journal reputation of the sampled 

professors in contrast to the median journal reputation of all journals categorized 

under “Engineering, Electrical & Electronic” in the Web of Science database. This 

comparison underscores a substantial disparity, revealing that the sampled 

 
25 Over 90% of all published articles were published in journals included in the Web of Science 

Journal Citation Reports. 
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professors’ journal reputations significantly surpass those of the broader fields in 

which they operate. 

 

 
Figure 5.7. The median journal reputation per article by the sampled professor and that for the whole 
electrical/electronic engineering field as defined by the Web of Science. 

 

Focusing on comparing and contrasting the publications resulting from academic 

engagement and those arising from academic collaboration, Figure 5.8, below, 

implies that journal articles from academic engagement, on average, exhibit journal 

reputations similar to those of articles from academic collaborations. In greater 

detail, the mean journal reputation for all articles resulting from academic 

engagement was 4.8, whereas it was 4.4 for those resulting from academic 

collaboration. The statistical significance of these differences remains unclear, 
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indicating that neither Hypothesis 5.2a nor 5.2b is conclusively supported by the 

data. 

 

 
Figure 5.8. The mean journal reputations of articles resulting from academic engagement and academic 
collaboration. 

 

Appendix A presents additional descriptive statistics indicating the differences 

among the sampled universities and most common subfields in relation to article 

impact and journal reputation. Noteworthy observations include a higher mean 

article impact for publications centered on telecommunication, coupled with a lower 

likelihood of being featured in top-ranked journals, in contrast to papers focusing on 

automation and control systems as well as computer science. These statistics were 

moved to Appendix A as they do not constitute the primary focus of this study. 
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5.4.2 Regression analyses 

Table 5.4 presents descriptive statistics for all variables included in the models, 

providing information such as variable names, counts of observations, means, 

standard deviations, minimum and maximum values, ranges, skewness, and kurtosis. 

Due to the extensive number of variables in the dataset, individual comments on each 

will not be provided. Readers are encouraged to review the table thoroughly. Specific 

variables and correlations that warrant special attention will be discussed. 

 

The descriptive statistics table shows that the skewness and kurtosis values for one 

of the dependent variables (Article_impact) are remarkably high, meaning that the 

distribution of that variable is asymmetric and peaked—in other words, non-normal 

(D’Agostino et al., 1990; DeCarlo, 1997). This justifies the decision to employ a 

negative binomial GLM when analyzing that dependent variable. Three other 

variables also displayed high skewness and kurtosis, i.e., Number_authors, 

Number_universities, and Number_nations: the first variable was handled by 

modifying it to form a categorical variable, as mentioned before, and the other two 

were handled by logging those in the regression analysis. 

 

The pairwise correlational matrix, located in Appendix B, provides preliminary 

evidence that multicollinearity may not be a significant concern, as the pairwise 

correlations are generally in the low to moderate range. It is crucial to note, however, 

that “not all collinearity problems can be detected by inspection of the correlation 

matrix: collinearity can exist even if no pair of variables has a particularly high 

correlation” (James et al., 2013, p. 101). Therefore, further analyses are necessary. 

Subsequent analyses, specifically variance inflation factor (VIF) assessments 

conducted on the primary model specification, confirm that multicollinearity is not a 

primary concern. All variables of interest have VIF values below 3, well below the 

commonly accepted threshold of 10 commonly recognized as indicating 

multicollinearity (James et al., 2013; see also Wooldridge, 2012). 



164 

 

indicating that neither Hypothesis 5.2a nor 5.2b is conclusively supported by the 

data. 

 

 
Figure 5.8. The mean journal reputations of articles resulting from academic engagement and academic 
collaboration. 

 

Appendix A presents additional descriptive statistics indicating the differences 

among the sampled universities and most common subfields in relation to article 

impact and journal reputation. Noteworthy observations include a higher mean 

article impact for publications centered on telecommunication, coupled with a lower 

likelihood of being featured in top-ranked journals, in contrast to papers focusing on 

automation and control systems as well as computer science. These statistics were 

moved to Appendix A as they do not constitute the primary focus of this study. 

165 

 

5.4.2 Regression analyses 

Table 5.4 presents descriptive statistics for all variables included in the models, 

providing information such as variable names, counts of observations, means, 

standard deviations, minimum and maximum values, ranges, skewness, and kurtosis. 

Due to the extensive number of variables in the dataset, individual comments on each 

will not be provided. Readers are encouraged to review the table thoroughly. Specific 

variables and correlations that warrant special attention will be discussed. 

 

The descriptive statistics table shows that the skewness and kurtosis values for one 

of the dependent variables (Article_impact) are remarkably high, meaning that the 

distribution of that variable is asymmetric and peaked—in other words, non-normal 

(D’Agostino et al., 1990; DeCarlo, 1997). This justifies the decision to employ a 

negative binomial GLM when analyzing that dependent variable. Three other 

variables also displayed high skewness and kurtosis, i.e., Number_authors, 

Number_universities, and Number_nations: the first variable was handled by 

modifying it to form a categorical variable, as mentioned before, and the other two 

were handled by logging those in the regression analysis. 

 

The pairwise correlational matrix, located in Appendix B, provides preliminary 

evidence that multicollinearity may not be a significant concern, as the pairwise 

correlations are generally in the low to moderate range. It is crucial to note, however, 

that “not all collinearity problems can be detected by inspection of the correlation 

matrix: collinearity can exist even if no pair of variables has a particularly high 

correlation” (James et al., 2013, p. 101). Therefore, further analyses are necessary. 

Subsequent analyses, specifically variance inflation factor (VIF) assessments 

conducted on the primary model specification, confirm that multicollinearity is not a 

primary concern. All variables of interest have VIF values below 3, well below the 

commonly accepted threshold of 10 commonly recognized as indicating 

multicollinearity (James et al., 2013; see also Wooldridge, 2012). 



166 

 

Table 5.4. Descriptive variable statistics, Chapter 5. 

Variable No. mean SD median min max range skew kurtosis 

Article_impact 8455 4.85 18.70 1 0 839 839 30.5 1253.9 

Journal_reputation 3414 0.17 0.38 0 0 1 1 1.7 1.0 

Academic_engagement 8455 0.17 0.38 0 0 1 1 1.8 1.1 

Number_authors 8455 5.06 9.99 4 1 479 478 30.3 1203.4 

Dual_affiliated_professor 8455 0.06 0.23 0 0 1 1 3.9 13.0 

Prior_article_impact 8455 282.5 488.26 109 0 3925 3925 3.9 18.3 

Prior _patenting 8455 5.01 22.31 0 0 391 391 10.6 138.9 

Prior_coauthors 8455 66.67 104.54 45 0 1516 1516 8.7 99.6 

Top_university 8455 0.08 0.27 0 0 1 1 3.1 7.4 

Number_universities 8455 1.80 3.75 1 1 184 183 33.0 1370.0 

Number_nations 8455 1.48 1.10 1 1 36 35 10.3 212.0 

Number_fields 8455 1.88 0.83 2 1 7 6 1.1 2.9 

Article 8455 0.45 0.50 0 0 1 1 0.2 –2.0 

Female 8455 0.04 0.20 0 0 1 1 4.6 19.4 

CTH 8455 0.20 0.40 0 0 1 1 1.5 0.2 

KTH 8455 0.25 0.43 0 0 1 1 1.2 –0.7 

LiU 8455 0.24 0.43 0 0 1 1 1.2 –0.5 

LTH 8455 0.22 0.42 0 0 1 1 1.3 –0.2 

UU 8455 0.11 0.32 0 0 1 1 2.4 3.9 

Computer_science 8455 0.24 0.43 0 0 1 1 1.2 –0.5 

Telecommunications 8455 0.24 0.43 0 0 1 1 1.2 –0.6 

Automation_and_control_s

ystems 
8455 0.21 0.41 0 0 1 1 1.4 0.0 

Year_dummies 8455 2012 4.70 2013 2000 2018 18 –0.7 –0.4 

 

Table 5.5, below, displays the regression results with article impact as the dependent 

variable. Model 1 incorporates all control variables but no independent variables. 

Model 2 introduces the first independent variable, i.e., academic engagement. Model 

3 encompasses an interaction term between academic engagement and the number 

of authors of the paper, while Model 4 incorporates an interaction term between 

academic engagement and dual-affiliated professors. 
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Table 5.5. Regression results with article impact as the dependent variable. 

Results 
 

 Dependent variable: 
Article_impact 

 (1) (2) (3) (4) 
Academic_engagement  0.143*** –0.048 0.124** 

  (0.054) (0.130) (0.059) 
     

Academic_engagement:Number_authors   0.037  
   (0.023)  
     
Academic_engagement:Dual_affiliated_professor    0.400** 
    (0.172) 
     
Number_authors 0.013 0.006 –0.001 0.008 

 (0.014) (0.015) (0.016) (0.014) 
     

Dual_affiliated_professor –0.124   –0.385*** 
 (0.092)   (0.133) 
     

Journal_reputation 0.954*** 0.948*** 0.941*** 0.955*** 
 (0.098) (0.097) (0.095) (0.097) 
     

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 
 (0.00003) (0.00003) (0.00003) (0.00003) 
     

Prior_patenting –0.0002 –0.001 –0.001 –0.0002 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors –0.0004** –0.0004** –0.0004** –0.0004** 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.282*** 0.275*** 0.277*** 0.274*** 
 (0.084) (0.084) (0.084) (0.084) 
     

log(Number_universities) 0.283*** 0.297*** 0.296*** 0.298*** 
 (0.088) (0.090) (0.090) (0.089) 
     

log(Number_nations) 0.206*** 0.189*** 0.184*** 0.180*** 
 (0.058) (0.058) (0.057) (0.057) 
     

Number_fields –0.060** –0.060** –0.058** –0.061** 
 (0.030) (0.030) (0.029) (0.030) 
     

Article 1.342*** 1.334*** 1.335*** 1.339*** 
 (0.050) (0.051) (0.051) (0.051) 
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    (0.172) 
     
Number_authors 0.013 0.006 –0.001 0.008 

 (0.014) (0.015) (0.016) (0.014) 
     

Dual_affiliated_professor –0.124   –0.385*** 
 (0.092)   (0.133) 
     

Journal_reputation 0.954*** 0.948*** 0.941*** 0.955*** 
 (0.098) (0.097) (0.095) (0.097) 
     

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 
 (0.00003) (0.00003) (0.00003) (0.00003) 
     

Prior_patenting –0.0002 –0.001 –0.001 –0.0002 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors –0.0004** –0.0004** –0.0004** –0.0004** 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.282*** 0.275*** 0.277*** 0.274*** 
 (0.084) (0.084) (0.084) (0.084) 
     

log(Number_universities) 0.283*** 0.297*** 0.296*** 0.298*** 
 (0.088) (0.090) (0.090) (0.089) 
     

log(Number_nations) 0.206*** 0.189*** 0.184*** 0.180*** 
 (0.058) (0.058) (0.057) (0.057) 
     

Number_fields –0.060** –0.060** –0.058** –0.061** 
 (0.030) (0.030) (0.029) (0.030) 
     

Article 1.342*** 1.334*** 1.335*** 1.339*** 
 (0.050) (0.051) (0.051) (0.051) 
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Female –0.248** –0.239** –0.232** –0.231** 

 (0.100) (0.101) (0.101) (0.100) 
     

University_dummies Yes Yes Yes Yes 
Field_dummies Yes Yes Yes Yes 
Year_dummies Yes Yes Yes Yes 
 
Constant 

 
–0.051 

 
–0.052 

 
–0.012 

 
–0.032 

 (0.222) (0.216) (0.204) (0.217) 
     
Observations 8455 8455 8455 8455 
Log likelihood   –19,307.05   –19,302.86   –19,300.94   –19,295.95 
Akaike inf. crit. 8658.10 38,649.72 38,647.87 38,639.89 

Robust standard errors in parentheses. 

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01. 

 

Model 2 illustrates a statistically significant correlation, indicating that publications 

resulting from academic engagement projects are associated with higher article 

impact. Consequently, this model supports Hypothesis 5.1a, suggesting that 

publications resulting from academic engagement have a higher article impact than 

do those arising solely from academic projects. As a result, it rejects Hypothesis 5.1b, 

which predicted the opposite correlation. 

 

In Model 3, no statistically significant effect is observed for the first interaction term 

(Academic_engagement:Number_authors). However, the p-value is relatively low 

(0.12). Further insights into this relationship are provided in Figure 5.9, below, 

suggesting that academic engagement with a small number of authors (below four) 

has a negligible effect on article impact, while collaboration with a larger number of 

authors positively influences article impact. This finding necessitates additional 

analyses, which will be presented and discussed in the following section focusing on 

robustness tests. 
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Figure 5.9. The relationship between academic engagement, number of authors, and article impact. 

 

Model 4 found a significant difference for the final interaction term 

(Academic_engagement:Dual_affiliated_professor), suggesting that including dual-

affiliated professors positively influences the article impact of the resulting 

publications.  

 

Concerning the control variables, a few of them correlated with higher article impact, 

namely, publishing in top-ranked journals, at least one author having recent superior 

article impact, at least one author being affiliated with any of the top 50 ranked 

universities worldwide, publishing with researchers from various universities and/or 
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countries, and publishing scientific articles. Three of the control variables were also 

correlated with lower article impact, namely, at least one author recently publishing 

papers with many different authors, publications addressing many different topics, 

and publications involving the sampled female professors.  

 

Continuing the established format, Table 5.6, below, presents the regression results 

with journal reputation as the dependent variable. 

 
Table 5.6. Regression results with journal reputation as the dependent variable. 

Results 
 

 Dependent variable: 
Journal_reputation 

 (1) (2) (3) (4) 
Academic_engagement  –0.118* –0.377* –0.110 

  (0.072) (0.197) (0.076) 
     

Academic_engagement:Number_authors   0.047  
   (0.033)  
     
Academic_engagement:Dual_affiliated_professor    –0.198 
    (0.244) 
     
Number_authors 0.005 0.010 0.001 0.009 

 (0.015) (0.016) (0.017) (0.016) 
     

Dual_affiliated_professor 0.120   0.237 
 (0.125)   (0.167) 
     

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 
 (0.0001) (0.0001) (0.0001) (0.0001) 
     

Prior_patenting 0.002** 0.003*** 0.003*** 0.003** 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors 0.0001 0.0001 0.0001 0.0001 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.190** 0.194** 0.194** 0.198** 
 (0.089) (0.089) (0.090) (0.089) 
     

log(Number_universities) 0.233*** 0.226*** 0.221*** 0.227*** 
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 (0.065) (0.065) (0.065) (0.065) 
     

log(Number_nations) 0.198*** 0.211*** 0.206*** 0.213*** 
 (0.073) (0.073) (0.073) (0.073) 
     

Number_fields 0.303*** 0.302*** 0.305*** 0.304*** 
 (0.041) (0.040) (0.040) (0.040) 
     

Female 0.083 0.097 0.099 0.057 
 (0.166) (0.170) (0.170) (0.167) 
     

University_dummies Yes Yes Yes Yes 
Field_dummies Yes Yes Yes Yes 
Year_dummies Yes Yes Yes Yes 
 
Constant 

 
24.104* 

 
23.765* 

 
23.593* 

 
23.287* 

 (12.600) (12.604) (12.594) (12.638) 
     
Observations 3414 3414 3414 3414 
Log likelihood   –1341.38   –1340.53   –1339.34   –1339.47 
Akaike inf. crit. 2722.76 2721.06 2720.68 2722.94 

Robust standard errors in parentheses. 

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01. 

 

The findings corroborate Hypothesis 5.2b, showing that publications resulting from 

academic engagement collaborations are associated with lower journal reputation 

(i.e., they are more likely to be published in less-reputed journals than those resulting 

from academic projects, all else being equal). It is worth pointing out that the 

statistical relationship is weakly significant with a p-value of 0.098, meaning that 

this finding is not as robust as that in relation to the first set of hypotheses. The proof 

can be seen in Model 2, which shows that publications resulting from academic 

engagement are weakly statistically significantly correlated with lower journal 

reputation. This relationship is also observed in Model 3, which incorporates the 

interaction term involving the number of authors, while Model 4, which incorporates 

the interaction term involving dual-affiliated professors, found no statistically 

significant relationship (p-value = 0.146).  
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reputation. This relationship is also observed in Model 3, which incorporates the 

interaction term involving the number of authors, while Model 4, which incorporates 

the interaction term involving dual-affiliated professors, found no statistically 

significant relationship (p-value = 0.146).  
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Finally, Models 3 and 4 suggest that the journal reputation of the papers resulting 

from academic engagement is not statistically significantly affected by the number 

of authors or the presence of at least one dual-affiliated professor, respectively.  

 

With respect to the control variables, many of the usual factors seem to positively 

affect journal reputation. These include having a larger number of authors, having at 

least one author affiliated with one of the top 50 ranked universities globally, having 

at least one author with recent superior article impact and/or with a substantial 

number of patent applications, and engaging in research collaborations that involve 

multiple universities and/or countries. 

 

5.4.3 Robustness tests 

To ensure the robustness of the results, several robustness tests were conducted. This 

section primarily focuses on describing those tests and their implications. All 

referenced regressions can be found in Appendix C. 

 

To further investigate the relationship between academic engagement and the 

number of authors of a paper, in relation to article impact, the number of authors 

variable was categorized in three relatively equal-sized bins: one to three authors, 

four or five authors, and six or more authors. The aim of this is to distinguish the 

papers for which there seemed to be no significant interaction effect, the first bin, 

from the rest, while also separating papers with a medium number of authors from 

those with a large and very large number of authors. Figure 5.10, below, provides 

insights into this relationship, indicating that academic engagement with a small 

number of authors (three or fewer) has a negligible effect on article impact, while 

collaboration with a larger number of authors (above three) positively influences 

article impact. Here, there was a significant effect for the medium-sized bin (four or 

five authors).  
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Figure 5.10. The relationship between academic engagement, number of authors (three bins), and article impact. 

 

In another test, the article impact rolling time window was extended from three to 

five years to accommodate delayed article impact (e.g., van Raan, 2004, 2021). 

Additionally, in accordance with Slavtchev (2013), the main regressions were 

performed with a transition from Huber–White robust standard errors to author-

clustered standard errors to account for intragroup correlation. All negative binomial 

GLMs were also re-run, utilizing a quasi-Poisson estimation, which offers a viable 

approach to handling overdispersed count data (e.g., Ver Hoef & Boveng, 2007).  
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Regarding these adjustments, the outcomes and trends of the findings remained 

consistent, albeit with slightly diminished levels of statistical significance, 

transitioning, for instance, from a significance level below 0.05 to below 0.10. This 

reduction in significance is particularly noteworthy in the context of results 

pertaining to publications resulting from academic engagement co-authored by at 

least one of the sampled dual-affiliated professors. Consequently, the findings related 

to the dual-affiliated professors should be interpreted with caution. 

 

To further test the robustness of the study, different cut-off points for the binary 

dependent variable (Journal_reputation) were implemented, i.e., 25% and 5% (vs. 

15% in the main regression). These specifications indicate that there is a statistically 

significant difference when using the lower cut-off point, but not the highest. 

Specifically, this difference disappears when using the 5% cut-off points.  

 

5.5 Discussion  
Several noteworthy findings have been made, some of which corroborate and/or 

contradict previous comparable findings, and some of which offer more novel 

insights. This section is chiefly concerned with those findings and how they relate to 

the broader scientific field. Additionally, this section makes recommendations for 

future research work and outlines the limitations of this empirical study. 

 

The first contribution involved examining the prevalence of academic engagement 

in the field of engineering. This undertaking revealed that, in Sweden, publications 

resulting from academic engagement projects exist in the context of electrical 

engineering. In fact, the results suggest a trend of increased co-authoring with firms, 

in contrast to the findings of Arora et al. (2018). While their research suggests the 

declining involvement of firms in scientific activities, this study indicates the 

opposite trend in the context of electrical engineering in Sweden.  
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More concretely, by offering some benchmark numbers, this study shows that the 

overall prevalence of documents resulting from academic engagement is higher than 

either Tijssen et al. (2016) found in their analysis of the 750 largest research-

intensive universities (5.2%) or McKelvey and Rake (2020) found in their analysis 

of the pharmaceutical industry (6.4%). This seems reasonable considering that the 

engineering sciences are arguably closer to industry than are other fields, and that 

my sample consists of university scientists who were professors during the analysis 

period, both of which have been shown to be correlated with higher levels of 

academic engagement projects (cf. Abreu & Grinevich, 2017; Aschhoff & Grimpe, 

2014; Boardman & Ponomariov, 2009; D’Este et al., 2019; Lawson et al., 2019; Link 

et al., 2007; Schuelke-Leech, 2013; Tartari & Breschi, 2012; Tartari et al., 2014). 

This analysis also revealed diversity among the partner firms and publications, both 

of which can be further analyzed.  

 

The second contribution relates to article impact. According to the regressions, 

publications resulting from academic engagement have a higher article impact than 

do those resulting from pure university research. The logical interpretation of this 

finding is that resolving the differing institutional logics of firms and universities 

(Dasgupta & David, 1994; Sauermann & Stephan, 2013), and their related tensions, 

through creating so-called hybrid spaces (McKelvey et al., 2015; Perkmann et al., 

2018; Thune & Gulbrandsen, 2011) enables both partners to benefit. It is plausible 

that publications resulting from academic engagement projects include elements of 

both distant searches as well as deep application knowledge, thereby benefitting 

authors from both firms and universities, likely through increased knowledge 

combination.  

 

This finding is relevant to the debates about the relative impacts of science and 

technology (Fleming & Sorensen, 2004; Kaplan & Vakili, 2015). This finding 

arguably places academic engagement projects in a slightly different light, as it 
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differs from some previous findings suggesting that publications resulting from 

academic engagement projects have a relatively neutral or negative effect on article 

impact, as compared with publications involving only one or more university 

scientists (Bekkers & Freitas, 2008; Frenken et al., 2010). 

 

In relation to the knowledge network, the strongest effect in terms of academic 

engagement occurs when the number of authors is larger than three, especially when 

it is in the “sweet spot” of four or five co-authors. Different interpretations of this 

result could reflect an optimized cognitive distance between co-authors (Nooteboom 

et al., 2007) and/or that it indirectly captures the pooling of unique knowledge, which 

can lead to better outcomes (Becker & Murphy, 1992; Bozeman et al., 2013; Katz & 

Martin, 1997; Phelps et al., 2012), simultaneously as the cost of collaboration is kept 

under control (Becker & Murphy, 1992; West & Anderson, 1996). Dual affiliation 

in the context of academic engagement is positively associated with article impact. 

Therefore, having a cognitively proximal boundary spanner (Gertner et al., 2011; 

Leifer & Delbecq, 1978; Tushman, 1977; Tushman & Scanlan, 1981) as part of the 

co-author team may result in an on average higher article impact premium. Future 

research could further examine knowledge networks in academic engagement, by 

examining author team heterogeneity (i.e., team compositional properties) in more 

depth.  

 

In addition to these insights, the results suggest that conference proceedings, 

including The Institute of Electrical and Electronics Engineers (IEEE) conference 

papers, do not overall receive many, if any, citations, recalling Michels and Fu’s 

(2014) findings. However, two expert interviews conducted in this Ph.D. dissertation 

suggested that these conferences and associated publications are of high importance 

in the electrical engineering sciences for signaling, networking, and idea generation. 

Future research could explore this type of impact more thoroughly, as opposed to 

focusing predominantly on citations, as in this study. 
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The third contribution relates to journal reputation. The results indicate that academic 

engagement is negatively associated with journal reputation, as compared with 

having only academics at universities as authors, but this effect disappears when 

using a stricter operationalization of what counts as a top-reputed journal. In the 

context of academic engagement, the data moreover suggest that dual-affiliated 

professors and the number of authors of the paper do not significantly affect the 

probability of publishing in top-reputed journals. It is noteworthy, however, that the 

regression models do not directly assess the underlying motivations for the observed 

co-authoring, as it is an endogenous factor in the models. Motivations, such as 

wishing to be published in a journal of high reputation, can vary and have diverse 

effects on publishing aspirations. Higher-ranked journals typically apply a more 

rigorous peer review process, which may go beyond the scope of what some 

collaborations deem worth pursuing.  

 

The conflicting results concerning the impact of academic engagement on both 

article impact and journal reputation—i.e., two ways of indicating scientific 

impact—call for further research in this area. This research should aim to delve into 

the underlying motivations and aspirations of the universities and firms involved in 

collaborative research, and how those affect scientific outcomes, as distinct from, but 

possibly interrelated with, commercial outcomes and follow-up collaboration, as 

identified by Cantner et al. (2022).  

 

As with all empirical research, the research undertaken here is not without 

limitations. Specifically, at least two major limitations, plus an additional three 

secondary limitations, need to be noted regarding this study.  

 

The first major limitation of this empirical undertaking is that the sampled university 

scientists’ co-authors are treated as black boxes (e.g., the influence of certain factors 

of the industrial researchers, such as their prior article impact and prior degree 
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Future research could explore this type of impact more thoroughly, as opposed to 

focusing predominantly on citations, as in this study. 
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The third contribution relates to journal reputation. The results indicate that academic 

engagement is negatively associated with journal reputation, as compared with 

having only academics at universities as authors, but this effect disappears when 

using a stricter operationalization of what counts as a top-reputed journal. In the 

context of academic engagement, the data moreover suggest that dual-affiliated 

professors and the number of authors of the paper do not significantly affect the 

probability of publishing in top-reputed journals. It is noteworthy, however, that the 

regression models do not directly assess the underlying motivations for the observed 

co-authoring, as it is an endogenous factor in the models. Motivations, such as 

wishing to be published in a journal of high reputation, can vary and have diverse 

effects on publishing aspirations. Higher-ranked journals typically apply a more 

rigorous peer review process, which may go beyond the scope of what some 

collaborations deem worth pursuing.  

 

The conflicting results concerning the impact of academic engagement on both 

article impact and journal reputation—i.e., two ways of indicating scientific 

impact—call for further research in this area. This research should aim to delve into 

the underlying motivations and aspirations of the universities and firms involved in 

collaborative research, and how those affect scientific outcomes, as distinct from, but 

possibly interrelated with, commercial outcomes and follow-up collaboration, as 

identified by Cantner et al. (2022).  

 

As with all empirical research, the research undertaken here is not without 

limitations. Specifically, at least two major limitations, plus an additional three 

secondary limitations, need to be noted regarding this study.  

 

The first major limitation of this empirical undertaking is that the sampled university 

scientists’ co-authors are treated as black boxes (e.g., the influence of certain factors 

of the industrial researchers, such as their prior article impact and prior degree 
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centrality, is not controlled for). The other major limitation is the relatively small 

number of articles resulting from academic engagement projects involving dual-

affiliated professors, as well as the fact that those articles are published by a 

somewhat small number of researchers (i.e., 11 dual-affiliated professors). These two 

limitations lower the validity of the findings, with validity referring to the extent to 

which something that has been studied can be said to have been accurately depicted 

(Carmines & Zeller, 1979).  

