
Synchronous Agents, Verification, and Blame —
A Deontic View

Karam Kharraz1 , Shaun Azzopardi2 , Gerardo Schneider2 , and Martin
Leucker1

1 ISP, University of Lübeck, Germany {kharraz,leucker}@isp.uni-luebeck.de
2 University of Gothenburg, Sweden {shauna,gersch}@chalmers.se

Abstract. A question we can ask of multi-agent systems is whether the
agents’ collective interaction satisfies particular goals or specifications,
which can be either individual or collective. When a collaborative goal is
not reached, or a specification is violated, a pertinent question is whether
any agent is to blame. This paper considers a two-agent synchronous set-
ting and a formal language to specify when agents’ collaboration is re-
quired. We take a deontic approach and use obligations, permissions, and
prohibitions to capture notions of non-interference between agents. We
also handle reparations, allowing violations to be corrected or compen-
sated. We give trace semantics to our logic, and use it to define blame
assignment for violations. We give an automaton construction for the
logic, which we use as the base for model checking and blame analysis.
We also further provide quantitative semantics that is able to compare
different interactions in terms of the required reparations.

1 Introduction

Interaction between agents can be adversarial, where each agent pursues its own
set of individual goals, or cooperative where the agents collaborate to achieve
a collective goal. Verification techniques can help us detect whether such goals
may be achieved. Agents may also interfere or not cooperate, at which point the
failure to achieve a goal could be attributed to some agent. In this paper, we
develop a deontic logic allowing us to specify the anticipated interaction of two
agents in the presence of such aspects.

A deontic logic [16,21] includes norms as first-class concepts, with obligations,
permissions, and prohibitions as basic norms. These concepts are crucial in legal
documents and contractual relationships, where the agents are the parties to a
contract.3 Norms are parameterised by actions/events or propositions and are
used to specify what ought to be, or the parties ought to do.

In this paper, interaction or cooperation of the agents is modelled as the in-
terplay of the individual actions performed by each agent, leading to the concept
of cooperative actions. Cooperative actions could be synchronous, i.e., actions
at each time point of each agent are meant to describe the possible cooperation,
3 We use party and agent interchangeably throughout.

http://orcid.org/0000-0002-6908-1756
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0003-0629-6853
http://orcid.org/0000-0002-3696-9222

2 Kharraz et al.

or asynchronous, meaning that actions for cooperation may happen a different
time points.4 We choose synchrony as an abstraction to simplify the concept of
cooperation and non-interference between parties. We also study only the setting
with two rather than many parties. As such, we are concerned with two-party
synchronous systems, leaving extensions as future work.

We re-purpose and extend the syntax of a deontic language from literature
[3,4] into a new deontic logic with denotational semantics appropriate for this
two-party setting. Our semantics depends on two notions of informative satisfac-
tion or violation, which talk about the exact point in time a contract is satisfied
or violated. Other features of the logic include the ability to make contracts
trigger on matching a regular language, requiring the satisfaction of a contract
while one is still within the prefix language of a regular language, and a recursion
operator to allow the definition of persistent contracts and repetition.

We extend the semantics with a notion of blame assignment, to identify
which party is responsible for a certain violation. We further use this to define
quantitative semantics that counts the number of violations caused by a certain
party, which can be used to compare different traces or behaviour of a party.

We give an exponential automata construction for the logic, transforming
a contract specification into an automaton capable of identifying satisfaction,
and violation as specified in our semantics. We also provide a model checking
algorithm, which is quadratic in the size of the contract automaton, hence expo-
nential in the size of the contract. We re-use this construction for blame analysis,
but leave analysis for the quantitative semantics for future work.

The paper organisation follows. Section 2 lays out preliminaries, Section 3
presents our logic, and Section 4 presents algorithms for model checking and
blame analysis through automata constructions. Related work is considered in
Section 5, and we conclude in Section 6.

2 Preliminaries

We write N∞ for N ∪ {∞}. Given a finite alphabet Σ, we write Σ0, and Σ1 for
re-labellings of Σ with party identifiers 0 and 1, and Σ0,1 for Σ0 ∪ Σ1. We use
P [x/y] to refer to the syntactic replacement of x in P with y, where P can be an
automaton (x and y are states), or a specification (x and y are syntactic objects
in the language). We write (∗, s) to refer to all state pairs with s in the second
position, and similarly for (s, ∗).
Traces For i ∈ N, j ∈ N∞, and an infinite trace w over sets of actions from
a finite alphabet Σ, we denote the trace between positions i and j by w[i..j],
including the values at both positions. If j < i then w[i..j] is the empty trace.
When j =∞ then w[i..j] is the suffix of w from i. We write w[i] for w[i...i], and
w · w′ for concatenation of w and w′, which is only defined for a finite word w.

Given two traces w,w′ over 2Σ , we define stepwise intersection: (wuw′)[i] def
=

w[i] ∩ w′[i], union (w t w′)[i] def
= w[i] ∪ w′[i], and union with party labelling:

(w t01 w′)[i]
def
= w[i] ∪01 w′[i], where E ∪01 E′

def
= {a0 | a ∈ E} ∪ {a1 | a ∈ E′}, i.e.

4 Observe similarities with synchronous and asynchronous communication.

Synchronous Agents, Verification, and Blame — A Deontic View 3

the left actions are labeled by 0 and the right actions by 1. This gives a trace
in Σ0,1. For instance, given w = 〈{a}, {b}, {c, d}〉 and w′ = 〈{a}, {e}, {d, e}〉, we
have that w[2]∩w′[2] = {c, d}∩{d, e} = {d} and w[2]t01w′[2] = {c, d}t01{d, e} =
{c0, d0, d1, e1}.

Given two traces w0 and w1, over 2Σ , we writew
j
i for the pair (w0[i..j], w1[i..j]).

wj
i is said to be an interaction, and when j ∈ N a finite interaction. Sometimes

we abuse notation and treat wj
i as a trace in Σ0,1, since it can be projected into

such a trace through t01.

Automata A tuple A = 〈Σ,Q, q0,Rej,→〉 is an automaton, where Σ is a
finite alphabet, S is a finite set of states, s0 ∈ S is the initial state, Rej ⊆ S is
a set of rejecting states, and →∈ S × 2Σ → (2S \ ∅) is the transition function
(→∈ S × 2Σ → S when the automaton is deterministic). The language L(A) of
automaton A is the set of infinite traces with no prefix reaching a rejecting state.
The rejecting language RL(A) of automaton A is the set of infinite traces with
a prefix reaching a rejecting state. We write RLs(A) for the rejecting language
through a specific rejecting state s ∈ Rej.

