
Do viscous flows slip?
—
Solving the Stokes equation with Hodge boundary conditions

Master’s thesis in the Mathematical Sciences Master Program

BJÖRN SJÖSVÄRD

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023
www.gu.se

www.gu.se

Master’s thesis 2023

Do viscous flows slip?

Solving the Stokes equation with Hodge boundary conditions

BJÖRN SJÖSVÄRD

Department of Mathematical Sciences
University of Gothenburg

Gothenburg, Sweden 2023

Do viscous flows slip?
Solving the Stokes equation with Hodge boundary conditions

Björn Sjösvärd

© BJÖRN SJÖSVÄRD, 2023.

Supervisor: Andreas Rosén, Department of Mathematical Sciences
Examiner: Irina Pettersson, Department of Mathematical Sciences

Master’s Thesis 2023
Department of Mathematical Sciences
University of Gothenburg

iv

Abstract
In this thesis, the Stokes equation is discussed and solved under different boundary
conditions. The Stokes equation governs the flow of viscous liquids, for example
honey or syrup. The first chapters in the thesis provides an introduction to multi-
vector algebra and analysis, with the aim of presenting the concept of Hodge decom-
positions. With an application of this theory, the Stokes equation with the Hodge
boundary conditions is solved using the finite element method. This is compared to
the solution of the Stokes equation under the more standard no-slip condition. It
is concluded that the Hodge boundary conditions are natural from a mathematical
point of view, although they can not be used to model physical flows. In particular,
they are contrary to the known physical fact that viscous flows tend to stick to the
boundary. Moreover, it is showed that the Hodge boundary conditions can be inter-
preted in a way that the friction at the boundary of the domain is solely determined
by the curvature.

Keywords: Mathematics, partial differential equations, multivectors, Hodge de-
compositions, the Stokes equation, Hodge boundary conditions.

v

Acknowledgements
First of all I would like to thank my supervisor Andreas Rosén for proposing an
interesting project and supporting my work throughout the process. The study
of multivectors has been an eye-opener in many ways. I would also like to thank
my former boss, principal Pär Holmertz at Nösnäsgymnasiet, who has been a great
inspiration to how one can follow ones own path, Mattias Kauttmann for helping me
building my confidence to start to do so, and my girlfriend Sofia Rydén for believing
in me in times when the project has been difficult. Lastly I would also like to thank
my congregation in Munkegärdekyrkan for helping me stay focused at what is really
important in life and the two cats Brody and Åke for invaluable company during
the project. Mathematics is truly beautiful.

Björn Sjösvärd, Ytterby, June 2023

vii

Contents

1 Introduction 3

2 Multivectors 7
2.1 k-vectors and multivectors . 7
2.2 Exterior and interior products . 8
2.3 Hodge stars . 12
2.4 Exterior and interior derivatives . 14

3 Hodge decompositions 19
3.1 Tangential and normal Hodge decompositions 21
3.2 The cohomology spaces . 28
3.3 Hodge decompositions and PDE:s . 30
3.4 Algorithm for computing a Hodge decomposition 32

4 Solving the Stokes equation 37
4.1 The Stokes equation . 37
4.2 The Hodge boundary conditions . 38
4.3 The no-slip boundary condition . 46

5 Discussion and conclusions 53

A Appendix: MATLAB code I
A.1 Main programs . I
A.2 Functions . IX

Bibliography XIII

1

Contents

2

CHAPTER 1

Introduction

The Stokes equation describes the flow of an incompressible, viscous liquid in a
bounded region. It is derived from some simplifications of the Navier-Stokes equa-
tions and is formulated ∇p− µ∆v = f,

div(v) = 0,

where the scalar function p is the pressure, the vector field v is the velocity, the con-
stant µ is the viscosity constant, and f is the sum of the external forces acting on
the liquid. A typical example of a liquid with high viscousity is honey. It is a known
empirical fact that a viscous flow in a bounded region tends to stick to the boundary.
For example, if one stirs honey in a jar, the honey close to the edges sticks to the jar.
If D is the region bounded by the jar (the domain), this corresponds to the bound-
ary condition v|∂D = 0, where ∂D is the boundary of the region (i.e., the jar itself).
This is the standard boundary condition to use when solving the Stokes equation,
and is in this thesis called the no-slip boundary condition. The main purpose of this
project has been to solve the Stokes equation under another set of boundary condi-
tions, and to investigate how these boundary conditions are to be interpreted. These
boundary conditions are referred to as the Hodge boundary conditions, and besides
constituting that the flow must be tangential at the boundary (i.e., it may not flow
out of the bounded region) it also involves a condition on the vorticity. The Hodge
boundary conditions do not, though, require the velocity to be zero at the boundary.

The first part of the project leading to this thesis consisted of a theoretical study
of multivector fields and Hodge decompositions. Chapters 2 and 3 presents some of
this theory. Apart from presenting the theory needed to fully understand the solu-
tion of the Stokes equation under the Hodge boundary conditions, these chapters
also contain some interesting mathematical facts that show a glimpse of the utility
of multivector analysis.

In Chapter 2, the concept of multivectors as well as some of their algebraic prop-
erties are introduced. In this chapter the reader also gets a presentation of how
some basic concepts from multivector analysis can be used to put some well-known
concepts from linear algebra and vector analysis in a more general framework. In
particular, the differential operators in vector calculus (gradient, divergence, and
curl) are generalised to multivector fields by the interior and exterior derivatives
defined in Section 2.4, and the somewhat strange vector product, normally defined

3

1. Introduction

only in three dimensions, is expressed as a composition of two different algebraic
operations on multivectors.

In Chapter 3, the theory behind Hodge decompositions is presented. The expo-
sition involves the solution of partial differential equations (PDE:s) with the finite
element method (FEM), which is also briefly explained in Section 3.4. A Hodge
decomposition, as it is mainly used in this thesis, is an orthogonal decomposition of
a vector field F ∈ L2(D) into three components. One of these components belongs
to a finite-dimensional subspace. The dimension of this particular subspace con-
tains interesting information about the topology of the domain, and is the subject
of Section 3.2. Among others, the Hodge decompositions can be used to show the
unique solvability of boundary value problems. This is discussed in Section 3.3.

In Chapter 4, the Stokes equation is presented and solved for a two-dimensional
domain under different boundary conditions. The first section, 4.1, serves as a brief
introduction to the Stokes equation from a physical point of view. In Section 4.2,
the Stokes equation is solved using the Hodge boundary conditions. The solution is
a nice application of Hodge decompositions, leading to relatively easy computations
where one in the end just needs to solve the Dirichlet and Neumann problems for
the Poisson equation with homogeneus boundary conditions. It is also showed that
the Hodge boundary conditions are to be interpreted in a way that they mean that
the friction at the boundary is determined only by the geometry of the domain,
which is one of the main results of the project. In Section 4.3, the Stokes equation
is solved with the no-slip boundary condition, using the same external forces f as
in the previous section. This is not possible using the Hodge decomposition in the
same way as in Section 4.2, but is instead made in a more traditional way using a
mixed finite element method.

To numerically compute Hodge decompositions and to numerically solve the Stokes
equation, MATLAB has been used. The application pdeModeler has been used to
construct triangulations of the domains, but other than that the code is written
by the author (with a small exception; the first function in Appendix A.2) and is
attached in full in the appendices of this thesis.

In summary, the two main points in this thesis is (1) that given the theory of
Hodge decompositions, the Hodge boundary conditions are more natural than the
no-slip boundary condition from a mathematical point of view even though they
are not of physical relevance, and (2) that the Hodge boundary conditions are to
be interpreted as that the friction at the boundary only depends on the curvature.
These claims are supported by the presentation in Chapter 4, where one among other
things can see that the solution of the Stokes equation under the no-slip boundary
condition is rather mathematically involved and also has to face a few technical is-
sues which are not present when using the Hodge boundary conditions. Apart from
these main claims, there are also as mentioned above some points of mathematical
interest made on the way. Some of the highlights can be found in Example 2.3.4 (the
vector product), Example 2.4.3 (about the generalisations of gradient, divergence,

4

1. Introduction

and curl), Theorem 3.1.6 (the main theorem on Hodge decompositions), and Section
3.2 (about the finitie-dimensional subspaces in the Hodge decompositions).

5

1. Introduction

6

CHAPTER 2

Multivectors

In the first two chapters of the thesis, the theory needed to understand the solutions
of the Stokes equation in Chapter 4 is presented. Some of the concepts have a
standard main-stream notation, while others have not. In both cases, the notation
in this thesis will in large follow Rosén [6]. This chapter presents the concept of
multivectors and some of their algebraic properties. In Section 2.4 the exterior and
interior derivatives are defined, and the section concludes by showing how these
can be seen as generalisations of the different derivatives from vector calculus. The
exterior and interior derivatives will play a major roll throughout the thesis.

2.1 k-vectors and multivectors
Throughout this thesis, V will be a vector space of dimension 1 ≤ n < ∞. In the
main parts of this thesis, one may think of V as equal to R2 (or in some cases R3),
although the theory in this and the next chapter applies more generally to affine
spaces (see [6, chap. 2]). For any 0 ≤ k ≤ n one can construct a linear space ∧kV of
k-vectors, where a k-vector w ∈ ∧kV can be interpreted as a k-dimensional object
determined by its orientation and k-volume. In particular, when k = 1 and V = R2,
one has ∧1V = V = R2, and a 1-vector is simply a vector in the ordinary sense,
with the k−volume defined by the ordinary vector length. 0-vectors will be referred
to as scalars, 1-vectors as vectors, and 2-vectors as bivectors, and these are the most
relevant k-vectors for this thesis since the computations where this theory is applied
in Section 4.2 will be carried out in R2. In the presentation of the theory below, V
will be an inner product space, which simplifies some of the notation and suffices for
the purpose of this thesis. Recall that an inner product space V is a vector space
over a field K with a map ⟨·, ·⟩ : V ×V → K called the inner product satisfying the
following three properties:

⟨x, y⟩ = ⟨y, x⟩ (conjugate symmetry),

⟨ax+ by, z⟩ = a⟨x, z⟩ + b⟨y, z⟩ (linearity in first argument), and
⟨x, x⟩ ≥ 0 (positive definiteness),

for all x, y, z ∈ V and a, b ∈ K with equality in the last property if and only if x = 0.
In this thesis we will only consider real vector spaces, which means that the first
property simplifies to ⟨x, y⟩ = ⟨y, x⟩. For a more rigorous depiction of the theory of
multivectors, which applies in a more general case, see Rosén [6, chap. 2].

7

2. Multivectors

If one knows a basis for the vector space V , one can determine a basis for the
k-vector spaces ∧kV , using the definition below (2.1.1). The sign ” ∧ ” appearing in
the definition denotes the exterior product, which will be presented in some more
detail in Section 2.2.

Definition 2.1.1. [6, pp. 27f]
Let V be a vector space of dimension n with basis {e1, ..., en}. Let s ⊂ {1, 2, ..., n}
and |s| be the number of elements in s. Then {es}|s|=k is called the induced basis
for ∧kV where es := es1 ∧ ... ∧ esk

if s = {s1, ..., sk} with s1 < ... < sk.

For example, if V = R3 is a vector space with basis {e1, e2, e3}, then {e1∧e2, e1∧e3, e2∧

e3} is the induced basis for the bivector space ∧2V . We will often use a shorthand no-
tation, where the indices for the basis element will be concatenated instead of writing
out the wedge between them, such that for example ej ∧ ek ∧ el := ejkl. The basis for
the bivector space just mentioned can thus instead be written as {e12, e13, e23}. The
concept of multivectors below is defined in a general sense. For the most part in the
following, though, we will restrict the attention to homogeneous multivectors in R2.

Definition 2.1.2. [6, p. 30]
Define the exterior algebra of V to be the direct sum

∧V := ∧0V ⊕ ∧1V ⊕ ...⊕ ∧nV.

An element w = w0 +w1 + ...+wn ∈ ∧V is called a multivector. A multivector
w ∈ ∧kV for some k is called a homogeneous multivector of degree k.

Geometrically, the bivector e12 ∈ ∧2V can be thought of as a two-dimensional object,
the parallelogram spanned by e1 and e2. For V = R3, a 3−vector e123 can similarly
be thought of as a three-dimensional object.

2.2 Exterior and interior products
The exterior and interior products are products on ∧V , where the first one has a
standard notation while the second one has not. The exterior product is associa-
tive, meaning that (v1 ∧ v2) ∧ v3 = v1 ∧ (v2 ∧ v3) for all v1, v2, v3 ∈ ∧V , and has two
well-known properties that are frequently used in calculations. The first one is that
v1 ∧ ... ∧ vk = 0 if vi = vj for some i ̸= j. The second is that the product changes
sign when two elements are interchanged. For example, e1 ∧ e2 = −e2 ∧ e1. Since the
computations in this thesis will be carried out mainly in R2 (and in a few cases in
R3), it is enough to know these two properties and how to multiply scalars or scalar

8

2. Multivectors

functions. Below is an example where the exterior product of two multivectors is
calculated.

Example 2.2.1.
Let v = 2e1 − e2 + e12 and w = 3 + 5e1. Computing the exterior product v ∧ w,
one gets

v ∧ w = (2e1 − e2 + e12) ∧ (3 + 5e1)

= 2 · 3e1 + 2 · 5e1 ∧ e1 − 3e2 − 5e2 ∧ e1 + 3e12 + 5e12 ∧ e1

= 6e1 + 10 · 0 − 3e2 − 5e21 + 3e12 + 5 · 0

= 6e1 − 3e2 + 5e12 + 3e12

= 6e1 − 3e2 + 8e12.

As can be seen above, in practice, the computation of the exterior product is car-
ried out by multiplying the scalars term by term and cocatenating the indices of
the basis elements, and thereafter using the two above-mentioned properties to sim-
plify the expression. For the purpose of this thesis, we do not have to be more
formal than this when it comes to the exterior product. To conclude the part
about the exterior product, we give a definition which can be useful in some cases
when one should determine the sign of es ∧ et where es and et are multivectors with
s, t ⊂ n̄ := {1, 2, ..., n}. We will also use it in the proof of Proposition 2.3.3.

Definition 2.2.2. [6, p. 32]
For subsets s, t ⊂ n̄ := {1, 2, ..., n}, let

ϵ(s, t) := (−1)|{(si,tj)∈s×t:si>tj}|,

where s× t denotes the Cartesian product, be the sign of the permutation that
rearranges s ∪ t in increasing order.

With the above definition,

es ∧ et =

ϵ(s, t)es∪t, if s ∩ t = ∅
0, if s ∩ t ̸= ∅.

The interior product (or the interior products, left- respectively right interior prod-
uct) is, when V is restricted to be an inner product space, a bilinear product on
∧V . Formally, it can be defined as the operation adjoint to exterior multiplication

9

2. Multivectors

[6, pp. 51f]. We start by describing how one computes with it. Let dim(V) = n
with {ei} a basis for V and n̄ = {1, 2, ..., n} where s ⊂ n̄ is a subset and j ∈ n̄. One
can then compute the left (⌟) interior product by using

ej ⌟ es =

(−1)kes\{j}, if j ∈ s

0, if j /∈ s,

where k is the number of elements in s strictly smaller than j. In words, one removes
the index in the basis element on the left hand side from the basis element’s indices
on the right hand side and computes the sign by counting how many indices there
are on the right hand side that are strictly smaller than the index on the left hand
side. In the main computations of this thesis (for example in Section 4.2), this is
an easy task since we have no more than two or maybe three indices. If the index
from the left hand side does not appear on the right hand side, the result of the left
interior product is always zero. The scalars (or scalar functions) are multiplied term
by term, just as in the case for the exterior product. Computations with the right
interior product are carried out in essentially the same way. The only difference
between ej ⌟ es and es ⌞ ej is possibly the sign. One can define

ej ⌞ es =

(−1)mes\{j}, if j ∈ s

0, if j /∈ s,

where m is the number of elements in s strictly larger than j. Below is a simple
example of a computation with the left interior product.