 

Concerning the secondary limitations, a first limitation is the focus on the outcomes 

of academic engagement projects, rather than on analyzing the activities within these 

projects themselves. Related to this, a second limitation concerns the reliance on 

bibliometric data. Specifically, the study analyzes only published articles instead of 

all submitted articles, identifying academic engagement projects by examining the 

organizations listed by authors in the articles (see Section 4.4 for a detailed 

discussion). Essentially, this approach means that the analysis encompasses only 

those academic engagement projects that result in at least one published article. 

Although bibliometric data such as scientific articles are considered to provide a 

reliable, albeit partial, measure of successful scientific knowledge creation 

(Perkmann et al., 2011; Tijssen, 2009), and can be used to assess both the quantity 

and quality of work produced (Nederhof & Van Raan, 1992), the reliability of this 

approach—with reliability referring to the extent to which an instrument consistently 

yields accurate results (Carmines & Zeller, 1979)—remains high. However, a third 

limitation, which also constitutes one of the strengths/novelties of this study, is its 

empirical context. The research focuses specifically on one field and one nation 

(electrical engineering and Sweden, respectively), which limits the generalizability 

of the findings and related implications. 
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5.6 Conclusion  
The primary aim of this empirical study was to elucidate the scientific impact of 

electrical engineering articles in terms of their article impact on the academic 

community and the reputation of the journals in which they are published. To achieve 

this objective, a dataset comprising 8455 publications was comprehensively 

analyzed. These articles were authored by 184 engineering professors affiliated with 

the five largest/most prominent universities in Sweden, with respect to their 

engineering departments and/or units. The central research question that guided this 

endeavor was as follows (which is also RQ1 of this Ph.D. dissertation): 

 

How does the scientific impact of publications resulting from academic 

engagement projects differ from that of publications resulting from academic 

projects? 

 

Relating to the research question, four hypotheses were proposed. Table 5.7, below, 

summarizes the conclusions drawn in relation to these hypotheses, followed by a 

concise discussion and concluding remarks. The implications of this undertaking are 

discussed in Chapter 8 of this dissertation. 

 
Table 5.7. Hypotheses: empirical evidence for confirmation or refutation – Chapter 5. 

Hypothesis 
Empirical 

findings 

5.1a. Publications originating from academic engagement collaborations are associated with 

higher article impact. 
Supported 

5.1b. Publications originating from academic engagement collaborations are associated with 

lower article impact. 
Rejected 

5.2a. Journal articles originating from academic engagement collaborations are associated with 

higher journal reputation. 
Rejected 

5.2b. Journal articles originating from academic engagement collaborations are associated with 

lower journal reputation. 
Supported* 

* Reduced statistical power (i.e., the p-value is between 0.1 and 0.05). 
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To summarize the main results, the findings reported in this empirical study suggest 

that there was a significant difference between articles resulting from academic 

engagement projects and those resulting from academic collaboration, with respect 

to both article impact and journal reputation. Specifically, academic engagement had 

a seemingly positive effect on the resulting publications’ article impacts, although 

they were more likely to be published in less-reputed journals. Examining the data 

more closely revealed that the premium in article impact can be attributed to those 

collaborations having more than three authors, and especially to those with a 

moderate number of authors (i.e., four or five). The presence of dual-affiliated 

professors improved the outcome. Concerning journal reputation, the findings 

suggest that papers resulting from academic engagement are less likely to be 

published in top-reputed journals, although this finding loses significance with 

stricter operationalization of the dependent variable. The number of authors of the 

resulting publications and the presence of dual-affiliated professors moreover had no 

significant influence on the likelihood of publication in top journals. 
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6 THE TECHNOLOGICAL IMPACTS OF 

COLLABORATIVE RESEARCH AS ONE 

FORM OF ACADEMIC ENGAGEMENT 

6.1 Introduction 
This chapter examines the technological impact of science, specifically comparing 

the technological impact of collaborative research as one form of academic 

engagement versus research carried out solely by academics. While Chapter 5 

examined different forms of scientific outcomes and scientific impacts, this chapter 

explicitly examines technological impacts.  

 

This chapter thus examines how science may also lead to technological impacts, and 

is related to a tradition in economics of innovation and innovation studies. There is 

a long history of debates on—and studies of—the relationship between science and 

technology. Ample research has demonstrated the importance of science for 

subsequent technological inventions seen explicitly as patents (e.g., Ahmadpoor & 

Jones, 2017; Jaffe et al., 1993; Narin et al., 1997). While it is true that some 

technology is developed without science, such as the innovation of flush riveting in 

American airlines from the 1930s to 1950s (Vincenti, 1984), many studies published 

over decades have shown the importance of science to subsequent technological 

inventions (e.g., Ahmadpoor & Jones, 2017; Jaffe, 1989; Jaffe et al., 1993; Narin et 

al., 1997; Scandura, 2019; Tijssen, 2001, 2002). Other research has shown the effects 

of science and technology on industrial dynamics (McKelvey et al., 1996) and on 

economic growth more broadly (Mansfield, 1991; Rosenberg, 1974). Note that this 

chapter does not tackle the broad impacts; instead, it follows the tradition in this 

literature of considering technology as proxied by patents and science as proxied by 

publications. 
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Moreover, it is essential to acknowledge that not all fields of science hold equal 

significance for technological progress. Even though the distinction is not without its 

limitations, the more applied sciences tend to be more directly relevant to 

technological advances, as articulated by Tijssen (2002): “Clearly, all technical 

inventions are based to some extent on research, in the least on (applied) engineering 

research of some sort, but sometimes also on inputs from scientific and engineering 

research of a more fundamental nature” (p. 511). This study of engineering 

accordingly stands at the intersection of science and technology, providing an 

interesting and relevant empirical context. While prior, related research has 

suggested that science affects technology (e.g., Hemberg, 2023; McKelvey & 

Ljungberg, 2017), the nature of the relationship between the two is multifaceted and 

needs to be unpacked.  

 

Indeed, universities are a type of organization in which science and technology 

interact. The literature suggests that technological impact can occur either directly 

through interaction between individuals and organizations or more indirectly through 

spillovers. Because universities are repositories of ample and diverse scientific 

knowledge, firms are likely to collaborate with them to develop inventions and 

ultimately introduce them to the market (Rotolo et al., 2022). Research suggests that 

collaborative research between universities and firms can benefit the collaborating 

firm via the development of capabilities valuable for creating technology usable in 

future innovations (McKelvey & Ljungberg, 2017). Furthermore, indirect impacts 

are also worth considering. External firms can benefit from knowledge spillovers 

(Messeni Petruzzelli & Murgia, 2020), which refer to the phenomenon in which 

investments in research or technology development by one or a few agents 

intentionally or unintentionally facilitate the innovation efforts of other agents 

(Breschi & Lissoni, 2001).  
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This chapter will address the following research question (which is also RQ2 of this 

Ph.D. dissertation): 

 

How does the technological impact of publications resulting from academic 

engagement projects differ from the impact of those resulting from academic 

projects? 

 

This comparison aims to help us disentangle the relative technological value of 

collaborative research projects between universities and firms, especially in the 

engineering sciences where the applied and basic aspects of research can be difficult 

to distinguish. Patents and publications give us a way to explicitly examine the 

relationships between more basic research and the impacts in terms of technological 

inventions. Few studies have investigated whether collaborative research between 

universities and firms is more or less valuable from a technological viewpoint as 

compared with similar research conducted solely by researchers at public research 

institutions and universities. Notably, Messeni Petruzzelli and Murgia (2020) 

emphasized the need for more comprehensive assessment of the industrial impact of 

university–industry collaboration. This call for future research on these topics has 

been confirmed in the latest article by Perkmann et al. (2021), providing a conceptual 

framework for and structured literature review on academic engagement. 

 

To address the research question, the subsequent sections will propose two distinct 

pathways through which science can lead to technological impacts relevant to 

academic engagement. These pathways represent different mechanisms for the 

development, application, and utilization of scientific knowledge in technology: an 

individual approach and an organizational approach. Additionally, it is important to 

note that the remainder of this chapter will focus on technology in relation to patents 

and on science in relation to publications. The aim is to extend the analysis beyond 

merely studying scientific outcomes and impacts. By examining these dimensions, 
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the research aims to shed light on the extent of technological impact resulting from 

academic research in the engineering sciences. This investigation has the potential to 

inform policymakers, researchers, and industry practitioners, thereby facilitating 

evidence-based decision-making and promoting effective collaborations that drive 

technological innovation. 

 

The remainder of this chapter is structured as follows: The next section delves into 

theories related to technological impact. This is succeeded by a detailed outline of 

the research design and empirical methodology. The chapter then presents and 

discusses the findings. It ends by outlining relevant conclusions. 

 

6.2 Theory and hypotheses 
Following a longstanding tradition in the study of innovation (e.g., Nelson & Winter, 

1982; Schumpeter, 1934), technological invention is conceptualized as a process of 

striving for the reconfiguration of existing combinations or for the combination of 

existing components in a novel manner. A view of technology as resulting from the 

fundamental nature of inventors’ activities, as proposed by Fleming and Sorenson 

(2004), is thus useful for this study. They suggested that the fundamental mechanism 

in play appears to be that “science alters inventors’ search processes, by leading them 

more directly to useful combinations, eliminating fruitless paths of research, and 

motivating them to continue even in the face of negative feedback” (Fleming & 

Sorenson, 2004, p. 909). 

 

The literature on search processes for innovation suggests that firms benefit from 

combining local and non-local (i.e., exploratory) search (Laursen, 2012; Savino et 

al., 2017). Given the abundance of diverse scientific knowledge contained within 

universities, firms are likely to seek collaborations with these institutions to enhance 

their (non-local) search processes, ultimately accelerating the development and 

eventual market introduction of innovations (Rotolo et al., 2022). The absorptive 
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capacity generated by firms’ internal research influences their ability to leverage 

connections to external knowledge sources, that is, firms engaged in research are 

better equipped to search for and identify new opportunities (Fabrizio, 2009). 

Consequently, the expectation is that collaborative research, as one form of academic 

engagement, should yield a higher technological impact than specifically academic 

projects because firms engaged in these endeavors not only intend to develop 

technological inventions but also possess the capacity to do so, including the ability 

to identify opportunities in the first place. 

 

The next sub-section will delve into the literature concerning the linkages between 

patents and publications in the context of technological impacts. Consistent with the 

research design, the primary reference in this literature review will be to scenarios in 

which patents serve as proxies for technology (sometimes technological inventions), 

while publications are used as proxies for science. 

 

6.2.1 Studies of technological impact through patents and publications 

Determining the precise extent to which technology relies on science is challenging, 

mainly due to variations over time among disciplines and in estimation methods. As 

a point in case, there are two notable approaches that rely on bibliometric data, 

namely, the indirect and direct approaches.26  

  

 
26 This research omits one notable approach, that of relying on survey data (e.g., Tijssen, 2002). 

While data from surveys, which normally ask respondents about their prior activities and subjective 

opinions, have their merits, they are not well suited for this particular type of study. This is because 

the fundamental interest of this research lies in determining whether and why scientific publications 

resulting from the sample of engineering professors influence future technological inventions. 

Simply put, the sampled professors may not be aware of the extent to which their research has 

influenced subsequent technological inventions outside their immediate knowledge network. 
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In the indirect approach, one investigates to what extent research papers are cited as 

prior art in technological patents (e.g., Marx & Fuegi, 2022). Similar to how 

researchers use citations in science to acknowledge previous work (Merton, 1973; 

Moed, 2005), inventors use citations in patented technology to inform us, especially 

the examiners, about prior art (Akers, 2000; Criscuolo & Verspagen, 2008; 

Trajtenberg, 1990). “Prior art” refers to the evidence for why a technological 

invention is novel to the world and why it is not already known. This suggests that 

recognition is due to the work on which the focal invention is building. 

 

In a recent study employing an indirect approach, researchers investigated the extent 

to which technological patents cite scientific articles, revealing that approximately 

25% of technological inventions are connected to prior research (Marx & Fuegi, 

2022). The significance of relying on more recent research is underscored by 

advances in computing power and improved estimation techniques. Previous reports 

often relied on smaller datasets, limited their scope to front-page citations, and 

employed less sophisticated identification methods. In contrast, Marx and Fuegi 

(2022) based their study on a comprehensive analysis of all USPTO patents granted 

from 1836 to 2020 and all EPO patents granted from 1978 to 2020. Their analysis 

incorporates advanced extraction techniques, including machine learning. 

 

Regarding the direct approach, Coward and Franklin (1989) reported that, in a dataset 

of 2452 patents, 238 constituted true patent–paper pairs, accounting for 9.7% of the 

total. In contrast, Magerman et al. (2015) found that in an analysis of 88,248 EPO 

and USPTO patents, only approximately 0.66% exhibited a direct link to scientific 

research. 

 

Disregarding the consequences of employing different methodological approaches, 

let us shift focus to the factors that can influence the potential to shape technology. 

Chapter 5, which examined scientific outcomes and impacts, argued that one 
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plausible explanation for the elevated article impact of publications arising from 

academic engagement lies in the unique combination of in-depth applied knowledge 

and more abstract and distant exploration (i.e., search). The positive and significant 

correlation between papers resulting from academic engagement and their article 

impact suggests the likelihood of a corresponding technological impact premium, as 

previous related research indicates. 

 

For instance, an extensive bibliometric analysis of 32 million research papers and 4.8 

million patents revealed that publications directly cited by patents have a higher 

likelihood of receiving substantial citations from other research papers (Ahmadpoor 

& Jones, 2017). This implies that the publications deemed crucial for subsequent 

research also have significant value for future technological innovations. Supporting 

evidence was provided by Poege et al. (2019), who found a strong correlation 

between the technological impact of patents that cite highly impactful research 

articles. Poege et al. (2019, p. 1) asserted that “what is considered excellent within 

the science sector also leads to outstanding outcomes in the technological and 

commercial realms.”   

 

Papers like these may also result in higher technological impact because the 

combination of deep application knowledge with a more abstract and distant search 

is advantageous from a technological standpoint. According to Walsh et al. (2016), 

collaborations between universities and industries can lead to higher-quality 

inventions because academic scholars can bring cutting-edge scientific knowledge to 

the collaboration group. Further support for this idea was provided by McKelvey and 

Ljungberg (2017), who found that many collaborative research projects between 

universities and firms in the Swedish food industry resulted in both product and 

process innovations. 
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In the indirect approach, one investigates to what extent research papers are cited as 
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Additionally, several studies have explored the characteristics of scientific 

publications that increase their technological impact. In this context, Ke (2020) 

analyzed citation links among nearly 3.8 million biomedical papers published 

between 1980 and 1999 and all granted USPTO utility patents from 1976 to 2012. 

He found that both basic and novel papers exhibited high patent citation intensity. 

More specifically, in terms of novelty, the findings revealed that moderately and 

highly novel papers received 3.4% and 13.5% more patent citations, respectively, 

than did their non-novel counterparts. This finding aligns with an earlier similar 

discovery of Veugelers and Wang (2019), who found that moderately and highly 

novel papers were 22% and 43% more likely, respectively, to have a greater 

technological impact than non-novel papers. 

 

Regarding the fundamental nature of publications, Ke (2020) determined that 

moderately and highly basic papers garnered 14.9% and 11.8% more patent citations, 

respectively, than did non-basic papers of a similar nature. This led Ke to conclude 

that the most likely recipients of patent citations were those papers that encompass 

both basic science and clinical medicine components. This observation aligns closely 

with the prior argument that the types of knowledge being recombined in 

collaborative research constitute one form of academic engagement, in engineering. 

This leads to the formulation of the first hypothesis to be tested in this endeavor, 

which is also visually represented below (Figure 6.1): 

 

H6.1 

Publications originating from academic engagement collaborations are associated 

with higher technological impact. 
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Figure 6.1. Conceptual model for understanding the hypothesized impact of academic engagement on technological 
impact. 

 

This technological impact can manifest through three distinct pathways: individual 

technological impact, organizational technological impact, and knowledge spillover. 

While this chapter has so far concentrated on the individual and organizational 

pathways, as they pertain to the actors involved in the collaborations, information 

concerning knowledge spillover can be found in Section 6.4.3 focusing on robustness 

tests.  

 

6.2.2 Individual and organizational technological impact 

Individual technological impact involves researchers engaging in both scientific 

research and the development of innovations derived from that research. This 

personal pathway relies on the individualized nature of knowledge, as discussed by 

Dretske (1981), Nonaka (1994), and Polanyi (1958), positing that knowledge 

cultivated in one specific context can be effectively applied in another.  

 

Research suggests that boundary spanners, i.e., individuals who have a deep 

understanding of both science and technology, are especially valuable in this context. 

For instance, a study conducted by Baba et al. (2009) examining the advanced 

material industry suggests that “Pasteur scientists,” referring to university scientists 

who have contributed to numerous patent applications in addition to publishing 

numerous high-article-impact publications, offer greater value to firms’ R&D 

productivity than do researchers lacking such experience, even those considered star 
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scientists. The underlying argument is that researchers engaged in collaborative 

research between universities and firms are more likely to collectively exhibit the 

characteristics of Pasteur scientists. This is particularly true due to factors such as 

prior commercialization experience and non-academic work experience, which are 

identified as key determinants associated with future academic engagement, as 

highlighted by Perkmann et al. (2021) in their systematic literature review.  

 

The second pathway, known as organizational technological impact, involves 

researchers focusing solely on scientific endeavors, while one or more of their 

colleagues within the same organization leverage the insights gained from that 

research to create technological innovations. 

 

This technological impact pathway is closely associated with the idea that 

transferring knowledge within the boundaries of an organization differs 

fundamentally from knowledge transfer that crosses organizational boundaries, 

defined as knowledge spillover. This perspective aligns with the work of Kogut and 

Zander (1992) and Nahapiet and Ghoshal (1998). For example, Kogut and Zander 

(1992) argued that knowledge is not only held by individuals but is also expressed in 

routines by which colleagues cooperate within an organization, allowing firms to 

more effectively share and transfer knowledge among colleagues than is possible in 

the market, outside organizational boundaries. 

 

From the perspective of the participating firm, the potential efficiency and significant 

contribution of employees engaged in scientific activities to technological advances 

hinges on the nature of the field under investigation. When the boundaries between 

science and technology are blurred, the individual pathway may emerge as preferred. 

In this context, a single individual possesses the capability to advance technological 

frontiers by leveraging the insights and expertise gained from their scientific 

endeavors. This approach is deemed resource efficient as it does not rely on the 
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effective transfer of knowledge from the researcher(s) to the inventor(s). Conversely, 

if science and technology are too different, optimal efficiency is achieved by 

assigning distinct individuals to each activity, due to a greater division of labor. In 

other words, in this scenario, researchers focus solely on conducting research and 

they disseminate their insights to their colleagues involved in development, who can 

then leverage this information in the creation of new technologies.  

 

In the empirical context, characterized by researchers pursuing both academic and 

practical aims (Banse & Grunvald, 2009) and in which collaboration between 

universities and firms is prevalent (Chapter 5), it is anticipated that the individual 

pathway will be utilized more frequently than the organizational pathway. This forms 

the basis for the second hypothesis to be tested in this chapter: 

 

H6.2 

Individual technological impact is more prevalent than organizational 

technological impact.  

 

6.2.3 Key takeaways from Section 6.2 

- Technological invention is conceptualized as striving to reconfigure existing 

combinations or assemble components in a novel manner, with science 

guiding inventors toward useful combinations. 

- Internal research enhances firms’ absorptive capacity, enabling more effective 

exploratory search processes by tapping into academic scholars’ expertise. 

- Existing research in conjunction with prior analysis (Chapter 5) implies that 

publications arising from academic engagement valuably combine in-depth 

applied knowledge and a more abstract and distant search, likely resulting in 

a technological impact premium. 

- Technological impact from publications can manifest itself through three 

distinct pathways: individual technological impact involves researchers 
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engaging in both scientific research and the development of innovations from 

their findings; organizational technological impact entails researchers 

focusing on scientific endeavors, while colleagues from the same organization 

leverage those insights for technological innovations; and knowledge spillover 

emphasizes the technological impact of publications on external individuals 

and organizations. 

- The conceptual framework suggests that firms commonly utilize the individual 

technological pathway, as science and technology are closely intertwined, 

while the organizational pathway is less prevalent. 
 

6.3 Data and method 
This section explains the data used in this research as well as the techniques 

employed to analyze those data. The data are presented in the first section. The 

operationalization of variables is covered in the second section. The final section 

covers the techniques employed, including giving a thorough explanation of the 

underlying causes guiding the choice of empirical strategy. 

 

6.3.1 Data 

This chapter relies on the same data as did the prior empirical chapter as well as on 

the patent-to-article dataset—Reliance on Science in Patenting—developed and 

published by Marx and Fuegi (2020, 2022). The Reliance on Science in Patenting 

dataset compiles citation linkages between full-text patents and scientific 

publications. This dataset contains noteworthy improvements compared with earlier 

datasets, such as including, and distinguishing, front-page citations and in-text 

citations, whereas most earlier research is based only on front-page citations (e.g., 

Ahmadpoor & Jones, 2017). As Bryan et al. (2020) pointed out, in-text citations 

should “better measure the real knowledge inventors use to motivate and construct 

their inventions” (p. 1) because that part of the patent is frequently written in large 

part by the inventors themselves, as opposed to patent attorneys who concentrate on 
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the more legally significant claims and prior art disclosure. See Section 4.2 for a 

more thorough explanation of the respective datasets, including how the data were 

prepared for analysis. 

 

The final number of scientific publications attributed to the 184 sampled professors 

was 8455. Of these, 5143 had a digital object identifier (DOI) number and/or a 

PubMed identifier (PMID) through which the two datasets were matched. The vast 

majority (96%) of the publications that did not have a DOI or PMID number were 

proceeding papers (note, however, that 946 proceeding papers had a DOI and/or 

PMID number). Put differently, whereas the preceding empirical chapter (Chapter 5) 

was based on the final number of scientific publications attributed to the sampled 

professors (n = 8455), this chapter is based on all scientific publications attributed to 

the sampled professors that had a DOI and/or PMID number (n = 5143). 

 

Operationalization of variables  

This section elaborates on how the concepts used in this undertaking have been 

operationalized. To clarify, this section is divided into three parts according to the 

three types of variables, namely, dependent variables, independent variables, and 

control variables.  

 

Dependent variables 

This study has operationalized three dependent variables to be used in the main 

regression: Total_tech_impact, Individual_tech_impact, and 

Organizational_tech_impact. In addition to these variables, a fourth dependent 

variable used in a robustness test is also presented, Knowledge_spillover; it is 

presented in this section rather than in the robustness test section as it relates to these 

dependent variables and some of the descriptive statistics include this variable.  
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In accordance with Veugelers and Wang (2019) as well as Ke (2020), the first 

dependent variable, the total technological impact (Total_tech_impact), that is, to 

what extent a scientific publication has had a meaningful influence on any 

technological inventions, has been approximated by investigating the total number 

of citations the focal publication received in granted patents before 2021.27  

 

A noteworthy limitation of this operationalization is its potential to underestimate 

the technological impact, primarily because it excludes patents applied for before the 

public disclosure of the research, even when the research has partially contributed to 

these patents. This limitation is likely most notable in the context of collaborative 

research involving universities and firms, in which case it is plausible that mutual 

agreements may enable researchers employed by the firm, or their colleagues, to 

secure patent filings before public disclosure. Empirical research supports this 

assertion, demonstrating that technological inventions precede related publications 

arising from academic engagement, attributable to the patentability criterion that 

mandates absolute novelty (Chang et al., 2017). 

 

The second and third dependent variables follow the same logic as the first dependent 

variable but focuses on the different pathways of technological impact. Specifically, 

the second dependent variable measures the number of citations the focal publication 

has received in patents granted before 2021, defined as those publications and 

technological patents in which at least one of the authors (scientific publications) and 

inventors (technological patents) are the same (Individual_tech_impact). These 

citations are referred to as author–inventor pair citations.  

 
27 An alternative measure involves counting the number of forward citations to create a binary 

(i.e., dummy) variable that differentiates between patents/publications receiving the greatest 

number of citations and all others (e.g., Ahmadpoor & Jones, 2017; Uzzi et al., 2013). 

Nonetheless, the use of a count variable is considered advantageous as it accommodates a greater 

degree of variance. 
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The third dependent variable measures the number of citations the focal publication 

has received by patents granted before 2021, defined as those publications and 

technological patents in which at least one of the organizations listed as affiliations 

of the authors and patent assignees listed by the inventors are the same, but all the 

authors and inventors are different individuals (Organizational_tech_impact). These 

citations are referred to as organization–affiliation pair citations. 

 

Lastly, the final pathway of technological impact, knowledge spillover, is simply 

defined as the number of citations the focal publication has received in patents 

granted before 2021 from external parties, i.e., the total technological impact of the 

publication minus the individual technological impact and the organizational 

technological impact (Knowledge_spillover). The aim of this variable is to capture 

those citations that have “spilled over” to other actors by excluding all author–

inventor and affiliation–assignee citations. This variable is used as a robustness test. 

 

The indirect approach was chosen as the preferred method after a thorough review 

of the two approaches. Even though citations have received criticism for not being 

an indicator that captures all knowledge transfer from science to technology or as a 

“noisy” indicator (e.g., Criscuolo & Verspagen, 2008; Jaffe et al., 1998; Meyer, 

2000; Tijssen, 2001), it is a well-accepted indicator that has been used for decades 

(e.g., Arora et al., 2022; Narin & Noma, 1985; Popp, 2017; Roach & Cohen, 2013).28 

Moreover, when investigating the technological impact of technology (as opposed to 

investigating the technological impact of science, as done here), citation counts are 

also commonly measured (e.g., Fleming & Sorenson, 2001, 2004; Messeni 

Petruzzelli & Murgia, 2020; Verhoeven et al., 2016).29  

 
28 To my knowledge, Narin and Noma were the pioneers in using this method, as evidenced in their 

1985 study entitled “Is technology becoming science?” 
29 Numerous indicators exist to measure technological impact and the related measure of value; for 

an extensive discussion of this topic, refer to van Zeebroeck (2011). 
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As reasoned by Callaert et al. (2006), when reviewing prior literature, scientific 

references in patents, commonly referred to as non-patent literature (NPL) citations, 

should not be seen as science unidirectionally and directly influencing technological 

inventions; rather, the citations reflect a more general indicator of the interaction 

between science and technology. Callaert et al. (2006) further argued that their 

findings allow for the conclusion that “developing recurrent, robust indicators based 

on these references is plausible. Such indicators can depict the extent to which 

technology development is situated within the vicinity of scientific findings, and they 

offer multiple possibilities for mapping and analyzing technological activity along 

this dimension” (p. 16).  

 

Several limitations are associated with the direct approach, which contributed to the 

decision to employ the indirect approach here. First, it arguably necessitates expert 

judgment when establishing potential linkages, as demonstrated by Coward and 

Franklin (1989) and Woltmann and Alkærsig (2018).30 Second, matching is usually 

based on the abstracts of publications (e.g., Magerman et al., 2010, 2011, 2015; 

Woltmann & Alkærsig, 2018), primarily due to the practical difficulties and time 

constraints associated with acquiring the full texts of all papers, posing obvious 

drawbacks.31 Furthermore, the direct identification of linkages is exceedingly rare. 