The synchronous product of automata A and B over the same alphabet Σ,
denoted by A‖B, is the automaton: (Σ,SA×SB , (s0A , s0B), (RejA×SB)∪(SA×
RejB),→) where → is the minimal relation such that: for any E ⊆ Σ, if s1

E−→A

s′1 and s2
E−→B s′2 then (s1, s2)

E−→ (s′1, s
′
2).

The relaxed synchronous product of automata A and B over the same alpha-
bet Σ, denoted by A‖rB includes A‖B but allows moving independently when
there is no match: if s1

E−→A s
′
1 and @s′2 ·s2

E−→B s′2, then (s1, s2)
E−→ (s′1, s2); and

symmetrically.
Moore Machines A Moore machine is a 5-tuple M = (S, s0, ΣI , ΣO, δ, λ)

where S is a finite set of states, s0 ∈ S is the initial state, ΣI and ΣO are
respectively the finite set of input and output actions, δ : S × 2ΣI → 2S is a
transition function that maps each state and inputs to a next state, and λ : S →
2ΣO is an output function that maps each state to a set of outputs.

The product of a Moore machine M1 over input alphabet ΣI and output
alphabet ΣO, and Moore machine M2 with flipped input and output alphabets
is the automaton: M1 ⊗M2

def
= (ΣI ∪ ΣO, S1 × S2, (s01 , s02), ∅,→) where → is

the minimal relation such that: for any states s1 ∈ S1 and s2 ∈ S2, where
s1

λ2(s2)−−−−→ s′1 and s2
λ1(s1)−−−−→ s′2 then (s1, s2)

λ1(s1)∪λ2(s2)−−−−−−−−−→ (s′1, s
′
2).

Regular Expressions We use standard syntax for regular expressions. We
treat as atomic boolean combinations of actions from Σ0,1. The operators are
standard: choice, re + re (match either); sequence, re; re (match the first then
the second) and the Kleene plus, re+ (match a non-zero finite amount of times in
sequence). The language of a regular expression re is a set of finite traces: L(re) ⊆
(2Σ0,1)∗. We abuse notation and writewj

i ∈ L(re) for w0[i...j]t01w1[i...j] ∈ L(re).
We restrict attention to the tight language of a regular expression, containing

matching finite traces that have no matching strict prefix: TL(re) def
= {wj

i ∈
L(re) | @k : k < j ∧wk

i ∈ L(re)}. The prefix closure of the tight language is the

4 Kharraz et al.

set of finite prefixes of the tight language up to a match: cl(re) def
= {wk

i | ∃j :

wj
i ∈ TL(re)∧ i ≤ k < j}. We define the complement of the prefix closure as the

set of finite traces that do not tightly match the regular expression but whose
maximal strict prefix is in the closure of the expression: cl(re) def

= {wj
i | (w

j−1
i ∈

cl(re) ∧wj
i 6∈ cl(re) ∧wj

i 6∈ TL(re))}.
We denote by A(re, s0, sX, s×) the deterministic finite automaton corre-

sponding to regular expression re, with s0, and s× respectively as the initial

and rejecting states and, sX as a sink state, s.t. ∀wj
i ∈ TL(re) : s0

wj
i=⇒ sX,

∀wj
i ∈ cl(re) : ∃s : s0

wj
i=⇒ s ∧ s 6= sX ∧ s 6= s×, and ∀wj

i ∈ cl(re) : s0
wj

i=⇒ s×.

3 A Deontic Logic for Collaboration

In this section, we present the syntax and semantics of cDL, a deontic logic able
to express the extent to which parties should cooperate and non-interfere.

Definition 3.1 cDL Syntax. A cDL contract C is given by the following gram-
mar, given an alphabet Σ, regular expressions re, a set of variables X, and party
labels p from {0, 1}:

a ∈ Σ0 ∪Σ1

N := Op(a) | Fp(a) | Pp(a) | > |⊥
C := N | C ∧ C | C;C | C I C |

〈re〉C | re l C | X | recX.C

Our setting is that of two-party systems, with one party indexed with 0 and
the other with 1. As the basic atoms of the language, we have norms. These
norms are labeled by the party that is the main subject of the norm, and the
action that is normed: Op(a) denotes an obligation for party p to achieve a;
Fp(a) denotes a prohibition for party p from achieving a, and Pp(a) denotes a
permission/right for party p to achieve a.

We call cDL specifications contracts. Contracts include norms, the atomic
satisfied (>), and the transgressed (⊥) contract. Contracts can be conjuncts (∧)
and sequentially composed (;). A contract may repair the violation of another
(C I C ′ means that C ′ is the reparation applied when C is violated).

Contracts can be triggered when a regular expression matches tightly (〈re〉C).
A regular expression can also guard

l

a contract C, such that an unrecoverable
mismatch with it removes the need to continue complying with C in (re

l

C).
We allow recursive definitions of contracts (rec X.C), where X ∈ X, with

some restrictions. First, we do not allow a contract to have two recursive sub-
contracts using the same variable name. Secondly, we have some syntactic re-
strictions on the contract C appearing inside of the recursion: C’s top-level
operator is always a sequence, or a regular expression trigger contract, with
X only appearing once and on the right-hand side of a sequence, i.e., the ex-
pression must be tail recursive. We also require an additional restriction for

Synchronous Agents, Verification, and Blame — A Deontic View 5

recursion with the reparation operator: the reparation has to either not be the
last operation before X or the whole recursion should be guarded with re
l

,
the reason behind it is to avoid the procrastination dilemma [14]. For example,
rec X.〈re〉((C I C ′);X) and re

l

(rec X.C I X) are valid, unlike rec X.X,
rec X.C; (C ′ ∧ X), rec X.〈re〉((C;X);C ′), and rec X.C I X. Moreover, a re-
cursion variable X ∈ X must always be bound when it appears in a contract.

In our setting, we want to be able to talk about collaborative actions (ac-
tions that require both parties to be achieved successfully) and non-interference
between the parties (a party not being allowed to interfere with the other party
carrying out a certain action). We model both of these using a notion of syn-
chronicity. We will later represent parties as Moore machines; here we talk just
about their traces.

We assume two traces over 2Σ , one for each party: w0 and w1. A party’s
trace is a record of which actions were enabled (or attempted) by that party.
The step-wise intersection of these traces, w0 uw1, is the trace of successful ac-
tions. Restricting attention to the successful actions misses information about
attempts that were not successful. Instead, we give semantics over pairs of party
traces, an interaction, rather than over w0 uw1, allowing us to localise interfer-
ence. This setting allows us to model both collaboration and non-interference
between the parties in the same way. If the parties are required to collaborate
on an action, then they must both propose it (obligation). If instead, the parties
should ensure an action is not successful, then at least one of them must not
enable it (prohibition). If a party is required to not interfere with another party’s
action, then they must also enable it (permission). We refer to actions of one
party variously as proposed, attempted, or enabled by that party. We consider an
example specification in our language.