Example 2.2.3.
Let v1 = 3e1 + 4e2 and w1 = 2e1 − 3e2 + e12. Then, the left interior product

v1 ⌟ w1 = (3e1 + 4e2) ⌟ (2e1 − 3e2 + e12)

= 3 · 2e1 ⌟ e1 − 3 · 3e1 ⌟ e2 + 3e1 ⌟ e12 + 4 · 2e2 ⌟ e1 − 4 · 3e2 ⌟ e2 + 4e2 ⌟ e12

= 6 − 9 · 0 + 3e2 + 8 · 0 − 12 + 4 · (−1)1e1

= 6 + 3e2 − 12 − 4e1

= −6 − 4e1 + 3e2.

Moreover, as opposed to the exterior product, the interior products are not associa-
tive, that is, in general (a ⌟ b) ⌟ c ̸= a ⌟ (b ⌟ c), and likewise for the right interior
product, but they satisfy the following important relations [6, p. 53]:

a) (v1 ∧ v2) ⌟ w = v2 ⌟ (v1 ⌟ w),

b) (v1 ⌟ w) ⌞ v2 = v1 ⌟ (w ⌞ v2),
c) w ⌞ (v1 ∧ v2) = (w ⌞ v2) ⌞ v1,

10

2. Multivectors

and
d) v ⌟ w = (−1)l(k−l)w ⌞ v, w ∈ ∧kV, v ∈ ∧lV.

Below is an illustration of a typical way one of these relations will be used.

Example 2.2.4.
Let v2 = 2e1 − e2 + 2e12 and w2 = e12. Computing the left interior product
v2 ⌟ w2, we get

v2 ⌟ w2 = (2e1 − e2 + 2e12) ⌟ e12

= 2e1 ⌟ e12 − e2 ⌟ e12 + 2e12 ⌟ e12

= (−1)0 · 2e2 − (−1)1e1 + 2e2 ⌟ (e1 ⌟ e12)

= 2e2 + e1 + 2 · (−1)0e2 ⌟ e2

= 2e2 + e1 + 2

= 2 + e1 + 2e2.

Note the use of property a) between the second and the third row.

In the following parts of this thesis we will mostly use the left interior product, but
in a few cases we will also use encounter the right interior product. Therefore, it
can be worth noting that by relation d) above, w1 ⌞ v1 = −v1 ⌟ w1 = 6 + 4e1 − 3e2,
while w2 ⌞ v2 = v2 ⌟ w2 in Example 2.2.4. It is thus important to keep track of the
sign when dealing with the interior products, but relation d) gives a convenient way
to swap from the right to the left interior product.

As a last remark of this section, for the case es ⌟ et with |s|, |t| > 1, instead of
repeatedly use relation a) above, Definition 2.2.2 can be used to compute

es ⌟ et =

ϵ(s, t \ s)et\s, if s ⊂ t

0, if s ̸⊂ t
and

et ⌞ es =

ϵ(t \ s, s)et\s, if s ⊂ t

0, if s ̸⊂ t.

Again, in the parts of this thesis where this theory is applied, we will very rarely
have |s| > 2, so the rules described before Example 2.2.4 and the relations a)-d)
above will suffice for our purposes. In a few cases we will also encounter the inner
product of two multivectors. If we demand that the induced basis {es}|s|=k for ∧kV
(see Defintion 2.1.1) is an ON-basis whenever {e1, ..., en} is an ON-basis for V, then
we get a natural definition of the inner product. For example, if {e1, e2, e3} is an ON-
basis for R3, then ⟨e12, e12⟩ = 1 but ⟨e12, e13⟩ = 0. In practice, if v, w ∈ ∧V are two

11

2. Multivectors

multivectors where dim(V) = n, we can compute ⟨v, w⟩ = v0⌟w0+v1⌟w1+...+vn⌟wn,
where v = v0 + ...+vn, w = w0 + ...+wn, and all vi, wi are homogeneous multivectors
of degree i. As a last note of this section, we also mention that we now can see the
claim from earlier in this section that the inner product is the adjoint of the exterior
product. Indeed, let f, g, h ∈ ∧V . We then have, by the use of relation a) in this
section

⟨f ∧ g, h⟩ = (f ∧ g)0 ⌟ h0 + (f ∧ g)1 ⌟ h1 + ...+ (f ∧ g)n ⌟ hn

= (f0 ∧ g0) ⌟ h0 + ((f0 ∧ g1) ⌟ h1 + (f1 ∧ g0) ⌟ h1) + ...

= g0 ⌟ (f0 ⌟ h0) + (g1 ⌟ (f0 ⌟ h1) + g0 ⌟ (f1 ⌟ h2)) + ...

= ⟨g, f ⌟ h⟩. (2.1)

This equality will be used in Section 3.1.

2.3 Hodge stars
The Hodge star maps will later be useful for solving the Stokes equation in Section
4.2. Again, we restrict our attention to an inner product space V .

Definition 2.3.1. Hodge star maps [6, p. 54]
Let dim(V) = n, w ∈ ∧V , and en̄ = e1 ∧ e2 ∧ ... ∧ en. Then, the Hodge star maps
are

w 7→ ∗w := en̄ ⌞ w,

w 7→ w∗ := w ⌟ en̄.

Below are two examples where the first Hodge star map, w 7→ ∗w, is applied to a
bivector field and a vector field respectively, which illustrates a technique used in
Section 4.2.

Example 2.3.2.
a) Let w1 = fe12 and n̄ = {1, 2}. Applying the Hodge star map, we get

∗w1 = e12 ⌞ fe12 = fe12 ⌟ e12 = fe2 ⌟ (e1 ⌟ e12) = fe2 ⌟ e2 = f,

where we have used relations d) and a) from Section 2.2. So applying the Hodge
star to the bivector field w1 = fe12 gives a scalar field with the same expression
f .

12

2. Multivectors

b) Let w2 = ge1 + he2 and again n̄ = {1, 2}. Applying the Hodge star map to
this vector field, one gets

∗w2 = e12 ⌞ (ge1 +he2) = e12 ⌞ge1 + e12 ⌞he2 = ge1 ⌟ e12 +he2 ⌟ e12 = −he1 +ge2.

So by applying the Hodge star map to the vector field w2, we have got a vector
field ∗w2 orthogonal to w2.

Since the Hodge star maps will be frequently used, we formulate a proposition about
some of their properties.

Proposition 2.3.3. [6, pp. 55f]
The Hodge star maps ∗w and w∗ have the following properties for all wi ∈ ∧V .
a) They are each other’s inverses, i.e., (∗w1)∗ = w1 and ∗(w1∗) = w1.
b) They swap exterior and interior products in the following sense.

∗(w1 ∧ w2) = (∗w2) ⌞ w1, (w2 ⌞ w1)∗ = w1 ∧ (w2∗),

(w1 ∧ w2)∗ = w2 ⌟ (w1∗), ∗ (w2 ⌟ w1) = (∗w1) ∧ w2.

Proof.

a) By linearity of the interior product, it suffices to show the case w1 = es. We
have

(∗es)∗ = (en̄ ⌞ es)∗ = ϵ(n̄ \ s, s)en̄\s ⌟ en̄ = (ϵ(n̄ \ s, s))2es = es,

∗(es) = ∗(es ⌟ en̄) = ϵ(s, n̄ \ s)en̄ ⌞ en̄\s = (ϵ(s, n̄ \ s))2es = es.

b) By using the definition of Hodge star map and relation c) above, one gets

∗(w1 ∧ w2) = en̄ ⌞ (w1 ∧ w2) = (en̄ ⌞ w2) ⌞ w1 = (∗w2) ⌞ w1.

Likewise, using relation a),

(w1 ∧ w2)∗ = (w1 ∧ w2) ⌟ en̄ = w2 ⌟ (w1 ⌟ en̄) = w2 ⌟ (w1∗).

To show (w2 ⌞ w1)∗ = w1 ∧ (w2∗), we let w2 = ∗w. The left hand side then equals

((∗w) ⌞ w1)∗ = (∗(w1 ∧ w))∗ = w1 ∧ w,

where the first equalities in a) and b) of this proposition are used. The right hand
side equals the left hand side since

w1 ∧ (w2∗) = w1 ∧ ((∗w)∗) = w1 ∧ w.

13

2. Multivectors

Lastly, setting w1 = w∗ and using the third equality in b) of this proposition, one
gets

∗(w2 ⌟ (w∗)) = ∗((w ∧ w2)∗) = w ∧ w2,

(∗w1) ∧ w2 = (∗(w∗)) ∧ w2 = w ∧ w2,

proving the last identity.

As mentioned earlier, the Hodge star maps will later prove to be very useful in the
solution of the Stokes equation in Section 4.2. But as an interesting remark, we
conclude this section by showing an example of how some basic concepts from linear
algebra can be put in a more general context with the help of multivectors, the
exterior and interior products, and the Hodge star maps.

Example 2.3.4. [6, pp. 58f]
Let v1 = x1e1 + y1e2 + z1e3 and v2 = x2e1 + y2e2 + z2e3. Consider the left Hodge
star map applied to the exterior product

∗(v1 ∧ v2) = e123 ⌞ ((x1e1 + y1e2 + z1e3) ∧ (x2e1 + y2e2 + z2e3))

= e123 ⌞ ((x1y2 − x2y1)e12 + (x1z2 − x2z1)e13 + (y1z2 − y2z1)e23)

= (y1z2 − y2z1)e1 + (x1z2 − x2z1)e2 + (x1y2 − x2y1)e3.

As seen above, for v1, v2 ∈ ∧1V with dim(V) = 3, this agrees with the vector
product. Note that the vector product in this way is a composition of two
operators, and that the anticommutativity of the vector product is linked to the
anticommutativity of the exterior product. Similarily, for v1, v2, v3 ∈ ∧1V it can
be shown that

⟨v1, v2 × v3⟩ = ∗(v1 ∧ v2 ∧ v3), and

v1 × (v2 × v3) = −v1 ⌟ (v2 ∧ v3).

2.4 Exterior and interior derivatives
The interior and exterior derivatives, defined for multivector fields, are two funda-
mental concepts in multivector analysis. The definition of the interior derivative
uses the interior product, while the exterior derivative uses the exterior product and
we will in the end of this section see how they generalise the concepts of gradient,
divergence, and curl from vector calculus. Throughout this thesis, we use the nabla
symbol ∇ := ∑n

i=1 ei∂i.

14

2. Multivectors

Definition 2.4.1. [6, p. 212]
Let D ⊂ X be an open set, (X,D) have dimension n, and F : D → ∧V be a
multivector field differentiable at x ∈ D. Then its interior derivative is defined
by

δF (x) := ∇ ⌟ F (x) =
n∑

i=1
ei ⌟ ∂iF (x).

Its exterior derivative is defined by

dF (x) := ∇ ∧ F (x) =
n∑

i=1
ei ∧ ∂iF (x).

Note that the for a k−vector field F , we have δF ∈ ∧k−1V and dF ∈ ∧k+1V . For
example, the interior derivative of a vector field is a scalar field, while the exterior
derivative is a bivector field. In the following sections, the usual case is that the
exterior or interior derivative is applied to a vector field F = f1e1 + f2e2 in a two
dimensional domain. Below are two concrete examples of computations with these
derivatives.

Example 2.4.2.
Let F = (x2 + xy)e1 + (y3 − x3)e2 ∈ ∧1V . Then

dF = ∂1(x2 + xy)e11 + ∂1(y3 − x3)e12 + ∂2(x2 + xy)e21 + ∂2(y3 − x3)e22

= 0 − 3x2e12 − xe12 + 0

= −(3x2 + x)e12 ∈ ∧2V, and

δF = ∂1(x2 + xy)e1 ⌟ e1 + ∂1(y3 − x3)e1 ⌟ e2 + ∂2(x2 + xy)e2 ⌟ e1 + ∂2(y3 − x3)e2 ⌟ e2

= (2x+ y) + 0 + 0 + (3y2)

= 2x+ y + 3y2 ∈ ∧0V.

15

2. Multivectors

One important shared property of the operators d and δ (pronounced ’del’), is that
they are nilpotent. Indeed, let F be a C2 regular multivector field. Then we have

d2F = ∇ ∧ (∇ ∧ F)

= ∇ ∧

(
n∑

i=1
ei ∧ ∂iF

)

=
n∑

j=1
ej ∧ ∂j

(
n∑

i=1
ei ∧ ∂iF

)

=
n∑

i,j=1
ej ∧ ei ∧ ∂j∂iF

= 0,

using ei ∧ ei = 0, ei ∧ ej = −ej ∧ ei, and ∂j∂iF = ∂i∂jF, ∀i, j. Similarly,

δ2F = ∇ ⌟ (∇ ⌟ F)

= ∇ ⌟

(
n∑

i=1
ei ⌟ ∂iF

)

=
n∑

j=1
ej ⌟ ∂j

(
n∑

i=1
ei ⌟ ∂iF

)

=
n∑

i,j=1
ej ⌟ (ei ⌟ ∂j∂iF)

=
n∑

i,j=1
(ej ∧ ei) ⌟ ∂j∂iF

= 0,

using also relation a) in Section 2.2. The nilpotence of d and δ allows us to identify
(d+ δ)2 with the Laplace operator ∆ := ∑n

i=1
∂2

∂xi
2 . For example, if F = f1e1 + f2e2

is a vector field, one has

(d+ δ)2F = (d2 + dδ + δd+ δ2)F

= (dδ + δd)(f1e1 + f2e2)

= d(∂1f1 + ∂2f2) + δ((∂1f2 − ∂2f1)e12)

= (∂2
1f1 + ∂1∂2f2)e1 + (∂2∂1f1 + ∂2

2f2)e2 + (∂2
1f2 − ∂1∂2f1)e2

− (∂2∂1f2 − ∂2
2f1)e1

= (∂2
1f1 + ∂2

2f1)e1 + (∂2
1f2 + ∂2

2f2)e2

= (∆f1)e1 + (∆f2)e2 := ∆F,

16

2. Multivectors

which will be used in the following sections. To conclude this section we address
the question of how the exterior and interior derivatives generalise the concepts of
gradient, divergence, and curl from classical vector calculus. Below is an example
showing this for the case X = R3 and D ⊂ R3 an open set.

Example 2.4.3.
For vector fields we use the basis {e1, e2, e3}, and for bivector fields {e23, e31, e12}
since we have the correspondences ∗e23 = e1, ∗e31 = e2, and ∗ e12 = e3. Now let
F0 : D → ∧0V be a scalar function. Then its exterior derivative

dF0 = ∂1F0e1 + ∂2F0e2 + ∂3F0e3,

equals the gradient ∇F0.

Now let F1 : D → ∧1V, F1 = fe1 +ge2 +he3, be a vector field, where f, g, and h
are scalar functions. In this case the exterior derivative

dF1 = ∂1ge12 + ∂1he13 + ∂2ge21 + ∂2he23 + ∂3fe31 + ∂3ge32

= (∂2h− ∂3g)e23 + (∂3f − ∂1h)e31 + (∂1g − ∂2f)e12,

corresponds to the curl of F1, since curl(F1) = ∗(dF). Computing the interior
derivative, one gets

δF1 = ∂1f + ∂2g + ∂3h,

which equal the divergence of F1. Continuing with the bivector field F2 =
ae23 + be31 + ce12, where a, b, and c are scalar functions, one gets that the ex-
terior derivative

dF2 = (∂1a+ ∂2b+ ∂3c)e123,

which one recognises as the divergence, or to be precise div(∗F2) = ∗(dF2).
Computing the interior derivative,

δF2 = −∂1be3 + ∂1ce2 + ∂2ae3 − ∂2ce1 − ∂3ae2 + ∂3be1

= (∂3b− ∂2c)e1 + (∂1c− ∂3a)e2 + (∂2a− ∂1b)e3,

one can see that this equals −curl(∗F2). Lastly, if F3 = Fe123 ∈ ∧3V , for a
scalar function F , the interior derivative equals

δF3 = ∂1Fe23 + ∂2Fe31 + ∂3Fe12,

corresponding to the gradient, since grad(∗F3) = ∗(δF3).