For instance, Magerman et al. (2015) reported that only approximately 0.66% of the 

 
30 Although Woltmann and Alkærsig (2018) based their study on publication–website pairs rather 

than patent–paper pairs, their methodology for identifying the pairs is believed to be the same, 

making it a credible reference despite its not being strictly aligned with the patent–paper pair 
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sampled patents exhibited a direct scientific link. This low number suggests that it 

may be too narrowly defined as a proxy for this research endeavor. Finally, linguistic 

disparities exist between scientific publications and patents, as reported by Xu et al. 

(2021). These disparities make the successful implementation of natural language 

processing techniques based on the link between publications and patents 

challenging. 

 

As explained in Chapter 5, it is true that a rolling time window based on when the 

article was published, rather than a fixed, static window regardless of what year the 

article was published, is sounder because a rolling time window more equally 

captures the scientific and technological impact of each article (cf. Amin & Mabe, 

2000; Branstetter & Ogura, 2005).32 However, after examining the descriptives of 

the data, such as the time lags between publication and patent linkage, the decision 

was made to employ a longer, fixed time window. This approach was deemed more 

appropriate due to its ability to capture a greater number of linkages and thus more 

data. Consistent with established research (Fleming & Sorenson, 2004; Popp, 2017), 

the approach to controlling for censoring involved the inclusion of fixed year effects 

in the regressions, incorporating a factor variable representing the publication year 

in all regression models. 

 

Inspiration for the operationalization of the second and third dependent variables 

comes mainly from the study by Coward and Franklin (1989), but to a lesser extent 

also from other papers, such as the one by Bonaccorsi and Thoma (2007). Coward 

and Franklin (1989) investigated three possible types of patent–paper pairs: 

- Individual name matches between paper authors and patent inventors 

 
32 As stated by van Zeebroeck (2011, p. 39), “the effect of time increases the probability for any 

patent to have been cited by subsequent patents. The easiest remedy to this censoring issue 

consists of counting citations received by patent applications within a given period of time (e.g., 

within the first 5 years from their publication).” 
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- Institutional name matches between organizations listed as affiliations by 

authors and patent assignees 

- Examiner-cited literature references found in patents 

 

They found that the first two approaches—i.e., author–inventor pairs and affiliation–

assignee pairs—yielded better results, and that the first approach—i.e., author–

inventor pairs—performed the best. Arguably directly or indirectly inspired by 

Coward and Franklin’s (1989) paper, author–inventor pairs have attracted a lot of 

attention (e.g., Breschi & Catalini, 2010; Meyer, 2003; Noyons et al., 1994; Zhang 

et al., 2019), whereas less emphasis had been put on affiliation–assignee pairs.  

 

Independent variables 

One independent variable has been operationalized, which is the same as in Chapter 

5. 

 

More specifically, publications resulting from collaborative research as one form of 

academic engagement project have been approximated by investigating the 

affiliation(s) that an article’s authors report. Articles reporting any affiliated firms 

are defined as academic engagement projects (Academic_engagement), as 

distinguished from academic collaboration projects, which are scientific publications 

reporting no affiliated firms, that is, articles authored only by one or more academic 

researchers. Thus, closely following similar previous literature (e.g., Frenken et al., 

2010; McKelvey & Rake, 2020), the first and only independent variable is a binary 

variable taking the value of 1 when any firm is reported among the affiliations, and 

0 otherwise. For more information about the methodology employed to identify 

publications with at least one firm included in the affiliations, see Section 4.3. 

 

The reason to not interacted this variable with the number of authors of a paper or 

with whether any dual-affiliated professor is listed as an author is due to the sample 
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sizes became too small. In greater detail, there were 795 scientific papers with any 

technological impact; of these, 156 were defined as author–inventor pairs. Of these 

156 scientific publications, 14 were defined as resulting from academic engagement 

in which at least one dual-affiliated professor was listed as an author. Besides, of 

these 14 scientific publications, nine were a result of one dual-affiliated professor. 

This suggests that any conclusions drawn as to the interaction effect between 

academic engagement and dual-affiliated professors will be a result mostly of a 

single dual-affiliated professor rather than of the full sample of dual-affiliated 

professors. 

 

Control variables 

In addition to the dependent and independent variables, the same control variables as 

used in Chapter 5 is also included: Prior_article_impact, Prior_patenting, 

Prior_coauthors, Top_university, Number_universities, Number_nations, 

Number_fields, Article, Female, University_dummies, Field_dummies, and 

Year_dummies. For detailed information regarding these, see Section 5.3.  

 

Variable summary 

Table 6.1, below, provides an overview of all variables, including name, type of 

variable, and how they have been operationalized. 

 
Table 6.1. Summary of the regression variables used in Chapter 6. 

Variable  Type Description 

Total_tech_impact DV 
A count variable indicating the total number of technological (patent) 

citations received by the publication before 2021 

Individual_tech_impact DV 
A count variable corresponding to the total number of technological 

author–inventor pair citations the publication received before 2021 

Organizational_tech_impact DV 
A count variable corresponding to the total number of technological 

affiliation–assignee pair citations the publication received before 2021 
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Knowledge_spillover 
DV 

(RT*) 

A count variable corresponding to the total number of technological 

citations not defined as author–inventor or affiliation–assignee pair 

citations the publication received before 2021 

Academic_engagement IV 
A binary variable with a value of 1 if a firm is reported among the 

authors’ affiliations on the publication, and 0 otherwise 

Journal_reputation CV 

A binary variable with a value of 1 if the article was published in a 

journal belonging to the top 15% of the 2018 Journal Impact Factor 

distribution with regard to my sample, and 0 otherwise 

Dual_affiliated_professor 

 
CV 

A binary variable with a value of 1 when at least one of the sampled 

dual-affiliated professors is listed as an author on the publication, and 0 

otherwise 

Number_authors CV 

A categorical variable indicating the count of authors for each 

publication, categorized into groups of 1–8 authors and 9 or more 

authors 

Prior_article_impact CV 

A count variable representing the total number of scientific citations 

received by the sampled professor in the five years preceding the release 

of the publication; if more than one of the sampled professors has 

authored the publication, the highest value is used 

Prior_patenting CV 

A binary variable with a value of 1 if any of the sampled professors on a 

publication applied for a patent in the five years preceding the release of 

the publication, and 0 otherwise 

Prior_coauthors CV 

A count variable indicating the total number of co-authors the sampled 

professor had in the five years preceding the release of the publication; if 

more than one of the sampled professors has authored the publication, 

the highest value is used 

Top_university CV 

A binary variable with a value of 1 if any of the top 50 universities 

worldwide is reported among the authors’ affiliations on the publication, 

according to the 2018 Academic Ranking of World Universities, and 0 

otherwise 

Number_universities CV 
A count variable indicating the total number of unique university 

addresses reported among the authors’ affiliations on the publication 

Number_nations CV 
A count variable representing the total number of unique nation 

addresses reported among the authors’ affiliations on the publication 

Number_fields CV 
A count variable indicating the total number of fields in which the 

publication has been categorized by Web of Science 

Article CV 
A binary variable with a value of 1 if the publication is classified as an 

article, according to Web of Science, and 0 otherwise 

Female CV 
A binary variable with a value of 1 if any of the sampled professors on 

the publication is female, and 0 otherwise 
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University_dummies CV 

Five similar dummy variables, each with a value of 1, if the sampled 

university is reported among the authors’ affiliations on the publication, 

and 0 otherwise; the universities are CTH, KTH, LiU, LTH, and UU 

Field_dummies CV 

Three similar dummy variables, each with a value of 1, if Web of 

Science has assigned the publication to the specific subject areas of 

“Computer Science,” “Telecommunications,” or “Automation and 

Control Systems,” and 0 otherwise 

Year_dummies CV 
A factor variable representing the year in which the publication was 

released; the possible years are 2000–2018 

* RT = Robustness test 

 

6.3.2 Empirical strategy 

The overarching objective of this undertaking is to better understand whether and, if 

so, how the technological impact of scientific publications resulting from 

collaborative research, as a form of academic engagement, differs from that of 

scientific publications resulting from collaborations only among academics. 

 

All three dependent variables (Total_tech_impact, Individual_tech_impact, and 

Organizational_tech_impact) are count variables, focusing on the intensity of the 

impact. These variables were estimated using generalized negative binomial 

regression models, since the overdispersion test developed by Cameron and Trivedi 

(1990) suggests overdispersion. As stated in Chapter 5, overdispersion means that 

the observed conditional variance of the response was statistically larger than the 

variation implied by the distribution used in fitting the model, that is, the variance 

was statistically larger than the mean. According to several authors (Cameron & 

Trivedi, 1998; Fox & Weisberg, 2018; Hilbe, 2011; Lawless, 1987; Venables & 

Ripley, 2002), negative binomial regression is an effective model for dealing with 

this type of frequency data as it accommodates between-individual variability via 

introducing a random subject effect (𝛼𝛼), which can have different values for different 

subjects. This is also the option preferred by researchers handling similar types of 

data (Fleming & Sorenson, 2001, 2004; Popp, 2017; Verhoeven et al., 2016). 

Moreover, the model can be viewed as a mixture of two distributions, as the number 
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of observations (𝑦𝑦𝑖𝑖) is assumed to follow a Poisson distribution but the dispersion is 

assumed to follow a gamma distribution.  

 

6.4 Results 
The results of this undertaking are detailed in this section. First, descriptive data 

pertaining to the variables of interest are presented and discussed. This section also 

addresses the second hypothesis. Subsequently, regression results are shown and 

discussed, shedding light on the first hypothesis. The chapter concludes by 

examining the robustness of the aforementioned findings. 

 

6.4.1 Descriptive findings 

As explained above, this study is based on a subset of the sampled publications, 

specifically all publications that had a DOI and/or a PMID (n = 5143). Of these, 795 

publications (15.5%) had technological impact, that is, 795 publications were cited 

at least once in a technological patent before 2021.  

 

Figure 6.2, below, depicts the number of scientific papers that had any technological 

impact five years after publication, the number of documents without technological 

impact five years after publication, and the proportion of documents with any 

technological impact.33 Although the absolute number of documents with any 

technological impact five years after being published is increasing over time, the 

prevalence of papers with technological impact is decreasing. Interestingly, this is in 

contrast to the proportion of papers resulting from academic engagement, which 

became more common in relative terms.  

 
33 It is more intuitive to present the descriptives with a rolling time window even though the 

regression is not based on rolling time windows. As will be shown later, the clear majority (87.9%) 

of all papers with any technological impact achieved that impact within the first five years of 

publication (see Figure 6.5). 
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Figure 6.2. The number of publications published each year, 2000–2015, with any technological impact or without 
technological impact five years after publication (panels a and b, respectively), and the proportion of scientific 
papers with any technological impact (panel c). 

 

Table 6.2, below, focuses solely on the subset of publications with technological 

impact (not limited to a five-year rolling time window). It depicts the minimum, 1st 

quartile, median, mean, 3rd quartile, and maximum number of citations these 

publications received. It furthermore depicts the same information for the different 

types of technological impact, namely, individual technological impact, 

organizational technological impact, and knowledge spillover. Interestingly, we note 

that knowledge spillover is by far the most common type of technological impact as 
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well as the type that contributes the most to higher technological impact, on average. 

This suggests that the publications published by the sampled professors result in a 

significant degree of tangible knowledge spillover. The descriptives moreover show 

that individual technological impact had a relatively much higher mean score than 

did organizational technological impact. This suggests that organizations are more 

likely to involve the same employees in the two activities—publishing scientific 

papers and patenting technological inventions building on that knowledge—rather 

than separating those activities between employees/individuals. This finding gives 

support for Hypothesis 6.2 (see also Table 6.5, below).  

 
Table 6.2. Descriptive statistics of technological impact. 

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Total technological impact 1 1 2 5.6 5 181 

Individual technological impact 0 0 0 0.4 0 13 

Organizational technological impact 0 0 0 0.1 0 8 

Knowledge spillover 0 1 2 5.0 4 172 

 

Now, the focus shifts to comparing and contrasting papers resulting from academic 

engagement versus those resulting from academic projects, with regard to 

technological impact. Of the 5143 publications analyzed in this chapter, 998 (19.4%) 

were defined as resulting from academic engagement. As stated above, of these 5143 

publications, 795 had technological impact. Of these 795 publications, 203 (25.5%) 

were defined as resulting from academic engagement. This simple comparison 

suggests that publications resulting from academic engagement are more likely to be 

cited in patents than are publications resulting from academic projects.  

 

Figure 6.3, below, depicts the proportions of papers resulting from academic 

engagement and academic projects. This too indicates that scientific papers resulting 

from academic engagement are more likely to influence future technological 

inventions than are their academic counterparts. This pattern holds true across all 
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sampled universities. It also reveals that both types of papers follow the same 

overarching trendline, i.e., a relative decrease in occurrence over time. 

 

 
Figure 6.3. The percentage of scientific papers with any technological impact five years after publication resulting 
from academic engagement (panel a) and academic projects (panel b). 

 

Tables 6.3 and 6.4, below, offer finer-grained insights. These tables depict the same 

type of information as does Table 6.2, above, but distinguish those papers resulting 

from academic engagement from those resulting from academic projects. The data 

presented in these tables suggest that publications resulting from academic 

engagement are, on average, more likely to have higher technological impact. This 

is at least partially driven by a few publications with very high impacts, as seen by 
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207 

 

sampled universities. It also reveals that both types of papers follow the same 

overarching trendline, i.e., a relative decrease in occurrence over time. 

 

 
Figure 6.3. The percentage of scientific papers with any technological impact five years after publication resulting 
from academic engagement (panel a) and academic projects (panel b). 

 

Tables 6.3 and 6.4, below, offer finer-grained insights. These tables depict the same 

type of information as does Table 6.2, above, but distinguish those papers resulting 

from academic engagement from those resulting from academic projects. The data 

presented in these tables suggest that publications resulting from academic 

engagement are, on average, more likely to have higher technological impact. This 

is at least partially driven by a few publications with very high impacts, as seen by 
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their higher maximum technological impacts. Excluding the mean and maximum 

values, the only difference between the two tables is found in relation to individual 

technological impact and the third quartile, showing that relatively more publications 

resulting from academic engagement have individual technological impact.   

 
Table 6.3. Descriptive statistics of technological impact: papers resulting from academic engagement. 

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Total technological impact 1 1 2 6.3 5 181 

Individual technological impact 0 0 0 0.7 1 13 

Organizational technological impact 0 0 0 0.2 0 8 

Knowledge spillover 0 1 2 5.4 4 172 

 
Table 6.4. Descriptive statistics of technological impact: papers resulting from academic collaboration. 

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Total technological impact 1 1 2 5.3 5 89 

Individual technological impact 0 0 0 0.3 0 8 

Organizational technological impact 0 0 0 0.05 0 7 

Knowledge spillover 0 1 2 4.9 4 89 

 

Table 6.5, below, provides more interpretable results regarding the prevalence of 

different pathways of technological impact. As previously demonstrated, the 

individual pathway surpasses the organizational pathway in terms of prevalence. 

Specifically, in the context of academic engagement projects, 28.6% of technological 

impact can be ascribed to the individual pathway, while only 10.8% can be attributed 

to the organizational pathway. The distinctions become more apparent in the context 

of academic projects, in which only 2.0% of all technological impact is linked to the 

organizational pathway, whereas 16.6% is associated with the individual pathway. 

This also suggests that, while academic engagement projects exhibit higher overall 

technological impact, with elevated relative levels of individual and organizational 

technological impact, academic projects have a greater prevalence of knowledge 

spillover. As stated before, this supports Hypothesis 6.2. 
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Table 6.5. Descriptive statistics of the different types of technological impact: academic engagement projects versus 
academic projects. 

Variable Academic engagement project Academic project 

Total technological impact 203 592 

Individual technological impact 58 (28.6%) 98 (16.6%) 

Organizational technological impact 22 (10.8%) 12 (2.0%) 

Knowledge spillover 123 (60.6%) 506 (85.5%) 

 

Concerning the time lag of technological impact (see Figure 6.4, below), note the 

following insights. According to the Reliance on Science in Patenting database, some 

citation linkages (3.6%) have a negative time lag difference. This implies that some 

patents that cite scientific papers were filed before the associated papers were 

published. This confusion is simply explained by the fact that there was a lag between 

the time when the assignees filed for the patent and the actual grant date, implying 

that the assignees or the examiner added the citation after the first filing.34 It could 

also be that publications were available as forthcoming and later were assigned final 

publication dates when they were included in issues. The two histograms in the figure 

also indicate that the vast majority of a scientific paper’s earliest technological 

impact occurs almost immediately (i.e., within one year of publication), whereas 

most citations appear one to three years after publication, on average.  

 

 
34 For example, the shortest time lag is negative five years (to be exact, 60 months). The focal 

publication entitled “Hybrid Digital–Analog Source–Channel Coding for Bandwidth 

Compression/Expansion” (DOI: 10.1109/TIT.2006.878212) was published in The Institute of 

Electrical and Electronics Engineers in September 2006. The citing publication entitled “Fixed, 

variable and adaptive bit rate data source encoding (compression) method” (patent number: 

US7236640) thus has its earliest priority date in September 2000 (i.e., exactly five years before 

the paper was published); however, the patent was first granted in June 2007 (that is, nine months 

after the paper was published). In this case, it was the applicant who added the citation, and the 

citation is only found on the front page of the patent. 
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Figure 6.4. Histogram of the time lag for all publications’ first technological impact (TI) (panel a) and all their TI 
(panel b). 

 

Table 6.6, below, gives the specifics regarding time lag, showing that the median lag 

for the first technological impact is one year after publication, whereas the same 

number when taking into account all technological impacts is five years. 

Additionally, the table reveals more insights, for example, that the longest period 

between a publication and its first technological impact is approximately 14 years.  

 
Table 6.6. Descriptive statistics of time lag (years). 

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Time lag, first technological impact 0 0 1 2.0 3 14 

Time lag, all technological impact 0 2 5 5.3 8 18 
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As above, let us now compare academic engagement and academic projects with 

regard to the time lag of their technological impact. Consequently, Figures 6.5 and 

6.6, below, depict the same information as does Figure 6.3, above, with the caveat 

that they concentrate on academic engagement and academic projects, respectively. 

Clearly, we can see that the curves are similar overall, suggesting that papers 

resulting from academic engagement projects and academic projects affect 

technology in a similar way.  

 

 
Figure 6.5. Histogram of the time lag for all publications resulting from academic engagement: first technological 
impact (panel a) and all their technological impact (panel b). 
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Figure 6.6. Histogram of the time lag for all publications resulting from academic collaboration: first technological 
impact (panel a) and all their technological impact (panel b). 

 

However, as Tables 6.7 and 6.8 show, there are some minor differences. Most notable 

is that the time lag for the first and for all technological impact for papers resulting 

from academic engagement is slightly lower for several statistics, including the 

median, mean, and third quartile. If anything, this implies two things: first, academic 

engagement has a negative effect on the time lag; second, academic engagement has 

a negative effect on the longevity of their usefulness. Regressions are needed to 

disentangle this, bearing in mind that the key focus in this study is on the time lag in 

relation to the papers’ first technological impact. 
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Table 6.7. Descriptive statistics of time lag (years): academic engagement. 

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Time lag, first technological impact 0 0 0 1.7 2 12 

Time lag, all technological impact 0 2 4 4.6 7 18 

 
Table 6.8. Descriptive statistics of time lag (years): academic collaboration. 

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Time lag, first technological impact 0 0 1 2.1 3 14 

Time lag, all technological impact 0 2 5 5.5 8 18 

 

This analysis will now briefly examine the most common firms that cite my sample 

of publications (Table 6.9, below), and consider whether these are the same as the 

most common co-publishing firms (Table 6.10, below). Quite interestingly, several 

of the top citing firms are not the same as the top co-authoring firms, with only 

Ericsson and Huawei being found on both lists. This comparison also reveals that 

five of the ten most common co-authoring firms (i.e., AstraZeneca, SAAB, ABB, 

Scania, and Volvo Group) only cite my sample of publications a handful of times. 

To be clear, this does not automatically establish that these firms are any worse at 

capitalizing on the co-developed knowledge; rather, it informs us that there is a large 

discrepancy between which firms co-publish with the sampled professors and which 

firms cite their findings.  

 

Although the most common industry for the co-authoring and citing firms is the 

same, i.e., telecommunications, that field is more overrepresented among the citing 

firms. There are also some other differences; for example, the professors publish to 

a relatively larger degree with several motor vehicle manufacturing firms (i.e., Volvo 

Cars, Scania Group, and Volvo Group), but only one is found on the citing side (i.e., 

Ford Global Technologies, which is the R&D subsidiary of Ford Motor Company).  
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Table 6.9. The ten most common citing firms. 

Firm Industry/description No. of citations 

Rearden Telecommunications 201 

Ericsson Telecommunications 156 

Life Technologies Biotechnology research 117 

FloDesign Sonics Biotechnology research 111 

Gapwaves Telecommunications 96 

Qualcomm Telecommunications 92 

Huawei Technologies Telecommunications 83 

Prognosys Medical Systems Medical equipment Manufacturing 80 

Ford Global Technologies* Motor vehicle manufacturing 72 

Sony Corporation Electronics 64 

Cohere Technologies Telecommunications 61 

* R&D subsidiary of Ford Motor Company 

 
Table 6.10. The ten most common co-authoring firms. 

Firm Industry/description No. of citations 

Ericsson Telecommunications 201 

Oticon Medical equipment manufacturing 14 

Volvo Cars Motor vehicle manufacturing 13 

AstraZeneca Pharmaceutical manufacturing 2 

Huawei Technologies Telecommunications 83 

SAAB Defense and space manufacturing 1 

ABB Electrical equipment manufacturing 5 

Scania Group Motor vehicle manufacturing 4 

Nokia Telecommunications 34 

Volvo Group Motor vehicle manufacturing 0 

Mitsubishi Electric Corporation Electrical equipment manufacturing 36 

 

With regard to citation-specific statistics, there are two elements worth investigating. 

The first element concerns who added the citation, distinguishing applicant-added 

citations from examiner-added citations. The second element has to do with where 

the citation was located in the technological patent, distinguishing whether the 

citation was found only on the front page, only in the body of the patent, or in both 

places.  
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According to Bryan et al. (2020), in-text citations should “better measure the real 

knowledge inventors use to motivate and construct their inventions” (p. 1), because 

that part of the patent is frequently written in large part by the inventors themselves, 

as opposed to by patent attorneys who concentrate on the more legally significant 

claims and prior art disclosure. Marx and Fuegi (2022) also found that in-text 

scientific citations are less likely to cite articles authored by the inventors. Table 6.11, 

below, presents these results.  

 

As we can see in Table 6.11 below, the applicant added 75.8% and the examiner 

added 24.2% of all citations. For publications defined as resulting from academic 

engagement, the proportions are 79.9% for the applicant and 20.1% for the examiner; 

for academic projects, the proportions are slightly lower, i.e., 73.9% for the applicant 

and 26.1% for the examiner. The clear majority of the citations, 86.1%, were found 

on the front page only, whereas 6.9% were found in the body only and 7.0% both on 

the front page and in the body. For academic engagement (academic projects), 84.0% 

(86.8%) of all citations were found on the front page only, 6.5% (7.1%) in the body 

only, and 9.5% (6.1%) both on the front page and in the body.  

 
Table 6.11. Patent citation characteristics. 

Variable 
All publications with 

technological impact 

Academic 

engagement 

publications with 

technological impact 

Academic 

publications with 

technological impact 

Who added the citation? 

     Applicant 2382 (75.8%) 817 (79.9%) 1565 (73.9%) 

     Examiner 759 (24.2%) 205 (20.1%) 554 (26.1%) 

Where was the citation located? 

     Front page only 2703 (86.1%,) 864 (84.0%) 1839 (86.8%) 

     Body only 217 (6.9%) 67 (6.5%) 150 (7.1%) 

     Both front page and body 221 (7.0%) 91 (9.5%) 130 (6.1%) 
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Additional descriptive statistics located in Appendix A illustrate the similarities and 

differences among the sampled universities and prevalent subfields concerning 

technological impact. Two interesting findings are that the publications of the 

sampled professors from LTH exhibit the highest probability of affecting 

technological inventions as well as the highest mean technological impact, as 

compared with the publications of professors from the other sampled universities. 

These statistics, although noteworthy, were put in Appendix A as they do not 

constitute the primary focus of this study. 

 

6.4.2 Regression analyses 

Table 6.12, below, depicts descriptive statistics for all variables included in the 

models, including variable name, number of valid cases, mean, standard deviation, 

minimum, maximum, range, skewness, and kurtosis. A correlation table of the 

variables included in the analysis can be found in Appendix B. Consistent with 

Chapter 5, variables exhibiting high skewness and kurtosis have been addressed in 

accordance with econometric theory. Although correlations exist between certain 

variables (as in Chapter 5), these do not exceed acceptable thresholds. Consequently, 

the analysis will proceed directly to the subsequent part of this section (for further 

details, see Section 5.4.2). 

 
Table 6.12. Descriptive variable statistics, Chapter 6. 

Variable No. mean SD median min max range skew kurtosis 

Total_tech_impact 5143 0.86 5.08 0 0 181 181 15.9 393.8 

Individual_tech_impact 5143 0.07 0.51 0 0 13 13 12.3 199.3 

Organizational_tech_ 

impact 
5143 0.01 0.23 0 0 8 8 22.3 586.0 

Academic_engagement 5143 0.19 0.40 0 0 1 1 1.5 0.4 

Number_authors 5143 5.62 15.31 2 1 479 478 25.0 729.0 

Dual_affiliated_professor 5143 0.07 0.25 0 0 1 1 3.5 10.3 

Journal_reputation 5143 0.11 0.31 0 0 1 1 2.5 4.2 

Prior_article_impact 5143 267.1 452.71 106 0 3925 3925 4.1 21.9 

Prior_patenting 5143 4.64 21.76 0 0 391 391 11.2 152.5 
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Prior_coauthors 5143 71.91 127.24 45 0 1516 1516 7.6 70.0 

Number_universities 5143 2.09 4.75 1 1 184 183 26.5 868.7 

Top_university 5143 0.09 0.29 0 0 1 1 2.8 5.9 

Number_fields 5143 1.80 0.83 2 1 7 6 1.3 3.3 

Number_nations 5143 1.55 1.30 1 1 36 35 9.8 173.6 

Female 5143 0.05 0.21 0 0 1 1 4.3 16.5 

Computer_Science 5143 0.18 0.38 0 0 1 1 1.7 0.8 

Automation_and_Control_

Systems 
5143 0.19 0.39 0 0 1 1 1.6 0.5 

Telecommunications 5143 0.19 0.39 0 0 1 1 1.6 0.5 

CTH 5143 0.18 0.39 0 0 1 1 1.6 0.7 

KTH 5143 0.22 0.41 0 0 1 1 1.4 -0.1 

LiU 5143 0.26 0.44 0 0 1 1 1.1 -0.8 

LTH 5143 0.24 0.43 0 0 1 1 1.2 -0.5 

UU 5143 0.13 0.33 0 0 1 1 2.3 3.1 

Year_dummies 5143 2012 4.77 2013 2000 2018 18 -0.6 -0.5 

 

The outcomes of the econometric regression analyses are outlined in Table 6.13, 

below. The regression models adhere to the following logic: uneven numbered 

models include the control variables, while even numbered models include the 

control variables plus the independent variable. For example, Models 1 and 2 focus 

on the total technological impact of the publications (DV = Total_tech_impact), with 

Model 1 including only the control variables and Model 2 adding the independent 

variable (Academic_engagement).  
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on the total technological impact of the publications (DV = Total_tech_impact), with 

Model 1 including only the control variables and Model 2 adding the independent 

variable (Academic_engagement).  
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Table 6.13. Regression results with total technological impact, individual technological impact, and organizational 
technological impact as the dependent variables. 