Example 3.1. Consider two possibly distinct robots, 0 and 1, working on a fac-
tory floor, with their main goal being to cooperate in placing incoming packages
on shelves. Each robot has sensors to identify when a new package is in the queue
(detectProd), and they must lift the package together (lift), and place it on a shelf
(putOnShelf). Between iterations of this process, the robots are individually al-
lowed to go to their charging ports (charge0 or charge1). If a robot does not help
in lifting, it is given another chance:

permitCharge def
= P0(charge0) ∧ P1(charge1)

lift(p) def
= Op(lift) I Op(lift)

detect&Lift(p) def
= 〈detectProdp〉lift(p)

detect&Place def
= (detect&Lift(0) ∧ detect&Lift(1)) ;
(O0(putOnShelf) ∧O1(putOnShelf))

collabRobot def
= rec X.permitCharge; detect&Place;X.

6 Kharraz et al.

wj
i |=s >

def
= i = j

wj
i |=s ⊥

def
= false

wj
i |=s Op(a)

def
= i = j ∧ a ∈ w0[i] and a ∈ w1[i]

wj
i |=s Fp(a)

def
= i = j ∧ a 6∈ wp[i] or a 6∈ w1−p[i]

wj
i |=s Pp(a)

def
= i = j ∧ a ∈ wp[i] implies a ∈ w1−p[i])

wj
i |=v N

def
= i = j ∧wj

i 6|=s N

wj
i |=s 〈re〉C

def
= wj

i ∈ cl(re) or (∃k < j : wk
i ∈ TL(re) and wj

k+1 |=s C)

wj
i |=v 〈re〉C

def
= ∃k < j : wk

i ∈ TL(re) and wj
k+1 |=v C

wj
i |=s re

l

C
def
= (wj

i ∈ cl(re) ∪ TL(re) and @k < j : (wk
i |=v C))

or (wj
i ∈ cl(re) and wj

i |=s C)

wj
i |=v re

l

C
def
= wj

i ∈ cl(re) and wj
i |=v C

wj
i |=s C ∧ C

′ def
= wk

i |=s C and wl
i |=s C′ and j = max(k, l)

wj
i |=v C ∧ C

′ def
= (wj

i |=v C or wj
i |=v C

′) and @k < j : wk
i |=v C ∧ C′

wj
i |=s C;C′

def
= ∃k < j : wk

i |=s C and wj
k+1 |=s C

′

wj
i |=v C;C′

def
= (∃k < j : wk

i |=s C and wj
k+1 |=v C

′) or wj
i |=v C

wj
i |=s C I C

′ def
= wj

i |=s C or (∃k < j : wk
i |=v C and wj

k+1 |=s C
′)

wj
i |=v C I C

′ def
= ∃k < j : wk

i |=v C and wj
k+1 |=v C

′

wj
i |=s rec X.C

def
= wj

i |=s C[X\rec X.C]

wj
i |=v rec X.C

def
= wj

i |=v C[X\rec X.C]

wj
i �? C

def
= @k ≤ j : wk

i |=s C or wk
i |=v C

Fig. 1: Informative semantics rules over a finite interaction wj
i .

3.1 Informative Semantics

The semantics of our language is defined on an interaction, i.e. a pair of traces
w0 and w1, restricting our view to a slice with a minimal position i and maximal
one j. For the remainder of this paper, we will refer to this interaction with wj

i .
In Figure 1, we introduce the semantic relations for informative satisfaction

(|=s) and violation (|=v). These capture the moment of satisfaction and violation
of a contract in a finite interaction. We use this to later define when an infinite
interaction models a contract. In Figure 1 we also capture with �?, when the
interaction slice neither informatively satisfies nor violates the contract.

We give some intuition and mention interesting features of the semantics.
Note how we only allow the status of atomic contracts to be informatively decided
in one time-step (when i = j), given they only talk about one action. When it
comes to the trigger contract, our goal is to confirm its fulfillment only when
we no longer closely align with the specified trigger language. Alternatively, we
consider it satisfied if we’ve matched it previously and subsequently maintained

Synchronous Agents, Verification, and Blame — A Deontic View 7

compliance with the contract. Conversely, we would classify a violation if we
achieved a close match but then deviated from the contract’s terms. Regarding
the regular expression guard, we have two scenarios for evaluating satisfaction.
First, we ensure satisfaction when either we have precisely matched the language
or have taken actions preventing any future matching of the guard, with no prior
violations or the guarded contract. Second, we verify satisfaction when there’s
still a possibility of a precise match of the guard, and the guarded contract
has already been satisfied. In contrast, a violation occurs when there remains
a chance for a precise match in the future of the guard, and a violation of the
sub-contract occurs.

The definitions for conjunction and sequence are relatively simple. Note that
for conjunction we take the maximum index at which both contracts have been
satisfied. Sequence and reparation are similar, except in reparation we only con-
tinue in the second contract if the first is violated, while we violate it if both
contracts end up being violated. For recursion, we simply re-write variable X as
needed to determine satisfaction or violation.

Example 3.2. Note how the semantics ensure that, given traces w0 and w1

such that w0[0] = w1[1] = {charge0, charge1} then w0
0 |=s permitCharge, i.e.

both robots try to charge and allow each other to charge. But if further w0[1..3] =
〈{detectProd}, {lift}, {lift}〉 and w1[1..3] = 〈{}, {}.{}〉, then w3

0 |=v CollabRobot,
since robot 0 attempted a lift but robot 1 declined helping in lifting.

Then, we show that if a contract is informatively satisfied (violated), then any
suffix or prefix of the interaction cannot also be informatively satisfied (violated):

Lemma 3.1 Unique satisfaction and violation. If there exists j and k such
that wj

i |=s C and wk
i |=s C, then j = k. Similarly, if there exists j and k such

that wj
i |=v C and wk

i |=v C then j = k.

Proof sketch. For the atomic contracts, this is clear. By structural induction,
the result follows for conjunction, sequence, and reparation. For the trigger op-
erations, the definition of TL ensures the result. For recursion, note how given
a finite interaction there is always a finite amount of times the recursion can be
unfolded (with an upper bound of j − i) so that we can determine satisfaction
or violation in finite time.

If an interaction is not informative for satisfaction, it is not necessarily in-
formative for violation, and vice-versa. But we can show that if there is a point
of informative satisfaction then there is no point of informative violation.

Lemma 3.2 Disjoint satisfaction and violation. Informative satisfaction
and violation are disjoint: there are no j, k s.t. wj

i |=s C and wk
i |=v C.

Proof sketch. The proof follows easily by induction on the structure of C.

We can then give semantics to infinite interactions.