17

2. Multivectors

This can be summarized in the following picture:

Figure 2.1: Relations between grad, div, and curl and concepts in multivector
analysis, 3D.

For V = R2, we extend the definition ∇×F of curl(F) for F ∈ ∧1R3 to G ∈ ∧1R2

by setting curl(G) = ∗(∇∧G), which is natural by Example 2.3.4. We then have
the corresponding relations:

Figure 2.2: Relations between grad, div, and curl and concepts in multivector
analysis, 2D.

18

CHAPTER 3

Hodge decompositions

In this chapter the goal is to present the concept of Hodge decompositions. A Hodge
decomposition is an orthogonal splitting of the Hilbert space L2(D; ∧V) := {F :
(
∫

D|F (x)|2 dx) 1
2 < ∞} of square integrable multivector fields, where D is a bounded

Lipschitz domain. A Lipschitz domain is a domain in Euclidean space where there is
a requirement on the regularity of the boundary. In particular, any polygonal region
or domain with a C1−boundary is a Lipshitz domain. Theorem 3.1.6 implies the
possibility to split any vector field F ∈ L2(D; ∧V), where D is a bounded Lipschitz
domain in Euclidean space, into three parts, F = F1 + F2 + F3, where one of the
parts belongs to a finite-dimensional subspace of L2(D; ∧V). The two other parts
belong to a subspace of curl free and a subspace of divergence free vector fields
respectively. The subspaces in the decomposition are defined by using the exterior
and interior derivatives from Section 2.4. In the following, we will use the notation
L2(D) := L2(D; ∧V). Sometimes, when it is relevant, we will specify what type of
k−vector field we are interested in by writing L2(D; ∧k). For example, if F is a
vector field in the ordinary sense, we can write F ∈ L2(D; ∧1).

Definition 3.0.1. [6, p. 244]
Let D be a bounded Lipshitz domain in a Euclidean space with boundary ∂D
and outward pointing unit normal n̂. Define the following linear subspaces of
L2(D), called Hodge subspaces:

R(d) := {F ∈ L2(D) : F = ∇ ∧ U for some U ∈ L2(D)},
N(d) := {F ∈ L2(D) : ∇ ∧ F = 0},
R(δ) := {F ∈ L2(D) : F = ∇ ⌟ U for some U ∈ L2(D) with n̂ ⌟ U = 0 on ∂D},
N(δ) := {F ∈ L2(D) : ∇ ⌟ F = 0 and n̂ ⌟ F = 0 on ∂D},
Cq(D) := N(d) ∩N(δ),
R(d) := {F ∈ L2(D) : F = ∇ ∧ U for some U ∈ L2(D) with n̂ ∧ U = 0 on ∂D},
N(d) = {F ∈ L2(D) : ∇ ∧ F = 0 and n̂ ∧ F = 0 on ∂D},
R(δ) := {F ∈ L2(D) : F = ∇ ⌟ U for some U ∈ L2(D)},
N(δ) := {F ∈ L2(D) : ∇ ⌟ F = 0},
C⊥(D) := N(d) ∩N(δ).

As for the L2−space, we may sometimes write for example R(d; ∧k) if we want to

19

3. Hodge decompositions

specify what kind of k-vector field we are interested in. The lines under the operators
in for example R(d) correspond to a boundary condition. The additional demand
n̂ ∧U = 0 on ∂D means that F ∈ R(d) is normal at the boundary, which is the case
for all the fields belonging to one of the Hodge spaces above with the underlined
d. Similarly, for the spaces with δ, the fields are tangential at the boundary. This
will be further discussed in Section 3.1. It is also important to note the inclusions
R(d) ⊂ R(d) ⊂ N(d) and R(δ) ⊂ R(δ) ⊂ N(δ). The last inclusions in these chains
can be seen by the fact that d and δ are nilpotent operators (see Section 2.4). In this
and the following chapter, just as in the definition above, n̂ will always denote the
outward pointing unit normal vector to the domain D. For an n-dimensional domain
D, we will often use the notation n̂ = n̂1e1 + ... + n̂nen. To get an idea of what we
are aiming at, the pictures below show an example of a Hodge decomposition of a
vector field F 1.

(a) A vector field F to be decomposed. (b) The curl-free part, F1 ∈ R(d).

(c) F2 ∈ Cq(D). (d) The divergence-free part, F3 ∈ R(δ).

Figure 3.1: Example of a Hodge decomposition, F = F1 + F2 + F3. The curl-free
part, F1, is a gradient field. F2 and F3 are both tangential to the boundary. We
shall later see (Section 3.2) that for a two-dimensional simply connected domain,
i.e., a domain without a hole, we always have F2 = 0 in a Hodge decomposition of
a vector field F ∈ L2(D; ∧1).

1F = (2y(1 − x2 − y2) + y − 3x2y3)e1 − (2x(1 − x2 − y2) − x + 3x3y)e2

20

3. Hodge decompositions

3.1 Tangential and normal Hodge decompositions
The Hodge decompositions will play a major roll in the solution of the Stokes equa-
tion in Section 4.2, where we will have a simply connected domain D ⊂ R2. Before
presenting the main theorem, we introduce some tools needed to understand the
theory behind Hodge decompositions and to follow some of the proofs given in this
section. The first proposition is presented for the sole purpose that it is used in the
proof of Theorem 3.1.2.

Proposition 3.1.1. The parallelogram law [2, p. 173]
Let H be a Hilbert space. Then, for all x, y ∈ H,

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Proof.

∥x+ y∥2 + ∥x− y∥2 = ∥x∥2 + 2Re⟨x, y⟩ + ∥y∥2 + ∥x∥2 − 2Re⟨x, y⟩ + ∥y∥2

= 2(∥x∥2 + ∥y∥2).

Theorem 3.1.2. [2, pp. 173f]
If V is a closed subspace of a Hilbert space H, then H = V ⊕ V ⊥, where V ⊥ is
the orthogonal complement of V .

Proof.

Given x ∈ H, let ϵ = inf{∥x − y∥ : y ∈ V } and {yn} be a sequence in V such
that ∥x− yn∥ → δ, n → ∞. Using Proposition 3.1.1, one can write

2(∥yn − x∥2 + ∥ym − x∥2) = ∥yn − ym∥2 + ∥yn + ym − 2x∥2.

Rewriting
∥yn + ym − 2x∥2 = 4∥1

2(yn + ym) − x∥2,

observing that 1
2(yn + ym) ∈ V , and using the definition of ϵ one gets

∥yn − ym∥2 = 2∥yn − x∥2 + 2∥ym − x∥2 − 4∥1
2(yn + ym) − x∥2

≤ 2∥yn − x∥2 + 2∥ym − x∥2 − 4ϵ2.

As m,n → ∞,

2∥yn − x∥2 + 2∥ym − x∥2 − 4ϵ2 → 2ϵ+ 2ϵ− 4ϵ = 0,

21

3. Hodge decompositions

so {yn} is a Cauchy sequence.

Now, let y := limn→∞ yn and z := x − y. Then, since V is closed, one has y ∈ V
and ∥x − y∥ = ϵ. Next, we claim that z ∈ V ⊥. To see this, let u ∈ V and define a
function f by

f(t) := ∥z + tu∥2 = ∥z∥2 + 2t⟨z, u⟩ + t2∥u∥2.

The function f is real valued for t ∈ R, and it attains its minimum value ϵ2 at t = 0
because z + tu = x − (y − tu) with y − tu ∈ V , and f(0) = ∥z∥2 = ∥x − y∥2 = ϵ2.
Moreover,

f ′(t) = 2⟨z, u⟩ + 2t∥u∥2.

Thus, since t = 0 is a minimum, f ′(0) = 2⟨z, u⟩=0, which means that ⟨z, u⟩ = 0 and
z ∈ V ⊥, proving the claim.

By the claim above, one has x = y + z with y ∈ V and z ∈ V ⊥. It remains
to show that the decomposition is unique. Assume that x = y′ + z′ is another
decomposition with y′ ∈ V and z′ ∈ V ⊥. Then

y − y′ = (x− z) − (x− z′) = z′ − z,

and since y, y′ ∈ V and z, z′ ∈ V ⊥ one has

y − y′ = z′ − z ∈ V ∩ V ⊥.

This means that y− y′ and z′ − z are orthogonal to themselves and hence are equal
to zero. Thus we must have y = y′ and z = z′, which shows the uniqueness and
completes the proof.

Before stating the Hodge decomposition theorems, one more important fact is needed.

Theorem 3.1.3. [6, pp. 354ff]
Let D be a bounded Lipschitz domain in a Euclidean space. Then, R(d), R(δ), R(d),
and R(δ) are closed subspaces of L2(D).

This theorem will not be proved in full, but we will make some important observa-
tions supporting the claim. Firstly, d and −δ are formally adjoint operators, and so
are δ and − d. Indeed, let D ⊂ R2 be a bounded Lipschitz domain, f ∈ L2(D; ∧0)
a scalar function, and g ∈ L2(D; ∧1) a vector field. Moreover, define a vector field
V (x) := ⟨e1 ∧ f(x), g(x)⟩e1 + ⟨e2 ∧ f(x), g(x)⟩e2. By the divergence theorem, we have∫

∂D
n̂(y) · V (y) dy =

∫∫
D

div(V (x)) dx.

The left hand side of this equation equals∫
∂D

⟨n̂(y) ∧ f(y), g(y)⟩ dy,

22

3. Hodge decompositions

since

n̂(y) · V (y) = n̂1(y)⟨e1 ∧ f(y), g(y)⟩ + n̂2(y)⟨e2 ∧ f(y), g(y)⟩

= ⟨(n̂1(y)e1 + n̂2(y)e2) ∧ f(y), g(y)⟩

= ⟨n̂(y) ∧ f(y), g(y)⟩.

By the observations in Example 2.4.3, Figure 2.2, div(V (x)) = δv(x). Thus, the
right hand side equals∫∫

D
div(V (x)) dx =

∫∫
D
∂1⟨e1 ∧ f(x), g(x)⟩ + ∂2⟨e2 ∧ f(x), g(x)⟩ dx

=
∫∫

D
⟨e1 ∧ ∂1f(x), g(x)⟩ + ⟨e1 ∧ f(x), ∂1g(x)⟩ + ⟨e2 ∧ ∂2f(x), g(x)⟩

+ ⟨e2 ∧ f(x), ∂2g(x)⟩ dx

=
∫∫

D
⟨∇ ∧ f(x), g(x)⟩ + ⟨f(x), e1 ⌟ ∂1g(x)⟩ + ⟨f(x), e2 ⌟ ∂2g(x)⟩ dx

=
∫∫

D
⟨∇ ∧ f(x), g(x)⟩ + ⟨f(x),∇ ⌟ g(x)⟩ dx.

In this way, we have arrived at an equality we will use in several cases below, namely

∫
∂D

⟨n̂(y) ∧ f(y), g(y)⟩ dy =
∫∫

D
⟨∇ ∧ f(x), g(x)⟩ + ⟨f(x),∇ ⌟ g(x)⟩ dx. (3.1)

Rewriting this and leaving out the variables and one of the integral signs on the
right hand side for ease of notation, one can equivalently write∫

D
⟨f,∇ ⌟ g⟩ dx =

∫
∂D

⟨n̂ ∧ f, g⟩ dy −
∫

D
⟨∇ ∧ f, g⟩ dx.

This means that for any f such that n̂ ∧ f = 0 on the boundary, −d is the formally
adjoint operator to δ. Since this requirement is precisely the boundary condition in
R(d), we conclude that the formally adjoint operator of δ is −d. To show that d and
−δ are formally adjoint, one can be use the adjointness between the exterior and
the interior product (see 2.1), from which one can conclude ⟨n̂ ∧ f, g⟩ = ⟨f, n̂ ⌟ g⟩. It
can moreover be shown that δ and −d respectively d and −δ are adjoint in the sense
of unbounded operators2, so by the Closed range theorem from functional analysis,
R(d) is closed if and only if R(δ) is closed and R(δ) is closed if and only if R(d) is
closed. It still remains, though, to argue for the closedness of one of the spaces in
each pair. To narrow it down even further, one can show that R(d) is closed if and
only if R(δ) is closed. To see this, we apply the interior derivative to the (multi-)
vector field ∗F , giving

δ(∗F) = ∇ ⌟ (∗F) = (∇∗) ⌞ F = ±F ⌟ (∇∗) = ±(∇ ∧ F)∗ = ±(dF)∗,
2This is beyond the scope of this thesis, but a proof can be found in [6, p. 353], Proposition

10.2.3.

23

3. Hodge decompositions

where we have used the properties b) and d) from Section 2.2 and Proposition 2.3.3.
We are thus left with the task to argue for the closedness of R(d) or R(δ). To
illustrate the main idea behind the proof, we turn our attention to R(d). To prove
that R(d) is closed, one needs to show that any converging sequence {fn} converges
to some f ∈ R(d). If we let u ∈ L2(D; ∧0) and f = du ∈ L2(D; ∧1), this can be done
by defining a linear, bounded operator T : R(d; ∧1) → L2(D; ∧0) such that Tf = u.
If this is possible, then un = Tfn converges to u = Tf , meaning that du = f and
thus f ∈ R(d). One way to define the potential operator T is to use Poincaré’s
theorem (see [6, p. 240]). For our case, we start by letting

T ′f = x ⌟
∫ 1

0
f(tx) dt,

where x ∈ D. T ′ can also be expressed as a curve integral with notation from vector
calculus. If f = f1e1 + ... + fnen and γ(t) = (tx1, ..., txn), where t ∈ [0, 1], is the
straight line segment from the origin to a point x = (x1, ..., xn), then

T ′f =
∫ 1

0
f1(xt)x1 + ...+ fn(xt)xn dt.

The example below supports the claim that T ′ is a potential operator for f ∈
R(d; ∧1).

Example 3.1.4.
Let u = x2y + xy. We may then compute f = du = (2xy + y)e1 + (x2 + x)e2.
Applying T ′, we get

T ′f = (xe1 + ye2) ⌟
∫ 1

0
(2xyt2 + yt)e1 + (x2t2 + xt)e2 dt

= (xe1 + ye2) ⌟
((2xy

3 + y

2

)
e1 +

(
x2

3 + x

2

)
e2

)

= x2y + xy

= u.

Even though T ′ is a potential operator we have not shown that it is bounded (in the
L2−norm). Unfortunately, it is not, but there is a way to modify T ′ to become a
bounded operator. The crucial fact needed to do so is that D is a bounded domain;
it is for example not possible to do for the whole R2. The details can be found in
[6, pp. 362ff], but the main idea is to modify the operator T ′ to an operator T by
averaging over different base points for the curve integral.

Before stating the Hodge decomposition theorem, we formulate a Lemma which
is proven with a similar application of the divergence theorem as we used to derive
3.1. It also gives an explanation to why there appear boundary conditions on some

24

3. Hodge decompositions

of the subspaces appearing in Theorem 3.1.6 and Corollary 3.1.7.

Lemma 3.1.5.
R(d)⊥ = N(δ) and R(δ)⊥ = N(d).

Proof.

Let u ∈ ∧kV and g ∈ ∧k+1V . If g ∈ R(d)⊥, then we have
∫

D⟨∇ ∧ u, g⟩ dx = 0.
Moreover, by the divergence theorem,∫

D
⟨∇ ∧ u, g⟩ dx =

∫
∂D

⟨n̂ ∧ u, g⟩ dy −
∫

D
⟨u,∇ ⌟ g⟩ dx,

for all u. In particular, we may choose a (non-constant) u that is equal to zero on the
boundary. Then we see that a necessary condition for g ∈ R(d)⊥ is that ∇ ⌟ g = 0.
And for any g such that ∇ ⌟ g = 0, in order to have g ∈ R(d)⊥ when u|∂D ̸= 0, one
sees that one also must have n̂ ⌟ g = 0 on the boundary, since∫

∂D
⟨n̂ ∧ u, g⟩ dy =

∫
∂D

⟨u, n̂ ⌟ g⟩ dy.