Results   
   

 Dependent variable: 
Models 1 and 2: Total_tech_impact 

Models 3 and 4: Individual_tech_impact 
Models 5 and 6: Organizational_tech_impact 

 

 (1) (2) (3) (4) (5) (6) 
Academic_engagement  0.529***  0.976***  2.784*** 
  (0.150)  (0.230)  (0.686) 
       
Number_authors 0.362** 0.271* 0.501*** 0.384* 0.143 –0.235 
 (0.150) (0.142) (0.173) (0.197) (0.406) (0.629) 
       
Dual_affiliated_professor –0.665** –0.820*** –0.405 –0.917*** 2.128*** 0.881 
 (0.271) (0.302) (0.308) (0.299) (0.527) (0.676) 
       
Prior_article_impact 0.0005*** 0.001*** –0.00001 0.0001 –0.00003 0.0005 
 (0.0001) (0.0001) (0.0002) (0.0001) (0.001) (0.0003) 
       
Prior_patenting 0.007*** 0.006*** –0.004 –0.004 0.002 0.001 
 (0.002) (0.002) (0.002) (0.003) (0.004) (0.005) 
       
Prior_coauthors –0.0001 –0.0001 0.002*** 0.002*** 0.001 0.002*** 
 (0.0004) (0.0004) (0.001) (0.001) (0.001) (0.001) 
       
Journal reputation 0.865*** 0.865*** 0.985*** 1.000*** 1.344 1.641 
 (0.228) (0.227) (0.302) (0.285) (1.208) (1.065) 
       
Top_university 0.180 0.182 0.518* 0.490 1.261** 2.492*** 
 (0.203) (0.202) (0.297) (0.308) (0.628) (0.638) 
       
log(Number_universities) –0.067 –0.040 –0.026 –0.016 –0.313 –0.359 
 (0.131) (0.133) (0.201) (0.197) (0.570) (0.762) 
       
log(Number_nations) –0.139 –0.208 –0.217 –0.246 0.205 –0.432 
 (0.176) (0.182) (0.275) (0.276) (0.628) (0.613) 
       
Number_fields –0.013 –0.002 –0.010 –0.048 –0.222 –0.216 
 (0.073) (0.074) (0.113) (0.119) (0.344) (0.503) 
       
Female –0.279 –0.168 –1.060** –0.980* 0.417 –0.558 
 (0.335) (0.340) (0.536) (0.521) (1.527) (2.230) 
       
University_dummies Yes Yes Yes Yes Yes Yes 
Field_dummies Yes Yes Yes Yes Yes Yes 
Year_dummies Yes Yes Yes Yes Yes Yes 
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Constant 

   
409.551*** 

   
420.425*** 

   
164.356*** 

   
178.203*** 

   
312.946*** 

   
383.522*** 

 (22.206) (23.088) (34.259) (34.625) (86.429) (81.034) 
       
Observations 5143 5143 5143 5143 5143 5143 
Akaike inf. crit. 7800.7 7788.3 1788.8 1776.6 515.01 494.79 

Robust standard errors in parentheses. 

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01. 

 

First, we note that the overarching dependent variable, which is the sum of the three 

pathways of technological impact, is significant in Model 2. This suggests that there 

is a difference between scientific papers resulting from academic engagement and 

those resulting from academic projects when it comes to the intensity of their 

technological impact. Consequently, this finding lends support to Hypothesis 6.1. 

 

Delving deeper into the analysis, the data reveal that those papers resulting from 

academic engagement exhibit both greater individual technological impact (Model 

4) and greater organizational technological impact (Model 6). This suggests that the 

authors of publications stemming from academic engagement, along with the 

organizations they list as their affiliations, cite these papers more frequently than 

comparable research originating from academic projects.  

 

In this series of regression models, several control variables exhibit significant 

effects. The variables associated with the professors’ prior accomplishments and 

activities all demonstrate noteworthy positive impacts. This implies that publications 

stemming from the sampled professors with a high prior article impact, a substantial 

number of prior patent applications, and a significant number of prior co-authors all 

contribute to an increase in at least one form of technological impact. Furthermore, 

publications characterized by numerous co-authors, published in top-tier journals, 

and involving a researcher from any of the world’s top 50 global universities are also 

correlated with heightened technological impact. 
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In contrast, dual-affiliated professors appear to exert a somewhat negative influence 

on technological impact. However, this effect lacks clarity and significance when the 

variable representing academic engagement is taken into account. It is notable, 

though, that the presence of dual-affiliated professors demonstrates a significant 

positive impact on organizational technological impact when the independent 

variable is excluded (Model 5), suggesting that these authors serve as knowledge 

translators within the firm. 

 

6.4.3 Robustness tests 

In summary, several robustness tests have been conducted, and their overall 

outcomes support the findings presented in the main regression analysis. Further 

elaboration on these tests is provided below, while all referenced regression analyses 

can be found in Appendix C. 

 

As a first robustness test, all dependent variables were modified from count variables 

to binary variables. These new dependent variables represent whether or not the 

publications have been cited by at least one patent. This operationalization is in line 

with earlier research, such as that of Veugelers and Wang (2019) and Ke (2020). 

These regressions supported the main specifications. They also gave evidence that 

not only do the papers resulting from academic engagement have greater 

technological impact, but they are also more likely to be meaningfully useful for at 

least one future patented technology, as compared with similar publications written 

solely by academics.  

 

As a second test, the dependent variable was modified to measure knowledge 

spillover. These regressions indicated that the academic engagement variable 

coefficient is also statistically significant in a positive direction. This signifies that 

external organizations, particularly firms, cite papers resulting from academic 

engagement more frequently than they cite research stemming from academics.  
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As a third robustness check, the dependent variables were altered to count only the 

citations originating from the applicant(s), rather than all citations. Unlike scientific 

publications that only have references inserted by the co-authors, technological 

patents can have citations added by both the inventors (including patent attorneys) 

and the patent examiners. Research suggests that examiners add a relatively large 

share of the citations in technological patents (e.g., Alcácer et al., 2009); however, 

Lemley and Sampat (2012) also suggested that those references are predominantly 

to prior patents rather than the non-patent literature. Although this suggests that the 

examiners’ impact on which scientific publications are cited is low to negligible, it 

is worthwhile investigating whether the aforementioned findings are biased due to 

the examiners. This is the third robustness test. Specifically, this test modified the 

dependent variables so that they count only the applicant citations rather than all 

citations (i.e., applicant + examiner citations). This did not meaningfully change any 

of the interpretations made in the prior section. 

 

As a final test, all main regressions were executed with author-clustered standard 

errors (as in Chapter 5), which account for intragroup correlations, instead of relying 

on robust standard errors. This robustness test did not change the interpretation of 

the aforementioned findings in any noteworthy way. 

 

6.5 Discussion 
In the previous section, several noteworthy discoveries emerged. The aim of this 

section is to examine these findings in relation to the relevant literature. This 

discussion will also encompass an exploration of the study’s limitations and, in 

connection with this, propose avenues for future research projects. 

 
According to the data, 20.3% of all papers resulting from academic engagement had 

some technological impact, whereas only 14.3% of all papers resulting from 

academic projects had any technological impact. This relationship, that is, that 
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publications resulting from academic engagement are more likely than those 

resulting from academic collaboration to have any technological impact, is true for 

all sampled universities and for the most common subfields when analyzing them 

separately. 

  

The share of publications valuable for technological inventions seems rather high, 

although it is important not to confuse these percentages with the percentages of 

patents that cite science (e.g., as done by Magerman et al., 2015; Marx & Fuegi, 

2022; Tijssen, 2002), as they do not reflect the same phenomenon. To clarify, this 

study investigates to what extent publications made by the sampled professors are 

cited by patents, while the other stream focuses on to what extent patents cite 

scientific publications. Therefore, what can be stated regarding these findings is that 

they indicate that Swedish-employed electrical engineering professors conduct 

research that is highly valuable for firms, adding more empirical evidence for the 

notion that “sciences of action,” such as electrical engineering, truly influence 

technology (see, e.g., Ahmadpoor & Jones, 2017; Jaffe et al., 1993; Narin et al., 

1997).  

 

The descriptives show some evidence that those scientific papers resulting from 

academic engagement had higher individual technological impact and organizational 

technological impact than did those papers resulting from academic projects. The 

regression analyses supported this finding, giving support to Hypothesis 6.1, as stated 

in the preceding section. These findings corroborate prior findings stating that 

academic engagement can indirectly lead to firm inventions/innovations as firms are 

the type of organization that most often applies for patents (McKelvey & Ljungberg, 

2017; Walsh et al., 2016).  

 

Descriptive statistics clearly indicate that organizations (i.e., firms) exhibit a greater 

propensity to employ the individual technological impact pathway over the 
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organizational technological impact pathway (supporting Hypothesis 6.2). From a 

broader perspective, these findings suggest that the focal employee involved in the 

research has acquired the requisite knowledge to apply these insights in alternative 

settings (i.e., technological development), aligning closely with the personal 

dimension of knowledge (Dretske, 1981; Nonaka, 1994; Polanyi, 1958). This 

discovery lends support to the idea that the specific context under investigation can 

be accurately characterized as a science of action, serving the dual purpose of 

advancing both science and technology (Banse & Grunvald, 2009). This dual 

purpose may account for the ability of universities and firms to resolve their 

conflicting logics, allowing predominantly universities to disseminate the findings 

through publications and firms to leverage that knowledge via patents, most likely 

via hybrid spaces (Perkmann et al., 2018).  

 

Robustness tests further suggest that publications arising from academic engagement 

are more likely to yield tangible knowledge spillovers. This not only implies 

recognition of the research’s value by the parties involved but also underscores the 

appreciation of its significance by external actors, predominantly firms. This 

supports the proposition that these papers have great technological value and are not 

merely the byproducts of prior activities but are actively utilized for their intrinsic 

technological merit. This is likely the result of a greater combination of knowledge 

bases (Schilling & Green, 2011), including a combination of deep application 

knowledge essential for practical problem-solving and a more abstract and distant 

search in the realm of engineering science (see Chapter 5). 

 

Concerning the time lag of the technological impact, the descriptives suggest that 

there is little to no difference between the papers resulting from academic 

engagement and those resulting from academic projects. Regression analyses (not 

shown) also support this claim. However, in relation to time lag, we may have only 

half the picture. For example, it is conceivable that the collaborators have 
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prearranged agreements allowing researchers employed by the firm (or their 

colleagues) to pursue a patent prior to the public disclosure of the research—a 

proposition substantiated by empirical investigations (Chang et al., 2017; see also 

Hemberg, 2023; McKeveley et al., 2015). This type of patent is not accounted for in 

this analysis, nor is it included in the other regressions, as already mentioned.  

 

Even though those patents applied for before the research is made public are not 

included in the analysis, the lead time from science to technology in was found to be 

lower than reported in other papers (median one year, mean two years). For example, 

some research into biotechnology (Finardi, 2011), nanoscience, and nanotechnology 

(Murray & Stern, 2007) informs us that the most common lead time from scientific 

research to technological invention is around three to four years. In the large-scale 

analysis of 32 million research papers and 4.8 million patents brought up earlier, 

Ahmadpoor and Jones (2017) found the average time lag to be around six to seven 

years. This is viewed as further evidence of the closeness of foci between science 

and technology within the electrical engineering field in Sweden. 

 

Focusing on which firms actually use these publications most in patented technology, 

we first note that they are not the same as the firms that these professors collaborate 

with the most (cf. Tables 6.9 and 6.10). Specifically, only two of the ten most 

common co-authoring firms are also found among the ten most common citing firms 

(i.e., Ericsson and Huawei Technologies). Although this could be deduced from the 

fact that knowledge spillover was much more prevalent than individual technological 

impact and organizational technological impact combined, this is an interesting 

observation.  

 
Moreover, when focusing on the firms that co-publish the most with my sample of 

professors, they vary greatly in the extent to which they use that knowledge for 

technological inventions. There are several possible explanations for the latter 
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remark. One explanation is simply that they simply do not utilize this knowledge in 

the best way possible. The contradictory explanation is that they do utilize the 

insights from the research in a (near-)optimal way but not via technological patents. 

For example, research suggests that firms have divergent strategies when it comes to 

patenting and that different types of inventions are differently appropriate to patent 

(Griliches, 1990). A third explanation is that the firms allow their scientifically 

interested employees to publish, but that falls outside the scope of their other work-

related tasks, in line with the belief that some employees are driven by a “taste for 

science” (Roach & Sauermann, 2010, p. 422). 

 
Naturally, this undertaking is not without limitations. Some limitations were brought 

up in Chapter 5 (see Section 5.5), including concerns about treating co-authors as 

black boxes, the small number of articles resulting from academic engagement 

projects, limited generalizability due to focusing on one field and one nation, 

analyzing outcomes rather than collaborations, and the reliance on bibliometric data.  

 

In addition to these, there are at least two other notable limitations. First, the chosen 

methodological approach does not account for patents that were applied for before 

the research was submitted to a journal, but that originated from the collaboration. 

By definition, these patents cannot be included in the analysis due to the novelty 

criterion for patentability. Although existing research suggests that such cases are 

rare and constitute a very small percentage of the total (Magerman et al., 2015), it is 

important to better understand their significance for our overall understanding of the 

technological impact of collaborative research.  

 

Second, the regression models do not consider the researchers’ prior employment, 

which likely has an effect (Ljungberg et al., manuscript to be submitted for 

publication). For example, if a close R&D colleague of a firm employee involved in 

collaborative research leaves the firm shortly after a publication and subsequently 
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criterion for patentability. Although existing research suggests that such cases are 

rare and constitute a very small percentage of the total (Magerman et al., 2015), it is 

important to better understand their significance for our overall understanding of the 

technological impact of collaborative research.  

 

Second, the regression models do not consider the researchers’ prior employment, 

which likely has an effect (Ljungberg et al., manuscript to be submitted for 

publication). For example, if a close R&D colleague of a firm employee involved in 

collaborative research leaves the firm shortly after a publication and subsequently 
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incorporates the insights of that research into their new invention, which is 

referenced in a patent application, these instances are defined as external knowledge 

spillover, despite the obvious link between the research and the patent. 

 
Further research is warranted to explore these aspects in greater depth. It is 

particularly recommended to begin with qualitative studies that investigate the 

underlying characteristics of these findings, adopting a dyadic approach that equally 

emphasizes the perspectives of both academic and industrial researchers. 

Additionally, there are great possibilities to build on this work through quantitative 

investigations. At the individual level, further quantitative work should pay more 

attention to all authors, while at the paper level, proxies for other aspects of the 

publications should be taken into account, proxies such as the level of appliedness 

and novelty. For researchers interested in classifying publications based on their 

applied or basic nature, the paper by Boyack et al. (2014) is highly recommended. 

For those focusing on novelty, the paper by Wang et al. (2017) offers valuable 

insights.  

 

6.6 Conclusion 
This chapter builds on the previous investigation into the scientific impact of 

academic engagement by shifting the focus to examining technological impact 

stemming from collaborative research between universities and firms. Although the 

academic engagement field is relatively new, it is a fast-growing research field 

covering several different focus areas (Perkmann et al., 2013, 2021). As of today, 

little research exists investigating the (technological) impact of publications resulting 

from academic engagement, as argued by Messeni Petruzzelli and Murgia (2020) 

and also highlighted in the review by Perkmann et al. (2021).  

 

Consequently, this study set out to remedy this gap in the literature. That is, the 

overall purpose of this empirical undertaking has been to better understand the 
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technological value of academic engagement projects, distinguishing three pathways 

of impact—individual technological impact, organizational technological impact, 

and knowledge spillover. The exact research question—which is also RQ2 of this 

Ph.D. dissertation—that has guided this undertaking is stated below, as well as the 

hypotheses and whether the findings have supported or rejected them (Table 6.14). 

That is followed by a few more expanded concluding remarks. 

 

How does the technological impact of publications resulting from academic 

engagement projects differ from the impact of those resulting from academic 

projects? 

 
Table 6.14. Hypotheses: empirical evidence for confirmation or refutation – Chapter 6. 

Hypothesis Empirical findings 

6.1. Publications originating from academic engagement collaborations are associated 

with higher technological impact. 
Supported 

6.2. Individual technological impact is more prevalent than organizational technological 

impact.  
Supported 

 

To the best of my knowledge, no similar research exists that analyzes this 

phenomenon in equal detail; hence, this study makes a number of contributions to 

the relevant literature streams. The two most significant are mentioned below.  

 

First, the findings, as demonstrated above, support the hypothesis that collaborative 

research, as a form of academic engagement, positively influences the intensity of 

technological impact. This implies that publishing with firms is not only 

advantageous from a scientific impact standpoint (Chapter 5), but also offers benefits 

from a technological impact perspective. The juxtaposition of these findings is 

intriguing, indicating that collaborative research, as one form of academic 

engagement, generates outcomes valued by both the scientific and technological 

communities. The underlying explanation for this outcome is argued to mainly be a 
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result of the integration of diverse knowledge bases and practices. 

 

Second, the results further support the hypothesis, indicating more utilization of the 

first pathway (i.e., the individual technological pathway) than the second pathway 

(i.e., the organizational technological impact). This discovery has significance as it 

provides insights into the empirical context, supporting the inherent proximity of 

science and technology—an integral conjecture derived from the literature at the 

initiation of this Ph.D. undertaking. 
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7 THE IMPACT OF THE LEAD AUTHOR IN 

COLLABORATIVE RESEARCH AS ONE 

FORM OF ACADEMIC ENGAGEMENT 

7.1 Introduction 
As shown in previous chapters, collaboration among researchers is widely 

acknowledged as a fundamental element of the modern scientific enterprise (Shen & 

Barabási, 2014; see also Wuchty et al., 2007a). The increasing significance of 

research collaboration can be attributed to the continuous expansion of the global 

knowledge base, which far exceeds any individual’s capacity for comprehension. 

Consequently, the process of generating new knowledge has become increasingly 

challenging, as individuals must acquire a substantial amount of knowledge before 

they can effectively contribute to it. This underscores the essentiality of collaborative 

efforts, in which team members combine their knowledge and expertise to 

collectively advance the frontiers of knowledge.  

 

There is further empirical evidence suggesting that researchers have employed a 

division of labor to manage the “burden of knowledge” (Brendel & Schweitzer, 

2019; McDowell & Melvin, 1983), and there is a trend toward larger research teams 

(Kuld & O’Hagan, 2018; Wuchty et al., 2007a). This implies, supported by empirical 

research, that researchers take on distinct roles in collaborations, with all researchers 

in a collaboration having different responsibilities (Corrêa Jr. et al., 2017; Wren et 

al., 2007). Studies indicate that the perception of the authors’ contributions is 

significantly influenced by the order of the authors listed on a paper, known as the 

byline order (Bhandari et al., 2014; Nylenna et al., 2014). For instance, while the 

sequencing of authors on a byline in multi-authored research papers may vary across 

fields, countries, and years (Yu & Yin, 2021), the first author is generally considered 

the lead author, having made the most significant contribution (Bhandari et al., 2014; 
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Corrêa Jr. et al., 2017; Nylenna et al., 2014; Wren et al., 2007), and is often the 

corresponding author, especially in the engineering sciences (Yu & Yin, 2021).  

 

Despite the perceived importance of the lead author, particularly in the engineering 

sciences, there is a notable lack of research studying differences in authorship roles 

and the associated contributions. Notable exceptions addressing this research gap 

include a recent publication by Thelwall et al. (2023) suggesting that highly cited 

first authors are regarded as more important than highly cited teams when it comes 

to publishing in journals with higher journal reputations, that is, journals with higher 

impact factor ratings. This has resulted in a limited understanding of how authorship 

order can affect the impact of research papers, as argued by Kohus et al. (2022a).  

 

The key objective of this research is to address one aspect of this knowledge gap by 

quantitatively analyzing the influence exerted by the lead author on both the 

scientific and technological impacts of the publications resulting from academic 

engagement, specifically examining how their type of affiliation shapes the overall 

outcomes. In line with the rest of this dissertation, I distinguish among three types of 

affiliations: academic, industrial, and dual-affiliated (i.e., first authors affiliated with 

both university and industry simultaneously). The question guiding this endeavor is 

the third research question of this dissertation, formulated as follows:  

 

How does the scientific and technological impact of the papers resulting from 

academic engagement depend on the affiliation of the lead author? 

 

The lead author’s affiliation(s) are emphasized because universities and firms follow 

competing institutional logics when developing science and technology, with firms 

prioritizing capitalizing on the developed knowledge and universities prioritizing 

disseminating that knowledge (Dasgupta & David, 1994; Sauermann & Stephan, 

2013). This influential role is likely to exert a significant influence on the 
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collaboration’s outcomes, particularly in terms of its scientific and technological 

impact. In line with the competing institutional logic argument, the most 

straightforward ex ante surmise is that publications resulting from academic 

engagement having lead authors affiliated with industry would have a higher 

technological impact but a lower scientific impact, although there are several 

conflicting arguments regarding the manifestation of this effect. 

 

In essence, understanding how the affiliation of the lead author influences research 

outcomes provides valuable insights for various stakeholders, including 

practitioners, researchers, funding agencies, universities, and firms. These insights 

can inform decision-making processes regarding collaboration structures and 

support. In other words, by shedding light on the influence of authorship order and 

affiliation on collaboration outcomes, this research has the potential to contribute to 

the development of effective approaches for promoting and facilitating successful 

academic engagement collaborations. Ultimately, the present findings may drive 

positive changes in the way collaborative research involving universities and firms 

is conducted, benefiting the scientific community and society as a whole. 

 

The remainder of this chapter is organized as follows: The subsequent section 

explores essential theories pertaining to the roles of authors in scientific and 

technological collaborations. This is followed by an outline of the research design 

and empirical strategy. The chapter concludes with a presentation of the findings, an 

in-depth analysis of these findings, and the formulation of relevant conclusions. 

 

7.2 Theory and hypotheses 
This section aims to analyze how authorship order may influence the scientific and 

technological impacts of publications. While research on this matter is scarce, there 

is a broad literature from various disciplines studying the order of authors in 

academic publications. Before delving into the specifics of how this influence may 
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manifest itself, a broader discussion of authorship is provided. 

 

7.2.1 Studies of authorship  

In the scientific enterprise, authorship provides a basis for peer recognition, allowing 

research scholars to be acknowledged for their work (Merton, 1973; Moed, 2005). 

Consequently, it is essential to accurately attribute symbolic credit where it is due, 

especially when it is considered the main currency in academic publishing (Bourdieu, 

1975; see also Desrochers et al., 2018). Accurately attributing credit to authors is not 

easy, however, as credit results from the premises that authors take on distinct roles 

when collaborating and that their contributions are not equally valued (e.g., Bhandari 

et al., 2014; Corrêa Jr. et al., 2017; Nylenna et al., 2014; Wren et al., 2007).  

 

To address this issue, academic journals have clarified the criteria for authorship, and 

research scholars have proposed various co-authorship credit allocation models. 

These models include the fractional counting model (Price, 1981), the proportional 

counting model (Van Hooydonk, 1997), and the harmonic counting model (Hagen, 

2008). The evolution of credit allocation models has transitioned from solely 

crediting the first author to giving equal credit to all authors and, more recently, to 

emphasizing the importance of the authors’ positions in the byline, with the first 

author generally receiving the largest credit allocation. It is important to note that the 

researchers themselves determine the order of authors on a paper. Hence, the purpose 

of credit allocation models is to retrospectively assign appropriate credit to all 

authors based on their contributions. Readers interested in a more detailed discussion 

of authorship and how seven prominent credit allocation models distribute credit to 

authors are referred to Appendix D. 

 

Furthermore, certain journals, notably those published by the Public Library of 

Science (known as PLOS journals), have implemented contributorship statements 

(Allen et al., 2014) to enhance the transparency of the scientific process. These 
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statements are intended to more precisely attribute credit to co-authors and ensure 

accountability among scholars for their work, especially in instances of scientific 

misconduct. Regrettably, scientific misconduct, such as ghost authorship (Wislar et 

al., 2011), remains a genuine concern (Nylenna et al., 2014). In light of these 

contributorship statements, and assuming that the contributions are fairly honestly 

listed, the potential for issues such as ghost authorship should be mitigated. There 

have also been calls to transition from co-authorship to contributorship (e.g., Smith, 

2012; Vasilevsky et al., 2021; Zauner et al., 2018), and scholars have recommended 

that journals adopt common and transparent standards of authorship, such as the 

Contributor Roles Taxonomy (known as CRediT) distinguishing 14 different 

contributor roles (Holcombe, 2019; McNutt et al., 2018).35 This addition to scientific 

papers has prompted empirical research, including studies examining patterns of 

contributorship in scientific manuscripts (Corrêa Jr. et al., 2017), contributorship and 

division of labor (Larivière et al., 2016), and contributorship-based credit allocation 

models (Ding et al., 2021; Yang et al., 2022). 

 

Although contributorship statements have the potential to enhance our understanding 

of how different collaboration processes influence outcomes, they have not yet 

become widely adopted. The alternative approach is to look at an individual author’s 

byline position in the paper as well as to examine who the corresponding author is. 

Apart from the aforementioned paper by Thelwall et al. (2023), this limited stream 

of research has mainly focused on the country of origin of the first and/or 

corresponding author (e.g., Grácio et al., 2020; Kohus et al., 2022a; de Moya-Anegón 

et al., 2018).  

 

 
35 The 14 contributor roles are: conceptualization, data curation, formal analysis, funding 

acquisition, investigation, methodology, project administration, resources, software, supervision, 

validation, visualization, writing (original draft), and writing (review & editing) (CRediT, 2023).  
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For example, Kohus et al. (2022a) analyzed the relationship between the byline 

positions of affiliated and non-affiliated authors and the normalized article impact of 

research articles published by European universities in the field of medical science. 

The affiliated group comprised all papers in which the first, last, and/or 

corresponding author was affiliated with the sampled/focal university, whereas the 

not-affiliated group comprised all other publications, that is, all research articles in 

which the first, last, and corresponding authors had no affiliation with the 

sampled/focal university. The study suggests that institutions generally benefit from 

the inclusion of non-affiliated authors in the first, last, and corresponding byline 

positions in terms of article impact.  

 

In a similar study, de Moya-Anegón et al. (2018) analyzed the relationships between 

the corresponding author, international publication, and normalized article impact. 

Among other things, they found that the article impact of a country’s papers in which 

the corresponding author was from that country was lower than that of the country’s 

papers in which the corresponding author was not for all 40 nations included in the 

analysis except for the USA. This finding has been corroborated by other papers, 

such as that by Chinchilla-Rodríguez et al. (2019).  

 

While these studies offer valuable insights, the understanding of the specific 

relationship with respect to the research question of this chapter remains limited. 