8 Kharraz et al.

wj
i |=

p
v >

def
= false

wj
i |=

p
v ⊥

def
= false

wj
i |=

p
v O1−p(a)

def
= i = j ∧ a ∈ w1−p[i] and a 6∈ wp[i]

wj
i |=

p
v Op(a)

def
= i = j ∧ a 6∈ wp[i]

wj
i |=

p
v F1−p(a)

def
= false

wj
i |=

p
v Fp(a)

def
= i = j ∧ a ∈ wp[i] and a ∈ w1−p[i]

wj
i |=

p
v P1−p(a)

def
= i = j ∧ a ∈ w1−p[i] and a 6∈ wp[i]

wj
i |=

p
v Pp(a)

def
= false

wj
i |=

p
v 〈re〉C

def
= ∃k < j : wk

i |=s TL(re) and wj
k+1 |=

p
v C

wj
i |=

p
v re

l

C
def
= wj

i ∈ cl(re) and wj
i |=

p
v C

wj
i |=

p
v C ∧ C′

def
= (wj

i |=
p
v C or wj

i |=
p
v C
′) and

(@k < j : wk
i |=1−p

v C ∧ C′) and
¬(conflict(C,C′,wj−1

i))

wj
i |=

p
v C I C

′ def
= ∃k : wk

i |=v C and wj
k+1 |=

p
v C
′

wj
i |=

p
v rec X.C

def
= wj

i |=
p
v C[X\rec X.C]

Fig. 2: Blame semantics rules over a finite interaction wj
i

Definition 3.2 Models. For an infinite interaction w∞0 , and a cDL contract
C, we say w∞0 models a contract C, denoted by w∞0 � C, when there is no prefix
of the interaction that informatively violates C: w∞0 � C

def
= @k ∈ N ·wk

0 |=v C.

3.2 Blame Assignment

We are not interested only in whether a contract is satisfied or violated, but also
on causation and responsibility [9,12,10]. Here we give a relation that identifies
when a party is responsible for a violation at a certain point in an interaction.
Blame assignment could be specified following multiple criteria, we assign blame
when an agent neglects to perform an action it is obliged to do or that another
agent is obliged to do (passive blame), or for attempting to do an action it is
forbidden from doing (active blame). The blame is forward looking where we
identify the earliest cause of violation. Furthermore, we are only interested in
causation and not on more advanced features such as "moral responsibility" or
"intentionality". The blame semantics is only defined as a violation by party p
relation as in |=pv. This semantics is defined in Figure 2.

For blame assignment, the labeling of norms with parties is crucial. Here we
give meaning to these labels in terms of who is the main subject of the norm in
question. For example, consider that O0(a) can be violated in three ways: either
(i) both parties do not attempt a, (ii) party 0 does not attempt a but party
1 does, or (iii) party 0 attempts a but party 1 does not. Our interpretation is
that since party 0 is the main subject of the obligation, party 0 is blamed when
it does not attempt a (cases (i) and (ii)), but party 1 is blamed when it does

Synchronous Agents, Verification, and Blame — A Deontic View 9

not attempt a (case (iii)). The intuition is that by not attempting a, party 0
violated the contract, thus relieving party 1 of any obligation to cooperate or
non-interfere (given party 0 knows there is no hope for the norm to be satisfied
if they do not attempt a). We use similar interpretations for the other norms.

Another crucial observation is that violations of a contract are not necessarily
caused by a party. For example, the violated contract ⊥ cannot be satisfied.
Moreover, norms can conflict, e.g., Op(a)∧Fp(a). Conflicts are not immediately
obvious without some analysis, e.g., 〈re〉Op(a)∧ 〈re′〉Fp(a) (where there is some
interaction for which re and re′ tightly match at the same time). We provide
machinery to talk about conflicts, to avoid unsound blaming, by characterising
two contracts to be conflicting when there is no way to satisfy them together.

Definition 3.3 Conflicts. Two contracts C and C ′ are in conflict after a
finite interaction wj

i if at that point their conjunction has not been informa-
tively satisfied or violated yet, but all possible further steps lead to its violation:
conflict(C,C ′,wj

i)
def
= @w′ : w′j

i = wj
i ∧w′j+1

i 6|=v C ∧ C ′.

Another instance of a conflict can be observed between C1 = O0(a);F1(c)
and C2 = O0(b) I O0(c) at the second position. This can be demonstrated with
a trace of length one, 〈a0; a1〉, where the obligation to achieve c for party 0 and
the prohibition to achieve c for party 1 have to be enforced simultaneously.

Example 3.3. Recall the violating example in Example. 3.2, where robot 1 de-
clines in helping lifing, twice. Clearly in that case w3

0 |=1
v collabRobot . However,

if robot 0 did not attempt a lift in position 3 (i.e., to attempt to satisfy the repa-
ration), the blame would be on the other agent.

From the definition of blame it easily follows that a party is blamed for a
violation only when there is a violation:

Proposition 3.1. If a party p is blamed for the violation of C then C has been
violated: ∃p ·wj

i |=pv C implies wj
i |=v C.

Proof. Note how each case of |=pv implies its counterpart in |=v.

But the opposite is not true:

Proposition 3.2. A contract may be violated but both parties be blameless:
wj
i |=v C does not imply ∃p ·wj

i |=pv C.

Proof. Consider their definitions on ⊥, and given conjunction and the presence
of conflicts.

Proposition 3.3 Satisfaction implies no blame. Satisfaction of contract C
means that no party will get blamed: wj

i |=s C implies @p ·wj
i |=pv C

Proof. Assume the contrary, i.e. that C is satisfied but party p is blamed. By
Proposition 3.1 then there is a violation, but Lemma 3.2 implies we cannot both
have a satisfaction or violation.

10 Kharraz et al.

Observation 3.1. For any contract C /⊥ defined on cDL free of ⊥ and free of
conflicts, the violation of a contract C /⊥ leads to blame.

Observation 3.2 Double blame. Double blame in cDL for both parties p and
1− p is possible. Consider C = Op(a)∧Op(b). Violation of the left-hand side by
p and the violation of the right-hand side by 1− p can happen at the same time.

3.3 Quantitative Semantics

While it is possible to assign blame to one party for violating a contract, other
qualitative metrics can provide additional information about the violation. These
metrics can determine the number of violations caused by each party, as well as
the level of satisfaction with the contract. To assess responsibility for contract
violations, we introduce the notion of a mistake score, ρ, for each party, enabling
us to calculate a responsibility degree. It is important to note that our language
permits reparations, whereby violations can be corrected in the next time step.
However, interactions that are satisfied with reparations are not considered ideal.
We present quantitative semantics to compare satisfying interactions based on
the number of repaired violations a party incurs. We define relations that track
the number of repaired violations attributed to each party with a mistake score,
ρ, written

p

s
for informative satisfaction and

p

v
for informative violation of

the contract. We can also keep track of the number of violations when the trace
is not informative through

p

?
. Figure 3 provides a definition of this semantics.