Thus, R(d)⊥ = N(δ). R(δ)⊥ = N(d) is shown in a similar way. Let now instead
u ∈ ∧k+1V and g ∈ ∧kV . The divergence theorem gives∫

D
⟨∇ ⌟ u, g⟩ dx =

∫
∂D

⟨n̂ ⌟ u, g⟩ dy −
∫

D
⟨u,∇ ∧ g⟩ dx,

from which one conclude that g ∈ R(δ)⊥ if and only if ∇ ∧ u = 0 and n̂ ∧ g = 0 on
the boundary, since ⟨n̂ ⌟ u, g⟩ = ⟨u, n̂ ∧ g⟩.

We are now ready to state the Hodge decomposition theorem, which will be crucial
in Section 4.2.

Theorem 3.1.6. Tangential Hodge decomposition [6, p. 245]
Let D be a bounded Lipschitz domain in a Euclidean space. Then one has an
orthogonal splitting

L2(D) = R(d) ⊕ Cq(D) ⊕R(δ),

where R(d) ⊕ Cq(D) = N(d), Cq(D) ⊕ R(δ) = N(δ), Cq(D) := N(d) ∩ N(δ),
and the tangential cohomology space Cq(D) is finite-dimensional. At the level
of k−vector fields, each L2(D; ∧kV) splits in this way.

25

3. Hodge decompositions

Proof.

Theorem 3.1.3, Theorem 3.1.2 and Lemma 3.1.5 together give that L2(D) = R(d) ⊕
N(δ). Using the divergence theorem as in the proof of 3.1.5, with F ∈ ∧kV and
G ∈ ∧k+1V , one gets∫

D
⟨∇ ∧ F,G⟩ dx =

∫
∂D

⟨F, n̂ ⌟G⟩ dy −
∫

D
⟨F,∇ ⌟G⟩ dx.

If G is a field tangential at the boundary, and thus in particular n̂ ⌟ G = 0 on ∂D,
then one has ∫

D
⟨∇ ∧ F,G⟩ dx = −

∫
D

⟨F,∇ ⌟G⟩ dx.

The left hand side vanishes for all tangential G exactly when ∇ ∧ F = 0, that is
F ∈ N(d), and the right hand side vanishes when F is orthogonal to R(δ). This
shows that we also have a splitting L2(D) = R(δ) ⊕ N(d). By the observations in
the begging of this chapter, we have R(d) ⊂ N(d). We claim also that R(δ) ⊂ N(δ).
To see this, let F = ∇ ⌟ U ∈ R(δ). By nilpotence, ∇ ⌟ F = 0 is clear. Moreover,

n̂ ⌟ F = n̂ ⌟ (∇ ⌟ U) = ±n̂ ⌟ (U ⌞ ∇) = ±(n̂ ⌟ U) ⌞ ∇ = 0,

where we have used Properties d) and b) from Section 2.2. Taking intersections of
the two splittings L2(D) = R(d) ⊕N(δ) = R(δ) ⊕N(d) gives the desired splitting

L2(D) = R(d) ⊕ Cq(D) ⊕R(δ).

The finite-dimension of Cq(D) will not be proven here, but discussed in Section
3.2.

The name tangential Hodge decomposition is motivated by the fact that the fields
in the space R(δ) and Cq(D) are tangential to the boundary, as mentioned after
Definition 3.0.1. To show that the boundary condition imposed on R(δ) means
that the fields are tangential, we look at the case R(δ; ∧1) in a two dimensional
domain. Let F = f1e1 + f2e2 = ∇ ⌟ U ∈ L2(D; ∧1) and φ be a scalar function with
ψ = ∇ ∧ φ. By the divergence theorem, reasoning again as in the derivation of 3.1,
and nilpotence of d, we may write∫

D
⟨∇ ⌟ U, ψ⟩ dx =

∫
∂D

⟨n̂ ⌟ U, ψ⟩ dy −
∫

D
⟨∇ ∧ ψ,U⟩ dx

=
∫

∂D
⟨n̂ ⌟ U, ψ⟩ dy,

where we also have used the adjointness between ∧ and ⌟, i.e., ⟨U, n̂∧ψ⟩ = ⟨n̂⌟U, ψ⟩
(see 2.1). This means that F = ∇ ⌟ U is orthogonal to ψ = ∇ ∧ φ for all functions
φ if and only if n̂ ⌟ U on the boundary, which means that F ∈ R(δ). Applying the
divergence theorem again, noting that

∫
D⟨∇ ⌟U, ψ⟩ dx =

∫
D⟨∇ ∧φ, F ⟩ dx, and using

26

3. Hodge decompositions

the nilpotence of δ, we also get∫
D

⟨∇ ∧ φ, F ⟩ dx =
∫

∂D
⟨n̂ ∧ φ, F ⟩ dy −

∫
D

⟨φ,∇ ⌟ F ⟩ dx

=
∫

∂D
⟨n̂ ∧ φ, F ⟩ dy

=
∫

∂D
⟨φ, n̂ ⌟ F ⟩ dy.

This means that F is orthogonal to ψ = ∇ ∧ φ for all functions φ if and only if
n̂ ⌟ F = 0 on the boundary. Since n̂ ⌟ F = n̂1f1 + n̂2f2 = ⟨n̂, F ⟩, we conclude
that this means that if F = ∇ ⌟ U , then F ∈ R(δ) is equivalent to that F is
tangential at the boundary. We note also that the fields in the cohomology space
Cq(D) are tangential, since n̂ ⌟ F = 0 on the boundary for all F ∈ Cq(D). An-
other remark is that F = ∇ ⌟ U and n̂ ⌟ F = 0 on the boundary are not in general
sufficent conditions for concluding F ∈ R(δ). If D is not simply connected, for
example if D = {(x, y) : 1 < x2 + y2 < 4} we can construct a counter example. Let
U = (x2 + y2 − 1)e12. Then F = ∇ ⌟ U = −2ye1 + 2xe2 is both divergence free and
tangential at the boundary but F /∈ R(δ), since for points on x2 +y2 = 2, n̂⌟U ̸= 0.

To conclude this section, we present the first of two corollaries to Theorem 3.1.6. It
is about a different Hodge decomposition, which will not be used in the main parts
of this thesis, but it is natural to present for the completeness of this section and
its proof is a nice application of the Hodge star maps, contributing to the under-
standing of computations that will be carried out later. It also involves the space
C⊥(D), which like Cq(D) is finite dimensional and which is interesting to discuss at
the same time as Cq in Section 3.2. The second corollary to Theorem 3.1.6 is about
uniqueness of potentials, and will be postponed to Section 3.3.

Corollary 3.1.7. Normal Hodge decomposition [6, p. 246]
Let D be a bounded Lipschitz domain in a Euclidean space. Then one has an
orthogonal splitting

L2(D) = R(d) ⊕ C⊥(D) ⊕R(δ),

where R(d) ⊕ C⊥(D) = N(d), C⊥(D) ⊕ R(δ) = N(δ), C⊥(D) := N(d) ∩ N(δ),
and the normal cohomology space C⊥(D) is finite-dimensional. At the level of
k−vector fields, each L2(D; ∧kV) splits in this way.

Proof.

By Theorem 3.1.6, for any F ∈ L2(D) one may write F = F1 + F2 + F3 with F1 ∈
R(d), F2 ∈ Cq(D), and F3 ∈ R(δ). This means that

F = ∇ ∧ U + F2 + ∇ ⌟ V,

for some U, V ∈ ∧V with n̂ ⌟ V = 0 on ∂D. Since this is true for all F , we may as
well look at ∗F . Applying the Hodge star to the decomposition above, we get

∗F = ∗(∇ ∧ U) + ∗F2 + ∗(∇ ⌟ V) = (∗U) ⌞ ∇ + ∗F2 + (∗V) ∧ ∇

27

3. Hodge decompositions

= ±∇ ⌟ (∗U) + ∗F2 − ∇ ∧ (∗V) := F̃1 + F̃2 + F̃3,

using Proposition 2.3.3, relation d) from Section 2.2, and anticommutativity of the
exterior product. We see that F̃1 ∈ R(δ). Moreover, by using Proposition 2.3.3,

n̂ ∧ (∗V) = −(∗V) ∧ n̂ = − ∗ (n̂ ⌟ V) = 0 on ∂D,

since n̂ ⌟ V = 0 on ∂D. Therefore, we can conclude F3 ∈ R(d) and by the same
reasoning F2 ∈ C⊥(D), thereby proving the corollary.

One may here also note that the name normal Hodge decomposition is due to the
fact that the fields in R(d) are normal to the boundary. By a similar argument as
above for the tangential Hodge decomposition, for a field F ∈ R(d; ∧1) in a two
dimensional domain, one can show that one has n̂∧F = 0 on the boundary, which is
equivalent to ⟨n̂, (∗F)⟩ = 0 on the boundary, which by the observation in Example
2.3.2 implies that F is normal to the boundary (and likewise for the fields in C⊥(D)).

3.2 The cohomology spaces
Now we turn our attention to the cohomology spaces Cq(D) and C⊥(D). According
to Theorem 3.1.6, Cq(D) is finite dimensional and we also haveR(d)⊕Cq(D) = N(d).
Thus, Cq(D) is the gap between R(d) and N(d), and we can find corresponding re-
lations for C⊥. Intuitively, in light of this it is not surprising that the cohomology
spaces are smaller than R(d), R(d), R(δ), and R(δ). The following definition facili-
tates a discussion about the dimension of the cohomology spaces.

Definition 3.2.1. [6, p. 244]
Let

bk(D) := dim(Cq(D; ∧k)), k = 0, 1, 2, ..., n.

The numbers bk(D) are called the Betti numbers.

We assume now that D = {(x, y) : x2 + y2 < 1} ⊂ R2. The conclusions about
dim(Cq(D)) are valid also for other domains with a similar topology, in partic-
ular domains without holes and with a smooth boundary (for details, see [6, p.
373]), but we consider the unit disk for simplicity. Assume further that there is
a scalar function f ∈ Cq(D; ∧0). By definition of Cq(D), one must then have
∇ ⌟ f = 0,∇ ∧ f = 0, and n̂ ⌟ f = 0 on ∂D. The first and third identities are triv-
ially true, since ei ⌟ f = 0 for all i. The second is true if and only if ∂1f = ∂2f = 0,
which in turn is true if and only if f is a constant function. We have thus b0(D) = 1.

Turning the attention to L2(D; ∧1), let F be a vector field. We know from vec-
tor calculus that for a simply connected domain D every curl-free vector field is a
gradient field. If F ∈ Cq(D), then in particular dF = 0, which means F is curl-
free (see Example 2.4.3). Therefore we have F = ∇U = ∂1Ue1 + ∂2Ue2 for some

28

3. Hodge decompositions

U ∈ L2(D; ∧0). The definition of Cq(D) also requires δF = 0, which means δdU = 0,
which is equivalent to ∆U = 0, since

∆U = (d+ δ)2U = (d2 + dδ + δd+ δ2)U = δdU.

Since we also have n̂ ⌟ F = x∂1U + y∂2U = ∇U · n̂ = 0 on the boundary for a unit
normal n̂ = xe1 + ye2, this means that U is the solution to the Neumann problem∆U = 0 in D,

∂n̂U = 0 on ∂D.

Multiplying with a test function v ∈ H1(D) := {u(x) ∈ L2(D; ∧0) : ∂iu(x) ∈
L2(D; ∧0), i = 1, ..., n} and integrating over the domain, Greens´s theorem gives∫

D
∆U · v dx =

∫
∂D
∂n̂U · v dy −

∫
D

∇U · ∇v dx = −
∫

D
∇U · ∇v dx,

which leads to the well-known variational formulation to seek U ∈ H1(D) such that

−
∫

D
∇U · ∇v dx = 0, for all v ∈ H1(D).

Since this equality should be valid for all v ∈ H1(D), we can take v = U and get
−
∫

D(∇U)2 dx = 0 from which one can conclude that ∇U = 0, which means that U
is constant and that F = ∇U = 0. We conclude that Cq(D; ∧1) is empty and thus
b1(D) = 0.

Lastly, we assume F = he12 ∈ Cq(D; ∧2). ∇ ∧ F = 0 is trivially true. From
∇ ⌟ F = 0 one can conclude ∂1h = ∂2h = 0, which means that h is constant.
From the last part of the definition of Cq(D), for an outward pointing unit normal
n̂ = xe1 + ye2, one gets

n̂ ⌟ F = −yhe1 + xhe2 = 0 on ∂D.

Since we cannot have x = y = 0 on the boundary, we must have that h = 0 on
the boundary. But since h is constant, this means that h = 0 in all of D. Thus,
b2(D) = 0 and we conclude that Cq(D) only contains constant scalar functions and
that dim(Cq(D)) = 1.

If one instead look at the domain D = {(x, y) : 1 < x2 + y2 < 2}, an annulus, one
gets a different result. The vector field F = (−ye1+xe2)/(x2+y2) ∈ Cq(D; ∧1) [6, p.
247], which can be verified using Definition 3.0.1. For the annulus, dim(Cq(D)) = 2,
and one has the Betti numbers b0(D) = 1, b1(D) = 1, and b2(D) = 0. In Cq(D; ∧0)
one has the constant scalar functions and Cq(D; ∧2) = {0} for the same reasons as
earlier. Looking at the pictures in Figure 3.1 from the beginning of this chapter,
one can see that the cohomology part of the decomposed vector field is a field char-
acteristically circulating around the hole of the domain. This will be the case for
any decomposition of a vector field with a non-zero cohomology part in a domain
with a hole.

29

3. Hodge decompositions

As the above discussion indicates, dim(Cq(D)) contains information about the topol-
ogy of the domain. The number b0(D), for example, indicates the number of
connected components of D since any function in Cq(D) has to be constant on
each connected component. We end this section by mentioning that the dimen-
sion of C⊥(D) can be computed by if one knows the Betti numbers by using
dim(C⊥(D; ∧k)) = bn−k(D) [6, p. 373]. The dimension of this cohomology space
also contains topological information, but since we will not use the normal Hodge
decompositions in the computations in Chapter 4 of this thesis, we do not present
the details.

3.3 Hodge decompositions and PDE:s
The main application of Hodge decompositions in this thesis is to use the tangential
Hodge decomposition to solve the Stokes equation under the Hodge boundary condi-
tions. In this section, the link between Hodge decompositions and partial differential
equations (PDE:s) will be explained by two examples highlighting how the Hodge de-
compositions give existence and uniqueness results for solutions to the Poisson equa-
tion [6][pp. 249ff]. We start this section by presenting a second corollary to Theorem
3.1.6. In general, potentials U such that F = ∇∧U or F = ∇⌟U are not unique. For
example, if U is a scalar function one has ∇ ∧U = ∇U = ∇(U +C1) = ∇ ∧ (U +C1)
for any constant C1. In the same way, if U = fe1 + ge2 is a vector valued function,
then ∇ ⌟ (fe1 + ge2) = ∂1f + ∂2g = ∇ ⌟ ((f + f1(y))e1 + (g+ g1(x))e2) for any scalar
functions of one variable f1(y) and g1(x). Under some conditions, though, one can
find unique potentials, and that is the content of the following corollary.

Corollary 3.3.1. [6, pp. 246f]
We have the following uniqueness results for potentials.

a) ∀F ∈ R(d), ∃! U ∈ R(δ) such that F = ∇ ∧ U ,
b) ∀F ∈ R(d), ∃! U ∈ R(δ) such that F = ∇ ∧ U ,
c) ∀F ∈ R(δ), ∃! U ∈ R(d) such that F = ∇ ⌟ U , and
d) ∀F ∈ R(δ), ∃! U ∈ R(d) such that F = ∇ ⌟ U .

Proof.