Instead, they inform us that the first/corresponding author can significantly influence 

the scientific impact of a collaboration. However, the precise mechanisms driving 

this influence remain largely unknown. Is this influence a consequence of authorship 

order, potentially resulting from increased visibility, or does it stem from the nature 

of the collaborative research, possibly influenced by the diversity of research 

questions addressed? 

  

237 

 

Given the scarcity of empirical evidence, the following section will leverage related 

theory-inspired and logic-based reasoning to deepen our comprehension of the 

phenomenon.  

 

7.2.2 Understanding how first authorship may influence the scientific and 

technological impacts of collaborative research  

When engaging in collaborative research between firms and universities, all parties 

typically have distinct objectives. When firms engage in collaborative research with 

universities, their primary objective is to enhance their innovation capacity, either 

directly or indirectly (e.g., McKelvey & Ljungberg, 2017). Consequently, if a firm 

representative assumes the role of the first author of a scientific paper, which entails 

making the most significant contribution to the research project and leading the team 

of co-authors toward achieving the desired end goal, it is reasonable to assume that 

they are steering the project in a manner that maximizes the firm’s chances of 

capitalizing on the work.  

 

In successful cases, these collaborations are likely to yield substantial individual 

and/or organizational technological impacts. Given their perceived value to the firms, 

it is plausible that they hold significance for other organizations as well. Supporting 

evidence for this is derived from the aforementioned study by Messeni Petruzzelli 

and Murgia (2020), who examined 772 joint patents involving universities and firms 

in the pharmaceutical, biotechnology, and medical technology sectors. Their findings 

indicated that local university–industry collaborations, which are common in my 

sample, had a positive and statistically significant impact on knowledge spillover. 

While this investigation focused on patents, a parallel mechanism likely operates in 

the context of collaborative research in the field of engineering, owing to the 

intertwined nature of science and technology in this discipline. 

  



236 

 

For example, Kohus et al. (2022a) analyzed the relationship between the byline 

positions of affiliated and non-affiliated authors and the normalized article impact of 

research articles published by European universities in the field of medical science. 

The affiliated group comprised all papers in which the first, last, and/or 

corresponding author was affiliated with the sampled/focal university, whereas the 

not-affiliated group comprised all other publications, that is, all research articles in 

which the first, last, and corresponding authors had no affiliation with the 

sampled/focal university. The study suggests that institutions generally benefit from 

the inclusion of non-affiliated authors in the first, last, and corresponding byline 

positions in terms of article impact.  

 

In a similar study, de Moya-Anegón et al. (2018) analyzed the relationships between 

the corresponding author, international publication, and normalized article impact. 

Among other things, they found that the article impact of a country’s papers in which 

the corresponding author was from that country was lower than that of the country’s 

papers in which the corresponding author was not for all 40 nations included in the 

analysis except for the USA. This finding has been corroborated by other papers, 

such as that by Chinchilla-Rodríguez et al. (2019).  
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of co-authors toward achieving the desired end goal, it is reasonable to assume that 

they are steering the project in a manner that maximizes the firm’s chances of 

capitalizing on the work.  

 

In successful cases, these collaborations are likely to yield substantial individual 

and/or organizational technological impacts. Given their perceived value to the firms, 

it is plausible that they hold significance for other organizations as well. Supporting 

evidence for this is derived from the aforementioned study by Messeni Petruzzelli 
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Similarly, one can argue that the firm may prefer to steer publications toward journals 

with smoother publication procedures. This preference is rooted in the desire to 

minimize the resources required for publication, consequently increasing the 

likelihood of having publications in journals of lower ranking but with more 

streamlined publication processes. 

 

However, it is crucial to acknowledge the limitations of this perspective, as certain 

companies may adopt a business strategy that also places a premium on conducting 

world-class research. In other words, their research endeavors are geared not only 

toward maximizing their technological impact but also toward maximizing their 

scientific impact, and they allocate the necessary resources accordingly. It is also 

conceivable that the publication process might be driven by the firm employees’ 

“taste for science” (Roach & Sauermann, 2010, p. 422), and some employers may 

grant their research employees complete autonomy over their research, allowing 

them to prioritize maximizing their academic achievements. 

 

From the perspective of academic researchers, similar arguments, but with 

contrasting viewpoints, can be formulated. As previously mentioned, it is primarily 

through forward citations that research scholars receive recognition for their work 

(Merton, 1973; Moed, 2005), implying that they generally strive to guide 

collaborative research endeavors in a manner that optimizes their scientific impact. 

This may entail focusing on topics or questions they believe are highly likely to 

generate substantial scientific interest and aiming to publish their work in top-reputed 

journals. Furthermore, it is plausible that some highly impactful papers may also 

exert a substantial influence on the technological domain, given that all technological 

innovations are, to some extent, grounded in research (Tijssen, 2002).  

 

Finally, from the perspective of dual-affiliated lead authors, the perceived influence 

they exert on a collaboration is that they have the ability to conceptualize papers that 
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have a high probability of attracting significant interest from both the scientific and 

technological communities.  

 

This ability is attributable to their profound understanding of both the scientific 

community and the firm engaged in the collaboration, as they maintain affiliations 

with both simultaneously. As previously mentioned, these researchers are considered 

boundary spanners, facilitating the translation of diverse knowledge among the 

collaboration’s members. When assuming a leadership role within the collaboration, 

it is plausible that their contributions may lead to advantageous conceptualizations 

that hold value for both communities. This belief is underpinned by prior research, 

discussed at length earlier in this dissertation, highlighting the beneficial role played 

by boundary spanners (e.g., Conway, 1995; Gertner et al., 2011). 

 

Furthermore, there is also relevant literature on gatekeepers (e.g., Llopis & D’Este, 

2022; Ter Wal et al., 2017; Tortoriello & Krackhardt, 2010). While these studies 

often empirically focus on innovations, it is reasonable to assume that similar 

dynamics apply to research, especially in the field of engineering, where science and 

technology are intertwined. In a more comprehensive examination of gatekeepers, 

Llopis and D’Este (2010) observed that collaborations involving a gatekeeper, 

defined as an individual belonging to the same group as one of the contacts being 

brokered, while the other contact belongs to a different group, tend to strike a 

favorable balance between accessing new information and the ease of integrating 

said information.  

 

It is important to acknowledge that all collaborations in the context of academic 

engagement having three or more authors meet this criterion. However, the argument 

being made is that when one of the members is affiliated with both organizations, he 

or she can function as a gatekeeper in both directions. Similarly, Tortoriello and 

Krackhardt (2010) argued that the presence of common third-party ties around a 
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central bridge profoundly alters the nature of the bridging relationship through which 

knowledge flows. Notably, they found that when individuals engaged in boundary-

spanning relationships shared third-party ties, they were more likely to generate 

innovations than in situations in which such shared third-party ties were absent. In 

the presence of a dual-affiliated lead author, shared third-party ties are arguably more 

likely.  

 

Having said this, the findings presented in Chapter 5 indicate that dual-affiliated 

professors exhibited a reduced likelihood of publishing in highly reputed journals. 

This implies that, despite generating considerable interest within the scientific 

community, papers from this cohort may not achieve the same level of publication 

in top-tier journals as those originating from academic-led academic engagement 

projects. 

 

This discussion concludes in the formulation of five hypotheses to be tested in this 

endeavor: 

 

H7.1 

Academic-led publications originating from academic engagement collaborations 

are associated with higher article impact. 

 

H7.2 

Academic-led journal articles originating from academic engagement 

collaborations are associated with higher journal reputation. 

 

H7.3 

Firm-led publications originating from academic engagement collaborations are 

associated with higher technological impact. 
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H7.4 

Dual-affiliated-led publications originating from academic engagement 

collaborations are associated with higher article impact. 

 

H7.5 

Dual-affiliated-led publications originating from academic engagement 

collaborations are associated with higher technological impact. 

 

The conceptual model relating to these hypotheses is visually represented below in 

Figure 7.1. 

 

 
Figure 7.1. A conceptual framework for understanding the hypothesized differences between academic-led, firm-led, 
and dual-affiliated-led academic engagements and their respective scientific and technological impacts. 

 

7.2.3 Key takeaways from Section 7.2 

- The lead author influences the paper via major contributions, particularly in 

terms of conceptualization and ensuring the completion of the work. 

- Publications resulting from academic engagement led by firms generally 



240 

 

central bridge profoundly alters the nature of the bridging relationship through which 

knowledge flows. Notably, they found that when individuals engaged in boundary-

spanning relationships shared third-party ties, they were more likely to generate 

innovations than in situations in which such shared third-party ties were absent. In 

the presence of a dual-affiliated lead author, shared third-party ties are arguably more 

likely.  

 

Having said this, the findings presented in Chapter 5 indicate that dual-affiliated 

professors exhibited a reduced likelihood of publishing in highly reputed journals. 

This implies that, despite generating considerable interest within the scientific 

community, papers from this cohort may not achieve the same level of publication 

in top-tier journals as those originating from academic-led academic engagement 

projects. 

 

This discussion concludes in the formulation of five hypotheses to be tested in this 

endeavor: 

 

H7.1 

Academic-led publications originating from academic engagement collaborations 

are associated with higher article impact. 

 

H7.2 

Academic-led journal articles originating from academic engagement 

collaborations are associated with higher journal reputation. 

 

H7.3 

Firm-led publications originating from academic engagement collaborations are 

associated with higher technological impact. 

 

241 

 

H7.4 

Dual-affiliated-led publications originating from academic engagement 

collaborations are associated with higher article impact. 

 

H7.5 

Dual-affiliated-led publications originating from academic engagement 

collaborations are associated with higher technological impact. 

 

The conceptual model relating to these hypotheses is visually represented below in 

Figure 7.1. 

 

 
Figure 7.1. A conceptual framework for understanding the hypothesized differences between academic-led, firm-led, 
and dual-affiliated-led academic engagements and their respective scientific and technological impacts. 

 

7.2.3 Key takeaways from Section 7.2 

- The lead author influences the paper via major contributions, particularly in 

terms of conceptualization and ensuring the completion of the work. 

- Publications resulting from academic engagement led by firms generally 



242 

 

contain a conceptualization perceived as highly valuable for the industry, 

including the involved firm but also other relevant actors (i.e., firms). 

- Publications resulting from academic engagement led by academics generally 

contain a conceptualization perceived as highly valuable to the scientific 

community; in some rarer instances, it also proves very valuable to the 

technological sector. 

- Publications resulting from academic engagement led by dual-affiliated 

researchers generally contain a conceptualization believed to offer valuable 

insights to both the scientific and technological communities; however, prior 

analyses (Chapter 5) suggest that dual-affiliated professors are less likely to 

publish in highly ranked journals. 

 

7.3 Data and method 
The data and methods utilized here largely replicate the approach employed in the 

previous two empirical chapters, with the incorporation of new key independent 

variables. Therefore, this chapter primarily provides a comprehensive explanation of 

these new variables and methods, while offering a concise summary of the data and 

methods employed in Chapters 5 and 6. Additional information pertaining to the data 

and methods can be found in Chapter 4, Sections 5.3 and 6.3. 

 

7.3.1 Data 

The dataset employed in this chapter combines the data used in Chapters 5 and 6. In 

other words, it encompasses all publications written by the sampled set of 

engineering professors and the numbers of citations those publications obtained from 

the scientific and technological communities.  

 

Operationalization of the new independent variables 

Since the aim of this undertaking is to analyze the influence of different types of first-

author affiliation on the resulting academic engagement publications’ scientific and 
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technological impacts, the original academic engagement variable has been divided 

into three types: Academic_led_AE, Firm_led_AE, and Dual_led_AE.  

 

The first of these variables (Academic_led_AE) was approximated by identifying 

publications resulting from academic engagement while excluding papers with a first 

author affiliated with a firm and papers with a first author affiliated with both a 

university and a firm. This independent variable is thus a binary variable, taking the 

value of 1 when there is at least one author affiliated with a firm other than the first 

author, who is an academic researcher, and 0 otherwise. This approach seems to align 

with related papers, such as those by Kohus et al. (2022a, 2022b). The same logic 

was applied to create the other two variables (Firm_led_AE and Dual_led_AE). It is 

important to note that while the number of papers attributed to a dual-affiliated lead 

author amounted to 97, only five of these (5.2%) involved one of the sampled dual-

affiliated professors. Consequently, the previously used variable for dual-affiliated 

professors was included in the regressions as a control variable. 

 

Variable summary 

Table 7.1, below, provides an overview of all variables, including name, type of 

variable, and operationalization. 

 
Table 7.1. Summary of the regression variables used in Chapter 7. 

Variable Type Description 

Article_impact DV 
A count variable representing the total number of scientific citations received 

by the publication within three years of its release 

Journal_reputation 
DV, 

CV 

A binary variable with a value of 1 if the article was published in a journal 

belonging to the top 15% of the 2018 Journal Impact Factor distribution with 

regard to my sample, and 0 otherwise 

Total_tech_impact DV 
A count variable indicating the total number of technological (i.e., patent) 

citations received by the publication before 2021 

Academic_led_AE IV 

A binary variable with a value of 1 if a firm is reported among the authors’ 

affiliations on the publication and if the first author is affiliated with at least 

one university but no firm, and 0 otherwise 
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Firm_led_AE IV 

A binary variable with a value of 1 if a firm is reported among the authors’ 

affiliations on the publication and the first author is affiliated with at least 

one firm but no university, and 0 otherwise 

Dual_led_AE IV 

A binary variable with a value of 1 if a firm is reported among the authors’ 

affiliations on the publication and if the first author is affiliated with at least 

one university and at least one firm, and 0 otherwise 

Dual_affiliated_professor 

 
CV 

A binary variable with a value of 1 when at least one of the sampled dual-

affiliated professors is listed as an author on the publication, and 0 otherwise 

Number_authors CV 
A categorical variable indicating the number of authors of each publication, 

categorized into groups of 1–8 authors and 9 or more authors 

Prior_article_impact CV 

A count variable representing the total number of scientific citations received 

by the sampled professor in the five years preceding the release of the 

publication; if more than one of the sampled professors has authored the 

publication, the highest value is used 

Prior_patenting CV 

A binary variable with a value of 1 if any of the sampled professors on a 

publication applied for a patent in the five years preceding the release of the 

publication, and 0 otherwise 

Prior_coauthors CV 

A count variable indicating the total number of co-authors the sampled 

professor had in the five years preceding the release of the publication; if 

more than one of the sampled professors has authored the publication, the 

highest value is used 

Top_university CV 

A binary variable with a value of 1 if any of the top 50 universities 

worldwide is reported among the authors’ affiliations on the publication, 

according to the 2018 Academic Ranking of World Universities, and 0 

otherwise 

Number_universities CV 
A count variable indicating the total number of unique university addresses 

reported among the authors’ affiliations on the publication 

Number_nations CV 
A count variable representing the total number of unique nation addresses 

reported among the authors’ affiliations on the publication 

Number_fields CV 
A count variable indicating the total number of fields in which the 

publication has been categorized by Web of Science 

Article CV 
A binary variable with a value of 1 if the publication is classified as an 

article, according to Web of Science, and 0 otherwise 

Female CV 
A binary variable with a value of 1 if any of the sampled professors on the 

publication is female, and 0 otherwise 

University_dummies CV 

Five similar dummy variables, each with a value of 1, if the sampled 

university is reported among the authors’ affiliations on the publication, and 

0 otherwise; the universities are CTH, KTH, LiU, LTH, and UU 

Field_dummies CV 
Three similar dummy variables, each with a value of 1, if Web of Science 

has assigned the publication to the specific subject areas of “Computer 
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Science,” “Telecommunications,” or “Automation and Control Systems,” 

and 0 otherwise 

Year_dummies CV 
A factor variable representing the year in which the publication was released; 

the possible years are 2000–2018 

 

7.3.2 Empirical strategy 

Two of the dependent variables (Article_impact and Total_tech_impact) are count 

variables. Because their data are overdispersed (Cameron & Trivedi, 1990), they 

have been estimated using generalized negative binomial regression models, in line 

with econometric theory (Cameron & Trivedi, 1998; Fox & Weisberg, 2018; Hilbe, 

2011; Lawless, 1987; Venables & Ripley, 2002). These have been estimated using 

Huber–White robust standard errors. The remaining dependent variable 

(Journal_reputation) is a binary variable. Therefore, it was estimated using 

generalized Probit models, with Huber–White robust standard errors, in line with 

similar research (e.g., McKelvey & Rake, 2020). 

 

7.4 Results 
In this section, the results of the study are presented. Descriptive data are first 

provided before delving into the econometric analysis. The chapter concludes by 

examining the robustness of the findings presented. 

 

7.4.1 Descriptive findings 

The objective of this section is to analyze the data and extract descriptive information 

to better understand their characteristics. This section explicitly centers on statistics 

pertaining to the lead author, as plentiful statistics have already been presented.36 

  

 
36 See Sections 4.3, 5.3.1, and 6.3.1. 
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36 See Sections 4.3, 5.3.1, and 6.3.1. 
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The total number of scientific papers resulting from academic engagement was 1437. 

Of these, 1226 have a lead author from academia (85.3%), 114 from a firm (7.9%), 

and 97 from a dual-affiliated lead author (6.8%). Among the firm and dual-affiliated 

lead authors, six individuals served as the lead author in more than two publications. 

Table 7.2, below, provides additional details about these authors. The table includes 

information pertaining to the type of affiliation listed on the focal publications, 

including whether the authors were affiliated solely with a firm or affiliated with both 

a firm and a university simultaneously. It also includes the names of the firms (and, 

in some cases, the universities) to which they belong, the type of firms they are 

associated with, and the specific industries in which these firms operate.  

 
Table 7.2. Descriptive information on the affiliation(s) of the researchers with the highest number of publications as 
firm-employed or dual-affiliated lead authors. 

Type of 

affiliation 

No. of times 

lead author 
Firm (university) Type of firm Industry 

Firm 6 5× Sekvensa; 1× Teamster KIE (both) Automation (both) 

Dual 4 Ericsson (KTH) MNE Telecommunications 

Firm 3 IFEN  Aerospace 

Dual 3 Saab Dynamics (LTH) MNE Defense 

Firm 3 Saab Aerosystems MNE Aerospace 

Dual 3 Ericsson (University of Gävle) MNE Telecommunications 

 

The table shows that both firm and university affiliations are found. The first type of 

affiliation, affiliated solely with a firm, underscores the substantial contributions of 

researchers employed by various firms in advancing scientific knowledge. It is 

noteworthy that while these authors list only one firm on the focal papers, they have 

all published additional research papers with the sampled professors while being 

affiliated with one of the sampled universities, the same ones they collaborated with 

as firm-affiliated researchers. To put it differently, the firm researchers who listed 

only the firm either had an ongoing dual affiliation but listed only the firm, or had a 

prior affiliation (e.g., employment) with the firm. The firms listed in this category 

constitute a KIE firm and two MNEs. Collectively, these firms span a diverse range 
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of industries, namely, automation, telecommunications, aerospace, and defense.  

 

The second type of affiliation highlighted in the table involves authors who are dual-

affiliated researchers, meaning they are affiliated with both a firm and a university 

simultaneously. This type of affiliation underscores the close linkages between 

academic institutions and firms, showcasing the synergy between theoretical 

knowledge and practical application. The table provides specific examples of such 

collaborations, featuring firms such as Ericsson, Saab Dynamics, and Saab 

Aerosystems, in conjunction with the universities KTH, LTH, and the University of 

Gävle. These collaborations encompass the fields of telecommunications, aerospace, 

and defense. 

 

Due to the limited number of publications with firm and dual-affiliated lead authors, 

graphical representations are deemed inappropriate owing to the potential for 

misleading visualizations. Hence, descriptives pertaining to the dependent variable, 

in relation to the three independent variables, are presented in Table 7.3, below.   

 
Table 7.3. Descriptive statistics for the dependent variables in relation to the three independent variables. 

Variable Minimum 1st quartile Median Mean 3rd quartile Maximum SD 

Academic_led_AE 

Article impact 0 0 2 8.5 3 839 37.6 

Journal reputation 0.6 2.6 3.8 5.1 5.4 59.1 6.4 

Technological impact 0 0 0 1.2 0 181 6.9 

Firm_led_AE 

Article impact 0 0 1 3.7 5 33 4.9 

Journal reputation 0.9 3.0 4.8 4.2 5.4 10.4 2.4 

Technological impact 0 0 0 1.4 0 46 2.1 

Dual_led_AE 

Article impact 0 1 4 5.2 6 50 7.6 

Journal reputation 0.8 2.0 3.2 3.5 5.1 9.3 5.6 

Technological impact 0 0 0 2.2 1 26 5.8 
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The total number of scientific papers resulting from academic engagement was 1437. 

Of these, 1226 have a lead author from academia (85.3%), 114 from a firm (7.9%), 

and 97 from a dual-affiliated lead author (6.8%). Among the firm and dual-affiliated 

lead authors, six individuals served as the lead author in more than two publications. 

Table 7.2, below, provides additional details about these authors. The table includes 

information pertaining to the type of affiliation listed on the focal publications, 

including whether the authors were affiliated solely with a firm or affiliated with both 

a firm and a university simultaneously. It also includes the names of the firms (and, 

in some cases, the universities) to which they belong, the type of firms they are 

associated with, and the specific industries in which these firms operate.  

 
Table 7.2. Descriptive information on the affiliation(s) of the researchers with the highest number of publications as 
firm-employed or dual-affiliated lead authors. 

Type of 

affiliation 

No. of times 

lead author 
Firm (university) Type of firm Industry 

Firm 6 5× Sekvensa; 1× Teamster KIE (both) Automation (both) 

Dual 4 Ericsson (KTH) MNE Telecommunications 

Firm 3 IFEN  Aerospace 

Dual 3 Saab Dynamics (LTH) MNE Defense 

Firm 3 Saab Aerosystems MNE Aerospace 

Dual 3 Ericsson (University of Gävle) MNE Telecommunications 

 

The table shows that both firm and university affiliations are found. The first type of 

affiliation, affiliated solely with a firm, underscores the substantial contributions of 

researchers employed by various firms in advancing scientific knowledge. It is 

noteworthy that while these authors list only one firm on the focal papers, they have 

all published additional research papers with the sampled professors while being 

affiliated with one of the sampled universities, the same ones they collaborated with 

as firm-affiliated researchers. To put it differently, the firm researchers who listed 

only the firm either had an ongoing dual affiliation but listed only the firm, or had a 

prior affiliation (e.g., employment) with the firm. The firms listed in this category 

constitute a KIE firm and two MNEs. Collectively, these firms span a diverse range 
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of industries, namely, automation, telecommunications, aerospace, and defense.  

 

The second type of affiliation highlighted in the table involves authors who are dual-

affiliated researchers, meaning they are affiliated with both a firm and a university 

simultaneously. This type of affiliation underscores the close linkages between 

academic institutions and firms, showcasing the synergy between theoretical 

knowledge and practical application. The table provides specific examples of such 
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Gävle. These collaborations encompass the fields of telecommunications, aerospace, 

and defense. 

 

Due to the limited number of publications with firm and dual-affiliated lead authors, 

graphical representations are deemed inappropriate owing to the potential for 

misleading visualizations. Hence, descriptives pertaining to the dependent variable, 

in relation to the three independent variables, are presented in Table 7.3, below.   

 
Table 7.3. Descriptive statistics for the dependent variables in relation to the three independent variables. 

Variable Minimum 1st quartile Median Mean 3rd quartile Maximum SD 
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Journal reputation 0.6 2.6 3.8 5.1 5.4 59.1 6.4 

Technological impact 0 0 0 1.2 0 181 6.9 

Firm_led_AE 

Article impact 0 0 1 3.7 5 33 4.9 

Journal reputation 0.9 3.0 4.8 4.2 5.4 10.4 2.4 

Technological impact 0 0 0 1.4 0 46 2.1 

Dual_led_AE 

Article impact 0 1 4 5.2 6 50 7.6 

Journal reputation 0.8 2.0 3.2 3.5 5.1 9.3 5.6 

Technological impact 0 0 0 2.2 1 26 5.8 
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The highest mean (8.5) and median (2) for article impact are observed when the lead 

author was affiliated with a university, underscoring the wide range of impact in this 

context, with a significant maximum value of 839 and a high standard deviation. In 

contrast, when the lead author was affiliated with a firm, the mean article impact was 

lower (3.7), with a maximum value of 33. Publications in this category thus exhibit 

a lower but more consistent article impact profile. For publications resulting from 

dual-affiliated lead authors, there was an intermediate mean article impact (5.2) and 

a maximum value of 50. 

 

Moving on to journal reputation, lead authors affiliated with universities had the 

highest mean (5.1), indicating a high journal reputation, supported by a maximum 

value of 59.1. For firm-affiliated lead authors, the mean journal reputation was 4.2, 

with a maximum value of 10.4, demonstrating a moderate level of journal reputation. 

In contrast, dual-affiliated lead authors exhibited a relatively lower mean journal 

reputation (3.5), with a maximum value of 9.3, highlighting a lower journal 

reputation.  

 

Regarding technological impact, university lead authors demonstrated a relatively 

low mean (1.2) and a median of 0, suggesting that their technology-related 

contributions were somewhat limited. However, the presence of a maximum value 

of 181 indicates notable exceptions. In contrast, publications with a firm-affiliated 

lead author display a slightly higher mean technological impact (1.4), although with 

a lower maximum value of 46. Here, dual-affiliated lead authors exhibited the highest 

mean technological impact of 2.2 but the lowest maximum value of 26, indicating a 

somewhat stronger and more consistent technological focus.  

 

In summary, the findings indicate intriguing patterns in article impact, journal 

reputation, and technological impact based on the lead author’s affiliation in the 

context of academic engagement. Publications resulting from lead authors affiliated 

249 

 

with a university are associated with higher article impact and journal reputations but 

lower technological impact, although with occasional technological impact “home 

runs.” These findings are in line with Hypotheses 7.1 and 7.22. Those publications 

resulting from a lead author affiliated with a firm yield more consistent, though 

lower, results in relation to article impact and journal reputation, albeit with higher 

values for technological impact, than do the academic-led and dual-affiliated-led 

publications. This lends tentative support for Hypothesis 7.3. Publications resulting 

from dual-affiliated lead authors had the lowest mean journal reputation, 

intermediate mean article impact, and the highest mean technological impact. This 

provides some basis for rejecting Hypothesis 7.4 while lending support for 

Hypothesis 7.5. 

 

When examining the similarities and differences between the sampled universities, 

there are slight variations in the extent to which professors from the different 

universities published research papers with lead authors affiliated with firms and 

with dual-affiliated lead authors. In more detail, the proportions of publications 

resulting from academic engagement having a lead author having a firm affiliation 

are 13.0% for KTH, 9.6% for CTH, 7.7% for LiU, 5.8% for UU, and 4.8% for LTH. 

Interestingly, almost the exact opposite trend is evident for the dual-affiliated lead 

authors, with proportions of 16.5% for UU, 7.9% for LiU, 7.6% LTH, 4.5% for CTH, 

and .6% for KTH. In other words, the sampled professors from KTH and CTH 

relatively more commonly wrote papers in which a firm employee took the lead, 

while UU professors in particular more commonly wrote papers in which a dual-

affiliated author took the lead. 