Note this definition intersects the previous semantic definitions, and due to space
constraints, we do not re-expand that further. The addition is that we are disam-
biguating some cases to identify when to add to the score to identify a violation
caused by p. For example, see the definition of

p

v
for a norm.

Example 3.4. Consider again Example 3.1, and consider the finite interaction
(〈{charge0}, {detectProd}, {}, {lift}〉 and 〈{charge0}, {}, {lift}, {lift}〉. Note how
this will lead to robot 0 being given a score of one since on the third step there
is a violation that is repaired subsequently.

Lemma 3.3 Soundness and completeness. The quantitative semantics is
sound and complete with regard to the informative semantics: wj

i |=γ C ⇐⇒
∃ρ1, ρ2 : wj

i , ρ1
p

v
C and wj

i , ρ2
1−p
v

with γ ∈ {s, v, ?}.
Proof sketch. By induction on the quantitative semantics and informative se-
mantics.

Lemma 3.4 Fairness of the Quantitative semantics. The quantitative se-
mantic is fair, meaning that if the score of a player p is ρ then p is to be blamed
for non-fulfilling ρ norms of the contract: wj

i , ρ
p

γ
C =⇒ ∃N1 . . . Nρ ∈

subcontracts(C) : wj
i

p

γ
Ni with γ ∈ {s, v, ?}, where subcontracts(C) is a mul-

tiset containing the subcontracts of C, up to how often they appear.

Proof sketch. We prove, this by structural induction, noting that the score only
increases when p is blamed for the violation of a norm, while the inductive case
easily follows from the inductive hypothesis.

Synchronous Agents, Verification, and Blame — A Deontic View 11

wj
i , ρ

p

s
N

def
= ρ = 0 ∧wj

i |=s N

wj
i , ρ

p

v
N

def
=

{
ρ = 1 if wi

i |=pv N
ρ = 0 if N =⊥ ∨wi

i |=1−p
v N

wj
i , ρ

p

?
N

def
= false

wj
i , ρ

p

s
〈re〉C def

=

{
ρ = 0 if wj

i ∈ cl(re)
wj
k+1, ρ

p

s
C if ∃k : wk

i ∈ TL(re)
wj
i , ρ

p

v
〈re〉C def

= ∃k : wk
i ∈ TL(re) and wj

k+1, ρ
p

v
C

wj
i , ρ

p

?
〈re〉C def

=

{
ρ = 0 if @k ≤ j : wk

i ∈ TL(re)
wj
k+1, ρ

p

?
C else ∃k ≤ j : wk

i ∈ TL(re)

wj
i , ρ

p

s
re

l

C
def
=

wj−1
i , ρ

p

?
C if wj

i ∈ cl(re) ∪ TL(re)
and @ρ′, k < j : wk

i , ρ
′ p

v
C

wj
i , ρ

p

s
C if wj

i ∈ cl(re)
wj
i , ρ

p

v
re

l

C
def
= wj

i ∈ cl(re) and wj
i , ρ

p

v
C

wj
i , ρ

p

?
re

l

C
def
= wj

i ∈ cl(re) and wj
i , ρ

p

?
C

wj
i , (ρ1 + ρ2)

p

s
C ∧ C′ def

= ∃k, l : wk
i , ρ1

p

s
C and wl

i, ρ2
p

s
C′

and j = max(k, l)

wj
i , (ρ1 + ρ2)

p

v
C ∧ C′ def

= ((wj
i , ρ2

p

v
C′ or wj

i , ρ2
p

s
C′)

and wj
i , ρ1

p

v
C)

or ((wj
i , ρ1

p

v
C′ or wj

i , ρ1
p

s
C′)

and wj
i , ρ2

p

v
C′)

or (wj
i , ρ1

p

v
C and wj

i , ρ2
p

v
C′

and ¬conflict(C,C′,wj−1
i))

or (wj−1
i , ρ1

p

?
C and wj−1

i , ρ2
p

?
C′

and conflict(C,C′,wj−1
i))

wj
i , (ρ1 + ρ2)

p

?
C ∧ C′ def

= (wj
i , ρ1

p

s
C and wj

i , ρ2
p

?
C′)

or (wj
i , ρ1

p

?
C and wj

i , ρ2
p

s
C′)

wj
i , (ρ1 + ρ2)

p

s
C;C′

def
= ∃k < j : wk

i , ρ1
p

s
C and wj

k+1, ρ2
p

s
C′

wj
i , ρ

p

v
C;C′

def
=

ρ = ρ1 + ρ2 if ∃k < j : wk

i , ρ1
p

s
C

and wj
k+1, ρ2

p

v
C′

wj
i , ρ

p

v
else

wj
i , (ρ1 + ρ2)

p

?
C ; C′

def
= wj

i , ρ
p

?
C

or (wk
i , ρ1

p

s
C and wj

k+1, ρ2
p

?
C′)

wj
i , ρ

p

s
C I C′

def
= wj

i , ρ
p

s
C

or (∃k < j : wk
i , ρ1

p

v
C

and wj
k+1, ρ2

p

s
C ∧ ρ = ρ1 + ρ2)

wj
i , (ρ1 + ρ2)

p

v
C I C′

def
= (∃k < j : wk

i , ρ1 |=pv C and wj
k+1, ρ2

p

v
C′)

wj
i , ρ

p

?
C I C′

def
=

ρ = ρ1 + ρ2 if wk

i , ρ1
p

v
C

and wj
k+1, ρ2

p

?
C′

wj
i , ρ

p

?
C else

wj
i , ρ

p

γ
rec X.C

def
= wj

i , ρ
p

γ
C[X \ rec X.C] for γ ∈ {s, v, ?}

Fig. 3: Quantitative semantics rules over a finite interaction wj
i .

12 Kharraz et al.

4 Analysis

In this section, we define an automata-theoretic approach to analyzing cDL
contracts, through a construction to a safety automaton. We use this for model
checking and blame analysis, but leave the application for quantitative analysis
for future work.

4.1 Contracts to Automata

We give a construction from cDL contracts to automata that recognize inter-
actions that are informative for satisfaction or violation. For brevity, we keep
the definition of the automata symbolic, with transitions tagged by propositions
over party actions, representing a set of concrete transitions. The automaton is
over the alphabet Σ0,1 since it requires information about the parties.

Definition 4.1. The deterministic automaton of contract C is:

aut(C)
def
= 〈Σ0,1, S, s0, {sB},→〉.