We show it for a), the other cases are proven in the same way.

a) Let F = ∇ ∧ U . Using tangential Hodge decomposition (Theorem 3.1.6), we
can write

U = U1 + U2 + U3, with U1 ∈ R(d), U2 ∈ Cq(D), and U3 ∈ R(δ).

Moreover, ∇ ∧ U1 = 0, by nilpotence of d (see Section 2.4), and ∇ ∧ U2 = 0, since
Cq(D) ⊂ N(d). By Theorem 3.1.3, R(δ) is a closed subspace, and since R(d) ⊕
Cq(D) = N(d) and thus R(δ)⊥ = N(d), Theorem 3.1.2 gives that U = U3 is the
unique potential U ∈ R(δ) such that ∇ ∧ U = F .

30

3. Hodge decompositions

Consider the Poisson equation with homogeneous Dirichlet boundary conditions∆u(x) = g(x), for x ∈ D,

u(x) = 0, for x ∈ ∂D,

where we seek u(x) ∈ H1
0 (D) := {u(x) ∈ H1(D) : u(x)|∂D = 0} and where g(x) ∈

L2(D; ∧0) is a given scalar function. Since u(x) ∈ L2(D; ∧0) is a scalar function, we
have δu(x) = 0 and thus ∆u(x) = δdu(x). The above is therefore equivalent toδdu(x) = g(x), for x ∈ D,

u(x) = 0, for x ∈ ∂D.

Using the relations between the interior and exterior derivative and the gradient and
divergence described in Example 2.4.3, one may rewrite the first equation asdiv(F) = g(x),

∇u(x) = F.

Since we are searching for a function u(x) with u(x)|∂D = 0, we can conclude that
F ∈ R(d). By the normal Hodge decomposition and Corollary 3.3.1c), there is a
unique F ∈ R(d) such that g(x) = ∇ ⌟ F = div(F). Using b) from the same corol-
lary gives that there is a unique u(x) ∈ R(δ) such that ∇∧u(x) = ∇u(x) = F . Since
C⊥(D; ∧0) and R(d; ∧0) both are empty, the normal Hodge decomposition gives that
this u(x) is the unique solution to the above Poisson equation.

Consider now the Poisson equation with homogeneous Neumann boundary con-
ditions ∆u(x) = g(x), for x ∈ D,

∂n̂u(x) = 0, for x ∈ ∂D,

with g ∈ L2(D; ∧0) and where we now seek u(x) ∈ H1(D). By the same reasoning
as above, the first equation may be rewritten asdiv(F) = g(x),

∇u(x) = F.

Using instead the tangential Hodge decomposition and Corollary 3.3.1d), we get that
there is a unique F ∈ R(d) such that g(x) = div(F), if we demand that g(x) ∈ R(δ),
which means that g(x) must be orthogonal to Cq(D), that is, orthogonal to the
functions that are constant on each connected component of D (see Section 3.2).
Moreover, by Corollary 3.3.1a), u(x) is the unique scalar function in R(δ) such that
∇u(x) = F . As opposed to the case with Dirichlet boundary conditions, this u(x)
is not the unique solution in L2(D; ∧0), though, since Cq(D; ∧0) is not empty but
consists of the componentwise constant scalar functions. Thus, the solution u(x) is
only unique if we demand that it should be orthogonal to Cq(D).

31

3. Hodge decompositions

3.4 Algorithm for computing a Hodge decompo-
sition

Computing the tangential Hodge decomposition of a vector field F ∈ L2(D; ∧1),
with D ⊂ R2, is an essential part of solving the Stokes equation in Section 4.2. In
this section, an algorithm that can be used to numerically compute this decompo-
sition is described. The algorithm follows Rosén [6, pp. 248f]. It uses the finite
element method (FEM), which is also briefly explained in this section. For a more
rigorous depiction of FEM, see e.g. [1, 7]. The MATLAB code used to implement
the algorithm, creating the plots in this section, can be found in appendix A.

Let F ∈ L2(D; ∧1), for a D ⊂ R2, be a given vector field. We want to compute the
tangential Hodge decomposition, that is, we want to decompose F = F1 + F2 + F3
where F1 ∈ R(d), F2 ∈ Cq(D), and F3 ∈ R(δ). To do this, one has to seek scalar
functions U and V such that F1 = ∇ ∧ U = ∇U and F3 = ∇ ⌟ V e12. Since
F3 ∈ R(δ), we should have n̂ ⌟ V e12 = 0 on ∂D. If we let n̂ = n̂1e1 + n̂1e2, we see
that n̂ ⌟ V e12 = −n̂2V e1 + n̂1V e2 and that this equals zero on ∂D exactly when
V |∂D = 0. In the same way, since Cq(D) ⊂ N(δ), we have F2|∂D = 0.

To find U , one uses that F − ∇U ∈ N(δ), since N(δ) = Cq(D) ⊕ R(δ) by The-
orem 3.1.6. This is equivalent to saying that F − ∇U is orthogonal to R(d), i.e.,
⟨F − ∇U,∇Φ⟩ = 0 for any Φ ∈ H1(D), which is equivalent to ⟨∇U,∇Φ⟩ = ⟨F,∇Φ⟩.
Integrating this over the domain D, one gets the variational equations

seek U ∈ H1(D) such that
∫

D
⟨∇U,∇Φ⟩ dx =

∫
D

⟨F,∇Φ⟩ dx, for all Φ ∈ H1(D).

This can be solved using the finite element method (FEM), where one discretizes
the equation in order to find an approximate solution. To be able to discretize the
equation, one has to replace the function space H1(D) with a finite-dimensional
subspace. This can be done in several ways, but we present here one of the standard
methods for two dimensional domains. First one divides the domain D into smaller
parts by a triangulation. This can be made for example using the application pde-
Modeler in MATLAB. The picture below, Figure 3.2, shows a triangulation of the
unit disk.

Figure 3.2: A mesh for the unit disk which can be used for implementing the finite
element method. A finer mesh gives a more accurate approximation.

32

3. Hodge decompositions

Thereafter, one defines a basis for a finite-dimensional subspace Uh ⊂ H1(D). The
basis functions are often chosen to be piecewise linear, and in such a way that they
equal one on one node and zero on all other nodes. These functions are sometimes
called tent functions, see the picture below for an example.

Figure 3.3: An example of a basis function ψ ∈ Uh. Note that it is piecewise linear
and equals one on the marked node, but zero on all other nodes.

The basis of the N-dimensional function space Uh is now taken to be {ψ1, ψ2, ..., ψN},
where each ψi is piecewise linear and equals one on node i and zero on all other nodes.
The discrete analogue of the equation to be solved is now

seek uh ∈ Uh such that
∫

D
⟨∇uh,∇ψ⟩ dx =

∫
D

⟨F,∇ψ⟩ dx, for all ψ ∈ Uh.

The approximate solution to the partial differential equation is then obtained by the
ansatz

U ≈ uh =
N∑
i

ζiψi,

where ζi are the coefficients one is looking for. Putting this into the equation and
letting the ψ:s vary over the basis functions, this leads to a system of equations

N∑
i

N∑
j

(∫
D

⟨∇ψi,∇ψj⟩ dx
)
ζi =

N∑
i

∫
D

⟨F,∇ψi⟩ dx,

which one usually writes in short form Aζ = b, where 1 ≤ i ≤ N , and

A = (aij) =
∫

D
⟨∇ψi,∇ψj⟩ dx,

ζ = (ζi) = ζi, and

b = (bi) =
∫

D
⟨F,∇ψi⟩ dx.

The solution of this system of equations give the coefficients in ζ, and one has
thereby computed an approximation of U .

33

3. Hodge decompositions

The next step to compute the tangential Hodge decomposition is to compute V .
To do that, one can begin by using the Hodge star maps as described in Example
2.3.2 and relation d) from Section 2.2. This leads to similar variational equations
for V as for U . To see this, compute

∗F = ∗(∇U) + ∗F2 + ∗(∇ ⌟ V e12)

= e12 ⌞ (∂1Ue1 + ∂2Ue2) + ∗F2 + e12 ⌞ (−∂2V e1 + ∂1V e2)

= −(∂1Ue1 + ∂2Ue2) ⌟ e12 + ∗F2 + (∂2V e1 − ∂1V e2) ⌟ e12

= −∂1Ue2 + ∂2Ue1 + ∗F2 + ∂2V e2 + ∂1V e1

= ∇V + ∗F2 − ∇ ⌟ Ue12.

Reasoning as before, we now have ⟨∇V,∇Φ⟩ = ⟨∗F,∇Φ⟩, which leads to the varia-
tional equations

seek V ∈ H1
0 (D) such that

∫
D

⟨∇V,∇Φ⟩ dx =
∫

D
⟨∗F,∇Φ⟩ dx, for all Φ ∈ H1

0 (D),

where one imposes the Dirichlet boundary condition on V by using the space H1
0 (D).

Lastly, when U and V are computed, one can just set F2 = F − ∇U − ∇⌟V e12, and
the decomposition of F is done.

Below are some plots of a tangential Hodge decomposition of a vector field F 3

in a simply connected domain.

3F = (−2x(1 − x2 − y2) + 4xy2 + 2xy − 3x2y2)e1 + (2y(1 − x2 − y2) − 4x2y + x2 − 2x3y)e2.

34

3. Hodge decompositions

(a) The vector field F . (b) F1 = ∇U .

(c) F2. (d) F3 = ∇ ⌟ V e12.

Figure 3.4: Example of a tangential Hodge decomposition, F = F1 + F2 + F3. All
plots are made in the same scale. F is in this example chosen in such a way that
both F1 and F3 are substantial contributors to F . F2 always equals zero for vector
fields in simply connected domains.

Note that the gradient field F1 is curl free and that F3 is divergence free, which can
be seen directly from Theorem 3.1.6 since d and δ are nilpotent operators, applying
the observations from Example 2.4.3. Geometrically, one can see that the gradient
vector field gives information about the potential U . Since the gradient points at
the direction where the function is growing fastest, one can for example see that
U increases a lot at the top left parts of the domain. The divergence free field is
recognized by the fact that the flow into a small region should equal the flow out
from that region. In Figure 3.4 we see that F2 rotates around certain points where
the vector lengths seems to depend on the distance to the center of rotation. Since
the domain D in this case is just an ellipse without holes we have Cq(D; ∧1V) = {0}
(see Section 3.2), which can be compared to the pictures in Figure 3.1. The small

35

3. Hodge decompositions

dots that can be seen in the picture above for F2 are due to computational errors.
Recall that a vector field in Cq(D) should be both curl free and divergence free as
well as tangential at the boundary. If one has a hole in the domain, as in Figure 3.1,
these requirements can be met by a field rotating around the hole. One can think
of the center of rotation as being in that hole, but the curl in the domain can still
be zero since the points in the hole is outside the domain.

36

CHAPTER 4

Solving the Stokes equation

The main goal of this project is to solve and try to understand the Stokes equation
with Hodge boundary conditions. This chapter starts by a short general introduction
of the Stokes equation, followed by two sections where the Stokes equation is solved
under different boundary conditions. In Section 4.2 the Hodge boundary conditions
are used and interpreted, which leads to the main results of this thesis. In Section
4.3 the more standard no-slip boundary condition is used.

4.1 The Stokes equation
The Stokes equation describes the flow of an incompressible, viscous fluid. A typical
example of such a flow would be honey or syrup. In this section, some of the theory
behind the Stokes equation will be briefly explained.

The fundamental partial differential equations that describes fluids stem from the
physical laws considering conservation of mass and conservation of momentum [7,
p. 142]. In fluid mechanics, the law of conservation of mass can be expressed

∂tρ+ div(ρv) = 0,

where ρ is the density, t the time, and v the flow velocity field. If one considers
incompressible fluids, then the density ρ is constant. The above equation then
becomes

ρdiv(v) = 0,

which means that div(v) = 0. Newton’s law for conservation of momentum states
that the rate of change of momentum of a particle equals the sum of the forces
acting on the particle. In the case of fluids in a fixed region, there are four different
contributors to the sum of the forces: the flow of momentum into the region, the
pressure, the viscous forces, and the external forces (for example gravity). This
leads to the following equation

ρ(∂tv + ∂vv) = −∇p+ µ∆v + f,

where p is the pressure, µ is a constant measuring the viscosity, and f represents
external forces. The above equation is a non-linear equation, but if one makes
some additional assumptions, one can get a linear equation. If one assumes that

37

4. Solving the Stokes equation

the velocity at every point is constant, the term ∂tv vanishes. Moreover, the most
difficult term, ∂vv = (v · ∇)v, can be neglected when considering small velocities.
With these simplifications, one has arrived at the Stokes equation for viscous flows,
which can be formulated ∇p− µ∆v = f,

div(v) = 0.

In the following two sections solutions to this equation under different boundary
conditions will be presented. The first boundary conditions, in Section 4.2, are,
given the theory of Hodge decompositions, a natural choice of boundary conditions
from a mathematical point of view. They are, though, non-physical. The no-slip
boundary condition, used in Section 4.3, is supported by empirical facts, but it
leads to a more involved mathematical treatment of the equations than the Hodge
boundary conditions.

4.2 The Hodge boundary conditions
In this section an algorithm for numerically solving the Stokes equation under the
Hodge boundary conditions will be described. The algorithm is basically an applica-
tion of the tangential Hodge decomposition described in Section 3.1. For simplicity,
the domain is in this section taken to be simply connected. As a remark, the theory
below works in other cases too, given that the input f is orthogonal to Cq(D). In
appendix A one can find the full MATLAB code used for implementing this algo-
rithm and making the plots below. The Hodge boundary conditions consists of two
parts. The boundary condition on v is just a tangential condition, which means
that the restriction on the flow of the fluid is that it may not cross the boundary
(e.g. the bottle keeping the fluid inside). The second condition is imposed on the
vorticity ω = dv. In line with the theory of Hodge decompositions, the condition
is that n̂ ⌟ ω = n̂ ⌟ (dv) = 0 on the boundary. In three dimensions, this would
mean that the bivector field ω is tangential or equivalently that the vector field ∗ω
is normal to the boundary. In our case, dealing with a two dimensional domain, this
simplifies to ω|∂D = 0. To see this, letting ω = ωe12 and n̂ = n̂1e1 + n̂2e2, note that

n̂ ⌟ ωe12 = −n̂2ωe1 + n̂1ωe2,

and that this equals zero on the boundary if and only if ω|∂D = 0. In summary, for
a two-dimensional domain we formulate the problem in this section as

∇p− µ∆v = f, in D,

div(v) = δv = 0, in D,

n̂ · v = 0, on ∂D,

ω = dv = 0, on ∂D.

(4.1)

Since µ is only a constant, for simplicity we consider the case µ = 1. We begin by
rewriting the left hand side of the first equation as

∇p− ∆v = ∇p− (d+ δ)2v = ∇p− δdv,

38

4. Solving the Stokes equation

since dδv = 0, using the second equation. Letting ω′ = −ω = −dv one may again
rewrite the first equation to

∇p+ δω′ = f,

where ω′ ∈ ∧2D with ω′|∂D = 0. The scalar function p and the bivector field
ω′ = ω′e12 can now be found by a tangential Hodge decompoisition, using the
method described in Section 3.4 applied to the given vector field f . By just changing
the sign on ω′, since ω′ = −ω, we also have ω. Moreover, since v ∈ L2(D; ∧1)
and Cq(D; ∧1) = {0} for a simply connected domain, by the tangential Hodge
decomposition and div(v) = 0 we conclude that v ∈ R(δ) and let v = δφe12, with
φe12 ∈ R(d). We may thus write

δω′e12 = δdδφe12,

which is equivalent to

ω′e12 = (∆φ)e12,

since ∆φ = (d + δ)2φ = dδφ. By applying the (left or right) Hodge star map, one
can rewrite this as

∆φ = ω′,

considering φ and ω′ as scalar functions. This equation looks like the Poisson prob-
lem, but to compute the solution one needs a boundary condition. First we note
that φe12 is the unique potential in R(d) such that v = δφe12 by Corollary 3.3.1d).
Moreover, since v ∈ R(δ) implies that n̂ ⌟ φe12 = −n̂2φe1 + n̂1φe2 = 0 on ∂D, we
can conclude φ|∂D = 0 since if there would be a point on the boundary where φ ̸= 0,
then n̂1 = n̂2 = 0 at this point which is not possible. This means that we can
formulate the Poission equation with homogeneous Dirichlet boundary conditions:

∆φ = ω′, in D,

φ = 0, on ∂D.