 

In terms of the similarities and differences among the three most common subfields, 

notable differences were observed. In particular, in the field of automation and 

control systems, approximately one in six papers (17.5%) resulting from academic 

engagement had a lead author employed by a firm and around every 11th paper had 
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a dual-affiliated lead author (9.0%). In the subfields of computer science and 

telecommunications, approximately one in every 10–12 papers had a lead author 

affiliated with a firm (9.6% and 8.5%, respectively); for papers with dual-affiliated 

lead authors, the proportions were much lower, at 4.4% and 2.9%. Interestingly, as 

shown in Chapter 5, computer science had the highest level of collaboration with 

firms, but as shown here, those papers relatively often had university-affiliated lead 

authors. 

 

7.4.2 Regression analyses 

This section mainly focuses on the econometric regression analyses related to the 

proposed research question. These regression models closely resemble those used in 

Chapters 6 and 7. Consequently, the regression results will be presented and 

discussed first, with a specific focus on the independent variables. In essence, the 

sole distinction in the models presented here, when juxtaposed with those presented 

in Chapters 5 and 6, lies in the inclusion of independent variables that capture the 

different types of lead-author affiliation (i.e., Academic_led_AE, Firm_led_AE, and 

Dual_led_AE). Hence, it is my belief that referencing the previously disclosed 

descriptive statistics and their corresponding pairwise correlations, as detailed in 

Sections 5.3.2 and 6.3.2, should suffice. 

 

The results of the statistical analysis examining both the scientific and technological 

impacts of the publications are presented in Table 7.4, below. 
 

Table 7.4. Regression results with article impact, journal reputation, and total technological impact as the dependent 
variables. 

Results 
 

 

Dependent variable: 
Model 1: Article_impact 
Model 2: Journal_reputation 
Model 3: Total_tech_impact 

 (1) (2) (3) 
Academic_led_AE 0.205*** –0.055 0.550*** 
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Robust standard errors in parentheses. 

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01. 

 

As demonstrated above, publications resulting from academic engagement having 

lead authors affiliated with universities exhibit a statistically significant increase in 

article impact (Model 1) and technological impact (Model 3), but no statistically 

significant increase in journal reputation (Model 2). This supports Hypothesis 7.1 

while rejecting Hypothesis 7.2. 

 

Shifting our focus to firm-led publications resulting from academic engagement, the 

results suggest that those led by firm employees have a technological impact 

premium (Model 3), while displaying no statistically significant effect in terms of 

the other two outcome variables (Models 1 and 2); this supports Hypothesis 7.3. It is 

essential to highlight that the technological impact of articles led by firm employees 

is nearly twice that of articles led by academic researchers, providing compelling 

evidence of their greater technological impact. 

 

  

 (0.058) (0.080) (0.166) 
    
Firm_led_AE –0.205 –0.418 0.931** 

 (0.136) (0.266) (0.418) 
    
Dual_led_AE 0.098 –0.530** –0.130 
 (0.162) (0.223) (0.333) 
    
University_dummies Yes Yes Yes 
Field_dummies Yes Yes Yes 
Year_dummies Yes Yes Yes 
Additional control variables Yes Yes Yes 
 
Constant 

 
–0.025 

 
30.223** 

   
429.782*** 

 (0.211) (12.998) (23.772) 
    
Observations 8455 3414 5143 
Log likelihood   –19,296.01   –1337.16  –3868.52 
AIC 38,642.02 2720.31 7787.05 
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Finally, findings suggest that journal articles led by dual-affiliated authors seem to 

have a lower likelihood of publication in highly reputed journals (Model 2), while 

having no meaningful impact in terms of article and technological impacts (Models 

1 and 3). This rejects both Hypotheses 7.4 and 7.5. 

 

7.4.3 Robustness tests 

Several robustness tests have been conducted, mirroring those carried out in previous 

chapters (Chapters 5 and 6). The collective results of these tests provide additional 

support for the conclusions drawn from the primary regression analysis. 

 

As an additional robustness test, not focused on the regressions but rather on a key 

assumption, an analysis was conducted to assess the frequency of the corresponding 

author not being the first author in the sample. Specifically, an analysis of 25 

randomly selected publications resulting from academic engagement plus 25 

randomly selected publications resulting from academic collaborations showed that 

the first author served as the corresponding author in nearly all instances, with only 

1 out of the 50 publications contradicting this pattern. To be clear, this is not a 

robustness test of the regressions but rather of the assumption that the first author 

also assumes the role of the corresponding author. As stated before, the underlying 

reason for this is that the perception of authors’ contributions can also be influenced 

by who the corresponding author is (Bhandari et al., 2014; Wren et al., 2007).  

 
7.5 Discussion 
Readers should keep in mind that the purpose of this study is to illuminate the extent 

to which the scientific and technological impacts of publications resulting from 

academic engagement are influenced by the affiliation or affiliations of the lead 

author and how this influence is manifested. Subsequent qualitative research could 

yield valuable insights into the underlying mechanisms that this undertaking has 

revealed. 
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Comparing this study with previous research is challenging due to the absence of 

prior inquiries addressing this specific phenomenon. To the best of my knowledge, 

these findings are consistent with previous research demonstrating the significant 

influence the lead author can have on publication outcomes. For example, as 

previously mentioned, a recent study by Thelwall et al. (2023) found that first authors 

with high article impact counts play a crucial role in shaping project outcomes, 

particularly in terms of journal reputation, which served as their dependent variable.  

 

Similarly, the findings reported here suggest that the type of lead-author affiliation 

can significantly affect the outcomes. Specifically, when controlling for additional 

variables, such as the professor’s prior article impact, the journals in which they 

publish, and the topics their publications cover, these results suggest that researcher-

led academic engagement is significantly associated with high article impact and 

technological impact. Papers led by a firm are notably linked to a very high 

technological impact premium, while those led by a dual-affiliated researcher are less 

likely to be published in top-tier journals. This undertaking shed additional light on 

the previous two empirical chapters, which found that academic engagement had a 

positive influence on article impact and technological impact, in that we know more 

about one key factor driving those outcomes. 

 

The findings thus support, as hypothesized, the notion that publications led by 

academics are more tailored to the scientific community, while those led by firms are 

closer to the technological sphere. In my view, this is partially due to the lead author’s 

major influence on the paper, especially relating to its conceptualization. What this 

means, for example, is that if a paper is led by a firm, those topics (or perhaps more 

accurately, the problems investigated) are in some sense closer to technology. 
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Papers resulting from dual-affiliated first authors were associated with a decreased 

probability of being published in highly reputable journals, but they exerted no 

statistically significant influence on the outcome concerning article impact and 

technological impact. One possible explanation for the lower journal reputation is 

that multiple types of dual-affiliated researchers exist, so some of their papers may 

be byproducts of master’s thesis work for a company, as is known to occur in this 

field (Ljungberg et al., manuscript to be submitted for publication). In greater detail, 

in a more detailed quantitative analysis of 248 publications involving collaborations 

between firms and the Signals and Control Engineering group at CTH, it was 

observed that dual-affiliated authors can be categorized based on their primary 

employment affiliation, ranging from academia to industry (Ljungberg et al., 

manuscript to be submitted for publication).  

 

In simpler terms, they were either dual-affiliated researchers with their main 

employment in academia or dual-affiliated researchers with their main employment 

in industry. Moreover, there are those with extensive experience, including dual-

affiliated professors, and those with comparatively less experience, such as master’s 

students engaged in collaborative work with a firm for their thesis, ultimately 

resulting in a publication where they share the status of being the (dual-affiliated) 

first author. Since only a small fraction of the papers resulting from dual-affiliated 

lead authors were part of my sample of dual-affiliated professors (5.2%), it is 

plausible that a larger share was an outcome of prior master thesis collaborations 

involving firms. It is moreover likely that some papers were the result of the work of 

industrial Ph.D. students, also found in this domain (Berg, 2022), who have more 

academic experience than do master’s students, although less than other academic 

scholars with Ph.Ds. 
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A complementary explanation for the observed negative correlation between journal 

reputation and dual-affiliated-led papers, which is not mutually exclusive, is that 

those lead authors may intentionally target lower-reputed journals by choice, a factor 

not controlled for in the regressions.  

 

These findings offer additional insights into the influence of boundary spanners and 

highlight the importance of distinguishing their different types. Different roles with 

regard to individual collaborations have been distinguished in several network-based 

empirical studies (e.g., Gould & Fernandez, 1989; Lissoni, 2010; Llopis & D’Este, 

2022), but what is warranted is studies distinguishing different types of boundary 

spanners based on primary affiliation and/or different levels of experience.  

 

The researchers with the highest number of publications as firm-affiliated lead 

authors and dual-affiliated lead authors also exhibited a noteworthy trend: they all 

had a prior link to the university with which they co-published. This connection 

manifested itself in various ways, including existing affiliations (dual affiliation), 

dual employment where only the firm was listed, or previous employment with the 

university followed by subsequent co-authorship.  

 

These findings align with Ljungberg et al.’s (manuscript to be submitted for 

publication) previously mentioned study, which examined a smaller dataset but 

arrived at a similar conclusion. They demonstrated that ongoing or prior links to a 

university department play a crucial role in predicting ongoing co-publishing. 

Consequently, this result supports the notion that personal relationships are 

influential factors in fostering ongoing academic engagement—an aspect that 

appears to be valuable for these collaborations (Bruneel et al., 2010; Kunttu & 

Neuvo, 2019; Rivera-Huerta et al., 2011). 
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had a prior link to the university with which they co-published. This connection 
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university department play a crucial role in predicting ongoing co-publishing. 
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The limitations brought up in Sections 5.5 and 6.4 are present in this undertaking as 

well. Besides these, there is a limitation related to the independent variables. 

Specifically, this limitation is first associated with researchers possibly having 

different practices when reporting affiliations on a paper, possibly biasing the results 

in one way or another. Second, this limitation is associated with the assumption that 

all first authors occupy the same role in their research collaborations, which is most 

likely not entirely true in reality. This assumption may be particularly inaccurate 

considering that these publications are outcomes of prior academic engagement, an 

area in which we have limited knowledge of how author sequence works. Finally, it 

is worth acknowledging that the number of publications resulting from academic 

engagement having lead authors from industry or dual-affiliated lead authors is 

relatively small (n = 114 and 97, respectively). This limited sample size poses 

challenges in detecting statistically significant differences when examining the 

various pathways of technological impact analyzed in Chapter 6 (i.e., individual, 

organizational, and knowledge spillover), and in identifying interaction effects.  

 

This limited sample size makes it more challenging to obtain statistically significant 

differences, to examine the various types of technological impact analyzed in the 

Chapter 6 (i.e., individual technological impact, organizational technological impact, 

and knowledge spillover) and to identify interaction effects. Despite all these 

limitations, this study provides novel insights into the intricacies of academic 

engagement, particularly concerning scientific and technological outcomes. 

 

Based on the aforementioned limitation regarding the assumption that all first authors 

occupy the same role in research collaborations, further investigation is warranted to 

gain a deeper understanding of author sequence dynamics in the context of academic 

engagement. Future research should aim to explore the nuances and variations in 

author contributions within research teams in academic engagement. This could, for 

instance, involve researchers conducting regular interviews or focus group 
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interviews to gather insights into how authorship is determined, the significance of 

author order, and the impact of individual contributions on publication outcomes. 

Additionally, comparative studies between academia and industry could be 

conducted to examine potential differences in authorship practices and their 

influence on research outputs. By addressing these gaps in understanding, future 

research could provide a more comprehensive understanding of author sequence 

dynamics, contributing to improved collaboration outcomes as well as improving the 

accuracy and fairness of credit allocation in scientific publications. 

 

7.6 Conclusion 
The primary objective of this research was to quantitatively analyze the influence 

exerted by the lead author on both the scientific and technological impacts of 

academic publications, with a specific focus on how their type of affiliation, 

distinguishing between academia, industry, and dual affiliated, shapes the overall 

outcomes. The exact research question guiding this endeavor was formulated as 

follows (which is also RQ3 of this Ph.D. dissertation):  

 

How does the scientific and technological impact of the papers resulting from 

academic engagement depend on the affiliation of the lead author? 

 

Relating to the research question, five hypotheses were proposed. Table 7.5, below, 

summarizes the conclusions drawn in relation to these hypotheses. This is followed 

by concluding remarks, while implications are discussed in Chapter 8 of this 

dissertation. 
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Table 7.5. Hypotheses: empirical evidence for confirmation or refutation – Chapter 7. 

Hypothesis 
Empirical 

findings 

7.1. Academic-led publications originating from academic engagement collaborations are 

associated with higher article impact. 
Supported 

7.2. Academic-led journal articles originating from academic engagement collaborations are 

associated with higher journal reputation. 

7.3. Firm-led publications originating from academic engagement collaborations are associated 

with higher technological impact. 

Rejected 

Supported 

7.4. Dual-affiliated-led publications originating from academic engagement collaborations are 

associated with higher article impact. 
Rejected 

7.5. Dual-led publications originating from academic engagement collaborations are associated 

with higher technological impact. 
Rejected 

 

The findings suggest that the type of lead-author affiliation has a significant impact. 

Specifically, the data indicate that publications resulting from lead authors affiliated 

solely with a university showed higher article impact and technological impact, with 

no statistically significant effect on journal reputation. Dual-affiliated lead authors 

only demonstrated a statistically significant impact on one of the outcome variables, 

and that was a negative effect on the probability of publishing in highly reputed 

journals. Similarly, lead authors affiliated solely with firms also only exhibited a 

statistically significant influence on one of the dependent variables, namely, the 

technological impact, and it was a positive influence of a notably high magnitude.  
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8 Conclusion 

This chapter begins by revisiting the purpose of this Ph.D. dissertation and 

comparing the present findings with those of previously discussed research, thereby 

considering their collective implications rather than viewing them in isolation. The 

chapter then transitions to the main research questions and addresses them concisely. 

Subsequently, the chapter discusses the policy and practical implications of this 

undertaking. The chapter concludes by acknowledging the limitations of this 

research and suggesting potential directions for future studies. 

 

8.1 Revisiting the purpose and highlighting main contributions 
This Ph.D. dissertation has analyzed collaborative research between universities and 

firms in the field of electrical engineering in Sweden, conceptualizing it as one form 

of academic engagement that fosters knowledge networks among individuals and 

organizations. The purpose has been to analyze the impacts of collaborative research 

between universities and firms, as compared with similar research conducted without 

firms. In doing so, this dissertation has examined and selected among measures of 

impact, both scientific and technological, as well as variables that capture relevant 

dimensions of collaborative research.  

 

By utilizing a dataset based on the employment records of faculty members from five 

leading Swedish engineering universities in the domains of biomedical, 

communication, control, and signal processing engineering, this dissertation covers 

8455 scholarly publications authored by 184 professors affiliated with Chalmers 

University of Technology, the Faculty of Engineering at Lund University, KTH 

Royal Institute of Technology, Linköping University, and Uppsala University. 

 

Of all publications published by the sampled professors, 17.3% were classified as 

resulting from academic engagement. The prevalence of this type of publication has 
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been on the rise during the analyzed 2000–2018 period. This finding is interesting in 

itself for at least two reasons. First, this percentage is significantly higher than what 

has been reported in other studies conducted in different empirical settings 

(McKelvey & Rake, 2020; Tijssen et al., 2016). For instance, McKelvey and Rake 

(2020) found that only 6.4% of publications in the field of pharmaceutical cancer 

research, published between 2001 and 2008, were attributed to academic 

engagement. Second, this type of publication is becoming increasingly common, 

which contradicts previous studies, such as those by Arora et al. (2018) and Lariviére 

et al. (2018), that suggested a growing monopoly of universities in published 

research. Throughout this dissertation, it has been argued that there are likely two 

reasons for the observed positive trend: one reason can be attributed to the field of 

study, namely, engineering, and the institutional context, specifically Sweden; the 

other reason can be attributed to the utilization of a specific methodological strategy, 

namely, sampling professors exclusively. 

 

The main findings of this Ph.D. dissertation are visually depicted in Figure 8.1, 

below. The figure underscores the potential advantages inherent in collaborative 

research projects involving academic researchers and firms within the engineering 

sciences: they are associated with increased article and technological impacts, while 

simultaneously being associated with a negative influence on journal reputation.  
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Figure 8.1. The observed relationships between academic engagement and the outcome variables (i.e., article impact, 
journal reputation, and technological impact). 

* Reduced statistical power, i.e., the p-value is between 0.1 and 0.05. 

 

These findings underscore the significance of combining different knowledge bases. 

The collaborators in these academic engagement projects likely have a more 

“optimal cognitive distance,” using the terminology of Nooteboom et al. (2007), than 

those in academic projects. It is likely that the deep application knowledge essential 

for practical problem-solving, generally represented by the participating firms, when 

combined with the more abstract and distant search within the domain of engineering 

science, typically exemplified by the academic contributors, produces a positive 

synergy between the scientific and technological aspects of the resulting scholarly 

work.  

 

Consequently, these publications appeal to a broader audience with an interest in the 

findings, as they offer a valuable combination of divergent knowledge sources. This 

insight holds significance for the ongoing debates surrounding the relative impacts 

of science and technology, as highlighted by Fleming and Sorensen (2004) and 

Kaplan and Vakili (2015). Furthermore, they position collaborative research between 
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universities and firms in a favorable light. This is particularly noteworthy because 

previous studies, such as those by Bekkers and Freitas (2008), Frenken et al. (2010), 

and McKelvey and Rake (2016), have not consistently demonstrated a clear positive 

influence of firm involvement in research outcomes. 

 

However, it should be reiterated that the benefits of “combining different knowledge 

bases” hinges on the cognitive proximity among collaborators, as an individual’s 

capacity to assimilate information is largely a function of prior related knowledge 

(e.g., Cohen & Levinthal, 1990). In the specific empirical context of this Ph.D. 

dissertation—electrical engineering—where scientific pursuits are often use inspired 

(Stokes, 1997), this prerequisite appears to be satisfactorily met. This alignment 

between science and technology in electrical engineering is further corroborated by 

findings presented in Chapter 6, which demonstrated a preference for the individual 

technological pathway over the organizational pathway (i.e., organizations are more 

likely to involve the same employee in both activities—publishing scientific papers 

and patenting technological inventions based on that knowledge—than to divide 

these activities among different employees). As posited, in scenarios in which 

science and technology are intricately linked, the individual pathway tends to be 

more resource efficient, as it circumvents the need for knowledge transfer from 

researcher to inventor. 

 

While these collaborative projects between academic scholars and firms are indeed 

linked to heightened article and technological impact, they do not exhibit an 

increased likelihood of publication in esteemed, high-reputation journals. In fact, the 

data suggest a diminished probability in this regard, under certain conditions. The 

question that persists pertains to the nature of this outcome—whether it is a deliberate 

choice on the part of these projects, implying a preference for lower-ranked, 

potentially more applied journals, or whether it is an outcome stemming from the 

inherent characteristics of the research itself, such as a potential deficiency in 
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scientific rigor that precludes publication in top-tier journals. Discussions with 

several academic and dual-affiliated engineering professors following the 

“Collaboration forum” workshop presentation, conducted by the present author and 

Maureen McKelvey, and organized by the Department of Electrical Engineering at 

Chalmers University of Technology, clearly suggest the belief that this difference 

can be attributed to choice. A more rigorous analysis of this matter is, however, 

warranted, and could constitute one of the recommendations for future research 

outlined in Section 8.6, below. 

 

In relation to the knowledge network, the strongest effect in terms of academic 

engagement occurs when the number of authors is larger than three. The logic behind 

the observed effect is quite straightforward: a larger authorship typically signifies a 

wider collective knowledge base, which in turn positively influences the research 

outcome, as supported by studies like those of Becker and Murphy (1992) and Katz 

and Martin (1997). Additionally, dual-affiliated professors who hold simultaneous 

positions in both academia and industry were found to positively affect the article 

impact of the resulting publications. Their deep understanding of both sectors likely 

allows them to resolve conflicts and act as intermediaries, fostering indirect 

knowledge transfer between various collaborators, as suggested by Gertner et al. 

(2011).  

 

Furthermore, the lead author’s affiliation is shown to influence knowledge outcomes: 

academics tend to lead to high-article-impact publications, firms to high 

technological impact, and dual-affiliated researchers to publications in journals of 

lower reputation. This aligns with Thelwall et al.’s (2023) finding that lead authors 

with significant article impact play a crucial role in shaping the collaboration 

outcome. In summary, while these variables reflecting key dimensions of 

collaborative research have been examined to varying degrees in the literature, their 

analysis here contributes to the literature on academic engagement, particularly 
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through the lens of collaborative electrical engineering research in Sweden. 

 

The subsequent three subsections transition to directly addressing the main research 

questions, deliberately maintaining a certain degree of repetition. These sections 

provide explicit answers that further clarify the impact of collaborative research 

between universities and firms in Sweden’s electrical engineering field, as 

conceptualized within the academic engagement framework of Perkmann et al. 

(2013, 2021). 

 

8.1.1 RQ1: scientific impact of academic engagement publications 
 

How does the scientific impact of publications resulting from academic 

engagement projects differ from that of publications resulting from academic 

projects? 

 

The concept of the scientific impact of publications can be assessed using two 

quantifiable constructs: article impact and journal reputation. Article impact 

concerns the number of forward citations received from other scientific papers, while 

journal reputation emphasizes the impact factor of the journal in which the work was 

published. Although there is some overlap between these constructs, they can be 

distinguished by considering that article impact measures the degree to which the 

scientific community perceives the publication as valuable, whereas journal 

reputation emphasizes scientific rigor and quality. 

 

Of all publications, 64.3% resulted in article impact within three years of publication, 

meaning that more than half of all publications had obtained at least one citation 

within three years of publication, with similar rates throughout the observation 

period. Papers resulting from academic engagement were more likely to have any 

article impact than were those resulting from academic projects, i.e., 71.0% versus 
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62.9%. Regarding journal reputation, 17.4% of all journal articles secured 

publication in top-reputed journals, as determined by evaluating whether the article 

appeared in a journal within the top 15% of the 2018 Journal Impact Factor 

distribution relevant to my sample. Scientific papers resulting from academic 

engagement were relatively less likely to be published in top-reputed journals than 

those resulting from academic projects, i.e., 16.0% versus 17.7%. How this compares 

with prior empirical research is ambiguous as these numbers are not commonly 

reported. 

 

Scientific papers resulting from academic engagement exhibited a notable premium 

in terms of article impact compared with those resulting from academic projects. This 

discovery sheds new light on the scientific outcomes of academic engagement, 

challenging previous empirical findings that indicated a neutral or a somewhat 

negative effect on article impact of publishing with industrial researchers (e.g., 

Frenken et al., 2010).  

 

Furthermore, this article premium can be attributed to collaborations with at least 

three co-authors, and especially to those with four or five co-authors—the “sweet 

spot.” This implies that collaborations with a moderate number of co-authors seem 

to strike a balance between collective human capital and efficient knowledge transfer 

(or communication), resulting in research outputs with a higher scientific impact. 

The findings also suggested that dual-affiliated professors have a positive effect on 

article impact. This suggests that dual-affiliated professors, who bring together 

diverse perspectives and understanding from the two types of organizations, further 

enhance the potential for impactful collaborations.  

 

Publications resulting from academic engagement had a comparatively lower journal 

reputation than those resulting from academic projects. This indicates a lower 

likelihood of being published in top-reputed journals. However, it is important to 
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note that when employing alternative operationalizations that more narrowly define 

what constitutes a top-reputed journal, the statistical difference in journal reputation 

between academic engagement and academic projects weakens. This finding is more 

in line with prior research (Abramo et al., 2009; McKelvey & Rake, 2020). 

Moreover, the number of authors involved in a study and the presence of dual-

affiliated professors did not display a statistically significant influence on journal 

reputation. 

 

8.1.2 RQ2: technological impact of academic engagement publications 

 

How does the technological impact of publications resulting from academic 

engagement projects differ from the impact of those resulting from academic 

projects? 

 

The concept of technological impact concerns whether the technological community 

perceives a publication as valuable. Its construct concerns the quantification of 

citations received from the technological domain (i.e., patents). This measure can be 

divided into three constructs: individual technological impact, organizational 

technological impact, and knowledge spillover. The first construct, individual 

technological impact, emphasizes author–inventor pairs and highlights the personal 

aspect of knowledge. It recognizes that knowledge developed in one setting or 

project can be applied in another. The second construct, organizational technological 

impact, focuses on affiliation–assignee pairs. It underscores the transfer of 

knowledge within organizational boundaries, showcasing knowledge transfer within 

specific organizations. The third and final construct, knowledge spillover, 

emphasizes the knowledge that “spills over” to external actors. It considers the 

impact of publications on individuals and/or organizations outside the immediate 

scope of the research.  
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Of all scientific publications, 15.5% had any technological impact within five years 

of publication, and this trend decreased throughout the studied period. Interestingly, 

this percentage is higher than those reported in previous studies. For instance, Ke 

(2020) found that only 11.2% of papers in the biomedical field had any technological 

impact. Scientific papers resulting from academic engagement were more likely to 

have technological impact than those resulting from academic projects, with 

percentages of 20.3% and 14.3%, respectively.  

 

Additionally, when the technological impact window was not limited to five years 

but instead extended to the entire 2000–2018 period, it was discovered that most of 

these technologically impactful papers received their first citation within one year of 

publication and that the mean lead time was two years. This timeframe is shorter than 

in many other fields, as noted by previous research. For example, Ahmadpoor and 

Jones’s comprehensive study published in 2017, which analyzed 32 million research 

papers and close to five million patents, found an average time lag of approximately 

six to seven years. 

 
Publications resulting from academic engagement projects had a higher 

technological impact than did those resulting from academic projects. This 

observation remained consistent across all three impact pathways, signifying that 

both the participating parties and external actors perceived the research as possessing 

heightened technological value. Although, to the best of my knowledge, no studies 

have quantitatively examined the technological impact of collaborative research 

between universities and firms in as much detail, these findings are in line with those 

of, for example, Poege et al. (2019), who found a correlation between high article 

impact and high technological impact. The results further show a higher prevalence 

of the individual technological pathway than the organizational pathway, giving 

support for the close proximity between science and technology in electrical 

engineering.   
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8.1.3 RQ3: role of the lead author’s affiliation in academic engagement 

publications 

 

How does the scientific and technological impact of resulting papers depend on the 

affiliation of the lead author? 

 

The concept of a lead author emphasizes the notion that team members have distinct 

roles and that their contributions are not of equal weight (e.g., Bhandari et al., 2014). 

Simultaneously, it is commonly understood that in a multi-authored research paper, 

the author who contributes the most is typically listed as the first author (Wren et al., 

2007). Overall, 10.0% of the publications resulting from academic engagement 

projects had first authors affiliated with industry. The results further indicate that this 

proportion has been decreasing over the observed 2000–2018 period. Interestingly, 

this contradicts the overall trend regarding the prevalence of academic engagement, 

which has become more common with time. 

 

The regression results indicate that publications resulting from academic 

engagement, having a lead author affiliated only with industry, are associated with a 

high technological impact. Similar projects led by an academic had higher article 

impact and technological impact, while those led by a dual-affiliated researcher were 

associated with a lower probability of being published in a top-ranked journal. In 

other words, the regression models suggest that the impact of the resulting 

publication is significantly influenced by the type of organization with which the lead 

author is affiliated. For instance, if he or she is employed solely in industry, the 

impact is most likely to be primarily technological. 