We define → through the below function τ(C, s0, sG, sB , {}) that computes a set
of transitions, given a contract, an initial state (s0), a state denoting satisfaction
(sG), a state denoting violation (sB), and a partial function V from recursion
variables (X) to states, characterised by (with s as a fresh state):

τ(>, s0, sG, sB , V)
def
= {s0

true−−−→ sG}

τ(⊥, s0, sG, sB , V)
def
= {s0

true−−−→ sB}

τ(Op(a), s0, sG, sB , V)
def
= {s0

ap∧a1−p−−−−−→ sG, s0
¬(ap∧a1−p)−−−−−−−−→ sB}

τ(Fp(a), s0, sG, sB , V)
def
= {s0

¬(ap∧a1−p)−−−−−−−−→ sG, s0
ap∧a1−p−−−−−→ sB}

τ(Pp(a), s0, sG, sB , V)
def
= {s0

ap =⇒ a1−p−−−−−−−−→ sG, s0
¬(ap =⇒ a1−p)−−−−−−−−−−→ sB}

τ(〈re〉C, s0, sG, sB , V)
def
= A(re, s0, s, sG) ∪ τ(C, s, sG, sB , V)

τ(re

l

C, s0, sG, sB , V)
def
= (A(re, s0, sG, sG)‖τ(C, s0, sG, sB , V))

[(sG, ∗)/sG][(∗, sB)/sB][(∗, sG)/sG]

τ(C ∧ C ′, s0, sG, sB , V)
def
= (τ(C, s0, sG, sB , V)‖rτ(C ′, s0, sG, sB , V))

[(sG, sG)/sG][(sB , ∗)/sB][(∗, sB)/sB]

τ(C;C ′, s0, sG, sB , V)
def
= τ(C, s0, s, sB , V) ∪ τ(C ′, s, sG, sB , V)

τ(C I C ′, s0, sG, sB , V)
def
= τ(C, s0, sG, s, V) ∪ τ(C ′, s, sG, sB , V)

τ(X, s0, sG, sB , V)
def
= {sG

ε−→ V (X)}

τ(recX.C, s0, sG, sB , V)
def
= τ(C, s0, sG, sB , V [X 7→ s0])

Synchronous Agents, Verification, and Blame — A Deontic View 13

We define →′ as τ(C, s0, sG, sB , {}) without all transitions outgoing from sG

and SB, and define →def
=→′ ∪{sB

true−−→ sB} ∪ {sG
true−−−→ sG}, where S is the set

of states used in →. We assume the ε-transitions are removed using standard
methods.

We give some intuition for the construction. The transitions for the atomic
contracts follow quite clearly from their semantics. For the trigger contracts, we
use a fresh state s to connect the automaton for the regular expression, with
that of the contract, ensuring the latter is only entered when the former tightly
matches. For the guard contract, we instead synchronously compose (‖) both
automata (i.e., intersect their languages), getting a set of transitions. Here we
also relabel tuples of states to single states. Recall we use (∗, s) to match any
pair, where the second term is s, and similarly for (s, ∗). Through the sequence
of re-labellings, we ensure: first that reaching sG in the acceptance of the first
means; (2) reaching sB in the second means violation; and (3) if the previous
two situations are not the case, reaching sG in the second means acceptance.

For conjunction, instead of using the synchronous product, we use the re-
laxed variant (‖r), since the contracts may require traces of different lengths for
satisfaction. This relaxed product allows the ‘longer’ contract to continue after
the status of the other is determined. For sequence, we use the fresh state s
to move between the automata, once the first contract has been satisfied. For
reparation this is similar, except we move between the contracts at the moment
the first is violated. For recursion, we simply loop back to the initial state of the
recursed contract with an ε-transition once the corresponding recursion variable
is encountered.

Note how analyzing states without viable transitions, after applying τ , can
be used for conflict analysis of cDL contracts. For example, when there is a
conflict, e.g., Op(a)∧Fp(a), there will be a state with all outgoing transitions to
sB .

Theorem 4.1 Correctness. An infinite interaction is a model of C, iff it never
reaches a rejecting state in aut(C):
∀w∞0 ·w∞0 |= C ⇐⇒ w0 t01 w1 ∈ L(aut(C)).

Proof sketch. For the atomic contracts, the correspondence should be clear. By
structural induction on the rest: triggering, sequence, and reparation should also
be clear from the definition. For conjunction, the relaxed synchronous product
makes sure the contract not yet satisfied continues being executed, as required,
while the replacements ensure large nestings of conjunctions do not lead to large
tuples of accepting or rejecting states. For

l

, using the synchronous product
ensures the path ends when either is satisfied/violated, as required.

Corrolary 4.1. An infinite interaction is not a model of C, iff it reaches a

rejecting state in aut(C): ∀(w0, w1) 6|= C ⇐⇒ ∃j ∈ N · s0
(w0t0

1w1)[0...j]
=========⇒ sB.

Proof sketch. Follows from Theorem. 4.1 and completeness (up to rejection) of
aut(C).

14 Kharraz et al.

Complexity From the translation note that without regular expressions the
number of states and transitions is linear in the number of sub-clauses and oper-
ators in the contract, but is exponential in the presence of regular expressions.5

4.2 Model Checking

We represent the behaviour of each party as a Moore machine (M0, andM1). For
party 0, the input alphabet is Σ1 and the output alphabet is Σ0, and vice-versa
for party 1. We characterise their composed behaviour by using the product of
the two dual Moore machines: M0 ⊗M1, getting an automaton over Σ0 ∪Σ1.

We can then compose this automaton that represents the interactive be-
haviour of the parties with the contract’s automaton, (M0⊗M1)‖aut(C). Then,
if no rejecting state is reachable in this automaton, the composed party’s be-
haviour respects the contract.

Theorem 4.2 Model Checking Soundness and Completeness. ∅ = RL((M0⊗
M1)‖aut(C)) iff @w∞0 : w0 t01 w1 ∈ L(M0 ⊗M1) ∧w∞0 |=v C.

Proof. Consider that ‖ computes the intersection of the languages, while Theo-
rem. 4.1 states that L(aut(C)) contains exactly the traces satisfying C (modulo a
simple technical procedure to move between labelled traces and pairs of traces).
Then it follows easily that RL((M0 ⊗M1)‖aut(C)) is empty only when there is
no trace in (M0 ⊗M1) that leads to a rejecting state in aut(C). The same logic
can be taken in the other direction.

4.3 Blame Assignment

For the blame assignment, we can modify the automaton construction by adding
two other violating states: s0B and s1B , and adjust the transitions for the basic
norms accordingly.

Definition 4.2. The deterministic blame automaton of contract C is:

blAut(C)
def
= 〈Σ0,1, S, s0, {sB , s0B , s1B , (s0B , s1B)},→〉

We define → through the function τ(C, s0, sG, s0B , s
1
B , V) that computes a set

of transitions, as in Definition 4.1 but now assigning blame by transitioning to
the appropriate state. We focus on a subset of the rules, given limited space,
where there are substantial changes6:

τ(Op(a), s0, sG, s
0
B , s

1
B , V)

def
= {s0

ap∧a1−p−−−−−→ sG, s0
¬ap−−→ spB , s0

ap∧¬a1−p−−−−−−→ s1−pB }
5 For example, a contract recX.>; (O0(a)∧ P1(b));X has size 8 (note normed actions
are not counted).