Solving this equation gives the scalar function φ, and lastly one can compute v by
setting v = δ(φe12).

Below are some plots showing solutions to the Stokes equation with the Hodge
boundary conditions.

39

4. Solving the Stokes equation

(a) The external force f .

(b) The velocity field v. (c) The pressure p.

Figure 4.1: Solution to the Stokes equation with Hodge boundary conditions (4.1).
The field f = xy2e1 − xye2 is plotted with the in-built autoscale function of the
MATLAB command ’quiver’. The vector field v, where the vectors are substantially
smaller, is scaled with the factor 50.

As can be seen in the pictures above, the Hodge boundary conditions allow the liq-
uid to slip, contrary to the empirical fact that viscous flows stick to the boundary.
The external forces points out of the boundary in some places, and those regions are
the ones with higher pressure. Since v is not allowed to pass through the boundary,
the velocity fields bends and becomes tangential. To the right of the domain, close
to the boundary, the external forces point at opposite directions. This is the region
with the highest pressure, and the forces cause the velocity field to flow to the left.
The result is two swirls in the field.

40

4. Solving the Stokes equation

One may ask how the Hodge boundary conditions should be interpreted in a more
rigorous way, and in particular what happens to the flow at the boundary. Below
are some plots showing the size (length) of the vectors in the numerically computed
vector field v for different domains but the same input f .

(a) Vector lengths of v where D is the unit
disk, 3D-view.

(b) Vector lengths of v where D is the unit
disk, 2D-view.

(c) Vector lengths of v where D is a "C-
shaped" domain, 3D-view.

(d) Vector lengths of v where D is a "C-
shaped" domain, 2D-view.

(e) Vector lengths of v where D is a polyg-
onal domain, 3D-view.

(f) Vector lengths of v where D is a polyg-
onal domain, 2D-view.

Figure 4.2: Vector lengths for the tangential field v in the Stokes equation for
different domains D. The plots show vector lengths for three different domains.
The same input function f = (x+ y)e1 + (x2 − y2)e2 has been used to produce the
plots and the 3D-plots are made by interpolating triangular data.

41

4. Solving the Stokes equation

Looking at the plots for the unit circle, Figure 4.2a) and b), one can see that if
one starts at a point in the domain and thereafter moves orthogonally towards the
boundary (i.e., when one studies the normal derivative) the vector lengths seem to
decrease a bit close to the edge. On the pictures it looks like the way the vector
length is decreasing is similar all around the boundary. In some way, even though
the fluid is allowed to slip at the boundary, it appears that it slows down a bit when
getting close to the boundary. Looking at the two pictures in the middle of Figure
4.2, c) and d), it seems that the largest decreasing in vector lengths takes place at
the top right and bottom right parts of the 2D-view. One can also see that on the
non-convex part of the boundary, the vector lengths instead increase when moving
orthogonally towards the boundary. In the last two pictures, Figure 4.2 e) and f),
one sees a dramatic drop when getting close to a corner. This is not so surprising
when v is supposed to be tangential at the boundary. When moving from a point
orthogonally towards a boundary point not very close to a corner, one does not see
the pattern of decreasing, or increasing, vector lengths as in the other domains of
Figure 4.2. These six pictures together suggest that the normal derivative of the
vector lengths in v close to the boundary is in some way determined by the geometry
of the domain. We shall see that this is indeed the case.

To be able to investigate further what happens to the vector lengths close to the
boundary, we begin by introducing a notion of curvature. The curvature at a point
on the boundary gives a measure of how much the boundary bends at that point. A
convex part of the boundary has a positive curvature, and when the boundary bends
a lot the curvature is large. A non-convex part on the other hand has a negative
curvature. For a point P = (x1, y1) on the boundary, the curvature can be defined in
the following way1. First, identify the point P as the origin of a coordinate system,
and define e2 in such a way that n̂ = −e2 for the unit normal vector n̂ at P . Let e1
be orthogonal to e2, tangential to the boundary. The following picture, Figure 4.3,
describes the setup.

Figure 4.3: Setup for defining the curvature of the boundary.

1The definition agrees with the Weingarten map, see for example [6, pp. 356f].

42

4. Solving the Stokes equation

Letting e1 and e2 be fixed as in Figure 4.3, the curvature k at P , counter-clockwise,
can be defined by ke1 := ∂1n̂ or equivalently k := e1 ⌟ (∂1n̂) = ∂1n̂1. We will not
need to explicitly compute the curvature, but the intuition behind the definition is
that when P moves counter-clockwise on ∂D, then the rate at which the e1−part of
n̂ changes measures how much the boundary bends. Below is a picture describing
the curvature at two different points at the boundary for the domain of Figure 4.2
c) and d) above.

Example 4.2.1.

Figure 4.4: The domain of Figure 4.2 c) and d), with the same setup as in
Figure 4.3 for two different points.

The boundary of the domain is to the left defined by half a unit circle, and to
the right by three half circles with radius 1

3 . Note that the curvature is constant
on a circle.

When moving the point P1 counter-clockwise along the boundary, the normal
vector moves towards e1 or, more precisely, the angle between the normal vector
and e1 decreases. This corresponds to a positive curvature. At point P2, the

43

4. Solving the Stokes equation

opposite situation occurs; the angle between the normal vector and e′
1 increases.

In this case, the curvature is negative. The largest value of the curvature in the
domain is on the small half-circles at the top right and bottom right parts.

With the concept of curvature defined in this way, we shall soon see that the Hodge
boundary conditions can be seen as a special case of another set of boundary con-
ditions which are sometimes used when solving the Stokes equation instead of the
no-slip boundary condition presented in detail in the next section. They are called
the Navier’s slip boundary conditions after Claude-Louis Navier [5] and can be for-
mulated as follows v · n̂ = 0 on ∂D,

2[D(v)n̂]τ + αvτ = 0 on ∂D,

where D(v) := 1
2(∇v + ∇vT), [·]τ denotes the tangential component of a vector at

the boundary and α is a scalar function describing the friction, where one typically
has α ≥ 0 (α = 0 denotes a situation with no friction at all). As mentioned earlier,
observations suggests that a viscous fluid sticks to the boundary, or, at least, it
almost sticks. The Navier’s slip boundary conditions can be used in the case where
a small slip at the boundary is allowed. This corresponds to saying that α, which is
determined by properties of the material of the boundary, is large.

The link between the Hodge boundary conditions and the Navier’s slip conditions is
interesting, and has been discussed in [4]. As it turns out, for the Hodge boundary
conditions in a two-dimensional domain, one can translate the concept of curvature
at the boundary to the friction function in Navier’s slip conditions. With the Hodge
boundary conditions, we assume n̂ · v = 0 for all points on the boundary. Thus, we
know that

∂1(n̂ · v) = 0.

Expanding the left hand side, letting v = v1e1 + v2e2, we get

∂1(v · n̂) = ∂1n̂ · v + n̂ · ∂1v

= ke1 · v − e2 · ∂1v

= kv1 − ∂1v2,

and thus
kv1 − ∂1v2 = 0,

or equivalently

∂1v2 = kv1. (4.2)

Moreover, since ω = dv = (∂1v2 − ∂2v1)e12 = 0 on the boundary, we have that

∂2v1 = ∂1v2,

44

4. Solving the Stokes equation

and, combining this with equation 4.2 above,

∂2v1 = kv1. (4.3)

With the above observations, by adding equations 4.2 and 4.3 and dividing with
two, we can conclude that the Hodge boundary conditions are equivalent to

1
2(∂2v1 + ∂1v2) = kv1.

This can be compared to the Navier’s slip boundary conditions mentioned above.
With the same setup as showed in Figure 4.3, we would get

2[D(v)n̂]τ + αvτ = 0

⇔ 2
[

1
2

([
∂1v1 ∂2v1
∂1v2 ∂2v2

]
+
[
∂1v1 ∂1v2
∂2v1 ∂2v2

]) [
0

−1

]]
τ

+ αv1 = 0

⇔
[
−(∂2v1 + ∂1v2)

−2∂2v2

]
τ

+ αv1 = 0

⇔ 1
2(∂2v1 + ∂1v2) = α

2 v1.

From this, we see that the Hodge boundary conditions are equivalent to the Navier´s
slip boundary conditions where α = 2k, that is α only depends on the curvature of
the boundary. Since the curvature, and therefore also the friction at the boundary,
is constant on a circle, this fits well with the earlier observation below Figure 4.2
of the vector lengths close to the boundary in the unit disk. It also means that the
friction is zero at the edges of the polygon in Figure 4.2e) and f), allowing a "perfect
slip". We conclude this section by also mentioning that the Navier’s slip boundary
conditions are related to the Robin boundary conditions. For a scalar equation, the
homogeneous Robin boundary condition reads

βu+ γ∂n̂u = 0, on ∂D,

where u is the scalar function one seeks and β and γ are constants (or given scalar
functions). Using our setup as in Figure 4.3 and the Hodge boundary conditions,
we can rewrite equation 4.3 as

kv1 + ∂n̂v1 = 0,

since n̂ = −e2. This can be viewed as a homogeneous Robin boundary condition
imposed on the scalar function v1.

45

4. Solving the Stokes equation

4.3 The no-slip boundary condition
It is a well-known empirical fact that viscous flows in e.g. a bottle tend to stick
to the boundary. This motivates the following standard formulation of the Stokes
equation

∇p− µ∆v = f, in D,

div(v) = δv = 0, in D,

v = 0, on ∂D.

(4.4)

The boundary condition v = 0, on ∂D will be referred to as the no-slip boundary
condition. In this section an algorithm for solving this problem using the finite
element method will be presented, and again the full MATLAB code used to imple-
ment it and to make the plots below can be found in the appendix A. The algorithm
involves a mixed finite element method and roughly follows Johnson [3, pp. 232f; p.
237]. Again, for simplicity, we consider the case where µ = 1.

To get a variational formulation of the above problem, we define the function spaces

V := H1
0 (D) ×H1

0 (D), and

H := L2(D).
We start by multiplying the first equation by ψ ∈ V and integrating over the domain.
Note here that ψ = (ψ1, ψ2). Rewriting the left hand side with the help of the
Divergence theorem as in 3.1 and Green’s theorem as in Section 3.2, and thereafter
using the boundary condition, one gets∫

D
(∇p− ∆v) · ψ dx =

∫
∂D
pn̂ · ψ dy −

∫
D
p(div(ψ)) dx−

(∫
∂D
∂n̂v · ψ dy −

∫
D

∇v · ∇ψ dx
)

=
∫

D
∇v · ∇ψ − p(div(ψ)) dx,

and thus one has∫
D

∇v · ∇ψ − p(div(ψ)) dx =
∫

D
f · ψ dx, for all ψ ∈ V.

Now multiplying the second equation with φ ∈ H and integrating, one can formulate
the following variational formulation of the problem:

Variational formulation for the Stokes equation with no-slip boundary
condition

Seek v ∈ V and p ∈ H such that∫
D

∇v · ∇ψ − p(div(ψ)) dx =
∫

D
f · ψ dx, for all ψ ∈ V, and∫

D
φ(div(v)) dx = 0, for all φ ∈ H.

To use the finite element method, one needs to find a discrete analogue of the vari-
ational formulation. It is possible, but there are some issues when choosing the

46

4. Solving the Stokes equation

finite dimensional subspaces Vh and Hh. These issues, concerning for example the
stability of the solution, will not be explained here, but a discussion can be found
in Johnson [3, pp. 232ff]. One observation of importance for the solution and the
attached MATLAB code, though, is that one has to have dim(Vh) ≥ dim(Hh) ([3,
p. 237]).

The natural approach is to let Vh = Uh × Uh, where a basis for Uh is the usual
piecewise linear functions where ψi ∈ Uh equal one on the interior node i and zero
on all other nodes (see Figure 3.3). A basis for Vh is then

{[
ψ1
0

]
, ...,

[
ψN

0

]
,

[
0
ψ1

]
, ...,

[
0
ψN

]}
,

where N = dim(Uh), and a basis for Hh are the locally constant functions where
φj ∈ Hh equal one on triangle j and zero else, where we let M = dim(Hh).2

Figure 4.5: An example of a basis function φ ∈ Hh. Note that it equals one on
the marked triangle, but zero everywhere else.

To be able to use these spaces and at the same time fulfill the condition dim(Vh) =
2N ≥ dim(Hh) = M , two different meshes need to be used to produce the solutions
in this section. The mesh used to define Vh was created by refining the mesh defining
Hh, such that each node in the mesh defining Hh is also a node in the finer mesh.
This is illustrated in the pictures below.

2The reason this is a natural choice, leading to the use of different basis functions for Uh and
Hh, is that by the variational formulation we need to assume that the first derivatives of v belongs
to L2(D), since for example ∇v appears in the equations, while this is not the case for the pressure
p.

47

4. Solving the Stokes equation

Figure 4.6: Possible meshes for defining Hh respectively Vh.

The finite element method for the Stokes problem with no-slip boundary condition
now reads:

FEM for the Stokes equation with no-slip boundary condition

Seek vh ∈ Vh and ph ∈ Hh such that∫
D

∇vh · ∇v − ph(div(v)) dx =
∫

D
f · v dx, for all v ∈ Vh, and∫

D
p(div(vh)) dx = 0, for all p ∈ Hh.

Letting v = ∑2N
i=1 ξiψi and p = ∑M

i=1 ηiφi, this can be written in matrix form asAξ −Bη = F

BT ξ = 0,

where
A = (aij) with aij =

∫
D

∇ψi · ∇ψj dx, 1 ≤ i, j ≤ 2N,

B = (bij) with bij =
∫

D
φj(div(ψi)) dx, 1 ≤ i ≤ 2N, 1 ≤ j ≤ M, and

F = (fj) with fj =
∫

D
f · ψj dx, 1 ≤ j ≤ M.

48

4. Solving the Stokes equation

This can be solved as one large system of equations by assembling a block (2N +
M) × (2N +M)−matrix M as

M =

A1 0 −B1
0 A2 −B2
BT

1 BT
2 0

 ,

where

A1 = (a1ij
), with (a1ij

) =
∫

D
∇ψi · ∇ψj dx for 1 ≤ i, j ≤ N,

A2 = (a2i−N,j−N
), with (a2i−N,j−N

) =
∫

D
∇ψi · ∇ψj dx for N + 1 ≤ i, j ≤ 2N,

B1 = (b1ij
), with (b1ij

) =
∫

D
φj(div(ψi)) dx for 1 ≤ i ≤ N and 1 ≤ j ≤ M, and

B2 = (b2i−N,j
), with (b2i−N,j

) =
∫

D
φj(div(ψi)) dx for N+1 ≤ i ≤ 2N and 1 ≤ j ≤ M.

Letting ξ1 =
[
ξ1 ξ2 ... ξN

]T
, ξ2 =

[
ξN+1 ξN+2 ... ξ2N

]T
, η =

[
η1 η2 ... ηM

]T
,

F1 =
[
f1 f2 ... fN

]T
and F2 =

[
fN+1 fN+2 ... f2N

]T
, the equation system to

be solved is

A1 0 −B1
0 A2 −B2
BT

1 BT
2 0

ξ1
ξ2
η

 =

F1
F2
0

 .

Below are plots of the solution to the Stokes equation with the no-slip boundary
condition, with the same input f as in the previous section, Figure 4.1.

49

4. Solving the Stokes equation

(a) The external force f .

(b) The velocity field v. (c) The pressure p.