 

8.2 Implications for policy and practitioners 
The results of this dissertation highlight the evolving landscape of academic 

engagement in the field of the engineering sciences. These findings are of significant 
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value for policymakers, academic institutions, and industry partners, enabling them 

to design and implement effective strategies that maximize the potential impacts of 

collaborative research, thereby driving scientific and technological excellence while 

solving real-world problems. Although recommendations are required by 

practitioners as well as policy- and decision-makers, further research is needed 

before implementing any drastic decisions with far-reaching consequences. 

 

Policymakers play a crucial role in developing policies and financial mechanisms 

that promote and incentivize impactful collaborative research projects between 

academia and industry, facilitating the bridging of the gap between the two types of 

organizations. A policy worth considering is easing employee mobility between the 

public and private sectors. This could manifest itself as specialized research grants 

that sponsor short- to medium-term exchanges between entities of both sectors to 

cultivate knowledge transfer, mutual understanding, and subsequent joint efforts. 

Such targeted policy recommendations are instrumental in establishing a conducive 

environment for academic engagement, nurturing knowledge dissemination, and 

enhancing collaboration between academic and industrial entities. It is noteworthy 

that prior industrial experience is an indicator of prospective academic engagement 

(e.g., Abreu & Grinevich, 2017; Gulbrandsen & Thune, 2017), suggesting that initial 

policy interventions may catalyze a self-sustaining increase in engagement levels. 

Execution of these policies can enable academic bodies, industry players, and 

policymakers to fully exploit the benefits of academic engagement, culminating in 

research breakthroughs, inventive solutions, and economic progress. 

 

Academic institutions should leverage these insights to foster environments 

conducive to inter-organizational collaboration, equipping scholars with the means 

and motivation to partner with industrial counterparts. A practical measure is the 

thorough assessment of the employment of dual-affiliated researchers at varying 

stages of academic careers and in diverse companies, and assessment of the unique 
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expertise they contribute. Focusing on quality over quantity by identifying the ideal 

candidates is essential for enhancing knowledge exchange and collaborative efforts 

between academia and industry. Additionally, the observation that publications 

resulting from academic engagement are less likely to be featured in top-reputed 

journals, despite their significant article and technological impacts, underscores the 

need to revisit the metrics of academic success. This reinforces an argument that has 

been made for some time, exemplified by scholars such as Abramo et al. (2023), who 

advocate for a reduced emphasis on journal reputation in academic evaluations. 

Instead, the practical applications and technological contributions of research should 

warrant greater recognition in the scholarly community, which may lead to changes 

in the way research is conducted, evaluated, and acknowledged. 

 

From the industrial perspective, and recognizing the shared value of knowledge 

exchange and collaborative problem-solving, industry should proactively forge 

partnerships with academic researchers. The obvious link between higher 

technological impact and academic engagement highlights the gains firms can make 

through such collaborations. Engaging dual-affiliated researchers and endorsing 

sustained collaborative projects can prove to be strategic initiatives. Prior research 

indicates that consistent collaborations allow academic scientists to immerse 

themselves in industry-specific challenges (Rivera-Huerta et al., 2011), build trust 

among participants, and facilitate an understanding of each other’s incentives and 

goals (Bruneel et al., 2010; Kunttu & Neuvo, 2019). Another complementary 

approach for firms is to employ academic researchers full time, enhancing their 

ability to collaborate with university scholars and, over time, leverage their work to 

the firm’s advantage. 

 

8.3 Limitations and recommendations for future research endeavors 
The empirical studies in this dissertation have several limitations that should be 

acknowledged. These limitations are discussed in greater depth in the chapters 
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presenting the individual empirical studies, i.e., Chapters 5–7. In this section, some 

overall remarks regarding these limitations are made, which naturally lead to a few 

recommendations for future research. 

 

The limitations of this empirical study can be categorized into three broad themes: 

methodological, data, and contextual limitations.  

 

One major methodological limitation of this empirical study is its failure to account 

for certain factors related to the industrial researchers who are the sampled university 

scientists’ co-authors. Instead, it treats them as “black boxes,” disregarding aspects 

such as their prior article impact and prior employment that could influence or 

explain the findings. The analysis in this study relies heavily on bibliometric data, 

which restricts the focus to successful outcomes rather than overall activity. While 

this approach limits the scope of the study, the use of bibliometric data is considered 

a reliable means of measuring successful scientific knowledge creation. Another 

methodological limitation stems from the assumption that all first authors in research 

collaborations have the same role, which may not hold true in reality. This 

assumption is particularly questionable considering that these publications are 

outcomes of academic engagement, an area where our understanding of how author 

sequence works is limited.  

 

There are also data limitations related to the relatively small number of articles 

resulting from academic engagement projects. This limitation becomes especially 

evident when analyzing academic engagement projects in which dual-affiliated 

professors are involved, as the number of researchers in this category is limited to 

only 11 in my research.  

 

In terms of contextual limitations, the empirical context of this study is narrow, 

focusing on four subfields of electrical engineering in Sweden. This limited context 
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reduces the generalizability of the findings and necessitates caution when extending 

the implications to other disciplines and nations. 

 

The limitations of this empirical study highlight the need for several 

recommendations to guide future research endeavors.  

 

In terms of methodology, it is crucial to conduct a more comprehensive analysis of 

the researchers from the industrial sector who collaborate as co-authors with 

university scientists. Furthermore, it is essential to explore the roles and contributions 

of authors, particularly first authors, in research collaborations. Given our limited 

understanding of author sequence in academic engagement, future studies should 

delve deeper into this aspect to shed light on its impact on research outcomes.  

 

Regarding data, efforts should be made to increase the sample size and broaden the 

scope beyond the narrow focus on four subfields of electrical engineering in Sweden. 

Expanding the research to encompass a wider range of fields and nations would 

enhance the generalizability of the findings. Specific attention should be paid to 

academic engagement projects involving dual-affiliated researchers, as this subgroup 

may offer unique insights and dynamics that warrant further exploration.  

 

Both qualitative and quantitative studies could be fruitful in this regard. For instance, 

conducting in-depth interviews with dual-affiliated researchers and their 

collaborators could provide rich qualitative data about their experiences, challenges, 

and perceptions related to academic engagement. These interviews could explore 

their unique insights, dynamics, and the role they play in bridging the gap between 

academia and industry. The qualitative data obtained from these interviews could 

help identify key factors that contribute to successful collaborations and could 

provide recommendations for improving such engagements. Additionally, analyzing 

bibliometric data from a larger number of dual-affiliated researchers, not limited to 
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dual-affiliated professors, could offer more robust quantitative insights into the 

impact of dual-affiliated researchers in academic engagement.  
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APPENDIX A: ADDITIONAL DESCRIPTIVE 

STATISTICS 

This appendix consists of additional descriptive statistics focusing on the similarities 

and differences between the sampled universities (CTH, KTH, LiU, LTH, and UU) 

and the most common sub-fields (automation and control systems, computer science, 

and telecommunications). 

 
Figure A.1. The mean article impact of publications, per university. (Chapter 5) 
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Figure A.3. The mean journal reputation of articles, per university. (Chapter 5) 
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Figure A.4. The mean journal reputation of articles, per sub-field. (Chapter 5) 
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Table A.1. Descriptive statistics technological impact, per university. (Chapter 6) 

Variable CTH KTH LiU LTH UU 

Publications with any technological impact (%) 16.1 12.5 15.2 18.8 15.7 

Publications resulting from academic engagement with any technological 

impact (%) 
20.1 17.6 17.7 22.3 32.4 

Publications resulting from academic collaboration with any technological 

impact (%) 
14.7 11.7 14.7 17.2 13.8 

Total_technological_impact 

     Minimum 1 1 1 1 1 

     1st Quartile 1 1 1 1 1 

     Median 2 2 2 3 2 

     Mean 4.2 4.7 6.4 7.3 5.9 

     3rd Quartile 4 4 5 5 6 

     Maximum 46 63 181 181 54 

Time_lag_first_tech_impact (in years)      

     Minimum 0 0 0 0 0 

     1st Quartile 0 0 0 0 0 

     Median 1 1 1 0 1 

     Mean 2.1 2.0 2.3 1.5 2.7 

     3rd Quartile 3 3 3 2 4 

     Maximum 12 12 14 14 13 
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Table A.2. Descriptive statistics technological impact, per sub-field. (Chapter 6) 

Variable 
Automation and 

control systems 

Computer 

science 
Telecommunications 

Publications with any technological impact (%) 5.0 10.9 20.7 

Publications resulting from academic 

engagement with any technological impact (%) 
6.9 15.5 27.7 

Publications resulting from academic 

collaboration with any technological impact (%) 
4.7 10.2 19.0 

Total_technological_impact 

     Minimum 2 1 1 

     1st Quartile 3 2 3 

     Median 7 3 7 

     Mean 13.9 9.1 11.6 

     3rd Quartile 13 8 13 

     Maximum 181 181 181 

Time_lag_first_tech_impact (in years) 

     Minimum 0 0 0 

     1st Quartile 0 0 0 

     Median 0 0 1 

     Mean 1.0 1.1 1.6 

     3rd Quartile 2 2 2 

     Maximum 4 8 14 
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APPENDIX B: CORRELATION TABLES 

 

This appendix contains two correlational matrices, one associated with Chapter 5 and the other 

with Chapter 6. 

 
Table B.1. Correlational matrix. (Chapter 5) 
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Note: Non-significant values are set to NA (p-values > 0.05). The correlation matrix excludes the control variables related to university, sub-field, and year. 
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Table B.2. Correlational matrix. (Chapter 6) 
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0.030
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0467
24 
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0.040
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261
4 
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0.07956
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NA 
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6454
24 
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479
545
4 

Number
_authors 
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0.04140
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870 1.0 0.05693
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7978 NA 
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0.22
4407
57 

0.3801
7175 NA 

0.245
7961
9 

0.0
290
347
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-
0.033
49688 

NA 0.046198
09 

-
0.0482
2297 

0.21709
264 

0.056
9391
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1.0 NA 
-
0.1298
0978 
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1818
5 

-
0.102
7774
4 

-
0.02
8145
17 
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-
0.045
5143
4 

NA 

Journal_
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5703 NA NA NA 1.0 0.1096
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0.036
0895
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0.0484
8376 

0.11
7567
66 

0.101
8043
9 

-
0.0
396
156
5 

Prior_art
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0.044
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0.04228
694 NA 0.0398

1913 NA 
0.147
0797
8 
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978 

0.1096
5624 1.0 

0.139
2290
1 

0.690
1930
8 

0.14
2281
78 

0.1450
5492 

-
0.04
7070
87 

0.233
7366
6 

-
0.1
232
006
6 

Prior_pat
enting 

0.105
98852 

0.05472
777 NA 0.1008

2240 
0.07511
199 NA 0.08818

185 
0.0360
8951 

0.1392
2901 1.0 

0.150
4273
3 

-
0.03
2742
67 

NA NA 

-
0.032
8376
8 

-
0.1
210
681
1 

Prior_co
authors 

0.034
99963 

0.04368
552 NA NA NA 

0.238
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9 

-
0.10277
744 

0.0552
5419 

0.6901
9308 

0.150
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3 

1.0 
0.12
4912
29 

0.1696
7031 
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3528
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514
703
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0.02814
517 
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1977 
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0.032
7426
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0.124
9122
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1.0 0.2668
0432 

-
0.03
5378
22 

0.283
7130
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NA 

Number
_universi
ties 

NA 0.02921
683 NA NA 0.05948

069 

0.380
1717
5 

NA 0.0484
8376 

0.1450
5492 NA 

0.169
6703
1 

0.26
6804
32 

1.0 
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0.08
1166
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0.451
0086
4 

0.1
146
864
8 

Number
_fields NA NA NA NA NA NA NA 0.1175

6766 

-
0.0470
7087 

NA 
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0.031
8808
1 
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0.03
5378
22 

-
0.0811
6698 

1.0 NA 

0.0
320
534
8 

Number
_nations 
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0.030
27840 

NA NA 
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0.0409
5439 

0.10294
910 

0.245
7961
9 
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0.04551
434 

0.1018
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8376
8 

0.209
3528
8 
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0.4510
0864 NA 1.0 NA 

Female 
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0.032
73669 
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0.0318
2614 
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0.04795
454 

0.029
0347
9 

NA 
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0.0396
1565 

-
0.1232
0066 
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0.121
0681
1 

-
0.051
4703
0 

NA 0.1146
8648 

0.03
2053
48 

NA 1.0 

Note: Non-significant values are set to NA (p-values > 0.05). The correlation matrix excludes the control variables related to university, sub-field, and year. 
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APPENDIX C: ADDITIONAL REGRESSION 

ANALYSES (ROBUSTNESS TESTS) 

This appendix includes additional regression analyses conducted as robustness 

checks. Unless specified otherwise, the following applies:  

- The variables “University_dummies,” “Field_dummies,” and 

“Year_dummies” are included, indicated by “Dummies” being set to “Yes” 

- Robust standard errors in parentheses 

- Significant codes: *p<0.1; **p<0.05; ***p<0.01 
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Table C.1. Regression results with modified “Number_authors” variable (three bins). (Chapter 5) 
Results 

 Dependent variable: 
Article_impact 

    
 (1) (2) (3) (4) 

 

Academic_engagement  0.145*** -0.021 0.128** 

  (0.053) (0.094) (0.058) 

Academic_engagement: 3-4_Number_authors   0.271**  

   (0.126)  

Academic_engagement: 5+_Number_authors   0.193  

   (0.137)  

Academic_engagement:Dual_affiliated_professor    0.390** 

    (0.171) 

3-4_Number_authors 0.070 0.048 0.013 0.049 

 (0.067) (0.068) (0.074) (0.067) 

5+_Number_authors 0.051 0.007 -0.021 0.013 

 (0.107) (0.108) (0.115) (0.107) 

Dual_affiliated_professor -0.123   -0.380*** 

 (0.092)   (0.133) 

Journal_reputation 0.955*** 0.949*** 0.949*** 0.956*** 

 (0.099) (0.097) (0.096) (0.097) 

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.00003) (0.00003) (0.00003) (0.00003) 

Prior_patenting -0.0001 -0.001 -0.001 -0.0002 

 (0.001) (0.001) (0.001) (0.001) 

Prior_coauthors -0.0004** -0.0004** -0.0004** -0.0004** 

 (0.0002) (0.0002) (0.0002) (0.0002) 

Top_university 0.284*** 0.277*** 0.274*** 0.275*** 

 (0.084) (0.084) (0.083) (0.083) 

log(Number_universities) 0.288*** 0.303*** 0.301*** 0.305*** 

 (0.096) (0.097) (0.096) (0.096) 

log(Number_nations) 0.204*** 0.187*** 0.187*** 0.180*** 

 (0.061) (0.060) (0.060) (0.060) 

Number_fields -0.060** -0.059** -0.059** -0.060** 

 (0.029) (0.029) (0.029) (0.029) 

C3 

 

Article 1.342*** 1.334*** 1.335*** 1.338*** 

 (0.050) (0.050) (0.050) (0.051) 

Female -0.253** -0.242** -0.234** -0.234** 

 (0.099) (0.100) (0.100) (0.099) 

Dummies Yes Yes Yes Yes 

Constant -0.051 -0.056 -0.042 -0.036 

 (0.220) (0.215) (0.208) (0.216) 

Observations 8455 8455 8455 8455 
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Table C.2. Regression results with modified “Article_impact” variable (5-year long time-window). (Chapter 5) 

Results 
 

 Dependent variable: 
 Article_impact 
  
 (1) (2) (3) (4) 

 
Academic_engagement  0.248*** 0.077 0.218*** 

  (0.061) (0.150) (0.067) 
     

Academic_engagement:Number_authors   0.033  

   (0.028)  

Academic_engagement:Dual_affiliated_professor    0.281* 

    (0.171) 

Number_authors 0.009 0.001 -0.005 0.001 
 (0.014) (0.015) (0.016) (0.015) 
     

Dual_affiliated_professor -0.098 -0.177* -0.169* -0.302** 
 (0.092) (0.091) (0.090) (0.121) 
     

Journal_reputation 1.007*** 0.996*** 0.987*** 1.004*** 
 (0.115) (0.111) (0.109) (0.112) 
     

Prior_article_impact 0.0004*** 0.0004*** 0.0004*** 0.0004*** 
 (0.00005) (0.00005) (0.00005) (0.00005) 
     

Prior_patenting -0.001 -0.001 -0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors -0.0004* -0.0004* -0.0004* -0.0003* 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.255*** 0.246*** 0.248*** 0.244** 
 (0.095) (0.095) (0.095) (0.095) 
     

log(Number_universities) 0.275*** 0.287*** 0.287*** 0.289*** 
 (0.085) (0.086) (0.086) (0.086) 
     

log(Number_nations) 0.172** 0.146** 0.142** 0.141** 
 (0.068) (0.067) (0.067) (0.067) 
     

Number_fields -0.099*** -0.095*** -0.094*** -0.097*** 
 (0.032) (0.032) (0.032) (0.032) 
     

Article 1.265*** 1.259*** 1.259*** 1.259*** 
 (0.055) (0.056) (0.056) (0.055) 
     

Female -0.459*** -0.454*** -0.448*** -0.442*** 
 (0.101) (0.099) (0.100) (0.099) 
     

Dummies Yes Yes Yes Yes 

Constant 0.830*** 0.865*** 0.901*** 0.863*** 
 (0.244) (0.228) (0.213) (0.231) 

Observations 8455 8455 8455 8455 
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Table C.3. Regression results with author-clustered standard errors. (Chapter 5) 

Results 
 

 Dependent variable: 
 Article_impact 
  
 (1) (2) (3) (4) 

 
Academic_engagement  0.143** -0.048 0.124* 

  (0.068) (0.159) (0.066) 
     

Academic_engagement:Number_authors   0.037  

   (0.027)  

Academic_engagement:Dual_affiliated_professor    0.400 

    (0.283) 

Journal_reputation 0.954*** 0.948*** 0.941*** 0.955*** 
 (0.113) (0.112) (0.110) (0.112) 
     

Number_authors 0.013 0.006 -0.001 0.008 
 (0.016) (0.016) (0.018) (0.016) 
     

Dual_affiliated_professor -0.124   -0.385*** 
 (0.211)   (0.140) 
     

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 
 (0.00005) (0.00005) (0.00005) (0.00005) 
     

Prior_patenting -0.0002 -0.001 -0.001 -0.0002 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors -0.0004 -0.0004 -0.0004 -0.0004 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.282** 0.275** 0.277** 0.274** 
 (0.115) (0.112) (0.113) (0.112) 
     

log(Number_universities) 0.283*** 0.297*** 0.296*** 0.298*** 
 (0.091) (0.092) (0.092) (0.091) 
     

log(Number_nations) 0.206*** 0.189*** 0.184** 0.180** 
 (0.079) (0.073) (0.073) (0.073) 
     

Number_fields -0.060* -0.060* -0.058* -0.061* 
 (0.033) (0.032) (0.032) (0.032) 
     

Article 1.342*** 1.334*** 1.335*** 1.339*** 
 (0.074) (0.074) (0.074) (0.074) 
     

Female -0.248** -0.239** -0.232** -0.231** 
 (0.099) (0.098) (0.098) (0.092) 
     

Dummies Yes Yes Yes Yes 

Constant -0.051 -0.052 -0.012 -0.032 
 (0.241) (0.235) (0.223) (0.235) 

Observations 8455 8455 8455 8455 
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Table C.2. Regression results with modified “Article_impact” variable (5-year long time-window). (Chapter 5) 

Results 
 

 Dependent variable: 
 Article_impact 
  
 (1) (2) (3) (4) 

 
Academic_engagement  0.248*** 0.077 0.218*** 

  (0.061) (0.150) (0.067) 
     

Academic_engagement:Number_authors   0.033  

   (0.028)  

Academic_engagement:Dual_affiliated_professor    0.281* 

    (0.171) 

Number_authors 0.009 0.001 -0.005 0.001 
 (0.014) (0.015) (0.016) (0.015) 
     

Dual_affiliated_professor -0.098 -0.177* -0.169* -0.302** 
 (0.092) (0.091) (0.090) (0.121) 
     

Journal_reputation 1.007*** 0.996*** 0.987*** 1.004*** 
 (0.115) (0.111) (0.109) (0.112) 
     

Prior_article_impact 0.0004*** 0.0004*** 0.0004*** 0.0004*** 
 (0.00005) (0.00005) (0.00005) (0.00005) 
     

Prior_patenting -0.001 -0.001 -0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors -0.0004* -0.0004* -0.0004* -0.0003* 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.255*** 0.246*** 0.248*** 0.244** 
 (0.095) (0.095) (0.095) (0.095) 
     

log(Number_universities) 0.275*** 0.287*** 0.287*** 0.289*** 
 (0.085) (0.086) (0.086) (0.086) 
     

log(Number_nations) 0.172** 0.146** 0.142** 0.141** 
 (0.068) (0.067) (0.067) (0.067) 
     

Number_fields -0.099*** -0.095*** -0.094*** -0.097*** 
 (0.032) (0.032) (0.032) (0.032) 
     

Article 1.265*** 1.259*** 1.259*** 1.259*** 
 (0.055) (0.056) (0.056) (0.055) 
     

Female -0.459*** -0.454*** -0.448*** -0.442*** 
 (0.101) (0.099) (0.100) (0.099) 
     

Dummies Yes Yes Yes Yes 

Constant 0.830*** 0.865*** 0.901*** 0.863*** 
 (0.244) (0.228) (0.213) (0.231) 

Observations 8455 8455 8455 8455 
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 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.282** 0.275** 0.277** 0.274** 
 (0.115) (0.112) (0.113) (0.112) 
     

log(Number_universities) 0.283*** 0.297*** 0.296*** 0.298*** 
 (0.091) (0.092) (0.092) (0.091) 
     

log(Number_nations) 0.206*** 0.189*** 0.184** 0.180** 
 (0.079) (0.073) (0.073) (0.073) 
     

Number_fields -0.060* -0.060* -0.058* -0.061* 
 (0.033) (0.032) (0.032) (0.032) 
     

Article 1.342*** 1.334*** 1.335*** 1.339*** 
 (0.074) (0.074) (0.074) (0.074) 
     

Female -0.248** -0.239** -0.232** -0.231** 
 (0.099) (0.098) (0.098) (0.092) 
     

Dummies Yes Yes Yes Yes 

Constant -0.051 -0.052 -0.012 -0.032 
 (0.241) (0.235) (0.223) (0.235) 
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Table C.4. Regression results with quasi-Poisson estimation. (Chapter 5) 

Results 
 

 Dependent variable: 
 Article_impact 
  
 (1) (2) (3) (4) 

 
Academic_engagement  0.248*** 0.077 0.218*** 

  (0.061) (0.150) (0.067) 
     

Academic_engagement:Number_authors   0.033  

   (0.028)  

Academic_engagement:Dual_affiliated_professor    0.281* 

    (0.171) 

Number_authors 0.009 0.001 -0.005 0.001 
 (0.014) (0.015) (0.016) (0.015) 
     

Dual_affiliated_professor -0.098 -0.177* -0.169* -0.302** 
 (0.092) (0.091) (0.090) (0.121) 
     

Journal_reputation 1.007*** 0.996*** 0.987*** 1.004*** 
 (0.115) (0.111) (0.109) (0.112) 
     

Prior_article_impact 0.0004*** 0.0004*** 0.0004*** 0.0004*** 
 (0.00005) (0.00005) (0.00005) (0.00005) 
     

Prior_patenting -0.001 -0.001 -0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors -0.0004* -0.0004* -0.0004* -0.0003* 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.255*** 0.246*** 0.248*** 0.244** 
 (0.095) (0.095) (0.095) (0.095) 
     

log(Number_universities) 0.275*** 0.287*** 0.287*** 0.289*** 
 (0.085) (0.086) (0.086) (0.086) 
     

log(Number_nations) 0.172** 0.146** 0.142** 0.141** 
 (0.068) (0.067) (0.067) (0.067) 
     

Number_fields -0.099*** -0.095*** -0.094*** -0.097*** 
 (0.032) (0.032) (0.032) (0.032) 
     

Article 1.265*** 1.259*** 1.259*** 1.259*** 
 (0.055) (0.056) (0.056) (0.055) 
     

Female -0.459*** -0.454*** -0.448*** -0.442*** 
 (0.101) (0.099) (0.100) (0.099) 
     

Dummies Yes Yes Yes Yes 

Constant 0.830*** 0.865*** 0.901*** 0.863*** 
 (0.244) (0.228) (0.213) (0.231) 

Observations 8455 8455 8455 8455 
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Table C.5. Regression results with modified “Journal_reputation” variable (cut-off point at 75%). (Chapter 5) 

Results 
 

 Dependent variable: 
 Journal_reputation 
  
 (1) (2) (3) (4) 

 
Academic_engagement -0.119* -0.119* -0.265 -0.094 

 (0.066) (0.066) (0.171) (0.070) 
     

Academic_engagement:Number_authors   0.026  

   (0.028)  

Academic_engagement:Dual_affiliated_professor    -0.232 

    (0.229) 

Number_authors 0.045*** 0.045*** 0.039*** 0.045*** 

 (0.014) (0.014) (0.015) (0.014) 

Dual_affiliated_professor    0.047 
    (0.155) 
     

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 
 (0.0001) (0.0001) (0.0001) (0.0001) 
     

Prior_patenting 0.002** 0.002** 0.002** 0.003** 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors 0.0005** 0.0005** 0.0005** 0.0005** 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.100 0.100 0.099 0.100 
 (0.086) (0.086) (0.086) (0.086) 
     

log(Number_universities) 0.263*** 0.263*** 0.261*** 0.260*** 
 (0.059) (0.059) (0.059) (0.059) 
     

log(Number_nations) 0.051 0.051 0.048 0.050 
 (0.068) (0.068) (0.068) (0.068) 
     

Number_fields 0.170*** 0.170*** 0.172*** 0.171*** 
 (0.037) (0.037) (0.037) (0.037) 
     

Female -0.008 -0.008 -0.006 -0.016 
 (0.151) (0.151) (0.151) (0.150) 
     

Dummies Yes Yes Yes Yes 

Constant 20.165* 20.165* 20.136* 19.125* 
 (11.344) (11.344) (11.344) (11.387) 

     
Observations 3,414 3,414 3,414 3,414 
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Prior_article_impact 0.0004*** 0.0004*** 0.0004*** 0.0004*** 
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Prior_coauthors -0.0004* -0.0004* -0.0004* -0.0003* 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.255*** 0.246*** 0.248*** 0.244** 
 (0.095) (0.095) (0.095) (0.095) 
     

log(Number_universities) 0.275*** 0.287*** 0.287*** 0.289*** 
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Number_fields -0.099*** -0.095*** -0.094*** -0.097*** 
 (0.032) (0.032) (0.032) (0.032) 
     

Article 1.265*** 1.259*** 1.259*** 1.259*** 
 (0.055) (0.056) (0.056) (0.055) 
     

Female -0.459*** -0.454*** -0.448*** -0.442*** 
 (0.101) (0.099) (0.100) (0.099) 
     