6 The missing rules essentially mirror the previous construction with the added states,
and the different domains.

Synchronous Agents, Verification, and Blame — A Deontic View 15

τ(Fp(a), s0, sG, s
0
B , s

1
B , V)

def
= {s0

¬(ap∧a1−p)−−−−−−−−→ sG, s0
ap∧a1−p−−−−−→ spB}

τ(Pp(a), s0, sG, s
0
B , s

1
B , V)

def
= {s0

ap =⇒ a1−p−−−−−−−−→ sG, s0
ap∧¬a1−p−−−−−−→ s1−pB }

τ(C I C ′, s0, sG, s
0
B , s

1
B , V)

def
= τ(C, s0, sG, s

0, s1, V)

∪ τ(C ′, s0, sG, s0B , V) ∪ τ(C ′, s1, sG, s1B , V)

Given →′= τ(C, s0, sG, sB , {}), → is defined as →′ with the following trans-
formations, in order: (1) any tuple of states containing both s0B and s1B is re-
labelled as (s0B , s

1
B); (2) any tuple of states containing s0B (s1B) is relabelled as

s0B (s1B); (3) any state for which all outgoing transitions go to a bad state are
redirected to sB; (4) any tuple of states containing sG is relabelled as sG; and
(5) all bad states and sG become sink states. S is the set of states used in →.
We assume the ε-transitions are removed using standard methods.

Note how this automata simply refines the bad states of the original automata
construction, by assigning blame for the violation of norms through a transition
to an appropriate new state. While the post-processing (see (3)), allows violations
caused by conflicts to go instead to state sB , where no party is blamed.

Then we prove correspondence with the blame semantics:

Theorem 4.3 Blame Analysis Soundness and Completeness.Where RLp,
for p ∈ {0, 1}, is the rejecting language of the automaton through states that pass
through spB or the tuple state (s0B , s

1
B):

∅ = RLp((M0 ⊗M1)‖blAut(C)) iff @w0, w1 ∈ (2Σ)∗ : w0 t01 w1 ∈ L(M0 ⊗
M1) ∧ (w0, w1) |=pv C.

Proof. This follows from a slight modification of Corollary. 4.1 (since here we
just refine the bad states of aut(C)) with the replacement of sB by party-tagged
bad states, and from a similar argument to Theorem. 4.2.

This automaton can be used for model checking as before, but it can also
answer queries about who is to blame.

Example 4.1. We illustrate in Figure 4 an example of two Moore machines
representing the behaviour of two parties (Figures 4a and 4b). Note these are
deterministic, therefore their composition (Figure 4) is just a trace. Note the
same theory applies even when the Moore machines are non-deterministic. In
Figures 4d and 4e we show the automaton and blame automaton for the contract
recX.(O1(c) I O0(b);X). Our model checking procedure (without blame) will
compose Figure 4 and Figure 4d, and identify that the trace reaches the bad
state. Consider that the reparation consisting of an obligation to perform an
action b was not satisfied. Similarly (not shown here) blame automaton would
blame party 1 for the violation.

16 Kharraz et al.

s0/a0start s1/b0

a1

¬a1

¬b1

b1

(a) M0: Moore machine for agent 0.

s0/c1start s1/b1

b0

¬b0

¬a0

a0

(b) M1: Moore machine for agent 1.

s0, s0start s1, s1 s0, s1 s1, s0
{a0, c1} {b0, b1} {a0, b1}

{b0, c1}

(c) The composition M0 ⊗M1.

s0start sG

s2 sB

a0 ∧ a1

¬(a0,∧a1) b0 ∧ b1

¬(b0 ∧ b1)

ε

(d) C = aut(recX.(O1(a) I O0(b));X)

s0start sG

s2

s0B

s1B

a0 ∧ a1

¬(a0 ∧ a1)
b0 ∧ b1

¬b0
b0 ∧ ¬b1

ε

(e) blAut(recX.(O1(a) I O0(b));X)

s2start sG s0 s2 sB

(f) (M0 ⊗M1)‖C

Fig. 4: Example of the model checking approach.

5 Related Work

Multi-agent systems. Several logics can express properties about multi-agent
systems. For example, ATL can express the existence of a strategy for one or more
agents to enforce a certain specification [2], while strategy logic makes strategies
first-class objects [7]. Checking for the existence of strategies is in 2EXPTIME.
Our logic is not concerned with the existence of strategies, but with analyzing
the party strategies to ensure they respect a contract. So, our approach is more
comparable to LTL than to game-based logic, limited to (co-)safety properties
and with a notion of norms that allows us to talk about blame natively.

Concerning blame, [11] considers the notion of blameworthiness. They use
structural equations to represent agents, but the approach is not temporal, and
each agent performs only one action. Work in this area (e.g., [11,13,9]) tends to
be in a different setting than ours.

They consider the cost of actions and agents’ beliefs about the probability
of their actions not achieving the expected outcome. Instead, we assume all
the parties have knowledge of the contract, and we take an automata-theoretic

Synchronous Agents, Verification, and Blame — A Deontic View 17

approach. Moreover, our blame derives from the norms, whereas other work
depends on a notion of causality [8].

The work [1] extends STIT logic with notions of responsibility, allowing rea-
soning about blameworthiness and praiseworthiness. This, and other similar
work (e.g., [15]) is more related to our work and even has a richer notion of
blame. However, we give an automata-based model checking procedure.

Deontic logics Deontic logics have been used in a multi-agent setting before.
For example, [6] define deontic notions in terms of ATL, allowing reasoning like
an obligation holds for an agent iff they have a strategy to carry it out. These
approaches (e.g., [6,17,20]) focus on obligations and neglect both reparations
and our view of permissions as rights. Some approaches (e.g., [17,19]) however
do perform model checking for a deontic logic in a multi-agent system setting.
The work most similar to ours is that of contract automata [5], wherein a contract
is represented as a Kripke structure (with states tagged by norms), two parties
as automata, and permissions with a similar rights-based view. However, it takes
a purely operational approach, and lacks a notion of blame.

Our language is an extension and combination of the deontic languages pre-
sented in [3,4,18], combining action attempts, a right-based view of permission,
a two-party setting, and regular expressions as conditions.

Besides maintaining all these, we give denotational trace semantics, and pro-
vide blame and model checking algorithms.

6 Conclusions

In this paper we have introduced a deontic logic for reasoning about a two-party
synchronous setting. This logic allows one to define constraints on when parties
should support or non-interfere with the carrying out of a certain action or pro-
tocol. Using a pair of party traces, we can talk about attempts and success to
perform collaborative actions. We consider automata constructions describing
both the set of all satisfying and violating sequences. Given the behavior of the
agents in the form of suitable automata, we have also provided algorithms for
model checking and for blame assignment. To differentiate between satisfying a
formula in the expected manner or by fullfilling the exceptional case, we intro-
duce a quantitative semantics. This allows ordering satisfying traces depending
on how often they use these exceptions.