Figure 4.7: Solution to the Stokes equation with no-slip boundary condition (4.4).
As in Section 4.2, the field f = xy2e1 − xye2 is plotted with the in-built autoscale
function of the MATLAB command ’quiver’ but the vector field v is scaled with the
factor 50.

The directions of the vectors in v seem to in large match the solution with Hodge
boundary conditions, but there are some differences. As can be seen in the pictures,
the velocity field v is zero at the boundary, contrary to the case with Hodge boundary
conditions in Figure 4.1. This leads to the most striking difference in the pressure,
to the right in the plot d). With Hodge boundary conditions, allowing the flow to
slip at the boundary, the velocity field "points" at this region both from above and
below, causing the pressure to rise higher than in the case of the no-slip boundary
condition, where the velocity at the boundary is zero and thereby the flow into the

50

4. Solving the Stokes equation

region is smaller. Another big difference is that the velocity overall is smaller in
the solution with the no-slip boundary condition. It seems like the fact that the
viscous flow sticks at the boundary slows down the flow in the whole domain. One
should also mention that for the technical reasons discussed earlier in this section,
the plots for the velocity field and the pressure in this section have been made from
two different meshes with the pressure plot made from triangular data instead of
nodal data. The finer mesh in this section, used for the velocity field, is the same
as the one used to produce the plots in section 4.2.

51

4. Solving the Stokes equation

52

CHAPTER 5

Discussion and conclusions

The main goal of this thesis is to show results from a project about investigating
and analysing the solution of the Stokes equation under the Hodge boundary con-
ditions. Referring to the solutions in Sections 4.2 and 4.3 of this thesis, it is not
hard to argue that the Hodge boundary conditions are more mathematically natural
than the no-slip boundary condition. With the Hodge boundary conditions, one can
solve the problem step by step using the tangential Hodge decomposition theorem
(3.1.6) with Corollary 3.3.1 to guarantee the uniqueness in every step. To begin
with, the boundary condition n̂ ⌟ ω = 0 on ∂D, which in two dimension translates
to ω|∂D = 0, makes sure that δω ∈ R(δ), and since ∇p clearly belongs to R(d),
the Hodge decomposition theorem is applicable to find δω and dp. In the following
parts of the solution, one can then proceed to use the subspaces R(d) and R(δ) from
the tangential Hodge decomposition and Corollary 3.3.1 to get the desired unique-
ness results. The application of the theory is thus very smooth. When using the
no-slip boundary condition, the solution can not follow the same pattern, since the
boundary condition v|∂D = 0 does not translate as well into the theory of Hodge
decompositions.

The Hodge boundary conditions also provide the possibility of a simpler solution
from a numerical perspective. By applying the tangential Hodge decomposition the-
orem, the problem in Section 4.2 can thereafter be solved with the finite element
method applied to quite simple partial differential equations. The solution in Sec-
tion 4.3 with the no-slip boundary condition on the other hand requires a mixed
finite element method, using two different test spaces. An additional requirement
concerns the dimension of the test spaces, for the problem in this thesis leading to
the need of two different meshes to be able to compute a solution. Apart from this
there are, as mentioned briefly in Section 4.3, some issues concerning for example
the stability of the solution. These issues are beyond the scope of this thesis, but
the following citation from Johnson [3, p. 233] gives a hint about these problems:

(...) the spaces Vh and Hh will have to be conveniently chosen; not
just any combination will work. Loosely speaking, we want to choose Vh

and Hh so that the resulting method is both stable and accurate. These
demands are in some sense conflicting and one has to find a reasonable
compromise (...)

53

5. Discussion and conclusions

It should, though, be mentioned that the above citation is about the solution of the
Stokes equation specifically with the finite element method. There may be other,
better suited, methods for finding numerical solutions that has not been mentioned
in this thesis.

Although the Hodge boundary conditions provide a mathematically smooth way
of solving the Stokes equation, they do not model physical flows. They are con-
trary to the known fact that viscous flows stick to the boundary. In Section 4.2 of
this thesis it is shown that the Hodge boundary conditions can be interpreted as a
situation where the friction at the boundary only depends on the geometry of the
domain, or to be precise: the curvature of the boundary. At a non-convex part of
the boundary, as in Figure 4.2c) and d), the friction is negative, which is not possi-
ble from a physical point of view. Another problem for the algorithm presented in
Section 4.2 is the demand that the external forces f should be orthogonal to Cq(D).
For a simply connected domain D this is not a problem since Cq(D; ∧1) = {0}, but
if the domain is not simply connected it may cause problems in some cases. The
pictures below shows an example.

54

5. Discussion and conclusions

(a) The external force f = −ye1
x2+y2 + xe2

x2+y2 ,
plotted with autoscale.

(b) v computed with the no-slip boundary
condition, 2:1-scale.

(c) v, computed with the Hodge boundary
conditions, 2:1-scale.

(d) v, computed with the Hodge boundary
conditions, plotted with autoscale.

Figure 5.1: The velocity field v in the Stokes equation under different boundary
conditions, when trying to impose the algorithms described in Sections 4.2 and 4.3
with an external force field f ∈ Cq(D).

As can be seen in Figure 5.1, the results when imposing the algorithms from Sections
4.2 and 4.3 are very different. Since f ∈ Cq(D), the Hodge decomposition in the be-
ginning of the algorithm of Section 4.2 gives p = ω = dv = 0 (modulo computational
errors), and the resulting velocity field is zero. The velocity field from the Hodge
boundary conditions plotted with autoscale, Figure 5.1d), enforces the feeling that

55

5. Discussion and conclusions

the result does not make sense. Using the no-slip boundary condition, though, gives
a result shown in Figure 5.1b) which corresponds well with the physical intuition.

A secondary goal of this thesis is to show a glimpse of how the different concepts
of derivative in vector calculus fit well into the framework of multivector analysis.
While vector calculus often restricts to two or three dimensions, defining for example
the curl of a vector field F in three dimensions as ∇ × F , the multivector analy-
sis provides generalisations of the concepts gradient, divergence, and curl, working
in arbitrary dimensions. In this thesis, attention has been restricted to Euclidean
spaces and mostly to simply-connected domains in R2, but the multivector analysis
covers a lot more than this.

In summary, this thesis may provide a brief introduction to multivector analysis
and a small contribution to the understanding of the Hodge boundary conditions
for the Stokes equation. A natural next step would be to extend the study of the
Hodge boundary conditions to cases with a three-dimensional domain.

56

CHAPTER A

Appendix: MATLAB code

In this chapter the MATLAB code written for this project is attached. The code is,
unless mentioned otherwise, written in full by the author.

A.1 Main programs
In this section the code for the main programs is presented. The pdeModeler ap-
plication has been used to create triangulations. The variables p, e, t, and g come
from these triangulations, where p is the default name for the matrix containing
the coordinates of the nodes in the mesh, e is a matrix containing (among others)
coordinates for the nodes on the boundary, t is a matrix containing the triangles,
and g is used to plot the boundary of the domain. In the code for the solution of the
Stokes equation with no-slip boundary condition, two meshes are used. The triple
(p, e, t) constitutes the mesh used for the pressure function and (p2, e2, t2) the
finer mesh used for the velocity field (see Section 4.3).

Tangential Hodge decomposition

N = size(p, 2);
A = zeros(N, N);
b = zeros(N, 1);
F1 = @(x, y) 2*y*(1-x^2-y^2) + y -3*x^2*y^3; %The vector

field in Figure 3.1
F2 = @(x, y) -2*x*(1-x^2-y^2) + x -3*x^3*y; %The vector

field in Figure 3.1
%F1 = @(x, y) -2*x*(1-x^2-y^2) +4*x*y^2 + 2*x*y -3*x^2*y^2;

%The vector field in Figure 3.4
%F2 = @(x, y) 2*y*(1-x^2-y^2) -4*x^2*y + x^2 -2*x^3*y; %The

vector field in Figure 3.4
starF2 = @ (x, y) -F1(x, y);
for el = 1 : size(t, 2)

nn = t(1:3 , el);
A(nn , nn) = A(nn , nn) + IntMatrix (p(:, nn));
b(nn) = b(nn) + IntVector (F1 , F2 , p(:, nn));

end

I

A. Appendix: MATLAB code

ux = A\b; % Coefficients for U
N2 = size(p, 2);
A2 = zeros(N2 , N2);
b2 = zeros(N2 , 1);
for el = 1 : size(t, 2)

nn = t(1:3 , el);
A2(nn , nn) = A2(nn , nn) + IntMatrix (p(:, nn));
b2(nn) = b2(nn) + IntVector (F2 , starF2 , p(:, nn));

end
intnodes = setdiff (1:N2 , e(1, :)); %Used to impose the

homogeneous Dirichlet bc
ADir = A2(intnodes , intnodes);
bDir = b2(intnodes);
xDir = ADir\bDir;
ux2 = zeros(N2 , 1);
ux2(intnodes) = xDir; % Coefficients for V
gradmatrixu = twodimgradmatrix (p, t, ux);
rotmatrixv = twodimgradmatrixv (p, t, ux2);
X = [];
Y = [];
for s = 1: numel(t(1, :)) %Find middle of triangles in

mesh
Xmiddle = (p(1, t(1,s)) + p(1, t(2,s)) + p(1, t(3,s))

)/3;
Ymiddle = (p(2, t(1,s)) + p(2, t(2,s)) + p(2, t(3,s))

)/3;
X = [X, Xmiddle];
Y = [Y, Ymiddle];

end
cohmatrixh = [];
for hx = 1: numel(X) % Compute cohomology field

cohmatrixh (1,hx) = F1(X(hx), Y(hx))-gradmatrixu (1, hx
)-rotmatrixv (1, hx);

cohmatrixh (2,hx) = F2(X(hx), Y(hx))-gradmatrixu (2, hx
)-rotmatrixv (2, hx);

end
vectorfieldmatrix = []; % Computing the values for the

input f
for vf = 1: numel(X)

vectorfieldmatrix (1, vf) = F1(X(vf), Y(vf));
vectorfieldmatrix (2, vf) = F2(X(vf), Y(vf));

end
for rd = 1: numel(X) -1 %The code below reduces the plots

Xtest = X(rd);
Ytest = Y(rd);
for rc = rd +1: numel(X)

II

A. Appendix: MATLAB code

if sqrt ((X(rc)-Xtest)^2+(Y(rc)-Ytest)^2) < 0.05
X(rc) = 99;
Y(rc) = 99;
vectorfieldmatrix (:, rc) = 99;
gradmatrixu (:, rc) = 99;
rotmatrixv (:, rc) = 99;
cohmatrixh (:, rc) = 99;

end
end

end
for rv = numel(X): -1:1

if X(rv) == 99
X(rv) = [];

end
if Y(rv) == 99

Y(rv) = [];
end
if vectorfieldmatrix (1, rv) == 99 & vectorfieldmatrix

(2, rv) == 99
vectorfieldmatrix (:, rv) = [];

end
if gradmatrixu (1, rv) == 99 & gradmatrixu (2, rv) ==

99
gradmatrixu (:, rv) = [];

end
if rotmatrixv (1, rv) == 99 & rotmatrixv (2, rv) == 99

rotmatrixv (:, rv) = [];
end
if cohmatrixh (1, rv) == 99 & cohmatrixh (2, rv) == 99

cohmatrixh (:, rv) = [];
end

end %Last line of the plot reducing
scalefactor = 0.075; %Used to make the vector field plots

in the same scale
figure (1) %Plots input f
quiver(X, Y, vectorfieldmatrix (1, :)*scalefactor ,

vectorfieldmatrix (2, :)*scalefactor , 0);
hold on
pdegplot (g);
figure (2) %Plots \nabla U
quiver(X, Y, gradmatrixu (1, :)*scalefactor , gradmatrixu

(2, :)*scalefactor , 0);
hold on
pdegplot (g);
figure (3) %Plots \nabla \ lrcorner V

III

A. Appendix: MATLAB code

quiver(X, Y, rotmatrixv (1, :)*scalefactor , rotmatrixv (2,
:)*scalefactor , 0);

hold on
pdegplot (g);
figure (4) %Plots the cohomology field
quiver(X, Y, cohmatrixh (1, :)*scalefactor , cohmatrixh (2,

:)*scalefactor , 0);
hold on
pdegplot (g);
hold on

The Stokes equation with Hodge boundary conditions

F1 = @(x, y) x*y^2; %Input f in Chapter 4
F2 = @(x, y) -x*y; %Input f in Chapter 4
%F1 = @(x, y) -y/(x^2 + y^2); %Input f in Chapter 5
%F2 = @(x, y) x/(x^2 + y^2); %Input f in Chapter 5
starF2 = @(x, y) -F1(x, y);
visc = -1; % Viscousity =1
N2 = size(p, 2);
A2 = zeros(N2 , N2);
b3 = zeros(N2 , 1);
b2 = zeros(N2 , 1);
b = zeros(N2 , 1);
for el = 1 : size(t, 2)

nn = t(1:3 , el);
A2(nn , nn) = A2(nn , nn) + IntMatrix (p(:, nn));
b3(nn) = b3(nn) + IntVector (F1 , F2 , p(:, nn));

end
pressure = A2\b3; % Coefficients for p
gradmatrixp = twodimgradmatrix (p, t, pressure);
for el = 1 : size(t, 2)

nn = t(1:3 , el);
b2(nn) = b2(nn) + IntVector (F2 , starF2 , p(:, nn));

end
intnodes = setdiff (1:N2 , e(1, :));
ADir = A2(intnodes , intnodes);
bDir = b2(intnodes);
xDir = ADir\bDir;
ux2 = zeros(N2 , 1);
ux2(intnodes) = xDir/visc; % Coefficients for omega
starw = scatteredInterpolant (p(1, :) ', p(2, :) ', ux2);
for elm = 1 : size(t, 2)

nn = t(1:3 , elm);
b(nn) = b(nn) + IntVectorDN (starw , p(:, nn));

end

IV

A. Appendix: MATLAB code

bDirproblem = b(intnodes);
xDirproblem = ADir\ bDirproblem ;
ux = zeros(N2 , 1);
ux(intnodes) = xDirproblem ; %Phi
gradux = twodimgradmatrix (p, t, ux);
graduxstar = [-gradux (2, :); gradux (1, :)]; %The velocity

field v
X = [];
Y = [];
for s = 1: numel(t(1, :)) %Find middle of triangles in

mesh
Xmiddle = (p(1, t(1,s)) + p(1, t(2,s)) + p(1, t(3,s))

)/3;
Ymiddle = (p(2, t(1,s)) + p(2, t(2,s)) + p(2, t(3,s))

)/3;
X = [X, Xmiddle];
Y = [Y, Ymiddle];

end
for rd = 1: numel(X) -1 % Reducing plot.