Dummies Yes Yes Yes Yes 

Constant 0.830*** 0.865*** 0.901*** 0.863*** 
 (0.244) (0.228) (0.213) (0.231) 

Observations 8455 8455 8455 8455 
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Table C.5. Regression results with modified “Journal_reputation” variable (cut-off point at 75%). (Chapter 5) 

Results 
 

 Dependent variable: 
 Journal_reputation 
  
 (1) (2) (3) (4) 

 
Academic_engagement -0.119* -0.119* -0.265 -0.094 

 (0.066) (0.066) (0.171) (0.070) 
     

Academic_engagement:Number_authors   0.026  

   (0.028)  

Academic_engagement:Dual_affiliated_professor    -0.232 

    (0.229) 

Number_authors 0.045*** 0.045*** 0.039*** 0.045*** 

 (0.014) (0.014) (0.015) (0.014) 

Dual_affiliated_professor    0.047 
    (0.155) 
     

Prior_article_impact 0.0003*** 0.0003*** 0.0003*** 0.0003*** 
 (0.0001) (0.0001) (0.0001) (0.0001) 
     

Prior_patenting 0.002** 0.002** 0.002** 0.003** 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors 0.0005** 0.0005** 0.0005** 0.0005** 
 (0.0002) (0.0002) (0.0002) (0.0002) 
     

Top_university 0.100 0.100 0.099 0.100 
 (0.086) (0.086) (0.086) (0.086) 
     

log(Number_universities) 0.263*** 0.263*** 0.261*** 0.260*** 
 (0.059) (0.059) (0.059) (0.059) 
     

log(Number_nations) 0.051 0.051 0.048 0.050 
 (0.068) (0.068) (0.068) (0.068) 
     

Number_fields 0.170*** 0.170*** 0.172*** 0.171*** 
 (0.037) (0.037) (0.037) (0.037) 
     

Female -0.008 -0.008 -0.006 -0.016 
 (0.151) (0.151) (0.151) (0.150) 
     

Dummies Yes Yes Yes Yes 

Constant 20.165* 20.165* 20.136* 19.125* 
 (11.344) (11.344) (11.344) (11.387) 

     
Observations 3,414 3,414 3,414 3,414 
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Table C.6. Regression results with modified “Journal_reputation” variable (cut-off point at 95%). (Chapter 5) 

Results 
 

 Dependent variable: 
 Journal_reputation 
  
 (1) (2) (3) (4) 

 
Academic_engagement -0.046 -0.046 -0.577 -0.053 

 (0.097) (0.097) (0.353) (0.102) 
     

Academic_engagement:Number_authors   0.084*  

   (0.050)  

Academic_engagement:Dual_affiliated_professor    -0.213 

    (0.316) 

Number_authors 0.053** 0.053** 0.036 0.050** 

 (0.024) (0.024) (0.026) (0.023) 

Dual_affiliated_professor    0.409** 
    (0.205) 
     

Prior_article_impact 0.00001 0.00001 0.00001 0.00002 
 (0.0001) (0.0001) (0.0001) (0.0001) 
     

Prior_patenting 0.005*** 0.005*** 0.005*** 0.005*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors 0.0001 0.0001 0.0001 0.0001 
 (0.0003) (0.0003) (0.0003) (0.0003) 
     

Top_university 0.063 0.063 0.063 0.067 
 (0.117) (0.117) (0.121) (0.118) 
     

log(Number_universities) 0.233** 0.233** 0.225** 0.237** 
 (0.093) (0.093) (0.093) (0.093) 
     

log(Number_nations) 0.372*** 0.372*** 0.367*** 0.380*** 
 (0.098) (0.098) (0.097) (0.098) 
     

Number_fields 0.202*** 0.202*** 0.208*** 0.204*** 
 (0.056) (0.056) (0.056) (0.056) 
     

Female 0.090 0.090 0.094 0.016 
 (0.230) (0.230) (0.231) (0.232) 
     

Dummies Yes Yes Yes Yes 

Constant 24.796 24.796 24.902 25.499 
 (20.706) (20.706) (20.690) (21.051) 
     

Observations 3,414 3,414 3,414 3,414 
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Table C.7. Regression results with binary dependent variables. (Chapter 6) 
 

Results   
   

 
Dependent variable: 

Model 1-2: Any_tech_impact 
Model 3-4: Any_individual_tech_impact 

Model 5-6: Any_organizational_tech_impact 

 

 (1) (2) (3) (4) (5) (6) 

Academic_engagement  0.059***  0.028***  0.019*** 
  (0.014)  (0.008)  (0.005) 

Number_authors 0.009*** 0.007*** 0.002 0.001 0.0004 -0.0002 
 (0.003) (0.003) (0.001) (0.001) (0.001) (0.001) 

Dual_affiliated_professor -0.053*** -0.071*** 0.014 0.005 0.015* 0.009 
 (0.019) (0.019) (0.013) (0.013) (0.008) (0.008) 

Prior_article_impact 0.00005*** 0.00005*** 0.00001 0.00001 0.00000 0.00000 

 (0.00001) (0.00001) (0.00000) (0.00000) (0.00000) (0.00000
) 

Prior_patenting 0.0003* 0.0003 -0.0001 -0.0001 0.00000 -0.00000 
 (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) 

Prior_coauthors -0.0001 -0.0001 0.00000 -0.00000 0.00000 0.00000 

 (0.00004) (0.00004) (0.00002) (0.00002) (0.00001) (0.00001
) 

Journal reputation 0.098*** 0.098*** 0.026*** 0.027*** 0.005 0.005 
 (0.018) (0.018) (0.010) (0.010) (0.005) (0.005) 

Top_university 0.053*** 0.052*** 0.028** 0.028** 0.004 0.004 
 (0.020) (0.020) (0.011) (0.011) (0.005) (0.005) 

log(Number_universities) -0.007 -0.004 0.0004 0.002 -0.001 0.0002 
 (0.012) (0.012) (0.006) (0.006) (0.003) (0.003) 

log(Number_nations) -0.002 -0.009 -0.004 -0.007 0.001 -0.001 
 (0.014) (0.014) (0.007) (0.007) (0.003) (0.003) 

Number_fields -0.001 -0.001 0.002 0.002 0.0002 0.0002 
 (0.007) (0.007) (0.004) (0.004) (0.001) (0.001) 

Female -0.022 -0.016 -0.016* -0.013 -0.003 -0.001 
 (0.021) (0.021) (0.009) (0.009) (0.004) (0.004) 

Dummies Yes Yes Yes Yes Yes Yes 

Constant 29.305*** 29.566*** 3.011*** 3.136*** 1.664*** 1.746*** 
 (2.331) (2.326) (1.113) (1.111) (0.641) (0.643) 

Observations 5143 5143 5143 5143 5143 5143 
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Table C.6. Regression results with modified “Journal_reputation” variable (cut-off point at 95%). (Chapter 5) 

Results 
 

 Dependent variable: 
 Journal_reputation 
  
 (1) (2) (3) (4) 
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Prior_patenting 0.005*** 0.005*** 0.005*** 0.005*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Prior_coauthors 0.0001 0.0001 0.0001 0.0001 
 (0.0003) (0.0003) (0.0003) (0.0003) 
     

Top_university 0.063 0.063 0.063 0.067 
 (0.117) (0.117) (0.121) (0.118) 
     

log(Number_universities) 0.233** 0.233** 0.225** 0.237** 
 (0.093) (0.093) (0.093) (0.093) 
     

log(Number_nations) 0.372*** 0.372*** 0.367*** 0.380*** 
 (0.098) (0.098) (0.097) (0.098) 
     

Number_fields 0.202*** 0.202*** 0.208*** 0.204*** 
 (0.056) (0.056) (0.056) (0.056) 
     

Female 0.090 0.090 0.094 0.016 
 (0.230) (0.230) (0.231) (0.232) 
     

Dummies Yes Yes Yes Yes 

Constant 24.796 24.796 24.902 25.499 
 (20.706) (20.706) (20.690) (21.051) 
     

Observations 3,414 3,414 3,414 3,414 
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Table C.7. Regression results with binary dependent variables. (Chapter 6) 
 

Results   
   

 
Dependent variable: 

Model 1-2: Any_tech_impact 
Model 3-4: Any_individual_tech_impact 

Model 5-6: Any_organizational_tech_impact 

 

 (1) (2) (3) (4) (5) (6) 

Academic_engagement  0.059***  0.028***  0.019*** 
  (0.014)  (0.008)  (0.005) 

Number_authors 0.009*** 0.007*** 0.002 0.001 0.0004 -0.0002 
 (0.003) (0.003) (0.001) (0.001) (0.001) (0.001) 

Dual_affiliated_professor -0.053*** -0.071*** 0.014 0.005 0.015* 0.009 
 (0.019) (0.019) (0.013) (0.013) (0.008) (0.008) 

Prior_article_impact 0.00005*** 0.00005*** 0.00001 0.00001 0.00000 0.00000 

 (0.00001) (0.00001) (0.00000) (0.00000) (0.00000) (0.00000
) 

Prior_patenting 0.0003* 0.0003 -0.0001 -0.0001 0.00000 -0.00000 
 (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) 

Prior_coauthors -0.0001 -0.0001 0.00000 -0.00000 0.00000 0.00000 

 (0.00004) (0.00004) (0.00002) (0.00002) (0.00001) (0.00001
) 

Journal reputation 0.098*** 0.098*** 0.026*** 0.027*** 0.005 0.005 
 (0.018) (0.018) (0.010) (0.010) (0.005) (0.005) 

Top_university 0.053*** 0.052*** 0.028** 0.028** 0.004 0.004 
 (0.020) (0.020) (0.011) (0.011) (0.005) (0.005) 

log(Number_universities) -0.007 -0.004 0.0004 0.002 -0.001 0.0002 
 (0.012) (0.012) (0.006) (0.006) (0.003) (0.003) 

log(Number_nations) -0.002 -0.009 -0.004 -0.007 0.001 -0.001 
 (0.014) (0.014) (0.007) (0.007) (0.003) (0.003) 

Number_fields -0.001 -0.001 0.002 0.002 0.0002 0.0002 
 (0.007) (0.007) (0.004) (0.004) (0.001) (0.001) 

Female -0.022 -0.016 -0.016* -0.013 -0.003 -0.001 
 (0.021) (0.021) (0.009) (0.009) (0.004) (0.004) 

Dummies Yes Yes Yes Yes Yes Yes 

Constant 29.305*** 29.566*** 3.011*** 3.136*** 1.664*** 1.746*** 
 (2.331) (2.326) (1.113) (1.111) (0.641) (0.643) 
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Table C.8. Regression results with “Knowledge_spillover” as the dependent variable. (Chapter 6) 

Results 
 

 Dependent variable: 
Knowledge_spillover 

  
 (1) (2) 

Academic_engagement  0.397** 
  (0.170) 
   
Number_authors 0.359** 0.281* 
 (0.168) (0.157) 
   
Dual_affiliated_professor -0.880*** -0.966*** 
 (0.334) (0.364) 
   
Prior_article_impact 0.001*** 0.001*** 
 (0.0001) (0.0001) 
   
Prior_patenting 0.007*** 0.007*** 
 (0.002) (0.002) 
   
Prior_coauthors -0.0004 -0.0003 
 (0.0004) (0.0004) 
   
Journal reputation 0.941*** 0.938*** 
 (0.240) (0.238) 
   
Top_university 0.033 0.036 
 (0.235) (0.232) 
   
log(Number_universities) -0.069 -0.044 
 (0.144) (0.145) 
   
log(Number_nations) -0.157 -0.217 
 (0.196) (0.199) 

Number_fields -0.048 -0.034 

 (0.080) (0.080) 

Female -0.181 -0.084 

 (0.363) (0.363) 

Dummies Yes Yes 

Constant 435.619*** 442.004**

* 

 (23.878) (24.485) 

Observations 5143 5143 
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Table C.9. Regression results with modified dependent variables (using application-citations only). (Chapter 6) 

Results   
   

 
Dependent variable: 

Model 1-2: Total_tech_impact 
Model 3-4: Individual_tech_impact 

Model 5-6: Organizational_tech_impact 

 

 (1) (2) (3) (4) (5) (6) 

Academic_engagement  0.696***  0.932***  1.315*** 
  (0.182)  (0.266)  (0.297) 

Number_authors -0.016 -0.057 0.129** 0.103* 0.123 0.064 
 (0.042) (0.041) (0.055) (0.060) (0.089) (0.099) 

Dual_affiliated_professor -0.465 -0.700* -0.090 -0.567* 1.454*** 0.800** 
 (0.359) (0.399) (0.311) (0.306) (0.392) (0.389) 

Prior_article_impact 0.001*** 0.001*** -0.0002 -0.00004 -0.00003 0.0002 
 (0.0001) (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) 
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 (0.002) (0.002) (0.004) (0.005) (0.004) (0.004) 
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 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Journal reputation 0.942** 0.979*** 0.880** 0.741* 1.576*** 1.606*** 
 (0.419) (0.371) (0.425) (0.416) (0.386) (0.383) 

Top_university 0.120 0.028 0.809** 0.730** 1.208*** 1.233** 
 (0.261) (0.278) (0.315) (0.316) (0.422) (0.482) 

log(Number_universities) -0.407** -0.318* -0.020 0.0002 0.022 0.132 
 (0.183) (0.171) (0.206) (0.209) (0.331) (0.354) 

log(Number_nations) -0.031 -0.087 -0.333 -0.354 0.131 -0.033 
 (0.255) (0.263) (0.291) (0.295) (0.301) (0.324) 

Number_fields 0.020 0.025 -0.029 -0.054 0.197 0.238 
 (0.104) (0.106) (0.142) (0.145) (0.149) (0.156) 

Female -0.278 -0.211 -1.767* -1.823* -0.918 -1.111 
 (0.630) (0.664) (0.990) (1.021) (0.894) (0.953) 

Dummies Yes Yes Yes Yes Yes Yes 

Constant 417.929*** 419.423*** 162.855*** 179.579*** 318.821*** 364.361*** 
 (31.674) (31.127) (39.346) (39.862) (60.831) (59.149) 

Observations 5143 5143 5143 5143 5143 5143 
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Table C.10. Regression results with author-clustered standard errors. (Chapter 6) 

Results   
   

 
Dependent variable: 

Model 1-2: Total_tech_impact 
Model 3-4: Individual_tech_impact 

Model 5-6: Organizational_tech_impact 

 

 (1) (2) (3) (4) (5) (6) 

Academic_engagement  0.540***  0.981***  2.659*** 
  (0.194)  (0.218)  (0.717) 

Number_authors 0.090* 0.058 0.119** 0.081 0.224* 0.095 
 (0.047) (0.043) (0.059) (0.062) (0.124) (0.188) 

Dual_affiliated_professor -0.610* -0.778** -0.393 -0.904** 2.101*** 0.761 
 (0.347) (0.361) (0.506) (0.423) (0.698) (0.915) 

Prior_article_impact 0.0005*** 0.0005*** -0.0001 0.00002 -0.0002 0.0003 
 (0.0001) (0.0001) (0.0002) (0.0002) (0.001) (0.0004) 

Prior_patenting 0.006*** 0.006*** -0.004 -0.004 0.002 0.0005 
 (0.002) (0.002) (0.004) (0.004) (0.004) (0.005) 

Prior_coauthors 0.0001 0.0001 0.002*** 0.002*** 0.001 0.002** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Journal reputation 0.889*** 0.879*** 0.943*** 0.962*** 1.390 1.583 
 (0.243) (0.237) (0.289) (0.270) (1.172) (1.073) 

Top_university 0.279 0.259 0.561** 0.533** 1.309* 2.373*** 
 (0.183) (0.187) (0.268) (0.260) (0.710) (0.690) 

log(Number_universities) -0.125 -0.069 -0.045 -0.008 -0.495 -0.533 
 (0.122) (0.122) (0.188) (0.181) (0.630) (0.795) 

log(Number_nations) -0.163 -0.224 -0.211 -0.240 0.100 -0.442 
 (0.194) (0.192) (0.319) (0.334) (0.615) (0.662) 

Number_fields -0.022 -0.009 -0.018 -0.054 -0.225 -0.242 
 (0.085) (0.084) (0.120) (0.120) (0.377) (0.592) 

Female -0.264 -0.150 -1.036** -0.970** 0.536 -0.510 
 (0.279) (0.276) (0.487) (0.464) (1.292) (2.054) 

Dummies Yes Yes Yes Yes Yes Yes 

Constant 409.922*** 420.306*** 164.731*** 178.131*** 317.952*** 380.288*** 
 (25.488) (25.677) (40.761) (40.782) (89.892) (98.271) 

Observations 5143 5143 5143 5143 5143 5143 
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APPENDIX D: ALLOCATING CREDIT IN 

SCIENCE  

The objective of this section is to give the reader a better understanding of how the 

scientific enterprise credit allocation system has evolved and how it sought to 

operate.  

 

The section begins with an exploration of the concept of authorship, highlighting the 

guidelines established by the International Committee of Medical Journal Editors, 

commonly referred to as the Vancouver criteria for authorship (Figure D.1), as well 

as The Institute of Electrical and Electronics Engineers (Figure D.2). Following this, 

the discussion transitions to a chronological presentation of seven prevalent credit 

allocation models (Equations D.1-D.7). The practical application of these models is 

then exemplified through the distribution of credit in a research paper with four 

authors (Table D.1). The section concludes with a brief discussion on the evolution 

of these credit allocation models. 

 

In the scientific enterprise, authorship provides a basis for peer recognition, and it is 

via forward citations research scholars are acknowledged for their work (Merton, 

1973; Moed, 2005). Consequently, it is essential to accurately give symbolic profit 

where it is due, especially when it is considered the main currency (Bourdieu, 1975; 

see also Desrochers et al., 2018). The continuous shift towards multiauthored papers 

(Wuchty et al., 2007a) has made this fundamental task more difficult because authors 

can have different responsibilities in the partnership, and their contributions are not 

equally valued (e.g., Bhandari et al., 2014; Corrêa Jr. et al., 2017; Nylenna et al., 

2014; Wren et al., 2007). To solve this problem, journals have both made the criteria 

for authorship clearer and research scholars have proposed a plethora of different co-

authorship credit allocation models.  
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Criteria for authorship 

The Vancouver criteria for authorship, developed by the International Committee of 

Medical Journal Editors, is arguably the most famous criteria used for clarifying what 

authorship constitute. The criteria recommend all those designated as authors should 

meet the following four criteria presented in Figure D.1 below. The Vancouver 

criteria for authorship assumes, for example, that all authors either draft the paper or 

critically revise it (criterion #2), which is a questionable assumption giving the 

increasing trend of hyperauthorship, that is, papers with 100+ authors (see Cronin, 

2001). Hyperauthorship is no longer a phenomenon only found in physics and 

biomedicine but is also a phenomenon in other scientific fields, such as engineering, 

as mentioned in Chapter 5. 37 Nevertheless, even though it was developed for the 

medical sciences, it is used all around the world in many subject areas, as illustrated 

by this quote “Lund University Ethics Council supports the Vancouver rules for 

authorship and recommend that all researchers affiliated to Lund University, 

regardless of the field of research, follow these rules” (LTH, 2019, p. 4).  

 
The ICMJE recommends that authorship be based on the following 4 criteria:  

• Substantial contributions to the conception or design of the work; or the 

acquisition, analysis, or interpretation of data for the work; AND  

• Drafting the work or reviewing it critically for important intellectual content; 

AND  

• Final approval of the version to be published; AND  

• Agreement to be accountable for all aspects of the work in ensuring that 

questions related to the accuracy or integrity of any part of the work are 

appropriately investigated and resolved. 
Figure D.1. The Vancouver criteria for authorship (ICMJE, 2023). 

  
 

37 In my sample of 8455 publication, 10 publications had 100 or more co-authors. 
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The Institute of Electrical and Electronics Engineers, commonly known as IEEE, has 

a very similar definition of what constitute authorship (Figure D.2 below). The 

notable difference between the two is the explicit consideration of contributions 

made to “prototype development” (criterion #1). 

 
The Institute of Electrical and Electronics Engineers considers individuals who meet all of the following criteria 

to be authors:  

1. made a significant intellectual contribution to the theoretical 

development, system or experimental design, prototype development, 

and/or the analysis and interpretation of data associated with the work 

contained in the article;  

2. contributed to drafting the article or reviewing and/or revising it for 

intellectual content;  

3. approved the final version of the article as accepted for publication, 

including references. 
Figure D.2. The Institute of Electrical and Electronics Engineers criteria for authorship (IEEE, 2023). 

 

Credit allocation models 

(One of) The first approaches for allocating credit to authors is the first author 

counting model (Cole & Cole, 1973). Here, only the first of the N authors (position 

= P = 1) receive the total number of credit C that the scientific publication created.  

 
Equation D.1. The first author counting model. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃=1 = 𝐶𝐶 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃>1 = 0 

 

The second approach is the normal or standard counting model, also known as the 

total author counting model (Lindsey, 1980). Here, each of the N authors receives 

the total number of credit C that the scientific publication created.  

 



D2 

 

 

Criteria for authorship 

The Vancouver criteria for authorship, developed by the International Committee of 

Medical Journal Editors, is arguably the most famous criteria used for clarifying what 

authorship constitute. The criteria recommend all those designated as authors should 

meet the following four criteria presented in Figure D.1 below. The Vancouver 

criteria for authorship assumes, for example, that all authors either draft the paper or 

critically revise it (criterion #2), which is a questionable assumption giving the 

increasing trend of hyperauthorship, that is, papers with 100+ authors (see Cronin, 

2001). Hyperauthorship is no longer a phenomenon only found in physics and 

biomedicine but is also a phenomenon in other scientific fields, such as engineering, 

as mentioned in Chapter 5. 37 Nevertheless, even though it was developed for the 

medical sciences, it is used all around the world in many subject areas, as illustrated 

by this quote “Lund University Ethics Council supports the Vancouver rules for 

authorship and recommend that all researchers affiliated to Lund University, 

regardless of the field of research, follow these rules” (LTH, 2019, p. 4).  

 
The ICMJE recommends that authorship be based on the following 4 criteria:  

• Substantial contributions to the conception or design of the work; or the 

acquisition, analysis, or interpretation of data for the work; AND  

• Drafting the work or reviewing it critically for important intellectual content; 

AND  

• Final approval of the version to be published; AND  

• Agreement to be accountable for all aspects of the work in ensuring that 

questions related to the accuracy or integrity of any part of the work are 

appropriately investigated and resolved. 
Figure D.1. The Vancouver criteria for authorship (ICMJE, 2023). 

  
 

37 In my sample of 8455 publication, 10 publications had 100 or more co-authors. 

D3 

 

The Institute of Electrical and Electronics Engineers, commonly known as IEEE, has 

a very similar definition of what constitute authorship (Figure D.2 below). The 

notable difference between the two is the explicit consideration of contributions 

made to “prototype development” (criterion #1). 

 
The Institute of Electrical and Electronics Engineers considers individuals who meet all of the following criteria 

to be authors:  

1. made a significant intellectual contribution to the theoretical 

development, system or experimental design, prototype development, 

and/or the analysis and interpretation of data associated with the work 

contained in the article;  

2. contributed to drafting the article or reviewing and/or revising it for 

intellectual content;  

3. approved the final version of the article as accepted for publication, 

including references. 
Figure D.2. The Institute of Electrical and Electronics Engineers criteria for authorship (IEEE, 2023). 

 

Credit allocation models 

(One of) The first approaches for allocating credit to authors is the first author 

counting model (Cole & Cole, 1973). Here, only the first of the N authors (position 

= P = 1) receive the total number of credit C that the scientific publication created.  

 
Equation D.1. The first author counting model. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃=1 = 𝐶𝐶 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃>1 = 0 

 

The second approach is the normal or standard counting model, also known as the 

total author counting model (Lindsey, 1980). Here, each of the N authors receives 

the total number of credit C that the scientific publication created.  

 



D4 

 

Equation D.2. The total author counting model. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃=1,2…𝑁𝑁 = 𝐶𝐶 

 

The third approach is the fractional counting model, also known as adjusted counting 

(Price, 1981). Here, each of the N authors receives the total credit C that the scientific 

publication has created divided equally between the number of authors N.  

 
Equation D.3. The fractional counting model. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃=1,2…𝑁𝑁 = 𝐶𝐶
𝑁𝑁 

 

The fourth approach is the proportional counting model (van Hooydonk, 1997). Here, 

if an author has position P in a paper with N authors, that researcher receives a share 

of the total credit C that the scientific publication created according to the following 

mathematical equation: 

 
Equation D.4. The proportional counting model. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃=1,2…𝑁𝑁 =
2𝐶𝐶 (1 − 𝑃𝑃

𝑁𝑁 + 1)
𝑃𝑃  

 

The fifth approach is the pure geometric counting model (Egghe et al., 2000). Here, 

if an author has position P in a paper with N authors, that researcher receives a share 

of the total credit C that the scientific publication created according to the following 

mathematical equation: 

 
Equation D.5. The proportional counting model. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑃𝑃=1,2…𝑁𝑁 = 𝐶𝐶 ∗ 2𝑁𝑁−𝑃𝑃
2𝑁𝑁−1  
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Table D.1 below demonstrates how these models distribute credit to a four authored 

research paper—the comparison aims to enhance the models' concreteness and 

interpretability through an example. 
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Table D.1. Credit allocation models. 

Counting model (reference) 

Four authors, where C = 1; 

Position: 

1 2 3 4 

First author (Cole & Cole, 1973) 1 0 0 0 

Normal counting (Lindsey, 1980) 1 1 1 1 

Fractional counting (Price, 1981) 0.25 0.25 0.25 0.25 

Proportional counting (Van Hooydonk, 1997) 2 0.75 0.333 0.125 

Pure geometric (Egghe et al., 2000) 1 0.5 0.25 0.125 

First-last-author-emphasis (Tscharntke et al., 2007) 1 0.25 0.25 0.5 

Harmonic counting (Hagen, 2008) 0.48 0.24 0.16 0.12 

 

To sum up, the credit allocation models have principally evolved from only counting 

the first author, to equally counting everyone, to emphasize the importance of the 

byline, that is, the position an author has in the paper.  

 

In greater detail, it has been argued (e.g., Lindsey, 1980) that the first model—the 

first author counting model—had two key benefits, namely that it “solved” the issue 

of distributing credit for multiauthored work by ignoring everyone but the first 

author, and it significantly lessened the amount of work necessary to gather data on 

any sample of scientists, which was a quite tedious task during that time.  

 

The second and the third model—the normal counting model, and the fractional 

counting model—acknowledged the shift towards multiauthored papers but 

neglected the importance of author sequence. In other words, they gave the same 

amount of credit to all authors regardless of their position on the byline.  

 

The remaining models—the proportional counting model, the pure geometric 

counting model, the first-last-author-emphasis model, and the harmonic counting 

model—acknowledged both the shift towards multiauthored papers and the 

importance of author position. Only one of these four models emphasized the 

importance of both the first and the last author (the first-last-author-emphasis model), 

D7 

 

whereas the other distributed more credits to authors the earlier they were on the 

byline.  

 

This examination of the evolution of allocating credits to authors has clearly 

showcased the theoretical importance that the first author has in a multiauthored 

work, which validates the choice of positioning this study around the first author. 
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