This work may be extended in many directions. First, we could consider asyn-
chronous interaction, distinguishing between sending and receiving. The syntax
and semantics can also be extended easily to handle multi-party agents rather
than just a two-party setting. Different quantitative semantics could be given,
for example considering the costs of actions to reason when it is better to pay
a fine rather than to behave as expected. We plan to study how to synthesise
strategies for the different parties, for instance to ensure the optimal behaviour
of agents.

18 Kharraz et al.

References

1. Abarca, A.I.R., Broersen, J.M.: A stit logic of responsibility. In: Faliszewski, P.,
Mascardi, V., Pelachaud, C., Taylor, M.E. (eds.) 21st International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2022, Auckland, New
Zealand, May 9-13, 2022. pp. 1717–1719. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS) (2022), https://www.ifaamas.org/
Proceedings/aamas2022/pdfs/p1717.pdf

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM (JACM) 49(5), 672–713 (2002)

3. Azzopardi, S., Gatt, A., Pace, G.J.: Reasoning about partial contracts. In: JU-
RIX’16. Frontiers in Artificial Intelligence and Applications, vol. 294, pp. 23–32.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-726-9-23

4. Azzopardi, S., Pace, G.J., Schapachnik, F.: On observing contracts: Deontic con-
tracts meet smart contracts. In: JURIX’18. Frontiers in Artificial Intelligence and
Applications, vol. 313, pp. 21–30. IOS Press (2018). https://doi.org/10.3233/
978-1-61499-935-5-21

5. Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.: Contract au-
tomata. Artif. Intell. Law 24(3), 203–243 (sep 2016), https://doi.org/10.1007/
s10506-016-9185-2

6. Broersen, J.: Strategic deontic temporal logic as a reduction to atl, with an ap-
plication to chisholm’s scenario. In: DEON’06. p. 53–68. Springer (2006). https:
//doi.org/10.1007/11786849_7

7. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vas-
concelos, V.T. (eds.) CONCUR 2007 – Concurrency Theory. pp. 59–73. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

8. Chockler, H.: Causality and responsibility for formal verification and beyond.
In: CREST@ETAPS’16. EPTCS, vol. 224, pp. 1–8 (2016). https://doi.org/10.
4204/EPTCS.224.1

9. Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model ap-
proach. In: Gottlob, G., Walsh, T. (eds.) IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico,
August 9-15, 2003. pp. 147–153. Morgan Kaufmann (2003), http://ijcai.org/
Proceedings/03/Papers/021.pdf

10. Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model ap-
proach. Journal of Artificial Intelligence Research 22, 93–115 (2004)

11. Friedenberg, M., Halpern, J.Y.: Blameworthiness in multi-agent settings. Proceed-
ings of the AAAI Conference on Artificial Intelligence 33(01), 525–532 (2019).
https://doi.org/10.1609/aaai.v33i01.3301525

12. Halpern, J.Y.: Cause, responsibility and blame: a structural-model approach. Law,
probability and risk 14(2), 91–118 (2015)

13. Halpern, J.Y., Kleiman-Weiner, M.: Towards formal definitions of blameworthiness,
intention, and moral responsibility. In: AAAI/IAAI/EAAI’18. AAAI Press (2018)

14. Jackson, F.: On the semantics and logic of obligation. Mind 94(374), 177–195
(1985)

15. Lorini, E., Longin, D., Mayor, E.: A logical analysis of responsibility attribution:
emotions, individuals and collectives. Journal of Logic and Computation 24(6),
1313–1339 (12 2013), https://doi.org/10.1093/logcom/ext072

16. McNamara, P.: Deontic logic. In: Gabbay, D.M., Woods, J. (eds.) Logic and the
Modalities in the Twentieth Century, Handbook of the History of Logic, vol. 7, pp.
197–288. Elsevier (2006), https://doi.org/10.1016/S1874-5857(06)80029-4

https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1717.pdf
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1717.pdf
https://doi.org/10.3233/978-1-61499-726-9-23
https://doi.org/10.3233/978-1-61499-726-9-23
https://doi.org/10.3233/978-1-61499-935-5-21
https://doi.org/10.3233/978-1-61499-935-5-21
https://doi.org/10.3233/978-1-61499-935-5-21
https://doi.org/10.3233/978-1-61499-935-5-21
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/11786849_7
https://doi.org/10.1007/11786849_7
https://doi.org/10.1007/11786849_7
https://doi.org/10.1007/11786849_7
https://doi.org/10.4204/EPTCS.224.1
https://doi.org/10.4204/EPTCS.224.1
https://doi.org/10.4204/EPTCS.224.1
https://doi.org/10.4204/EPTCS.224.1
http://ijcai.org/Proceedings/03/Papers/021.pdf
http://ijcai.org/Proceedings/03/Papers/021.pdf
https://doi.org/10.1609/aaai.v33i01.3301525
https://doi.org/10.1609/aaai.v33i01.3301525
https://doi.org/10.1093/logcom/ext072
https://doi.org/10.1016/S1874-5857(06)80029-4

Synchronous Agents, Verification, and Blame — A Deontic View 19

17. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems. p. 209–216. AAMAS
’03, Association for Computing Machinery, New York, NY, USA (2003), https:
//doi.org/10.1145/860575.860609

18. Prisacariu, C., Schneider, G.: Cl: An action-based logic for reasoning about con-
tracts. In: WoLLIC’09. LNCS, vol. 5514, pp. 335–349. Springer (2009). https:
//doi.org/10.1007/978-3-642-02261-6_27

19. Raimondi, F., Lomuscio, A.: Automatic verification of deontic properties of multi-
agent systems. In: Lomuscio, A., Nute, D. (eds.) Deontic Logic in Computer Sci-
ence. pp. 228–242. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

20. Shea-Blymyer, C., Abbas, H.: A deontic logic analysis of autonomous systems’
safety. In: HSCC’20. pp. 26:1–26:11. ACM (2020), https://doi.org/10.1145/
3365365.3382203

21. Von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)

https://doi.org/10.1145/860575.860609
https://doi.org/10.1145/860575.860609
https://doi.org/10.1007/978-3-642-02261-6_27
https://doi.org/10.1007/978-3-642-02261-6_27
https://doi.org/10.1007/978-3-642-02261-6_27
https://doi.org/10.1007/978-3-642-02261-6_27
https://doi.org/10.1145/3365365.3382203
https://doi.org/10.1145/3365365.3382203

	Synchronous Agents, Verification, and Blame — A Deontic View