Xtest = X(rd);
Ytest = Y(rd);
for rc = rd +1: numel(X)

if sqrt ((X(rc)-Xtest)^2+(Y(rc)-Ytest)^2) < 0.1
X(rc) = 99;
Y(rc) = 99;
graduxstar (:, rc) = 99;
gradmatrixp (:, rc) = 99;

end
end

end
for rv = numel(X): -1:1

if X(rv) == 99
X(rv) = [];

end
if Y(rv) == 99

Y(rv) = [];
end
if graduxstar (1, rv) == 99 && graduxstar (2, rv) == 99

graduxstar (:, rv) = [];
end
if gradmatrixp (1, rv) == 99 && gradmatrixp (2, rv) ==

99
gradmatrixp (:, rv) = [];

end
end
inputf = [];

V

A. Appendix: MATLAB code

for xs = 1: numel(X)
inputf (1,xs) = F1(X(xs), Y(xs));
inputf (2,xs) = F2(X(xs), Y(xs));

end
scalefactor = 1;
figure (1) %Plots v
quiver(X, Y, scalefactor * graduxstar (1, :), scalefactor *

graduxstar (2, :), 0);
hold on
pdegplot (g);
title('Numeric v Hodge boundary condition ')
figure (2) %Plots p
pdesurf (p, t, pressure)
colormap turbo
title('Numeric p Hodge boundary condition ')
figure (3) %Plots input f
quiver(X, Y, inputf (1, :), inputf (2, :));
hold on
pdegplot (g)
title('Input f')

The Stokes equation with no-slip boundary condition

F1 = @(x, y) x*y^2; %Input f in Chapter 4
F2 = @(x, y) -x*y; %Input f in Chapter 4
%F1 = @(x, y) -y/(x^2 + y^2); %Input f in Chapter 5
%F2 = @(x, y) x/(x^2 + y^2); %Input f in Chapter 5
N = size(p2 , 2);
M = size(t, 2);
A = zeros(N, N);
b3 = zeros(M, 1);
b2 = zeros(N, 1);
b = zeros(N, 1);
preFillingN = zeros(N, N);
FillingM = zeros(M, M);
for el = 1 : size(t2 , 2)

nn = t2 (1:3 , el);
A(nn , nn) = A(nn , nn) + IntMatrix (p2(:, nn));
b(nn) = b(nn) + IntVectorDN (F1 , p2(:, nn));
b2(nn) = b2(nn) + IntVectorDN (F2 , p2(:, nn));

end
Bx = Bmatrixdx3 (t, t2 , p, p2); % Putting together matrices

for the big block matrix M
By = Bmatrixdy3 (t, t2 , p, p2);
intnodes = setdiff (1:N, e2(1, :));
FillingN = preFillingN (intnodes , intnodes);

VI

A. Appendix: MATLAB code

AF = A(intnodes , intnodes);
BxF = Bx(intnodes , :);
ByF = By(intnodes , :);
BxFt = transpose (BxF);
ByFt = transpose (ByF);
bF = b(intnodes);
b2F = b2(intnodes);
FinalMatrix = [AF FillingN -BxF; FillingN AF -ByF; BxFt

ByFt FillingM]; %The block matrix M
FinalVector = -[bF; b2F; b3]; %(Minus because of

construction of IntVectorDN)
Finalanswer = FinalMatrix \ FinalVector ; %The answer with

coefficients for v1 , v2 and p
v1numeric = zeros(N, 1);
v2numeric = zeros(N, 1);
v1numeric (intnodes) = Finalanswer (1: numel(intnodes));
v2numeric (intnodes) = Finalanswer (numel(intnodes)+1:2*

numel(intnodes));
pnumeric = Finalanswer (2* numel(intnodes)+1: end);
f1input = [];
f2input = [];
for na = 1: numel(p2(1, :))

f1input (na) = F1(p2(1, na), p2(2, na));
f2input (na) = F2(p2(1, na), p2(2, na));

end
X = [];
Y = [];
for s = 1: numel(t(1, :)) %Find middle of triangles in

mesh
Xmiddle = (p(1, t(1,s)) + p(1, t(2,s)) + p(1, t(3,s))

)/3;
Ymiddle = (p(2, t(1,s)) + p(2, t(2,s)) + p(2, t(3,s))

)/3;
X = [X, Xmiddle];
Y = [Y, Ymiddle];

end
XN = p2(1, :);
YN = p2(2, :);
for rn = 1: numel(XN) -1 %Reduce plot

XNtest = XN(rn);
YNtest = YN(rn);
for rcn = rn +1: numel(XN)

if sqrt ((XN(rcn)-XNtest)^2+(YN(rcn)-YNtest)^2) <
0.05

XN(rcn) = 99;
YN(rcn) = 99;

VII

A. Appendix: MATLAB code

f1input (rcn) = 99;
f2input (rcn) = 99;
v1numeric (rcn) = 99;
v2numeric (rcn) = 99;

end
end

end
for rnv = numel(XN): -1:1

if XN(rnv) == 99
XN(rnv) = [];

end
if YN(rnv) == 99

YN(rnv) = [];
end
if f1input (rnv) == 99 && f2input (rnv) == 99

f1input (rnv) = [];
f2input (rnv) = [];

end
if v1numeric (rnv) == 99 && v2numeric (rnv) == 99

v1numeric (rnv) = [];
v2numeric (rnv) = [];

end
end
scalefactor = 2;
figure (1) %Plots input f
quiver(XN ', YN ', f1input ', f2input ');
hold on
pdegplot (g)
title('Input f')
figure (2) %Plots v
quiver(XN , YN , scalefactor *v1numeric ', scalefactor *

v2numeric ', 0);
hold on
pdegplot (g)
title('Numeric v no -slip boundary condition ')
figure (3) %Plots p
pdesurf (p, t, pnumeric ')
colormap turbo
title('Numeric p no -slip boundary condition ')

Vector lengths
This code starts with a tangential Hodge decomposition above, then the below
code is added before reducing the plot. The input used in Figure 4.2 is f =
(x+ y)e1 + (x2 − y2)e2.

VIII

A. Appendix: MATLAB code

vectorlengthsv = [];
for vx = 1: numel(graduxstar (1, :))

vectorlengthsv (vx) = sqrt(graduxstar (1, vx)^2 +
graduxstar (2, vx)^2);

end
figure (1) %Used for the 2d-plots
pdesurf (p, t, vectorlengthsv)
colormap ('turbo ')
xlim ([-1 1])
ylim ([-1 1])
ut = pdeprtni (p, t, vectorlengthsv);
figure (2) %Used for the 3d-plots
pdesurf (p, t, ut)
colormap ('turbo ')

A.2 Functions
In this section code of the functions used in the main programs is presented.

IntMatrix
Computes the matrix

∫
D ∇ψi · ∇ψj dx. The code for this function is taken from [7,

p. 191].

function A0 = IntMatrix (nodes)
%Input: 2x3 matrix , node coordinates as columns
%Output 3x3 matrix of integrals for stiffness matrix
e1 = nodes (:, 1) - nodes (:, 3); %choose 3rd node as

origin
e2 = nodes (:, 2) - nodes (:, 3);
basis = [e1 , e2];
dualbasis = inv(basis '); % Computes the dual basis
grads = [dualbasis (:, 1), dualbasis (:, 2), -dualbasis (:,

1) - dualbasis (:, 2)];
area = det(basis)/2; % Computes the area of the triangle
A0 = grads ' * grads * area; % Returns the 9 inner products
end

IntVector
Computes the load vector

∫
D fψidx.

function B0 = IntVector (F1 , F2 , nodes)
%F vector field

IX

A. Appendix: MATLAB code

%nodes as in IntMatrix
%output 3x1 matrix
B0 = zeros (3 ,1);
e1 = nodes (:, 1) - nodes (:, 3); %choose 3rd node as

origin
e2 = nodes (:, 2) - nodes (:, 3);
basis = [e1 , e2];
dualbasis = inv(basis '); % computes the dual basis
grads = [dualbasis (:, 1), dualbasis (:, 2), -dualbasis (:,

1) - dualbasis (:, 2)];
area = det(basis)/2;
for m = 1:3

B0(m) = (1/3)*area *(grads (1,m)*(F1((nodes (1 ,1)+nodes
(1 ,2))/2, (nodes (2 ,1)+nodes (2 ,2))/2) + F1((nodes
(1 ,2)+nodes (1 ,3))/2, (nodes (2 ,2)+nodes (2 ,3))/2) +
F1((nodes (1 ,3)+nodes (1 ,1))/2, (nodes (2 ,3)+nodes
(2 ,1))/2)) + grads (2,m)*(F2((nodes (1 ,1)+nodes (1 ,2))
/2, (nodes (2 ,1)+nodes (2 ,2))/2) + F2((nodes (1 ,2)+
nodes (1 ,3))/2, (nodes (2 ,2)+nodes (2 ,3))/2) + F2((
nodes (1 ,3)+nodes (1 ,1))/2, (nodes (2 ,3)+nodes (2 ,1))
/2)));

end

twodimgradmatrix

Computes ∇ ∧ U in the tangential Hodge decomposition.

function gradmatrix = twodimgradmatrix (p, t, u)
Fx = [];
Fy = [];
for n = 1: numel(t(1, :))

p1 = p(:, t(1, n)); %Find coordinates for nodes
p2 = p(:, t(2, n));
p3 = p(:, t(3, n));
v1 = [p2 (1) -p1 (1) , p2 (2) -p1 (2) , u(t(2, n))-u(t(1, n))

]; %Create vectors for finding plane
v2 = [p3 (1) -p1 (1) , p3 (2) -p1 (2) , u(t(3, n))-u(t(1, n))

];
V = cross(v1 , v2); %Normal vector for plane
Fx = [Fx , V(1)/(-V(3))];
Fy = [Fy , V(2)/(-V(3))];

end
gradmatrix = [Fx; Fy];

X

A. Appendix: MATLAB code

twodimgradmatrixv
Computes ∇ ⌟ V in the tangential Hodge decomposition.

function gradmatrix = twodimgradmatrixv (p, t, u)
Fx = [];
Fy = [];
for n = 1: numel(t(1, :))

p1 = p(:, t(1, n)); %Find coordinates for nodes
p2 = p(:, t(2, n));
p3 = p(:, t(3, n));
v1 = [p2 (1) -p1 (1) , p2 (2) -p1 (2) , u(t(2, n))-u(t(1, n))

]; %Create vectors for finding plane
v2 = [p3 (1) -p1 (1) , p3 (2) -p1 (2) , u(t(3, n))-u(t(1, n))

];
V = cross(v1 , v2); %Normal vector for plane
Fx = [Fx , -1*(V(2)/(-V(3)))];
Fy = [Fy , (V(1)/(-V(3)))];

end
gradmatrix = [Fx; Fy];

IntVectorDN
Computes the load vector in the Dirichlet (or Neumann) problem.

function B0dn = IntVectorDN (F, nodes)
%F vector field
%nodes as in IntMatrix
%output 3x1 matrix
B0dn = zeros (3 ,1);
e1 = nodes (:, 1) - nodes (:, 3); %choose 3rd node as

origin
e2 = nodes (:, 2) - nodes (:, 3);
basis = [e1 , e2];
area = det(basis)/2;
for m = 1:3

coeffmatrix = [nodes (1, mod(m, 3) +1) , nodes (2, mod(m,
3) +1) , 1; nodes (1, mod(m+1, 3) +1) , nodes (2, mod(m

+1, 3) +1) , 1; nodes (1, mod(m+2, 3) +1) , nodes (2,
mod(m+2, 3) +1) , 1];

solvector = [1; 0; 0];
phicoeffs = coeffmatrix \ solvector ;
phi = @ (x, y) (phicoeffs (1)*x+ phicoeffs (2)*y+

phicoeffs (3)).*F(x, y);
B0dn(mod(m ,3) +1) = -1 * 1/3 * area * (phi ((nodes (1 ,1)

+nodes (1 ,2))/2, (nodes (2 ,1)+nodes (2 ,2))/2) + phi ((

XI

A. Appendix: MATLAB code

nodes (1 ,2)+nodes (1 ,3))/2, (nodes (2 ,2)+nodes (2 ,3))
/2) + phi ((nodes (1 ,1)+nodes (1 ,3))/2, (nodes (2 ,1)+
nodes (2 ,3))/2));

end

Bmatrixdx3
Computes the matrix B1 in the big block matrix M from Section 4.3.

function Bx = Bmatrixdx3 (t, t2 , p, p2) %t, p = mesh for
Pressure , t2 , p2 = mesh for v

Bx = zeros(numel(t2(1, :)), numel(t(1, :)));
for bt = 1: numel(t(1, :))

A = t(1, bt); % Vertices for pressure triangle
B = t(2, bt);
C = t(3, bt);
bigtrianglex = [p(1, A) p(1, B) p(1, C) p(1, A)];
bigtriangley = [p(2, A) p(2, B) p(2, C) p(2, A)];
for st = 1: numel(t2(1, :))

a = t2(1, st); % Vertices for small triangle
b = t2(2, st);
c = t2(3, st);
if inpolygon (p2(1, a), p2(2, a), bigtrianglex ,

bigtriangley) && inpolygon (p2(1, b), p2(2, b),
bigtrianglex , bigtriangley) && inpolygon (p2

(1, c), p2(2, c), bigtrianglex , bigtriangley)
coefficientmatrix = [p2(1, a) p2(2, a) 1; p2

(1, b) p2(2, b) 1; p2(1, c) p2(2, c) 1];
e1 = p2(:, a) - p2(:, c);
e2 = p2(:, b) - p2(:, c);
basis = [e1 , e2];
area = det(basis)/2;
ahat = coefficientmatrix \[1 0 0]';
bhat = coefficientmatrix \[0 1 0]';
chat = coefficientmatrix \[0 0 1]';
Bx(a, bt) = Bx(a, bt) + area*ahat (1);
Bx(b, bt) = Bx(b, bt) + area*bhat (1);
Bx(c, bt) = Bx(c, bt) + area*chat (1);

end
end

end

Bmatrixdy3
Computes the matrix B2 in the big block matrix M from Section 4.3.

XII

A. Appendix: MATLAB code

function By = Bmatrixdy3 (t, t2 , p, p2) %t, p = mesh for
Pressure , t2 , p2 = mesh for v

By = zeros(numel(t2(1, :)), numel(t(1, :)));
for bt = 1: numel(t(1, :))

A = t(1, bt); % Vertices for pressure triangle
B = t(2, bt);
C = t(3, bt);
bigtrianglex = [p(1, A) p(1, B) p(1, C) p(1, A)];
bigtriangley = [p(2, A) p(2, B) p(2, C) p(2, A)];
for st = 1: numel(t2(1, :))

a = t2(1, st); % Vertices for small triangle
b = t2(2, st);
c = t2(3, st);
if inpolygon (p2(1, a), p2(2, a), bigtrianglex ,

bigtriangley) && inpolygon (p2(1, b), p2(2, b),
bigtrianglex , bigtriangley) && inpolygon (p2

(1, c), p2(2, c), bigtrianglex , bigtriangley)
coefficientmatrix = [p2(1, a) p2(2, a) 1; p2

(1, b) p2(2, b) 1; p2(1, c) p2(2, c) 1];
e1 = p2(:, a) - p2(:, c);
e2 = p2(:, b) - p2(:, c);
basis = [e1 , e2];
area = det(basis)/2;
ahat = coefficientmatrix \[1 0 0]';
bhat = coefficientmatrix \[0 1 0]';
chat = coefficientmatrix \[0 0 1]';
By(a, bt) = By(a, bt) + area*ahat (2);
By(b, bt) = By(b, bt) + area*bhat (2);
By(c, bt) = By(c, bt) + area*chat (2);

end
end

end

XIII

A. Appendix: MATLAB code

XIV

Bibliography

[1] Asadzadeh, M. An Introduction to the Finite Element Method for Differential
Equations. Wiley, 2021.

[2] Folland, G. B. Real Analysis. Modern Techniques and Their Applications.
2nd ed. Wiley-Interscience, 1999.

[3] Johnson, C. Numerical solution of partial differential equations by the finite
element method. Cambridge university press, 1987.

[4] Mitrea, M., and Monniaux, S. The nonlinear Hodge-Navier-Stokes equa-
tions in Lipschitz domains. Differential Integral Equations 22, 3-4 (2009), 339–
356.

[5] Navier, C. L. Mémoire sur les lois du mouvement des fluides. Mémoires Acad.
Roy. Sci. 6 (1823), 389–440.

[6] Rosén, A. Geometric Multivector Analysis. From Grassmann to Dirac.
Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts:
Basel Textbooks]. Birkhäuser/Springer, Cham, [2019], 2019.

[7] Rosén, A. Partial differential equations from theory to coding. Unpublished
manuscript, 2022.

XV

	Introduction
	Multivectors
	k-vectors and multivectors
	Exterior and interior products
	Hodge stars
	Exterior and interior derivatives

	Hodge decompositions
	Tangential and normal Hodge decompositions
	The cohomology spaces
	Hodge decompositions and PDE:s
	Algorithm for computing a Hodge decomposition

	Solving the Stokes equation
	The Stokes equation
	The Hodge boundary conditions
	The no-slip boundary condition

	Discussion and conclusions
	Appendix: MATLAB code
	Main programs
	Functions

	Bibliography

